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Abstract: We investigate the admissible vector-valued modular forms having three inde-

pendent characters and vanishing Wronskian index and determine which ones correspond to

genuine 2d conformal field theories. This is done by finding bilinear coset-type relations that

pair them into meromorphic characters with central charges 8, 16, 24, 32 and 40. Such pair-

ings allow us to identify some characters with definite CFTs and rule out others. As a key

result we classify all unitary three-character CFT with vanishing Wronskian index, excluding

c = 8, 16. The complete list has two infinite affine series Br,1, Dr,1 and 45 additional theo-

ries. As a by-product, at higher values of the total central charge we also find constraints

on the existence or otherwise of meromorphic theories. We separately list several cases that

potentially correspond to Intermediate Vertex Operator Algebras.
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1 Introduction

A rational 2d conformal field theory has a finite set of holomorphic characters χi(τ) and a

partition function of the form:

Z(τ, τ̄) =
n−1∑
i,j=0

Mij χi(τ̄)χj(τ) = |χ0|2 +
n−1∑
i=1

Yi|χi|2 (1.1)
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Here the integer n is the number of linearly independent characters, which is less than or equal

to the number of independent primaries, which we denote by p and refer to as the “rank”.

It is possible for multiple primaries to have the same character 1. The positive integers Yi

in Eq.(1.1) are the multiplicities of the characters, and the number of primaries is given in

terms of these by p = 1 +
∑n−1

i=1 Yi. When n = 1, the only character is the identity character,

and since the vacuum state is unique and real we also have p = 1. In this case we will refer

to the resulting theory as a meromorphic CFT 2.

A classification programme initiated in [1–3] and pursued by both mathematicians and

physicists in more recent times [4–36], is based on the fact that characters are vector-valued

modular forms (VVMF) of weight 0:

χi(γτ) =
n=1∑
j=0

%ij(γ)χj(τ) (1.2)

where:

γ =

(
a b

c d

)
∈ SL(2,Z), γτ ≡ aτ + b

cτ + d
, τ ∈ H (1.3)

and H = {τ ∈ C | Im(τ) > 0} is the upper half plane.

For the partition function in Eq. (1.1) to be modular invariant, we must have:

%†diag(1, Yi)% = diag(1, Yi) (1.4)

Characters that transform in this way under the modular transformations can be shown to

solve modular linear differential equations (MLDE) [2, 3]. Such equations have finitely many

parameters and these can be varied to scan for solutions that satisfy the basic criteria to be

those of a conformal field theory. These criteria correspond to the fact that each character is

holomorphic in q = e2πiτ (except as q → 0), and have an expansion of the form:

χi(τ) = qαi

∞∑
s≥0

ai,s q
s, s ∈ Z (1.5)

If the VVMF correspond to a genuine CFT then these critical exponents, αis, can be identified

with the central charge and (chiral) conformal dimensions as:

αi = − c

24
+ hi (1.6)

1This occurs in particular whenever a primary is complex, since its complex conjugate has the same char-

acter, but there are also more general cases of this phenomenon.
2Some authors restrict the word “meromorphic” to those CFT whose character is exactly modular invariant

without a phase, and hence c is a multiple of 24. However in this work we will use the term for all one-character

CFT, whose central charges can be any positive integral multiple of 8.
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with h0 = 0→ α0 = − c
24 corresponding to the identity character of the CFT.

The coefficients ai,s, s ≥ 1 should be non-negative integers for some choice of positive

integer ai,0 that provides the overall normalisation of each character. To satisfy the axioms of

CFT we must choose a0,0 = 1 (non-degeneracy of the vacuum), while for each i 6= 0 we define

the integer Di = ai,0. Since the MLDE from which characters are obtained is homogeneous,

the degeneracies are not uniquely determined without some additional input. One tentatively

chooses the minimum integral Di that make the coefficients ai,s, s ≥ 1, of each character,

non-negative integers and then checks for consistency. We discuss this point in some detail

in Section 2.

In [23] character sets with the above properties were called “admissible”. For any ad-

missible character χi, we define m1 = a0,1, the degeneracy of the first excited state in the

identity character. For a CFT, this corresponds to the number of spin-1 generators in the

chiral algebra. The integers m1, Di, Yi will be important in what follows.

In general, admissible characters do not correspond to a CFT, as we discuss in detail be-

low. While much of the literature cited above has focused on classifying admissible characters,

from the CFT point of view the result should be interpreted as a “superset” of candidates of

which actual CFTs form a subset. The problem of identifying this subset has been addressed

in varying degrees of detail, for small numbers of characters, in [3, 17, 18, 20, 24, 27, 28, 35–

39]. In the present work we take this goal forward by completing the classification of three-

character CFT with vanishing Wronskian index (explained below) for any central charge,

but excluding central charge = 8, 16 where the classification of admissible characters is itself

problematic [21, 33–35]. The significance of our result is that we decisively rule in, or out,

every admissible character as being a CFT by making an exhaustive list of bilinear pairings.

In a different context, some recent work where the distinction between consistent partition

functions and actual CFTs is highlighted is [40, 41].

An important quantity in the classification procedure is the number of zeroes of the

Wronskian determinant of the characters in moduli space. Because the torus moduli space

has cusps, the number of zeroes can be fractional in units of 1
6 . Hence we define the Wronskian

index ` [2] to be an integer such that the number of zeroes is `
6 . Certain values of ` can be

ruled out – we have ` 6= 1 in general, ` even for n = 2 [4], ` a multiple of 3 for n = 3, and

again ` even for n = 4 [33].

Our focus in this work is on admissible characters with (n, `) = (3, 0). Progress in

classifying these was made in [3, 10, 17, 28] and more recently in three independent works:

[33–35] which all found a set of seven new solutions that had previously been missed. Of

these, the work of Kaidi, Lin and Parra-Martinez [33] was able to complete the classification

of admissible characters using a method based on [42]. In view of their proof, the classification
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in [34] (originally restricted to c ≤ 96) is likewise complete. In the rest of this work we will

closely follow the notation of this paper. There is one caveat to the above statements: there

are infinitely many admissible (3, 0) characters at c = 8, 16 [27, 33–35] that are harder to

classify and would need to be considered separately.

In the present work we start with the complete set of admissible characters (excluding

those with c = 8 and 16) and make use of the coset construction [17, 43, 44] to complete the

classification of (n, `) = (3, 0) CFT. The cosets we consider are in the spirit of [17] where the

numerator is a meromorphic CFT with c = 8N with N ∈ N. However we go far beyond this

work by exhaustively tabulating all possible bilinear pairings with a total central charge of

c = 8, 16, 24, 32, 40. Notably, even at c = 24 we find interesting classes of pairings that were

not considered in [17].

A significant spinoff of our coset pairings is that we can use them to predict several

non-lattice meromorphic CFT at arbitrary high values of c = 8N . The results have been

presented in [45] and here they are placed in a larger context. Moreover we will also rule out

certain classes of meromorphic theories at c = 32, 40.

Returning to the three-character case, the restriction on Wronskian index makes this

in one sense a weaker classification than that of [39] for two primaries, where there was no

restriction on the Wronskian index, but in one sense also stronger since the present work has

no restriction on the central charge. This should finally bring closure to a programme for the

“simplest” three-character theories (those with vanishing Wronskian index) that was initiated

over three decades ago in [3]. By contrast, the analogous problem for two characters and

vanishing Wronskian index was simple enough to solve in a single paper [2] with completeness

being rigorously proved more recently [21].

Apart from the fact that we restrict the Wronskian index but not the central charge, the

approach in the present work has some other important differences from [39]. Here we start

from a given finite set of admissible characters, then look for bilinear coset-type relations for

them based on their q-expansion. Thereafter we use embedding techniques to identify one

of these as a CFT if the other one is known, We also allow any number of primaries as long

as the number of characters (dimension of the VVMF) is three, while the rank (number of

primaries or “simple modules”) can be larger. We do not impose unitarity, but always work

with the unitary presentation of the characters (the most singular term is treated as defining

the central charge).

In Section 2 we start by describing the methodology used and provide a list of VVMFs

that potentially describe three-character CFTs but were so far uncharacterised. Thereafter we

summarise some relevant facts about embeddings, extensions of chiral algebras and bilinear or

“gluing” relations. We also review a class of admissible characters that have formally negative
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fusion rules (as computed from the Verlinde formula [46], after extending if necessary the

modular S-matrix to have the same rank as the number of primaries). Some of these have

been identified as “Intermediate Vertex Operator Algebras” [14]. Section 3 is devoted to the

detailed presentation of our results, with tables detailing the coset pairs at the level of VVMFs

and descriptions of the tables that explain how individual entries are either identified with

definite CFTs or ruled out. We summarise our results and discuss significant general features

of our classification in Section 4. At the very end we abstract a complete table of unitary

CFTs with three characters and zero Wronskian index (excluding c = 8, 16 as mentioned

above). The reader who is only interested in the results may skip directly to Section 4.

While this work was in progress we came to know of [36] which has significant overlap

with Table 3.3.1 of our paper which positively identifies 6 of the 41 previously uncharacterised

solutions. However, in the present work we are also able to unambiguously categorise all the

remaining 35 solutions, separating them into 20 that are of IVOA type and 15 that we can

rule out as CFTs, completing the classification process. This process makes use of most of the

remaining 20 tables in subsections 3.1 – 3.5. Also, as mentioned above, we find both positive

and negative predictions for classes of meromorphic theories at c > 24.

2 Methodology and background

2.1 MLDE and coset construction

As explained in the Introduction, the starting point of the classification procedure in which we

are working is the construction of admissible characters using MLDEs. Here we explain some

important subtleties in this construction and then go on to discuss the coset construction

which we employ in the present work to characterise which admissible characters correspond

to CFTs.

Below Eq. (1.6) we defined the degeneracy Di of each non-identity character χi as the

minimum integer such that the q-series for the corresponding character has non-negative

integral coefficients. This assigns a tentative normalisation to each non-identity character.

As explained in [3], the test of having found correct degeneracies Di is that the S-matrix

in a basis of primaries is unitary. Note also that for an affine theory (WZW model), the

degeneracy Di for a given χi is the dimension of the representation of the finite-dimensional

Lie algebra in which the ith primary transforms, so in this case it is uniquely determined.

In view of these observations, at some stage it may be needed to change the degeneracy of

a primary from the initially determined one to a multiple of itself. However the possibility of

such a change is subject to a constraint. Suppose we have a solution to a given MLDE where

the degeneracies Di as well as the multiplicities Yi have been tentatively determined (the Yis
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can be computed for MLDE solutions using the procedure given in [3]). If we redefine the Di

by multiplying by an integer factor, the Yi will also change in such a way that the product

YiD
2
i remains fixed. This can be seen by writing the partition function as:

Z(τ, τ̄) = |χ0|2 +

n−1∑
i=1

YiD
2
i

∣∣∣∣(1 +
ai,1
ai,0

q +
ai,2
ai,0

q2 + . . .

)∣∣∣∣2 , (2.1)

where everything except YiD
2
i is uniquely determined by the MLDE. Then modular invariance

uniquely determines the YiD
2
i for each i. Thus the change Di → δiDi leads to the scaling

Yi → Yi
δ2i

. The new Yi will be integer only if the old one was divisible by δ2i . This is a stringent

constraint – for any given pair Yi, Di, rescaling of Di is only allowed if the original Yi are

divisible by the square of an integer. This point is illustrated in considerable detail in the

discussion of Table 3.3.1.

In fact there are MLDE solutions for which both Di and Yi cannot simultaneously be

made integral. These cannot be CFTs and are marked with a “strikethrough” in Table

2.1.1 (thus they appear as III or V). We note that none of these solutions appears in

[33], who presumably eliminated them at the outset for the above reasons, however some of

them do appear in [35]. Interestingly even these VVMFs satisfy bilinear relations, and for

completeness we display these in our subsequent tables where they continue to be marked

with a “strikethrough”. Though they are inconsistent as CFTs, it is still striking that they

satisfy bilinear pairings at all, and this might prove useful for the general understanding of

VVMFs.

Next we describe one of our main tools, the coset construction [43, 44, 47]. This is a

general class of relations among CFTs, and we will only use the class of cosets where the

numerator factor of the coset is a meromorphic CFT, as we explain below 3. Pick a set of

admissible characters χi, i = 0, 1, . . . n − 1 and collectively denote it by W. Suppose this

set has Wronskian index `, central charge c and conformal dimensions hi, i = 1, 2, · · ·n − 1.

W will be said to have a “bilinear relation” with another set of admissible characters χ̃i,

collectively denoted W̃, with i running over the same range and having Wronskian index ˜̀,

central charge c̃ and conformal dimensions h̃i if the following holomorphic identity holds:

χ0(τ)χ̃0(τ) +
n−1∑
i=1

di χi(τ)χ̃i(τ) = χH(τ) (2.2)

where χH(τ) is a polynomial in the Klein j-invariant times possible factors of j(q)
1
3 or j(q)

2
3 ,

such that the result has non-negative integral coefficients in a power series in q ≡ e2πiτ . Such

3This is the form studied in the physics literature in [17, 18, 36, 39] and in the mathematics literature in,

for example, [48–50].
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a relation can only hold if χ̃i(τ) transforms the same way as the complex conjugate χi(τ̄)

under modular transformations. Then the di are positive integers satisfying:

%†diag(1, di)% = diag(1, di) (2.3)

where ρ is the representation under which the χi transform.

From its properties, χH(τ) is also an admissible character. It may potentially correspond

to a meromorphic CFT of central charge c + c̃, but it is not necessary that such a CFT

exists. For example at c + c̃ = 24 we have an infinite family of admissible characters but

only a finite number correspond to CFT’s [37]. Bilinear pairings are also known to hold

for quasi-characters [23, 30] which are integral but not admissible due to negativity of some

coefficients.

Comparing Eq. (2.3) with Eq. (1.4) we see that we must have di = Yi. Physically this

is because on the one hand the modular transformations of W,W are conjugate to each

other (where W is the complex conjugate VVMF to W with characters χi(τ̄)), so that the

partition function is invariant. On the other hand the modular transformations of W, W̃
are also mutually conjugate, so that the bilinear relation is modular invariant – A slight

subtlety here is that the bilinear relation can acquire a phase under modular transformations

if cH = 24n+ 8, 24n+ 16 with n a non-negative integer. However this phase can be absorbed

into the transformations of χ̃ and it is still true that di = Yi.

Note that if the degeneracies of one of the members of the pair (Di or D̃i) are not the

correct ones then we may not find di = Yi. This will be a useful diagnostic in what follows.

However there is another condition under which it is possible to have (d1, d2) 6= (Y1, Y2), that

arises when the dual pair is made up of affine theories of the type D4n,1. In such cases the

representation of SL(2,Z) on the characters is reducible (see v1 of [28]) and as a result there

are multiple ways to combine the characters into a modular invariant. This will be explained

in more detail in Section 2.4.

The bilinear relation Eq. (2.2) does not imply that any of χ(τ), χ̃(τ), χH(τ) correspond

to a genuine CFT. However, if χ, χ̃ and H are all CFTs, denoted C, C̃ and H respectively,

then the bilinear relation is equivalent to the coset relation:

C̃ =
H
C

(2.4)

This means that the chiral algebra of C̃ is the commutant of the embedding of the chiral

algebra of C in that of H. The representations of the commutant algebra also follow from this

embedding, hence the coset completely defines a CFT.

If both C and H correspond to CFT’s whose stress tensor is given by the Sugawara

construction in terms of Kac-Moody currents, then by embedding the currents of C in those
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of H one defines the stress tensor of the coset theory C̃. This will provide a relatively easy

way to prove the existence of a coset relation [17]. However it is also possible for Eq. (2.2)

to be satisfied when H does not have any Kac-Moody currents (an example is the Monster

Module [51, 52]). In this case the coset construction of [43, 47] does not strictly apply, but

the more general one of [44] does. In these cases it is easier to verify the bilinear relation

rather than compute the commutant of C in H. One such example, studied in the context of

MLDE and holomorphic bilinear relations [18] arises when C is the Ising model and C̃ is the

Baby Monster CFT [49].

The existence of bilinear relations between an admissible solution W, another admissible

solution W̃ and an invariant (up to a phase) character χH provides us a number of ways to

decide whether given admissible characters do or do not correspond to CFT. These are as

follows:

• WhenW and χH are both known CFTs C,H, the bilinear relation suggests that W̃ may

correspond to one or more CFTs C̃. This can then be accurately confirmed by checking

for the existence of one or more suitable embeddings of C in H that would define C̃.

• When W, W̃ are both known CFTs C, C̃, we may conclude that the character χH corre-

sponds to a CFT H that can be called the “gluing” of C, C̃ 4. Several new meromorphic

CFT were recently discovered in this way in [45] 5.

• When a bilinear relation exists and W is a CFT C, but the character χH is known not

to correspond to a CFT, the bilinear partner W̃ cannot be a CFT. For if it were, then

the bilinear relation would predict that χH is a CFT, resulting in a contradiction.

• When a bilinear relation holds and W corresponds to a CFT C but W̃ is known not

to correspond to any CFT, it can sometimes be argued that χH does not describe a

CFT. The naive reasoning is that if χH were a CFT H, then by taking the coset H/C
we would define a CFT C̃ corresponding to the admissible character W̃, resulting in

a contradiction. However a certain condition needs to be satisfied in this case, so we

will explain the statement more precisely in the discussion on Table 3.4.4 where it is

implemented for the first time.

4Rigorously this is true for CFTs with up to 4 primaries, for which the Modular Tensor Category is unique

given the modular transformations of the characters [53].
5However, again for cases involving D4n,1, there can be ways to pair C, C̃ that do not lead to a meromor-

phic theory because the coefficients di in the pairing are not integral. We will remark on these as they are

encountered.
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We see that the bilinear relation is a powerful diagnostic tool for relating admissible

characters to CFT or ruling them out as being CFT.

Let us note here that the recent work [36] also makes use of the coset construction to

identify some admissible three-character solutions as CFT, however there are some differences

in the criteria used. We will comment on the cases of overlap as we go along.

In [17] the following relation between the data of characters χi and their coset dual χ̃i

was derived:

`+ ˜̀= n2 +

(
c+ c̃

4
− 1

)
n− 6

n−1∑
i=1

(hi + h̃i) (2.5)

Here we are interested in the case n = 3. Because c+ c̃ must be a multiple of 8, we write it as

8N where N is an integer 6. Since the right hand side of the bilinear relation is a character

with integer dimensions (up to an overall power of q), we must have hi + h̃i = ni, an integer

≥ 1, for each i. Thus the above relation can be written:

`+ ˜̀= 6
(
N + 1−

n−1∑
i=1

ni

)
(2.6)

As both `, ˜̀≥ 0 we have the bound:

n−1∑
i=1

ni ≤ N + 1 (2.7)

If this bound is saturated it means ` = ˜̀ = 0 and we have the possibility of dual (3, 0)

pairs. Thus we will proceed by listing all possible values ni that saturate the bound for

each N , and then classifying dual pairs with these ni. This technical point is of importance

because it seems to have been missed in much of the previous literature, starting with [17]

that only considered a special sub-class of cosets where each ni ≥ 2. More general cosets of

meromorphic theories were studied recently, and apparently for the first time, in [39] in the

context of theories with exactly two primaries.

The values of ni have considerable significance for the structure of the bilinear pair,

which we now explain. Suppose a bilinear relation holds between CFTs C, C̃ with Kac-Moody

algebras h, h̃, and they pair up to a CFT H with Kac-Moody algebra g. Then h̃ must be the

commutant of h in g. Now suppose that for any of i = 1, 2 we have ni = 1. This means that

some spin-1 currents in the theory H arise as “composites” of primaries in C, C̃. This in turn

means the total number of spin-1 currents of C, C̃ is strictly smaller than that of H, in other

words dim h + dim h̃ < dim g, so the embedding of h in g is a non-trivial one – typically h is

embedded into a simple factor of g. Such cases were discussed for the case of two primaries

6In [17] the convention was to write c + c̃ = 24N where N is a multiple of 1
3
.
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in [39]. On the other hand whenever all ni ≥ 2, no currents of H can arise as composites

of primaries of C, C̃. Therefore we have dim h + dim h̃ = dim g. This can only happen if g

is non-simple and h corresponds to one or more of its simple factors. Such cases were first

studied in [17], and they are simpler because the coset merely “deletes” the simple factors of

g corresponding to h leaving behind the remaining simple factors as the chiral algebra h̃ of

the coset theory.

At this point it is useful to briefly describe how the concept of “fusion rules” applies to

VVMFs even before they are identified with CFT. In the MLDE approach to classification of

RCFT, one first finds admissible character solutions that transform covariantly under SL(2,Z)

and only later addresses their identification with CFT. Thus we can calculate their modular

S and T matrices at the outset. Inserting the S-matrix into the Verlinde formula [46] one

can then compute the following quantities 7:

Nk
ij =

∑
l

SilSjlS
−1
kl

S0l
(2.8)

As long as the Sij are only a property of admissible characters, the quantities Nk
ij have no

particular physical meaning. But once the characters are identified with CFTs then these

quantities necessarily become the fusion rules of that theory. Hence by abuse of notation we

will refer to Nk
ij as “fusion rules” even when no CFT interpretation has so far been assigned to

the corresponding characters. An important point that will come up below is that sometimes

one or more of the Nk
ij is a negative, rather than positive, integer. We refer to such characters

as being of Intermediate Vertex Operator Algebra (IVOA) type, following [14].

We now give a short summary of the complete classification of admissible VVMF’s with

three characters and ` = 0 (the characters are extracted from the most recent papers [33–35]

and expressed in the notation of [34]), referring the reader to the original references for more

details. The admissible character sets fall into five categories, labelled I, II, . . . ,V. Let us

briefly review what the various categories mean.

Category I: The admissible VVMFs belonging to this category are all 3-character theories

that are affine or tensor products of affine theories, together with the Ising CFT M(4, 3) and

the unitary presentations8 of M(7, 2) and M(5, 2)⊗2.

Category II: Most of these are admissible 2-character solutions together with an “unstable”

character (or sometimes an admissible 1-character solution together with two “unstable”

7This can only be done once a unitary S-matrix has been found. In general S does not come out to

be unitary, this problem arises when multiple primaries have the same character. In that case the space of

primaries has to be manually enlarged and the S-matrix recomputed in that space, as explained in [3].
8By unitary presentation we mean the choice of the most singular character as the identity. However, this

does not imply there is a unitary theory.
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characters). By unstable, we mean that this character has rational coefficients in its q-series

that cannot be made integral by any choice of normalisation. Such a case was first discussed

in [2] and more general examples were found in [34]. There are also some type II cases where

the conformal dimensions degenerate – two of them become equal – and in this case the

MLDE has a logarithmic solution. Due to these reasons, type-II VVMFs are not genuine

3-character solutions and we do not explore them further.

Category III: The admissible VVMFs belonging to this category are those solutions of the

(3,0) MLDE which appeared in [28] but not in [17] and hence were not previously categorised

as CFT. In this category, there exists special infinite sets of solutions, at c = 8 and c = 16

that we explain in Appendix B. We will not attempt to include these in our classification,

though some of the known cases will appear in our tables.

Category IV: The admissible VVMFs belonging to this category are those solutions of the

(3,0) MLDE which appeared in [17, 18] where they were precisely characterised as CFTs via

the coset construction.

Category V: There are seven admissible VVMFs in this category, these were independently

discovered in [33–35] and not known previously.

We see that all entries in categories I, II, IV have already been identified as CFT’s or

else shown to be inconsistent [34]. Thus we need to focus on the characterisation of classes

III and V which so far have not been identified as CFTs. To characterise them, we will study

their bilinear relations with solutions in category I and IV (and amongst themselves).

In Table 2.1.1 we have listed all solutions in categories III 9 (except for the infinite sets

having c = 8 and c = 16 noted above) and V. The subscripts label the set in order of

increasing central charge, thus for example V18 (c = 12) lies between III17 (c = 12) and

III19 (c = 25
2 ). As explained below Eq. (1.5), the integer m1 is the dimension of the weight-1

space in the identity character, while Di, i = 1, 2 are the ground-state degeneracies of the

non-identity characters.

In the last column of table 2.1.1, labelled “sign(fusion)”, we list the signature of the fusion

coefficients of the concerned VVMF, computed using Eq. (2.8). However we do not bother to

compute these for solutions of III, V type. Also, as noted earlier this computation requires

us to enlarge the matrix in cases where there are more than three primaries, and this rapidly

becomes tedious. So we restrict this calculation to solutions that have at most four primaries.

The notation ‘· · · ’ in the last column of the table denotes that we did not compute the fusion

coefficients of these solutions for one of the reasons above. Fortunately these will also not

9Note that III27 in Table 2.1.1 is actually E⊗2
7.5 and was identified in [34] as a category I solution. However

it has a negative fusion rule and therefore is of IVOA type. Here we include it in category III as it will pair

up with other IVOA-type characters in this category.
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be needed. In the remaining cases a ‘+’ sign in the last column denotes that all the fusion

coefficients are non-negative while a ‘−’ sign denotes that at least one coefficient is negative.

The latter will be called IVOA-type solutions, and we discuss them in more detail in Sec. 2.5.

In Table 2.1.2, we list the category III infinite sets of admissible character solutions at

c = 8 and c = 16 . More details on these infinite sets are in Appendix B.

# c (h1, h2) m1 (D1, D2) (Y1, Y2) sign(fusion)

III1
12
7 (27 ,

3
7) 6 (3, 2) (1,1) −

III2
12
5 (15 ,

3
5) 3 (3, 5) (1,2) +

III3
44
7 (47 ,

5
7) 88 (11, 44) (1,1) −

III4
36
5 (35 ,

4
5) 144 (12, 45) (1,2) −

III5
52
7 (47 ,

6
7) 156 (13, 78) (1,1) −

III6
17
2 ( 1

16 ,
3
2) 255 (17, 221) ( 1

256 , 1) · · ·
III7

60
7 (37 ,

8
7) 210 (10, 285) (1,1) −

III8
44
5 (25 ,

6
5) 220 (11, 275) (1,2) −

III9
44
5 (15 ,

7
5) 253 (11, 242) ( 1

50 , 1) · · ·
III10 9 (18 ,

3
2) 261 (9, 456) ( 1

32 , 1) · · ·
III11

19
2 ( 3

16 ,
3
2) 266 (19, 703) ( 1

64 , 1) · · ·
III12

68
7 (37 ,

9
7) 221 (17, 782) (1,1) −

III13 10 (14 ,
3
2) 270 (5, 960) (12 , 1) · · ·

III14
21
2 ( 5

16 ,
3
2) 273 (21, 1225) ( 1

16 , 1) · · ·
III15 11 (38 ,

3
2) 275 (11, 1496) (12 , 1) · · ·

III16
23
2 ( 7

16 ,
3
2) 276 (23, 1771) (14 , 1) · · ·

III17 12 (35 ,
7
5) 222 (25, 1275) (2, 2) · · ·

V18 12 (13 ,
5
3) 318 (9, 4374) (1, 1) · · ·

III19
25
2 ( 9

16 ,
3
2) 275 (25, 2325) (1,1) +

III20 13 (58 ,
3
2) 273 (26, 2600) (2,1) +

III21
27
2 (1116 ,

3
2) 270 (54, 2871) (1,1) +

III22
68
5 (45 ,

7
5) 136 (119, 1700) (1,2) +

III23
68
5 (25 ,

9
5) 374 (119, 12138) ( 1

50 , 1) · · ·
III24

100
7 (57 ,

11
7 ) 325 (55, 2925) (1,1) −

III25
100
7 (47 ,

12
7 ) 380 (55, 11495) (1,1) −

III26
29
2 (1316 ,

3
2) 261 (116, 3393) (1,1) +

III27
76
5 (45 ,

8
5) 380 (57, 3249) (2,1) −

III28
76
5 (35 ,

9
5) 437 (57, 11875) (1, 2) −

III29
108
7 (67 ,

11
7 ) 378 (117, 3510) (1,1) −
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III30
108
7 (47 ,

13
7 ) 456 (39, 20424) (1,1) −

III31
33
2 (1716 ,

3
2) 231 (528, 4301) (1,1) +

III32
116
7 (87 ,

10
7 ) 348 (725, 1972) (1,1) −

III33
84
5 (65 ,

7
5) 336 (770, 1452) (2,1) −

III34
84
5 (15 ,

12
5 ) 534 (33, 55924) ( 2

625 , 1) · · ·
III35

124
7 (97 ,

10
7 ) 248 (2108, 2108) (1,1) −

III36 18 (14 ,
5
2) 598 (25, 221 · 210) ( 1

32 , 1) · · ·
III37

92
5 (65 ,

8
5) 92 (1196, 7475) (1,2) +

III38
92
5 (35 ,

11
5 ) 690 (299, 178802) ( 2

25 , 1) · · ·
V39 20 (43 ,

5
3) 80 (2430, 17496) (1, 1) · · ·

V40 20 (13 ,
8
3) 728 (12, 2 · 312) (1, 1) · · ·

V41 20 (23 ,
7
3) 890 (135, 10 · 2 · 39) (1, 1) · · ·

III42
108
5 (75 ,

9
5) 27 (2295, 42483) (2,1) +

III43
108
5 (25 ,

14
5 ) 860 (833, 3015426) ( 1

1250 , 1) · · ·
III44

108
5 (45 ,

12
5 ) 1404 (459, 153 · 55) (1, 2) +

III45 22 (32 ,
7
4) 66 (77 · 26, 11 · 211) (1, 2) +

III46 22 (34 ,
5
2) 1298 (154, 847 · 210) (2, 1) +

III47
156
7 (117 ,

12
7 ) 78 (5070, 27170) (1,1) −

III48
156
7 (57 ,

18
7 ) 1248 (130, 799500) (1,1) −

III49
45
2 (1316 ,

5
2) 1640 (1595, 956449) ( 1

16 , 1) · · ·
III50 23 (32 ,

15
8 ) 23 (4600, 23 · 211) (1, 2) +

III51 23 (78 ,
5
2) 2323 (575, 32683 ∗ 32) (2, 1) +

III52
116
5 (85 ,

9
5) 58 (4959, 27550) (1, 2) −

III53
116
5 (45 ,

13
5 ) 1711 (1653, 910803) ( 1

50 , 1) · · ·
III54

164
7 (117 ,

13
7 ) 41 (4797, 50922) (1, 1) −

III55
47
2 (1516 ,

5
2) 4371 (4371, 1135003) (14 , 1) · · ·

III56 26 (14 ,
7
2) 1118 (117, 3315 · 214) ( 1

512 , 1) · · ·
III57

132
5 (35 ,

16
5 ) 1536 (2392, 47018049) ( 2

625 , 1) · · ·
V58 28 (23 ,

10
3 ) 1948 (225, 11 · 2 · 314) (1, 1) · · ·

III59 30 (34 ,
7
2) 2778 (539, 14421 · 214) (12 , 1) · · ·

III60
61
2 (1316 ,

7
2) 3599 (47763, 264580485) ( 1

212
, 1) · · ·

III61 31 (78 ,
7
2) 5239 (9269, 2295147 · 27) ( 1

32 , 1) · · ·
III62

156
5 (45 ,

18
5 ) 3612 (14877, 250774426) ( 1

1250 , 1) · · ·
V63 36 (23 ,

13
3 ) 3384 (324, 8 · 320) (1, 1) · · ·

V64 44 (13 ,
17
3 ) 3146 (13, 19 · 325) (94 , 1) · · ·
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III65
276
5 (45 ,

33
5 ) 13110 (12971091, 4897835680923668) ( 2

244140625 , 1) · · ·

Table 2.1.1: Previously uncharacterized admissible character solutions to the (3, 0) MLDE.

The ones of type III and V have Yi that are fractional and cannot be made integer by

rescaling the degeneracies.

# c (h1, h2) m1 (D1, D2)

III
′

8 (12 , 1) N \ {248} (1, 1)

III
′′

16 (1, 32) N \ {496} (1, 1)

Table 2.1.2: Previously uncharacterized infinite familes of admissible character solutions to

the (3, 0) MLDE with c = 8, 16

As mentioned above, the tables in the following Sections will include the III and V entries

in Table 2.1.1 even though they are already ruled out from being CFTs. For completeness,

our tables will also include some already characterised theories from [34], as their bilinear

pairings are interesting and could be useful for subsequent work.

One of the intriguing features that will come up is that Virasoro minimal models with c <

1 appear in the coset pairings, thus making it clear that the coset construction is more general

than pairings of theories with Kac-Moody symmetry. This feature was already foreseen in the

mathematics literature in [44, 48] and a few examples have appeared in the physics literature

in [18, 39, 45].

2.2 Embeddings of Lie algebras

In this section, we gather facts from Lie algebras, affine Lie algebras etc that we will need to

understand coset relations. Typically, the CFTs of H and C (2.4) have chiral algebras which

contain affine Lie-subalgebras, whose Lie algebras are such that the Lie algebra associated

with C is a subalgebra of that of H. Denote by h ↪→ g the corresponding embedding. Here

both the subalgebra h as well as the embedding map are crucial data. The same subalgebra

can be embedded in multiple ways and can potentially result in different cosets; we will see

examples of this phenomenon in the next section.

First we study maximal embeddings; when there is no Lie-subalgebra of g that properly

contains h. There are two kinds of maximal embeddings: regular (R) and special (S). The rank

of h is equal to that of g in a regular embedding and is smaller in a special embedding. One can

obtain the regular and special embeddings of simple Lie algebras readily from the literature;

we use the LieArt 2.0 package (see [54]) in Mathematica to obtain all possible maximal
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embeddings of a given Lie algebra. For example E8 has five regular maximal embeddings,

namely D8, A4 ⊕A4, E6 ⊕A2, E7 ⊕A1 and A8 and six special embeddings, namely G2 ⊕F4,

A1 ⊕ A2, C2, A1, A1 and A1. The last three correspond to A1 embedded into E8 in three

different ways; one way to characterize this difference is via the embedding index, which

we discuss below. After having understood maximal embeddings, one studies non-maximal

embeddings as follows. Let l ↪→ h and h ↪→ g be maximal embeddings. By composing the

two embedding maps, one obtains a non-maximal embedding l ↪→ g and all non-maximal

embeddings are obtained in this manner, in steps of maximal embeddings.

Now given an embedding h ↪→ g, maximal or non-maximal, there exists an important

quantity called the embedding index xe ∈ N which can be computed as follows. Pick any

non-trivial irrep of g say Λg and consider its branching

Λg = ⊕i Λhi , (2.9)

where Λhi s are irreps of h. The embedding index is then computed using the formula:

xe =

∑
i
L
(
Λhi
)

L (Λg)
, (2.10)

where L
(
Λhi
)

denotes the Dynkin index of the irrep Λh
i . Note that even if xe is computed

in (2.10) using a particular irrep and its branching (2.9), one obtains the same answer for

any finite-dimensional irrep. For example, the embedding indices of the various subalgebras

(occuring in the maximal embeddings) of E8 are given below in superscript. For regular

embeddings we have D
(1)
8 , A

(1)
4 ⊕ A

(1)
4 , E

(1)
6 ⊕ A

(1)
2 , E

(1)
7 ⊕ A

(1)
1 and A

(1)
8 and for special

embeddings we have G
(1)
2 ⊕F

(1)
4 , A

(16)
1 ⊕A(6)

2 , C
(12)
2 , A

(520)
1 , A

(760)
1 and A

(1240)
1 . Computations

of branching rules, Dynkin indices, embedding indices etc are performed using LieArt 2.0

([54]).

The relationship between the affine Lie algebras associated with the CFTs of H and C in

(2.4) can now be made explicit. For affine embeddings of the form, hk̃ ↪→ gk, the levels follow

the rule (see section 14.7 of [55]):

k̃ = k xe. (2.11)

Thus, for example, when H = E8,1, some possibilities for C are D8,1, A4,1, E6,1, E7,1, A1,1,

A2,1, G2,1, F4,1.

Convention: Throughout this paper, we think of the Ising CFT M(4, 3) as B0,1, A1,2 as

B1,1, C2,1 as B2,1, U(1) (with the appropriate radius) as D1,1, A
⊗2
1,1 as D2,1 and A3,1 as D3,1.
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2.3 Extension of a chiral algebra

Consider an affine theory based on a (not necessarily simple) Kac-Moody algebra gk. Its

n-character extension, denoted by En[gk], is a new theory where the chiral algebra has been

extended by adding new generators. The theories based on gk and En[gk] have the same c.

The characters of the extension are linear combinations of characters of the original theory

that differ in dimension by integers and as a result the extension will have fewer characters

than the original affine theory. It also has a different Wronskian index in general. Note that

a given affine theory may have more than one extension.

One can also consider extensions of more general chiral algebras. For example, a direct

product of Kac-Moody and c < 1 Virasoro minimal models can be extended in the same way.

If there is a single minimal model module of central charge c, we will denote the extension by

En[g ⊗ L(c)] and similarly for the more general case. Such extensions have arisen in [39, 45]

and will also arise in the cases we consider.

2.4 More about coset relations

As we saw above, coset relations between a pair of CFTs (C and C̃) or admissible characters

(W and W̃) are bilinear relations between characters of the form:

χH = χ0χ̃0 +

2∑
i=1

di χiχ̃i. (2.12)

Here, χ0, χ1, χ2 are the characters of W and χ̃0, χ̃1, χ̃2 are the characters of W̃. (d1, d2) are

positive integers. χH0 is the character of a meromorphic CFT. Sometimes we have the situation

of “self-cosets” when the same CFT/admissible character solution is both W as well as W̃.

Also sometimes (as we will see this happens when D4n,1 are involved) there may be more

than one pairing of the same sets of characters: one with χ0 = χ̃0, χ1 = χ̃1, χ2 = χ̃2, which

results in a standard bilinear relation as in (2.12) with a pair of positive integers (d1, d2), and

one or more distinct ones when the characters are paired differently as described below.

In Eq.(2.12), the characters χi and χ̃i are understood to be properly normalised with

integral ground-state degeneracies and multiplicities that have been determined. Let the

multiplicities of χi, χ̃i be Yi, Ỹi. Since the standard coset pairing is a pairing at the level of

primaries these two multiplicities must be the same for each i. Moreover, by modular invari-

ance it follows that the integers di in the bilinear relation are also equal to these multiplicities,

thus di = Yi = Ỹi. Hence from now on, we use di to denote both Yi and Ỹi whenever the

pairing is of standard type. We will comment on the non-standard pairings as and when they

arise.
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We now describe in detail three infinite families of coset pairs of CFTs and compute their

(d1, d2) values. Members of these families will occur often amongst the many coset relations

between (3, 0) admissible characters that we compute and tabulate in the next section. In

one of the families below the non-standard pairings will also be illustrated.

Example 1 : We start with the case where the meromorphic CFT is the E8,1 CFT

and the coset pairs are B3,1 and B4,1. E8 contains a regular maximal sub-algebra D8 which

contains a special maximal sub-algebra B3 ⊕ B4. Thus B3 ⊕ B4 ↪→ E8 constitutes a non-

maximal embedding. One finds that the commutant of B3 in E8 is B4 and vice versa. This

then means that if B3 is taken to be the Lie algebra associated to the denominator theory C
in (2.4), then the Lie algebra associated to the coset theory C̃ would be B4. After computing

embedding indices and levels, this means that the coset of E8,1 by B3,1 is B4,1 CFT, and vice

versa.

The characters of B3,1 and B4,1 satisfy a bilinear relation with χH = j
1
3 :

j
1
3 = χ0χ̃0 + d1 χ 1

2
χ̃ 1

2
+ d2 χ 7

16
χ̃ 9

16
(2.13)

We can compute the (d1, d2) values for this relation using Lie algebra representation theory.

For this, let us count spin-1 currents on both sides. On the LHS we have the 248 currents

of E8 spanning the adjoint representation. This representation decomposes as follows into

irreducible representations of B3 ⊕B4:

248 = (21,1)⊕ (1,36)⊕ (7,9)⊕ (8,16) (2.14)

This means that on the RHS of Eq. (2.13), the 248 currents come from: (i) 21 spin-1 currents

of B3,1 combined with the identity from B4,1, (ii) 36 spin-1 currents of B4,1 combined with the

identity from B3,1, (iii) the product of primaries in the 7 and 9 representations of B3 and B4,

(iv) the product of primaries in the 8 and 16 spinor representations of B3 and B4 respectively.

Of these, (i) and (ii) can be found in the first term of Eq. (2.13), (iii) in the second term and

(iv) in the third term. Since there are no multiplicities in the above decomposition, it follows

that d1 = d2 = 1.

This example is a special case of a more general phenomenon where the meromorphic

CFT is the one-character extension E1[Dr,1] for r = 8, 16, 24, 32, 40 . . . of which E8,1 is the

c = 8 case. The single character of each of these CFTs is the modular invariant obtained

by combining the identity character χ0 (which at level-1 contains the adjoint representation

2r2 − r of Dr) and the character χ r
8

for the spinor representation 2r−1 of Dr. We will

find several coset pairs of admissible characters that correspond to the CFTs C = Br1,1 and

C̃ = Br2,1 for r1 + r2 + 1 ≡ r where r is a multiple of 8, that satisfy the following bilinear
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relation to the above meromorphic extension of Dr,1:

χ
E1[Dr,1]
0 = χ0χ̃0 + d1 χ 1

2
χ̃ 1

2
+ d2 χ 2r1+1

16

χ̃ 2r2+1
16

(2.15)

The relevant Lie algebra representation content of each of its terms comes from the following

two relations:

2r2 − r = (2r21 + r1,1)⊕ (1,2r22 + r2)⊕ (2r1 + 1,2r2 + 1)

2r−1 = (2r1 ,2r2)
(2.16)

Now the first two terms on the right hand side of the first line of (2.16) give rise to the spin-1

contributions in the product of identity characters (first term of Eq. (2.15)), while the third

term gives rise to the spin-1 contributions in the product of the characters in the fundamental

representations (second term of Eq. (2.15)). Meanwhile the spinor of Dr decomposes into the

product of spinor reprsentations of Br1 , Br2 (second line of Eq. (2.16)) and this corresponds

to the last term in Eq. (2.15) (note that this contribution in general has spin r
8 rather than

1). It follows that d1 = 1, d2 = 1. We also learn that the dimensions of the spinors of

the coset pair add up to r
8 rather than 1, and this corresponds to the integer n2 defined in

Eq. (2.6). The commutant of Br1 inside Dr1+r2+1 is Br2 (because there is a special maximal

embedding B
(1)
r1 ⊕ B

(1)
r2 ↪→ Dr1+r2+1) so we can identify Br1,1 with the denominator theory

C with E1[Dr1+r2+1,1] as the numerator theory H and Br2,1 as the coset theory C̃. Of course

one can also exchange the roles of Br1 and Br2 .

Example 2 : Another infinite family of coset pairs is Dr1,1 and Dr2,1 pairing up in a

bilinear relation with a meromorphic extension E1[Dr,1] where where r = r1+r2 is a multiple of

8. The affine theory Dr,1 has three characters: the identity character χ0, the vector character

χ 1
2

with conformal dimension 1
2 and the spinor and conjugate spinor (two representations

with the same character) χ r
8

with conformal dimension r
8 . The bilinear relation for the coset

pair of Dr1,1 and Dr2,1 is:

χ
E1[Dr,1]
0 = χ0χ̃0 + d1 χ 1

2
χ̃ 1

2
+ d2 χ r1

8
χ̃ r2

8
(2.17)

and the Lie algebra representations decompose as:

2r2 − r = (2r21 − r1,1) + (1,2r22 − r2) + (2r1,2r2)

2r−1 = (2r1−1,2r2−1) + (2r1−1,2r2−1)
(2.18)

The first two terms on the right hand side of the first line in (2.18) are associated with the

product of the identity characters while the third term corresponds to the product of the

characters in the fundamental representations (hence d1 = 1), and these terms are associated

to spin-1 generators on both sides. The two terms on the right hand side of the second line
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in (2.18) correspond to the product of the characters in the spinor representations and since

there are two terms we find d2 = 2. These are associated to spin- r8 generators. Finally we

note that the commutant of Dr1 inside Dr1+r2 is Dr2 (because there is a regular maximal

embedding D
(1)
r1 ⊕ D

(1)
r2 ↪→ Dr1+r2) which means we can choose Dr1,1 for the denominator

theory C with E1[Dr1+r2,1] as the numerator theory H and get Dr2,1 for the coset theory C̃;
again the roles of Dr1 , Dr2 can be exchanged.

Interestingly, when r1, r2 are both multiples of 4 there is another way to pair them up to a

meromorphic theory that is not Dr1+r2,1. As an example, consider the pair D12,1, D12,1 (both

members of this pair are the same, but that is irrelevant to the discussion). The non-trivial

conformal dimensions for each factor are 1
2 ,

3
2 . Of these, the latter – the spinor representation

– occurs twice because of chirality. Thus (Y1, Y2) = (1, 2). We find that they have a bilinear

pairing to the meromorphic theory D24,1 as discussed in Subsection 3.3. This is consistent

with the fact that:
E [D24,1]

D12,1
= D12,1 (2.19)

In this pairing, the vector primaries with h = 1
2 of each D12,1 pair up to make (24)2 = 576

spin-1 fields that, together with the 276 generators of each D12, make up the 1128 generators

of D24. This is a special case of the counting above. This pairing relies on the existence of

a modular-invariant extension of D24 which is a general phenomenon for all D8n. We may

therefore consider this a “standard” or “default” pairing.

However we also find another coset pairing in which the vector representation with h = 1
2

for each D12 combines with one of the spinors with h = 3
2 of the other as shown in Table

3.3.1. We see that this time new spin-2 generators arise, but no new spin-1 generators are

created. As a result the meromorphic theory formed by this pairing still has Kac-Moody

algebra (D12,1)
⊗2. The pairing is:

χ0χ̃0 + χ 1
2
χ̃ 3

2
+ χ 3

2
χ̃ 1

2
= χE1[(D12,1)⊗2] = j(τ)− 192 (2.20)

and corresponds to the coset:
E [(D12,1)

⊗2]

D12,1
= D12,1 (2.21)

It exists because of the special modular invariant E1[(D12,1)
⊗2] which is entry 66 of [37]. Notice

that in Eq. (2.20) not all primaries are used, since each spinor occurs only once rather than

twice as in the affine theory D12,1. Comparing with Eq. (2.12) it seems that we effectively

have (d1, d2) = (1, 1), and therefore (d1, d2) 6= (Y1, Y2), but a better way to think of it is that

for such special pairings, (d1, d2) are not associated to multiplicities of primaries at all.
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This point becomes clearer if we consider two copies of D16,1 which pair up in two different

ways to a meromorphic c = 32 theory, corresponding to the distinct cosets:

E1[D32,1]

D16,1
= D16,1,

E1[(D16,1)
⊗2]

D16,1
= D16,1 (2.22)

Now D16,1 has (h1, h2) = (12 , 2) and hence there seems to be only one bilinear pairing involving

the vector representation having h1 = 1
2 , where it pairs with itself. The result is easily seen

to be E1[D32,1]. One may then wonder what is the other pairing leading to the second coset.

The resolution is that in the other pairing we skip the vector representation entirely and take

the modular-invariant combination (up to a phase) χ0 + χ2 as the single character of each

factor, then multiply them. The resulting bilinear relation is:

(χ0 + χ2)(χ̃0 + χ̃2) = χ0χ̃0 + χ0χ̃2 + χ2χ̃0 + χ2χ̃2 = χ(E1[D16,1])2 = j(τ) + 248 (2.23)

Thus in this example the meromorphic extension of the square is actually the square of a

meromorphic extension of each factor – and the corresponding 32-dimensional lattice is the

direct sum of two independent 16d lattices (this was not true for the two ways of pairing D12,1

however, where the resulting extension is not the product of extensions). In this situation we

again see that the numbers (d1, d2) are not meaningful per se and should not be compared

to (Y1, Y2). Fortunately, as emphasised above, this issue arises only for coset pairs involving

affine theories of type D4r,1.

Example 3 : The third and last example of an infinite family of coset relations is based

on the maximal special embedding B
(1)
r−1 ↪→ Dr. The commutant of Br−1 inside Dr is trivial;

one can see this from the fact that the branching rule for the adjoint representation of Dr

contains no singlets. This means that when E1[Dr, 1] is taken to be the numerator theory

H and Br−1,1 as the denominator theory C, then the coset theory C̃ is a CFT with a chiral

algebra containing no Kac-Moody currents. Comparing central charges, we see that this CFT

has c = 1
2 . Since it is unitary, it has to be the Ising CFT, equivalently the M(4, 3) Virasoro

minimal model. We thus have the coset pair, Br−1,1 and M(4, 3); its bilinear relation is:

χ
E1[Dr,1]
0 = χ0χ̃0 + d1 χ 1

2
χ̃1 + d2 χ 2r−1

16
χ̃2 (2.24)

where χ̃0, χ̃1, χ̃2 are the characters of the Ising model. The Lie algebra representation content

is:

r(2r− 1) = (r− 1)(2r− 1)⊕ 2r− 1 (2.25)

Additionally the spinor representation 2r−1 of Dr goes directly into the spinor of the same

dimension for Br−1. Matching the dimensions of the representations in (2.25) and comparing

with (2.24) we conclude that d1 = 1, d2 = 1. The coset pair relations amongst (3, 0) admissible
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characters feature this example for r = 8, 16, 24, 32, 40. This family of examples can be

subsumed under Example 1 above if we denote the Ising CFT by B0,1. Following the standard

formulae for Br,1 we see that B0,1 should have c = 1
2 , h1 = 1

2 , h2 = 1
16 which is precisely the

Ising model.

2.5 Intermediate Vertex Operator Algebras (IVOA)

There is an intriguing class of characters whose existence was first noted in [2, 3] and a few

of which were subsequently identified as “Intermediate Vertex Operator Algebras” (IVOA) in

[14]. For these, some of the fusion rules derived from the modular S-matrices via the Verlinde

formula [46] turned out to be negative integers. In general these cannot be identified with

unitary CFT, though in a few special cases one can exchange characters to find a non-unitary

– but otherwise genuine – CFT [3].

Such characters do share a number of good properties with RCFT and are of some

mathematical interest. Hence we include them in our classification 10. Whether these can be

precisely said to be IVOA is beyond the scope of the present work, so we will simply identify

them as “potentially of IVOA-type” and put them in separate tables.

It is important to realise that having negative fusion rules is quite distinct from non-

unitarity. In fact IVOA’s have positive central charges with (some) negative fusion rules,

while the non-unitary c < 1 minimal models have negative central charges but positive fusion

rules. Exchanging the choice of identity characters sometimes (but not always) converts an

IVOA to a consistent but non-unitary CFT. We will find several admissible characters of

IVOA type that pair up via bilinear relations into a modular invariant 11. Our policy when

encountering such characters will be to list them separately in tables. They are listed in our

conclusions but do not appear in our final list of CFTs, Table 4.2.1. Determining whether

they are consistent IVOA’s within the definitions of [14] is left for future work.

3 Coset pairs and identification of CFTs

In this section, we tabulate the bilinear relations that exist between pairs of admissible

character-like solutions and then discuss what this tells us about possible identification of

the solutions with CFTs. To begin with, we list all pairs W ↔ W̃ which satisfy c + c̃ = 8N

and hi + h̃i = ni ∈ Z ∀ i ∈ {1, 2}. Such a list a priori includes some pairs which when paired

up in a bilinear way lead to rational, rather than integral, di. We then rule out such pairs as

inconsistent since they do not satisfy a valid bilinear relation even at the level of characters.

10IVOA-type characters have also been included in the work of [33, 35].
11For two characters, a bilinear pairing between IVOA-type characters of c = 2

5
and c = 118

5
is easily seen

from Appendix B.2 of [23].
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That leaves us with pairs (W ↔ W̃) that satisfy the bilinear relations with integral di.

Then we perform a case-by-case analysis and explain the bilinear relations from the point of

view of Lie algebra embeddings. If, for a coset pair, such an embedding exists, then we can

readily find the affine subalgebra of the new theory and show that its extension leads to the

new theory by computing its characters as linear combinations of the affine characters. Then

we can declare it to be a genuine RCFT.

For the remaining relations, in some cases we are able to show that there does not exist

an embedding, in which case the bilinear relation only holds at the level of characters but does

not lead to a CFT interpretation for the members of the pair. In the remaining cases we must

leave the existence of the coset theory unresolved at this stage. One of the tantalising classes in

every set corresponds to Intermediate Vertex Operator Algebras (IVOA) as discussed above.

3.1 Cosets of cH = 8

We first consider coset bilinear relations between (3, 0) admissible character solutions with

the cH = 8 meromorphic CFT viz. the E8,1 CFT with character j
1
3 . This would correspond

to N = 1 and n1 = 1, n2 = 1 in (2.6). Any admissible character that is potentially part of

such a coset relation has to have a central charge less than 8. Hence we consider all admissible

characters from [34] with c < 8. For any of them, call itW with central charge and conformal

dimensions (c, h1, h2), we ask if there is another admissible character W̃ with central charge

and conformal dimensions (8−c, 1−h1, 1−h2). For each such pairW, W̃, we then ask if their

characters satisfy a coset bilinear relation (2.12) and if they do, we would have computed the

values of (d1, d2) defined in these equations. We collect the details of these coset bilinear

relations in two tables, 3.1.1, 3.1.2. It is remarkable that every (3, 0) admissible character

with c < 8 is part of a coset relation and is featured somewhere in these tables; this is not

necessarily the case for c > 8.

Comments on Table 3.1.1

This table contains 10 bilinear pairings. Each of these is consistent, as we will recount below

– in other words both members of every pair are genuine CFTs. Row 1 is a special case

of Example 3 of section 2.4, namely (2.24), (2.25) for r = 8 (note that E1[D8,1] = E8,1).

On general grounds, we know that (i) since the B7 of the denominator theory has a trivial

commutant in E8, the coset must have no Kac-Moody symmetries, and (ii) the central charge

of the coset must be 1
2 . Unitarity then implies that the coset theory is indeed the Ising CFT,

as we also explicitly verify. We will see more examples of this phenomenon later – that the

coset H/C, where both H and C have Kac-Moody symmetries, results in a CFT with no

Kac-Moody symmetries, in this case a minimal model. Because of the way it naturally arises
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as a special case of the Br,1 Kac-Moody algebras, we will often denote the Ising model by

B0,1 in what follows.

Rows 2, 4, 7 are special cases of Example 2 of section 2.4, namely (2.17), (2.18) for r = 8.

We thus have
E8,1

D3,1

∼= D5,1 or
E8,1

D5,1

∼= D3,1. The (d1, d2) values follow the predictions from

decomposing the representation as explained in Section 2.4.

Rows 3, 6, 8 are special cases of Example 1 of Section 2.4, hence (2.15), (2.16), for r = 8.

Note that either of the pair of CFTs can serve as the denominator while the other would

be the coset, we thus have
E8,1

B6,1

∼= B1,1 and
E8,1

B1,1

∼= B6,1 (this is a very general phenomenon,

though if only one member of the pair is known as a CFT then it is more useful to treat that

one as the denominator). The (d1, d2) values follow the predictions from the decomposition

of representations explained in section 2.4.

Rows 9 and 10 are coset relations between two identical CFTs, namely self-cosets. Row 9

is a self-coset relation with d1 = d2 = 2 and is explained by the regular maximal embedding:

A
(1)
4 ⊕A

(1)
4 ↪→ E8 so that the commutant of each A4 is the other one. This gives us the coset

E8,1

A4,1

∼= A4,1. The computed value d1 + d2 = 4 can be explained from the decomposition:

248 = (24,1)⊕ (1,24)⊕ (5,10)⊕ (5,10)⊕ (10,5)⊕ (10,5). The first two terms correspond

to the χ2
0 term of (2.2) while the last four terms correspond to the χiχ̃i term thus giving

d1 = d2 = 2. Row 10 is again a self-coset relation. The embedding behind this coset relation

is obtained in two steps, each of which is a regular maximal embedding: A2⊕A2⊕A2 ↪→ E6

and E6⊕A2 ↪→ E8. Computing the embedding indices we get A
(1)
2 ⊕A

(1)
2 ⊕A

(1)
2 ⊕A

(1)
2 ↪→ E8.

The commutant of one of the A2⊕A2 is the other A2⊕A2. This gives us the coset
E8,1

A⊗2
2,1

∼= A⊗22,1.

The computed value of d1, d2 can be explained from the decomposition: 248 = (8,1,1,1)⊕
(1,8,1,1) ⊕ (1,1,8,1) ⊕ (1,1,1,8) ⊕ (3,1,3,3) ⊕ (1,3,3,3) ⊕ (3,3,1,3) ⊕ (3,1,3,3) ⊕
(1,3,3,3)⊕ (3,3,1,3)⊕ (3,3,3,1)⊕ (3,3,3,1). The first four terms correspond to the χ0χ̃0

term of (2.2) while the last eight terms correspond to the χiχ̃i terms thus giving d1 = d2 = 4.

All the coset relations described so far (in rows 1–10 except row 5) were between (3, 0)

admissible characters corresponding to well-known CFTs namely WZW CFTs and Virasoro

minimal models. In row 5 we encounter for the first time a coset relation between a WZW

CFT namely G2,1⊗G2,1 and III2, an admissible character (see Table 3.1.1) which has not yet

been characterised as a CFT. Coset relations and the general theory of meromorphic cosets

will enable us to characterise III2 as follows. We first seek a Lie algebra embedding for E8

which contains G2 ⊕ G2. We find it in two steps of maximal embeddings: G2 ⊕ A1 ↪→ F4

and G2 ⊕ F4 ↪→ E8 giving G2 ⊕G2 ⊕A1 ↪→ E8. This means that the commutant of G2 ⊕G2

in E8 is A1. Further, computing the embedding indices, we have G
(1)
2 ⊕ G

(1)
2 ⊕ A

(8)
1 ↪→ E8,

which gives the affine Lie algebra embedding G2,1 ⊗ G2,1 ⊗ A1,8 ↪→ E8,1 (see appendix A –

Example 1,2). This implies that the the coset CFT is A1,8. The central charge of A1,8 is 12
5
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and m1 = 3 which matches with that of III2. But A1,8 is a nine-character CFT and cannot

as such be in a coset relation with the three-character G2,1 ⊗ G2,1. Instead, we are dealing

with a three-character extension E3[A1,8].

Let us construct this extension explicitly. Denote the three characters of III2 by {χ̃0, χ̃ 1
5
, χ̃ 3

5
}

and the nine Kac-Weyl characters of A1,8 by {χK
0 , χ

K
3
40

, χK
1
5

, χK
3
8

, χK
3
5

, χK
7
8

, χK
6
5

, χK
63
40

, χK
2 }. Then

E3[A1,8] is given by:

χ̃0 = χK
0 + χK

2 , χ̃ 1
5

= χK
1
5

+ χK
6
5

, χ̃ 3
5

= χK
3
5

. (3.1)

The explicit forms of the left hand sides of (3.1) are available from the solutions of the (3, 0)

MLDE [34]. The explicit forms of the right hand sides of (3.1) are also available, from say

chapter 14 of [55]. This allows us to derive the relevant coefficients in (3.1). Further evidence

towards the fact that III2 is the above extension is provided by the following derivation of

the (d1, d2) values: 248 = (14,1,1)⊕(1,14,1)⊕(1,1,3)⊕(7,7,3)⊕(7,1,5)⊕(1,7,5). The

first three representations are associated with the χ0χ̃0 term in the coset relation, the fourth

representation is associated with d1χ1χ̃1 and the last two representations are associated with

d2χ2χ̃2 thus giving d1 = 1, d2 = 2. Thus using the coset relation in row no. 10 we have

completed the identification of III2 as the three-character extension E3[A1,8] in (3.1).

Note that the modular invariant partition function one can construct from Eq.(3.1) is

the following (see Table 1 of [56]),

Z =
∣∣χK

0 + χK
2

∣∣2 +
∣∣∣χK

1
5

+ χK
6
5

∣∣∣2 + 2
∣∣∣χK

3
5

∣∣∣2
= |χ̃0|2 +

∣∣∣χ̃ 1
5

∣∣∣2 + 2
∣∣∣χ̃ 3

5

∣∣∣2 (3.2)

which shows that (d1, d2) = (1, 2). Thus, E3[A1,8] is a 3-character and 4-primary extension of

A1,8. This is the D-type non-diagonal invariant of [56, 57].

# c (h1, h2) m1 (D1, D2) C c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) C̃ (d1, d2)

1. 1
2

(
1
2 ,

1
16

)
0 (1,1) B0,1

15
2

(
1
2 ,

15
16

)
105 (15,27) B7,1 (1, 1)

2. 1
(
1
2 ,

1
8

)
1 (2,1) D1,1 7

(
1
2 ,

7
8

)
98 (14,64) D7,1 (1, 2)

3. 3
2

(
3
16 ,

1
2

)
3 (2,3) B1,1

13
2

(
13
16 ,

1
2

)
78 (64,13) B6,1 (1, 1)

4. 2
(
1
2 ,

1
4

)
6 (4,2) D2,1 6

(
1
2 ,

3
4

)
66 (32,12) D6,1 (1, 2)

5. 12
5

(
1
5 ,

3
5

)
3 (3,5) III2

28
5

(
4
5 ,

2
5

)
28 (49,7) G⊗22,1 (1, 2)

6. 5
2

(
5
16 ,

1
2

)
10 (4,5) B2,1

11
2

(
11
16 ,

1
2

)
55 (32,11) B5,1 (1, 1)

7. 3
(
1
2 ,

3
8

)
15 (6,4) D3,1 5

(
1
2 ,

5
8

)
45 (10,16) D5,1 (1, 2)

8. 7
2

(
7
16 ,

1
2

)
21 (8,7) B3,1

9
2

(
9
16 ,

1
2

)
36 (16,9) B4,1 (1, 1)

9. 4
(
2
5 ,

3
5

)
24 (5,10) A4,1 4

(
3
5 ,

2
5

)
24 (10,5) A4,1 (2, 2)

10. 4
(
1
3 ,

2
3

)
16 (3,9) A⊗22,1 4

(
2
3 ,

1
3

)
16 (9,3) A⊗22,1 (4, 4)
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Table 3.1.1: CFT pairings, cH = 8 with (n1, n2) = (1, 1). The meromorphic theory H to

which the solutions pair up is E8,1.

Conclusion: From table 3.1.1 we conclude that III2 is identified as a genuine CFT which is

E3[A1,8].

Comments on Table 3.1.2

The bilinear pairings in Table 3.1.2 are pairs of admissible character solutions with central

charges (47 ,
52
7 ), (45 ,

36
5 ) and (127 ,

44
7 ). The fusion rules in all these cases are of IVOA type,

that is atleast one of the fusion coefficients is negative. In the first two cases, one of the two

members of the pair is a known IVOA – obtained by reordering the characters of the non-

unitary minimal model M(7, 2) in one case and the product of non-unitary minimal models

M(5, 2)⊗2 in the other. Here, the notation I[W ] denotes the “unitary presentation” of W.

It is quite remarkable that these pair up to give the E8,1 character though we cannot obtain

this result via Lie algebra embeddings. Note how the dimension 248 is realised by the sum

1 + 156 (spin-1 currents of the pair) added to 78 + 13 (coming from the products of primaries

of the two factors and having degeneracies 78, 13 due to the second factor). Based on this we

would like to claim that III5 and III4 are also IVOAs.

The last row contains the pair III1 and III3, neither of which has previously been

characterised. As noted above, these are of IVOA type.

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2)

1. 4
7

(
1
7 ,

3
7

)
1 (1,1) I[M(7, 2)] 52

7

(
6
7 ,

4
7

)
156 (78,13) III5 (1, 1)

2. 4
5

(
1
5 ,

2
5

)
2 (2,1) I[M(5, 2)⊗2] 36

5

(
4
5 ,

3
5

)
144 (45,12) III4 (2, 1)

3. 12
7

(
2
7 ,

3
7

)
6 (3,2) III1

44
7

(
5
7 ,

4
7

)
88 (44,11) III3 (1, 1)

Table 3.1.2: IVOA-type pairings, cH = 8 with (n1, n2) = (1, 1).

Conclusion: From Table 3.1.2 we conclude that III1, III3, III4 and III5 belong to the

IVOA-type class as they have negative fusion rules, and that they are paired as in the table.

3.2 Cosets of cH = 16

We consider coset bilinear relations between (3, 0) admissible character solutions with cH = 16

meromorphic character j
2
3 . With reference to (2.6) this would correspond to N = 2 and to

either n1 = 1, n2 = 2 or n1 = 2, n2 = 1. Any admissible character solution that is potentially

part of such a coset relation has to have a central charge less than 16. Hence we consider
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all admissible character solutions from [34] with c < 16. For any one of them, say W with

central charge and conformal dimensions (c, h1, h2), we ask if there is an admissible character

solution W̃ with central charge and conformal dimensions either (16 − c, 1 − h1, 2 − h2) or

(16 − c, 2 − h1, 1 − h2). For every such pair (W , W̃), we then ask if their characters satisfy

a bilinear relation (2.12) and compute (d1, d2). The resulting pairs of VVMF are listed in

tables 3.2.1, 3.2.2 and 3.2.3. The tables provide the details first of W, then of W̃, followed

by (d1, d2).

Comments on Table 3.2.1

Table 3.2.1 contains 23 bilinear relations; 22 of them are such that each member of every pair

is an affine theory. There is one bilinear relation (row 8) in which one of the pair (III2) has

been characterised in the previous subsection and the other III22 is to be characterised. The

solutions of each row each pair up to a known meromorphic theory at c = 16, for which there

are two choices of the theory H, namely E8,1⊗E8,1 and E1[D16,1]. For short, we refer to these

two cases in the last column of the Table as E and D respectively.

Consider rows 1 and 2. These are both coset relations that involve the Ising CFT

M(4, 3) = B0,1. Starting from the central charge and conformal dimensions of the Ising

CFT (c = 1
2 , h1 = 1

16 , h2 = 1
2), one can obtain two potential coset relation partners, one with

n1 = 1, n2 = 2 which gives B15,1 and the other with n1 = 2, n2 = 1 which gives E8,2. Row 1

is a special case of Example 3 of section 2.4, with r = 16 and hence the meromorphic CFT

for this coset relation is E1[D16,1]. Row 2 follows from the well-known coset
E8,1⊗E8,1

E8,2

∼= B0,1

where the denominator is diagonally embedded.

The coset relations in rows 3, 7, 10, 15, 18 and 20 are all special cases of Example 2 of

Section 2.4, corresponding to (r1, r2) values (1, 15), (2, 14), (3, 13), (5, 11), (6, 10) and (7, 9)

respectively. All these rows thus have d1 = 1, d2 = 2 and D (standing for E1[D16,1]) as the

entry in the last column. For row 7, notice that A⊗21,1 is identical to D2,1. Note that all possible

(r1, r2) pairs with r1 + r2 = 16 are realised.

Next we consider row 4. In fact the bilinear relations in rows 3 and 4 involve the same D1,1

factor, but the Lie algebra embedding is different. In the former case, D1 is embedded via the

regular maximal embedding: D1 ↪→ D1⊗D15 ↪→ D16 while in the latter case it is embedded via

a different regular maximal embedding: D1 ↪→ D1 ⊗A15 ↪→ D16 (see appendix A – Example

4). This suggests a coset relation (after considering embedding indices) between D1,1 and

A15,1; but since the latter is a nine-character theory one should expect the coset relation to

involve a three-character (and four-primary) extension of it, E3[A15,1]. There is a cH = 24

meromorphic CFT, the Schellekens CFT #63 whose affine sub-algebra is D9,1A15,1, indicating

a coset relation between the three-character D9,1 CFT and a three-character extension of
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A15,1, which is in row 4 here. This extension was first found, in precisely this way, in [17] and

hence we denote this here by E3[A15,1] = GHM255
12.

The coset relations in rows 5, 9, 11, 14, 16, 19 and 21 are all special cases of Example 1

of section 2.4, corresponding to r1, r2 values (1, 14), (2, 13), (3, 12), (4, 11), (5, 10), (6, 9) and

(7, 8) respectively. All these rows thus have d1 = 1, d2 = 1 and D as the entry in the last

column. Notice that in row 5, A1,2 is identical to B1,1 and in row 9, C2,1 is identical to B2,1.

Also note that all possible (r1, r2) pairs with r1 + r2 = 15 are realised.

We will study rows 6, 12, 17, 23 together. In row 6, we have the folllowing identification:

D2,1
∼= A⊗21,1. Now each of the three-character bilinear relations in these rows is derived from

two-character bilinear relations involving the pairs (A1,1, E7,1), (A2,1, E6,1), (G2,1, F4,1) and

(D4,1, D4,1) which form coset pairs with E8,1 with d = 1, 2, 1, 3 respectively [34]. The last one

is a self-coset relation. Denote any of these pairs by (g1, g̃1) with central charge and conformal

dimensions (c, h) and (c̃, h̃), related by c+ c̃ = 8, h+ h̃ = 1. Now consider the pair of three-

character CFTs, (g1⊗g1, g̃1⊗ g̃1) whose central charges and conformal dimensions are given

by (2c, h, 2h), (2c̃, h̃, 2h̃). We have 2c+ 2c̃ = 16 and h+ h̃ = 1, 2h+ 2h̃ = 2, corresponding to

the pairings in this table. If we denote the characters of g1 by χ0, χ1 and those of g̃1 by χ̃0, χ̃1

and the two-character coset relation by χ0χ̃0 +dχ1χ̃1 = j
1
3 then the characters of g1⊗g1 are

χ2
0, χ0χ1, χ

2
1 and those of g̃1⊗ g̃1 are χ̃2

0, χ̃0χ̃1, χ̃
2
1. A three-character coset relation is obtained

by simply squaring the two-character coset relation: χ2
0 χ̃

2
0 + 2dχ0χ1χ̃0χ̃1 + d2 χ2

1χ̃
2
1 = j

2
3 .

We can read off the (d1, d2) values for the three-character relation to be d1 = 2d, d2 = d2.

Finally, we identify the meromorphic CFT in the three-character coset relation to be the

E8,1 ⊗ E8,1 CFT. In terms of Lie algebra embeddings, each factor of g ⊕ g is embedded into

a corresponding factor of E8⊕E8. The commutant of g⊗ g inside E8⊗E8 is the direct sum

of two copies of the commutant of g in E8, i.e. g̃ ⊕ g̃. All aspects of the coset relations in

rows 6, 12, 17 and 23 are thus explained from two-character coset relations.

One may ask what happens if we embed g⊕ g into E8 ⊕E8 with both copies embedded

into the same copy of E8 It turns out that such embeddings, when they are possible, are

relations between CFTS with ` = 0 and ` = 6 (recall that ` is the Wronskian index). When

g1 = D4,1, we do not get anything because D4,1 ⊗ D4,1 has a central charge of 8 and its

commutant is trivial. For g1 = A1,1, after recognizing that A1,1⊗A1,1
∼= D2,1, from the coset

relation in row 3 of table 3.1.1, we can conclude that the coset would be D6,1⊗E8,1 which is a

three-character CFT whose characters are j
1
3 times the characters of D6,1. This then means

that it is an ` = 6 CFT. This is one example of the more general rule that, for n characters,

12We remind the reader that “GHM” indicates that the coset was discovered in [17], and the subscript is the

dimension of the algebra listed there. IIIxx,Vxx indicates that the pair is taken from [34] and it is labelled

following the conventions used there.
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the tensor product of an ` = 0 CFT with E8,1 is an ` = 2n CFT. For g1 = A2,1, we invoke

the coset relation in row 8 of table 3.1.1 and obtain the coset to be A⊗22,1⊗E8,1, another (3, 6)

CFT. Finally for g1 = G2,1, we invoke the coset relation in row 9 of table 3.1.1 to conclude

that the coset CFT is E3[A1,8] ⊗ E8,1, an ` = 6 CFT. We have thus anticipated three coset

relations between ` = 0 and ` = 6 CFTs, which would be part of a more thorough study of

all such coset relations [58].

In row 8 we find a pairing between III2 and III22. The first of these characters was

identified from Table 3.1.1 above to be E3[A1,8]. We find there is an embedding A1 ↪→ D16

with embedding index 8, whose commutant is C8 (see appendix A – Example 5). It follows that

III22 is the three-character extension E3[C8,1]. Below we will find independent confirmation

of this fact from another embedding.

In row 13, we pair D4,1 (two characters, four primaries) with D12,1 (three characters,

four primaries). This is a slightly unusual example where the two elements of the pair do not

have the same number of characters. They do, however, have the same number of primaries

and the coset relation is straightforward if we just pair the primaries with unit coefficient for

each term. The three non-trivial primaries of D4,1 all have h = 1
2 , while one of the non-trivial

primaries of D12,1 has h̃ = 1
2 and the other two have h̃ = 3

2 . Thus the bilinear relation is:

χH = j(τ)
2
3 = χ0χ̃0 + χ 1

2
χ̃ 1

2
+ χ 1

2
χ̃ 3

2
+ χ 1

2
χ̃ 3

2

= χ0χ̃0 + χ 1
2
(χ̃ 1

2
+ 2χ̃ 3

2
)

(3.3)

Row 22 is another self-coset relation. It is a special case of Example 2 of section 2.4 with

r1 = r2 = 8 and r = 16. The meromorphic CFT is thus E1[D16,1] CFT which is reflected in

the last column. The d1 = 1, d2 = 2 values are also thereby explained.

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) H
1. 1

2

(
1
2 ,

1
16

)
0 (1,1) B0,1

31
2

(
1
2 ,

31
16

)
465 (31,215) B15,1 (1, 1) D

2. 1
2

(
1
16 ,

1
2

)
0 (1,1) B0,1

31
2

(
15
16 ,

3
2

)
248 (248,3875) E8,2 (1, 1) E

3. 1
(
1
2 ,

1
8

)
1 (2,1) D1,1 15

(
1
2 ,

15
8

)
435 (30,214) D15,1 (1, 2) D

4. 1
(
1
8 ,

1
2

)
1 (1,2) D1,1 15

(
7
8 ,

3
2

)
255 (120,3640) GHM255 (2, 1) D

5. 3
2

(
1
2 ,

3
16

)
3 (3,2) B1,1

29
2

(
1
2 ,

29
16

)
406 (29,214) B14,1 (1, 1) D

6. 2
(
1
4 ,

1
2

)
6 (2,4) D2,1 14

(
3
4 ,

3
2

)
266 (56,562) E⊗27,1 (2, 1) E

7. 2
(
1
2 ,

1
4

)
6 (4,2) D2,1 14

(
1
2 ,

7
4

)
378 (28,213) D14,1 (1, 2) D

8. 12
5

(
1
5 ,

3
5

)
3 (3,5) III2

68
5

(
4
5 ,

7
5

)
136 (119, 68 · 25) III22 (1, 2) D

9. 5
2

(
1
2 ,

5
16

)
10 (5,4) B2,1

27
2

(
1
2 ,

27
16

)
351 (27,213) B13,1 (1, 1) D

10. 3
(
1
2 ,

3
8

)
15 (6,4) D3,1 13

(
1
2 ,

13
8

)
325 (26,212) D13,1 (1, 2) D

11. 7
2

(
1
2 ,

7
16

)
21 (7,8) B3,1

25
2

(
1
2 ,

25
16

)
300 (25,212) B12,1 (1, 1) D
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12. 4
(
1
3 ,

2
3

)
16 (3,9) A⊗22,1 12

(
2
3 ,

4
3

)
156 (27,272) E⊗26,1 (4, 4) E

13. 4
(
1
2 ,

1
2

)
28 (8, 23) D4,1 12

(
1
2 ,

3
2

)
276 (24,211) D12,1 (1, 2) D

14. 9
2

(
1
2 ,

9
16

)
36 (9,16) B4,1

23
2

(
1
2 ,

23
16

)
253 (23,211) B11,1 (1, 1) D

15. 5
(
1
2 ,

5
8

)
45 (10,16) D5,1 11

(
1
2 ,

11
8

)
231 (22,1024) D11,1 (1, 2) D

16. 11
2

(
1
2 ,

11
16

)
55 (11,32) B5,1

21
2

(
1
2 ,

21
16

)
210 (21,1024) B10,1 (1, 1) D

17. 28
5

(
2
5 ,

4
5

)
28 (7,49) G⊗22,1

52
5

(
3
5 ,

6
5

)
104 (26,262) F⊗24,1 (2, 1) E

18. 6
(
1
2 ,

3
4

)
66 (12,32) D6,1 10

(
1
2 ,

5
4

)
190 (20,512) D10,1 (1, 2) D

19. 13
2

(
1
2 ,

13
16

)
78 (13,64) B6,1

19
2

(
1
2 ,

19
16

)
171 (19,512) B9,1 (1, 1) D

20. 7
(
1
2 ,

7
8

)
91 (14,64) D7,1 9

(
1
2 ,

9
8

)
153 (18,256) D9,1 (1, 2) D

21. 15
2

(
1
2 ,

15
16

)
105 (15,128) B7,1

17
2

(
1
2 ,

17
16

)
136 (17,256) B8,1 (1, 1) D

22. 8
(
1
2 , 1
)

120 (16, 27) D8,1 8
(
1
2 , 1
)

120 (16,27) D8,1 (1, 2) D

23. 8
(
1
2 , 1
)

56 (8, 26) D⊗24,1 8
(
1
2 , 1
)

56 (8, 26) D⊗24,1 (6, 9) E

Table 3.2.1: CFT pairings, cH = 16 with (n1, n2) = (1, 2). The meromorphic theory H in

the last column is E8,1 ⊗ E8,1, denoted E, or E1[D16,1], denoted D.

Conclusion: From Table 3.2.1 we have found that the character III22 should be identified

with E3[C8,1]. The remaining entries in the table correspond to known CFTs.

Comments on Table 3.2.2

This table contains 9 pairs that are all of IVOA type, by which we mean some of their

fusion rules as computed from the modular S-matrix are negative. The third row of Table

3.2.2 displays a dual pair of IVOAs. This pair is inherited from the simpler pair with two

characters that combine to give E8,1. Rows 1, 2, 4 contain bilinear pairs that combine to the

character j
2
3 and one of which in each case is a known IVOA. We would therefore claim that

the duals, III29, III30, III28 are also IVOAs. However the remaining rows 5−9 contain pairs

where neither member is a known CFT or IVOA. In terms of fusion rules (deduced from the

modular S-matrix) these are all of IVOA type, but we cannot say more about them. In some

of these cases, one member of the pair already appeared in Table 3.1.2, so if one is able to

characterise that one using the cH = 8 duality then it would provide evidence for existence

of its partner as an IVOA.

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2)

1. 4
7

(
1
7 ,

3
7

)
1 (1,1) I(M(7, 2))

108
7

(
6
7 ,

11
7

)
378 (117,3510) III29 (1, 1)

2. 4
7

(
3
7 ,

1
7

)
1 (1,1) I(M(7, 2))

108
7

(
4
7 ,

13
7

)
456 (39,20424) III30 (1, 1)

3. 4
5

(
1
5 ,

2
5

)
2 (1,1) I(M(5, 2)⊗2)

76
5

(
4
5 ,

8
5

)
380 (57,3249) E⊗27.5 (2, 1)

4. 4
5

(
2
5 ,

1
5

)
2 (1,1) I(M(5, 2)⊗2)

76
5

(
3
5 ,

9
5

)
437 (57, 19 · 625) III28 (1, 2)
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5. 12
7

(
2
7 ,

3
7

)
6 (3,2) III1

100
7

(
5
7 ,

11
7

)
325 (55,2925) III24 (1, 1)

6. 12
7

(
3
7 ,

2
7

)
6 (2,3) III1

100
7

(
4
7 ,

12
7

)
380 (55,11495) III25 (1, 1)

7. 44
7

(
4
7 ,

5
7

)
88 (11,44) III3

68
7

(
3
7 ,

9
7

)
221 (17,782) III12 (1, 1)

8. 36
5

(
3
5 ,

4
5

)
144 (12,45) III4

44
5

(
2
5 ,

6
5

)
220 (11, 11 · 25) III8 (1, 2)

9. 52
7

(
4
7 ,

6
7

)
156 (13,78) III5

60
7

(
3
7 ,

8
7

)
210 (10,285) III7 (1, 1)

Table 3.2.2: IVOA-type pairings, cH = 16 with (n1, n2) = (1, 2). The two sets of characters

pair up to j
2
3 .

Conclusion: From table 3.2.2 we conclude that III7, III8, III12, III24, III25, III28, III29

and III30 are of IVOA-type as these have negative fusion rules and that they are paired as

in the table.

Comments on Table 3.2.3

As for the two previous cases, the two sets of characters in each line of Table 3.2.3 satisfy a

bilinear pairing to the character j
2
3 . We now argue that all the previously uncharacterised

solutions that appear in this table are inconsistent as CFTs. For short, we refer to these

as “inconsistent pairings”. This means that, though the VVMFs do pair up into a modular

invariant, these are not coset pairs of CFTs.

In rows 1, 2, 4–7 we find known CFT in the left column paired with the characters

III26, III21, III20, III19,V18, III17 in the right column. In the first five of these cases, the

CFTs in the first column also appear in a coset pair in Table 3.2.1, in lines 5, 9–12 respectively,

where they are paired with known CFTs. However here these theories are paired differently

and their partners are previously uncharacterised admissible characters. For the sixth case,

A4,1 does not appear in Table 3.2.1 but only in Table 3.2.3. The details of the bilinear relation

in row 7 suggests that for III17 to be a CFT, it must be based on a Lie subalgebra, h, of D16
13

which has dimension 222 and that there must exist a (246 dimensional) embedding A4×h ↪→
D16. We listed embeddings of D16 in decreasing order of dimensions (496, 384, 380 . . .) till

a little beyond 246 and we did not find any with a A4 factor (there is a 256 dimensional

embedding A4 ×D11 ×D1.) We thus conclude that the character III17 does not correspond

to a CFT. We will independently confirm this in a slightly simpler way when we come to

cH = 24, in table 3.2.3. This story for row 7 repeats for each of rows 1, 2, 4, 5 and 6.

There is another way to rule out solution V18 in row 6 of table 3.2.3. A⊗22,1 is known to

have nine primaries and three characters; one primary corresponding to the identity character

and each of the other two characters correspond to four primaries each. Thus the multiplicities

13An embedding of E8 × E8 that contains a A4 factor will result in a CFT with Wronskian index 6.
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in the partition function are Y1 = 4, Y2 = 4. Any CFT which forms a coset relation with A⊗22,1

is also expected to have the same partition function multiplicities Ỹ1 = 4, Ỹ2 = 4 and the

multiplicities in the bilinear identity are expected to be d1 = 4, d2 = 4. The MLDE analysis

[34] for the admissible character V18 gives the degeneracies D̃1 = 1, D̃2 = 1 which results in

partition function multiplicities Ỹ1 = 34, Ỹ2 = 22 · 314. A reassignment of degeneracies and

multiplicities is allowed as long as Ỹi D̃i
2

is kept fixed. There is no reassignment with Ỹ1 = 4

simply because Ỹ1D̃1
2

= 81 does not have 4 as a factor. Another inconsistency comes from

the details of the bilinear identity given in row no. 6. A reassignment of degeneracies and

multiplicities (d1, d2) is allowed as long as diD̃i is kept fixed. But there is no reassignment

with d1 = 4 simply because d1 D̃1 = 18 does not have 4 as a factor. Due to all these details,

we conclude that the admissible character V18 does not correspond to a CFT. This agrees

with the conclusion based on embeddings.

Rows 3 and rows 8-15 of Table 3.2.3 are inconsistent since every W̃ in these rows has

fractional Y1, Y2 values. These are the entries of type III, V.

Row 16 is interesting because both members of the pair are known affine theories. How-

ever this is not a consistent bilinear pairing since the coefficient d1 in the bilinear relation is

fractional. This enables us to rule it out without even computing d2. There is an important

consistency test that explains why this pairing failed. Had it succeeded, there would have

been a meromorphic theory at c = 16 involving an extension of D⊗24,1D8,1 with a total of

120 + 56 + 128 = 304 Kac-Moody generators. Such an extension is known not to exist (since

there are just two c = 16 meromorphic theories, both having 496 Kac-Moody generators)

which is why the pairing also should not exist.

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2)

1. 3
2

(
3
16 ,

1
2

)
3 (2,3) B1,1

29
2

(
13
16 ,

3
2

)
261 (29 · 4, 3393) III26 (1, 1)

2. 5
2

(
5
16 ,

1
2

)
10 (4,5) B2,1

27
2

(
11
16 ,

3
2

)
270 (27 · 2, 2871) III21 (1, 1)

3. 12
5

(
3
5 ,

1
5

)
3 (5,3) III2

68
5

(
2
5 ,

9
5

)
374 (119,12138) III23

(
1
5
, 1

)
4. 3

(
3
8 ,

1
2

)
15 (4,6) D3,1 13

(
5
8 ,

3
2

)
273 (13 · 2, 325 · 8) III20 (2, 1)

5. 7
2

(
7
16 ,

1
2

)
21 (8,7) B3,1

25
2

(
9
16 ,

3
2

)
275 (25,2325) III19 (1, 1)

6. 4
(
2
3 ,

1
3

)
16 (9,3) A⊗22,1 12

(
1
3 ,

5
3

)
318 (9,4374) V18 (2, 2)

7. 4
(
2
5 ,

3
5

)
24 (5,10) A4,1 12

(
3
5 ,

7
5

)
222 (1 · 25, 51 · 25) III17 (2, 2)

8. 9
2

(
9
16 ,

1
2

)
36 (16,9) B4,1

23
2

(
7
16 ,

3
2

)
276 (23,1771) III16

(
1
2
, 1

)
9. 5

(
5
8 ,

1
2

)
45 (16,10) D5,1 11

(
3
8 ,

3
2

)
275 (11,1496) III15 (1, 1)

10. 11
2

(
11
16 ,

1
2

)
55 (32,11) B5,1

21
2

(
5
16 ,

3
2

)
273 (21,1225) III14

(
1
4
, 1

)
11. 6

(
3
4 ,

1
2

)
66 (32,12) D6,1 10

(
1
4 ,

3
2

)
270 (5,960) III13 (1, 1)

12. 13
2

(
13
16 ,

1
2

)
78 (64,13) B6,1

19
2

(
3
16 ,

3
2

)
266 (19,703) III11

(
1
8
, 1

)

– 31 –



13. 7
(
7
8 ,

1
2

)
91 (64,14) D7,1 9

(
1
8 ,

3
2

)
261 (9,456) III10

(
1
4
, 1

)
14. 36

5

(
4
5 ,

3
5

)
144 (45,12) III4

44
5

(
1
5 ,

7
5

)
253 (11,242) III9

(
1
5
, 1

)
15. 15

2

(
15
16 ,

1
2

)
105 (128,15) B7,1

17
2

(
1
16 ,

3
2

)
255 (17,221) III6

(
1
16

, 1
)

16. 8
(
1
2 , 1
)

56 (8,64) D⊗24,1 8
(
1
2 , 1
)

120 (16,27) D8,1
(

5
2
, 9
2

)

Table 3.2.3: Inconsistent pairings, cH = 16 with (n1, n2) = (1, 2). The two sets of characters

pair up to j
2
3 .

Conclusion: From table 3.2.3 we conclude that III17, V18, III19, III20, III21 and III26

are not valid CFTs 14.

3.3 Cosets of cH = 24

With c = 24, and considering that we are working throughout with Wronskian index ` = 0,

Eq. (2.5) gives us the constraint n1 + n2 = 4. This can be satisfied in two ways, with

(n1, n2) = (2, 2) or (1, 3). Each choice leads to a distinct set of bilinear pairings. We address

each class in turn.

The character of the meromorphic theory to which the two entries in each row pair up,

can be written χ(τ) = j(τ) − 744 +N . In this way of writing it, N is the dimension of the

Kac-Moody algebra of the meromophic theory, if any. Below, wherever relevant we provide

the serial number(s) in the list of [37] which specifies the meromorphic CFT(s) with that N .

(n1, n2) = (2, 2)

This set comprises Tables 3.3.1, 3.3.2 and 3.3.3. We discuss each one in turn. There is some

overlap between this section and the papers [35, 36]. The main focus of the former is fermionic

CFT and of the latter, Hecke relations, and both references present some bilinear pairs of

admissible three-character VVMFs. However these references mostly restrict to pairings with

total central charge cH = 24, and moreover the sub-case (n1, n2) = (2, 2) that we consider in

this subsection. In some of these cases the bilinear pairing was used to identify admissible

characters as CFTs. Thus there is some overlap between the results of these references and

our Table 3.3.1, which we will point out below.

Comments on Table 3.3.1

In this table we will go into considerable detail to illustrate the way to correctly choose the

degeneracies Di for the type III and V characters which, since they were discovered via

MLDE, did not automatically come with a fixed normalisation. We will not be so detailed

about this point in the remaining tables.

14In [36] it is claimed that III17 is a CFT, however we disagree with this.
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All cosets in this table are of the form explained in the discussion below Eq. (2.7), where

the coset simply “deletes” simple factors (at most two) from a Schellekens theory and leaves

behind the remaining simple factors. These cases are labelled as follows: “GHM” indicates

that the coset was discovered in [17], and the subscript is the dimension of the algebra listed

there. IIIxx,Vxx indicates that the pair is taken from [34] and it is labelled following the

conventions used there and reviewed here in Section 2 and in Table 2.1.1. Rows 22, 23, 18,

20 were for some reason missed in both these references. Interestingly the first two are “self-

cosets” where C, C̃ are the same theory. This implies that C̃ is actually an affine theory rather

than an extension of one. The table provides the correct degeneracies for both the non-trivial

primaries of W̃ .

In table 3.3.1 (and in other tables of this paper) we have arranged the coset relations in

an increasing order of central charge for the admissible character solution in the left column,

so that, naturally the solution on the right has a decreasing central charge, and the self-cosets

(if any) are at the bottom of the table. But it makes sense to discuss the coset relations in a

slightly different order. We discuss first the batch of rows 1, 3, 5, 7, 10, 12, 15, 18, all of which

have a Br,1 CFT in the left column. Then we discuss the batch of rows 2, 4, 6, 11, 14, 16, 19, 20

all of which have a Dr,1 CFT in the left column. Then we discuss row 9 which is a sporadic

case. After that we take up the batch of rows 8, 13, 17, 21, 23 where the CFT in the left column

is a tensor product CFT. This then leaves us with row 22 which is a self-coset relation.

The case of row 1 is different from the others: here h, g, and consequently also h̃, are

empty. This is the coset pairing of the Ising model, here denoted M(4, 3), with the Baby

Monster CFT [49]. This bilinear pairing was previously studied in [18]. The latter character

was obtained as an admissible character in [34] with degeneracies D̃1 = 4371, D̃2 = 47 which

then results in the multiplicities in the partition function as Ỹ1 = 1, Ỹ2 = 222. Requiring

that ỸiD̃i
2

is unchanged we can redefine : D̃1 = 4371, D̃2 = 47 · 211 and Ỹ1 = 1, Ỹ2 = 1.

These new degeneracies then enter into the computation of the bilinear identity to give the

multiplicities there as d1 = 1, d2 = 1. We thus have a consistent coset relation between to

three-primary CFTs.

In row 3, we have four pairs of coset relations. Each of the theories C̃ have a common

set of characters which were obtained by solving the MLDE in [34]. The degeneracies of

the characters as obtained from the MLDE, for conformal dimensions 3
2 (χ̃ 3

2
) and 29

16 (χ̃ 29
16

)

are D̃1 = 4785 and D̃2 = 45 respectively. The multiplicities in the partition function were

then computed to be Ỹ1 = 1, Ỹ2 = 220. With these degeneracies the bilinear identity then

gives multiplicities of d1 = 1 and d2 = 1024 respectively. If we redefine our degeneracies

to be D̃1 = 4785 and D̃2 = 45 × 210, then the multiplicities would be d1 = 1 and d2 = 1

respectively (which is what we display in the table). With this assignment of degeneracies and
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multiplicities, we have the interpretation for the coset relation as between two three-primary

CFTs. We can justify the above redefinition, for the first of the four theories of row 3, where

it can be realised as a three-character extension of A⊗151,2 . Let us denote the characters of A1,2

to be χ0, χ 1
2

and χ 3
16

and note that they have degeneracies of 3 and 2 respectively. It turns

out that the leading term of χ̃ 3
2

is given by 35χ12
0 χ

3
1
2

+ 15χ7
0χ

8
3
16

from which it follows that

the degeneracy is 35 × 33 + 15 × 28 = 4785. Similarly the leading term of χ̃ 29
16

is given by

120χ7
0χ

7
3
16

χ 1
2

which gives it a degeneracy of 120× 27× 3 which is also equal to 210× 45. Thus,

at least for one of the theories of row 3, we have derived the degeneracies that will make the

multiplicities to be each equal to 1. We expect this to hold for the other theories in row 3

as well. Furthermore, the new degeneracies implies that the multiplicities in the partition

function are now Ỹ1 = 1, Ỹ2 = 1, which is consistent with d1 = 1, d2 = 1.

For the three coset relations in row 5 the degeneracies of the characters obtained from the

MLDE are D̃1 = 5031 and D̃2 = 43 respectively. The multiplicities in the partition function

was then computed to be Ỹ1 = 1, Ỹ2 = 218. With these degeneracies the bilinear identity

then gives multiplicities of d1 = 1 and d2 = 512 respectively. If we redefine our degeneracies

to be D̃1 = 5031 and D̃2 = 43 × 29, then the multiplicities would be d1 = 1 and d2 = 1

respectively. Furthermore, these new degeneracies change the multiplicities in the partition

function to Ỹ1 = 1, Ỹ2 = 1 With this assignment of degeneracies and multiplicities, we have

the interpretation for the coset relations in row no. 5 as between two three-primary CFTs.

This same phenomenon repeats itself in rows nos. 7, 10, 12 and 15. We need to multiply the

degeneracy obtained by solving the MLDE, for the character paired with the spinor character,

by 28, 27, 26 and 25 respectively. We would then have multiplicities of 1 and 1 in each case

and consequently the correct interpretation between two three-primary CFTs.

In row 18, we have a coset relation between two three-primary CFTs both of which are

WZW CFTs. The bilinear gives rise to meromorphic theory #62 in the list of [37] which is

a non-lattice theory. This case was in fact the basis for the prediction in [45] of an infinite

series of non-lattice meromorphic theories at increasing central charges, and is the m = 0

case of entry #15 in Table 3 of that reference. Similarly, the bilinear relations in rows 1, 3,

5, 7, 10, 12 and 15 were the basis for the prediction in [45] of 14 infinite series of non-lattice

meromorphic theories at increasing central charges, corresponding to entries #1 − #14 in

Table 3 there.

For the coset relation in row 2, the MLDE computations for the degeneracies are D̃1 =

575, D̃2 = 23 which gives the degeneracies in the partition function to be Ỹ1 = 64, Ỹ2 = 223.

With these degeneracies the bilinear identity then gives multiplicities of d1 = 8, d2 = 4096.

The MLDE and the bilinear identity are also consistent with the following new assignment

viz. D̃1 = 575×8, D̃2 = 23×211 and d1 = 1, d2 = 2. This new assignment of the degeneracies

– 34 –



results in the following partition function multiplicities: Ỹ1 = 1, Ỹ2 = 2. Row 2 is thus a

coset relation between two four-primary CFTs.) More significantly, we can now conclude

that the admissible character solution III50 corresponds to a genuine CFT, a three-character

extension of D⊗231,1 . Thus the coset relation in row 2 has resulted in the discovery of a new

CFT.

In row 4, we have a coset bilinear relation between D2,1 and III45. We are able to

redefine the degeneracies to obtain partition function multiplicities to be Ỹ1 = 1, Ỹ2 = 2 and

the parameters in the bilinear identity to be d1 = 1, d2 = 2, indicating a pairing between two

four-primary CFTs. There are six meromorphic theories, #15 - #20, of [37] with D2,1 = A⊗21,1

as a factor of the affine part of their chiral algebras, which means that III45 corresponds to

six different CFTs. Each of these are three-character extensions of the remaining factors of

the affine part of the chiral algebras, viz. A⊗221,1 , A⊗43,2A
⊗2
1,1, A5,3D4,3A1,1, A7,4A1,1, D5,4C3,2 and

D⊗226,5 respectively. Thus, the coset relation in row 4 has resulted in the discovery of six new

CFTs. In rows 6, 11, 14, 16, 19, we have bilinear relations between D3,1, D5,1, D6,1, D7,1, D9,1

on the left with CFTs already discovered in [17]. What we are able to do new here is give

exact details of the characters: the degeneracies of the non-identity characters that lead to

partition function multiplicities Ỹ1 = 1, Ỹ2 = 2 and the multiplicities in the bilinear identity

to be d1 = 1, d2 = 2. Thus each of these rows describe pairings between four-primary CFTs.

In row 20, we have a coset relation between two four-primary CFTs both of which are

WZW CFTs. The bilinear gives rise to meromorphic theory #64 in the list of [37]. This case

was in fact the basis for the prediction in [45] of an infinite series of meromorphic theories at

increasing central charge, and is the m = 0 case of entry #33 in Table 3 of that reference.

Similarly, the bilinear relations in rows 2, 4, 6, 11, 14, 16, and 19 were the basis for the

prediction in [45] of 17 infinite series of meromorphic theories at increasing central charges,

corresponding to entries #16 −#32 in Table 3 there.

Row 9 is a bilinear relation between A4,1 and a CFT already discovered in [17]. Again

what we do new here is to give exact details of the characters: the degeneracies D̃1, D̃2 that

lead to partition function multiplicities Ỹ1 = 2, Ỹ2 = 2 and the multiplicities in the bilinear

identity to be d1 = 2, d2 = 2. This establishes a pairing between two five-primary CFTs.

We now study bilinear relations where one of the solutions is the three-character CFT

obtained from a tensor product of two copies of two-character CFTs. There are 7 such CFTs

viz. A⊗21,1, A
⊗2
2,1, G

⊗2
2,1, D

⊗2
4,1, F⊗24,1 , E⊗26,1 and E⊗27,1 . The first has been studied in row 4 (as D2,1)

and the last one in row 20. The remaining five are in rows 8, 13, 17, 21 and 23 and for some

reason these were missed out in [17].

In row 8, we have a bilinear relation between A⊗22,1 and V39. The former is a nine-primary

theory with multiplicities Y1 = 4, Y2 = 4. We are able to obtain an assignment of degeneracies
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for the latter so the partition function multiplicities are Ỹ1 = 4, Ỹ2 = 4 and the multiplicities

in the bilinear identity are d1 = 4, d2 = 4, so that we have a pairing between two nine-primary

CFTs. Furthermore we find three meromorphic CFTs in [37] viz. #24, #26 and #27 that

contain a factor of A⊗22,1, giving rise to three new CFTs that are the three-character extensions

of the remaining factors viz. A⊗102,1 , A⊗25,2C2,1 and A8,3 respectively. Thus the coset relation

in row 8 has enabled us to characterize the MLDE solution V39 as corresponding to three

CFTs.

In row 13, we have a bilinear relation between G⊗22,1 and III37. The former is a four-

primary theory with multiplicities Y1 = 2, Y2 = 1. We are able to obtain an assignment of

degeneracies for the latter so the partition function multiplicities are Ỹ1 = 2, Ỹ2 = 1 and the

multiplicities in the bilinear identity are d1 = 2, d2 = 1, so that we have a pairing between

two four-primary CFTs. Furthermore we find a meromorphic CFT in [37] viz. #32 that

contains a factor of G⊗22,1, giving rise to a new CFT that is a three-character extension of

the remaining factors, namely E6,3G2,1. Thus the coset relation in row 13 has enabled us to

characterize the MLDE solution III37 as corresponding to a genuine CFT.

Row 17 is a bilinear relation between D⊗24,1 and an admissible character solution that is one

of the infinite family of solutions given in table 2.1.2 viz. III′′ with m1 = 112. The former is a

sixteen-primary theory with multiplicities Y1 = 6, Y2 = 9.We are able to obtain an assignment

of degeneracies for the latter so the partition function multiplicities are Ỹ1 = 6, Ỹ2 = 9 and

the multiplicities in the bilinear identity are d1 = 5, d2 = 9, so that we have a pairing between

two sixteen-primary CFTs. Furthermore we find a meromorphic CFT in [37] namely #42

that contains a factor of D⊗24,1, giving rise to a new CFT that is a three-character extension of

the remaining factor D⊗44,1. Thus the coset relation in row 17 has enabled us to characterise

the MLDE solution III′′ with m1 = 112 of Table 2.1.2 as a sixteen-primary CFT, denoted

E3[D⊗44,1]. This is the CFT with the largest number of primaries but just three characters in

this paper that is not a tensor product theory (of course D⊗24,1 has the same properties, but it

is a tensor product).

In row 21 we find a coset relation involving F 2
4,1. The unique meromorphic theory with

this factor at c = 24 is #52 of [37] with Kac-Moody algebra F 2
4,1C8,1. This proves that III22

is equivalent to E3[C8,1], confirming the result obtained from Table 3.2.1.

In row 23 we find a self-coset relation for E⊗26,1 . This is a pairing between nine-primary

CFTs. This comes about because of the existence of a meromorphic theory in [37] namely

#58 which is the extension E1[E⊗46,1 ].

Row 22 is a self-coset relation involving D12,1; the meromorphic theory is #66 of [37]

which is the extension E1[D⊗212,1]. Even though the D12,1 is a four-primary theory, the pairing

of characters is not the usual one which gives the bilinear identity parameters (d1, d2) = (1, 2)
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or (2, 1). Instead we have (d1, d2) = (1, 1). This has been explained in the discussion around

Eq. (2.20). This unusual coset pairing will appear in our future tables between D4k,1 theories

with odd k, at cH > 24 and whenever n1, n2 6= 1.

# c (h1, h2) m1 (D1, D2) C c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) C̃ (d1, d2) S#

1. 1
2 (12 ,

1
16) 0 (1, 1) B0,1

47
2 (32 ,

31
16) 0 (4371, 47 · 211) BM (1, 1) 0

2. 1 (12 ,
1
8) 1 (2, 1) D1,1 23 (32 ,

15
8 ) 23 (4600, 23 · 211) III50 (1, 2) 1

3. 3
2 (12 ,

3
16) 3 (3, 2) B1,1

45
2 (32 ,

29
16) 45 (4785, 45 · 210) GHM45 (1, 1) 5

7

8

10

4. 2 (12 ,
1
4) 6 (4, 2) D2,1 22 (32 ,

7
4) 66 (77 · 26, 11 · 211) III45 (1, 2) 15

16

17

18

19

20

5. 5
2 (12 ,

5
16) 10 (5, 4) B2,1

43
2 (32 ,

27
16) 86 (5031, 43 · 29) GHM86 (1, 1) 25

26

28

6. 3 (12 ,
3
8) 15 (6, 4) D3,1 21 (32 ,

13
8 ) 105 (5096, 21 · 29) GHM105 (1, 2) 30

31

33

34

35

7. 7
2 (12 ,

7
16) 21 (7, 8) B3,1

41
2 (32 ,

25
16) 123 (5125, 41 · 28) GHM123 (1, 1) 39

40

8. 4 (13 ,
2
3) 16 (3, 9) A⊗22,1 20 (53 ,

4
3) 80 (4 · 37, 5 · 35) V39 (4, 4) 24

26

27

9. 4 (25 ,
3
5) 24 (5, 10) A4,1 20 (85 ,

7
5) 120 (13 · 54, 4 · 54) GHM120 (2, 2) 37

10. 9
2 (12 ,

9
16) 36 (9, 16) B4,1

39
2 (32 ,

23
16) 156 (5083, 39 · 27) GHM156 (1, 1) 47

48

11. 5 (12 ,
5
8) 45 (10, 16) D5,1 19 (32 ,

11
8 ) 171 (5016, 19 · 27) GHM171 (1, 2) 49

12. 11
2 (12 ,

11
16) 55 (11, 32) B5,1

37
2 (32 ,

21
16) 185 (4921, 37 · 26) GHM185 (1, 1) 53

13. 28
5 (25 ,

4
5) 28 (7, 49) G⊗22,1

92
5 (85 ,

6
5) 92 (7475, 1196) III37 (2, 1) 32
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14. 6 (12 ,
3
4) 66 (12, 32) D6,1 18 (32 ,

5
4) 198 (75 · 26, 9 · 27) GHM198 (1, 2) 54

55

15. 13
2 (12 ,

13
16) 78 (13, 64) B6,1

35
2 (32 ,

19
16) 210 (4655, 35 · 25) GHM210 (1, 1) 56

16. 7 (12 ,
7
8) 91 (14, 64) D7,1 17 (32 ,

9
8) 221 (4488, 544) GHM221 (1, 2) 59

17. 8
(
1
2 , 1
)

56 (8,64) D⊗24,1 16
(
3
2 , 1
)

112 (211,27) E3[D⊗44,1] (6, 9) 42

18. 17
2 (12 ,

17
16) 136 (17, 256) B8,1

31
2 (32 ,

15
16) 248 (3875, 248) E8,2 (1, 1) 62

19. 9 (12 ,
9
8) 153 (18, 256) D9,1 15 (32 ,

7
8) 255 (3640, 120) GHM255 (1, 2) 63

20. 10 (12 ,
5
4) 190 (20, 512) D10,1 14 (32 ,

3
4) 266 (562, 56) E⊗27,1 (1, 2) 64

21. 52
5 (35 ,

6
5) 104 (26, 262) F⊗24,1

68
5 (75 ,

4
5) 136 (1700, 119) III22 (2, 1) 52

22. 12 (12 ,
3
2) 276 (24, 211) D12,1 12 (32 ,

1
2) 276 (211, 24) D12,1 (1, 1) 66

23. 12 (23 ,
4
3) 156 (27, 272) E⊗26,1 12 (43 ,

2
3) 156 (272, 27) E⊗26,1 (4, 4) 58

Table 3.3.1: CFT pairings, cH = 24 with (n1, n2) = (2, 2). The entry in the last column

identifies the meromorphic theory by its row number in the table of [37].

Conclusion: From Table 3.3.1 we have deduced the following new identifications for type

III and V solutions:

III37 = E3[E6,3G2,1]

V39 = E3[A⊗102,1 ], E3[A⊗25,2C2,1], E3[A8,3]

III45 = E3[A⊗221,1 ], E3[A⊗43,2A
⊗2
1,1], E3[A5,3D4,3A1,1], E3[A7,4A1,1], E3[D5,4C3,2], E3[D6,5]

III50 = E3[D⊗231,1 ]

III′′(m1 = 112) = E3[D⊗44,1]

(3.4)

We also confirm the conclusion from Table 3.2.1 that III22 is identified with E3[C8,1]. We

note here that the above identifications, with the exception of III′′(m1 = 112), have been

made in [36].

Let us briefly comment on the three-character extension E3[D⊗44,1] at c = 16. Though we

had excluded c = 8, 16 solutions from the classification at the outset, we felt it worth noting

the existence of this one at c = 16, since it is of the “GHM” type [17].

Comments on Table 3.3.2

This table has several bilinear pairs that we have shown to be of IVOA type. However in a

number of cases (rows 1, 5–9) the pairing does not lead to a valid meromorphic CFT as it

does not correspond to any entry in [37]. In three cases, however, the pairing does reproduce

a meromorphic theory – these are rows 2, 3, 4. These examples appear more favourable for

identification of the pair as some variant of CFTs.
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# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N S#

1. 4
7 (17 ,

3
7) 1 (1, 1) I[M(7, 2)]

164
7 (137 ,

11
7 ) 41 (50922, 4797) III54 (1,1) 42 —

2. 4
5 (15 ,

2
5) 2 (2, 1) I[M(5, 2)⊗2]

116
5 (95 ,

8
5) 58 (27550, 4959) III52 (2,1) 60 12-14

3. 12
7 (27 ,

3
7) 6 (3, 2) III1

156
7 (127 ,

11
7 ) 78 (27170, 5070) III47 (1,1) 84 22-23

4. 44
7 (47 ,

5
7) 88 (11, 44) III3

124
7 (107 ,

9
7) 248 (2108, 2108) III35 (1, 1) 336 60

5. 36
5 (35 ,

4
5) 144 (12, 45) III4

84
5 (75 ,

6
5) 336 (1452, 770) III33 (1,2) 480 —

6. 52
7 (47 ,

6
7) 156 (13, 78) III5

116
7 (107 ,

8
7) 348 (1972, 725) III32 (1,1) 504 —

7. 60
7 (37 ,

8
7) 210 (10, 285) III7

108
7 (117 ,

6
7) 378 (3510, 117) III29 (1,1) 588 —

8. 44
5 (25 ,

6
5) 220 (11, 275) III8

76
5 (85 ,

4
5) 380 (3249, 57) III27 (1,2) 600 —

9. 68
7 (37 ,

9
7) 221 (17, 782) III12

100
7 (117 ,

5
7) 325 (2925, 55) III24 (1,1) 546 —

Table 3.3.2: IVOA-type pairings, cH = 24 with (n1, n2) = (2, 2). Wherever present, the

entry in the last column identifies the meromorphic theory by its row number in the table of

[40].

Conclusion: From table 3.3.2 we conclude that III27, III32, III33, III35, III47, III52 and

III54 belong to the IVOA category. These have at least one negative fusion rule, and the

above pairings are always between two such solutions.

Comments on Table 3.3.3

This table lists all the pairs where one can rule out at least one member being a CFT, or

in several cases both members. For rows 1, 4–11, 13–16, the solution in the second column

should arise as the commutant of some embedding of the known algebra in the first column

in a meromorphic theory. However there is no candidate meromorphic theory for these cases,

since the value of the integer denoting the constant term in the meromorphic character χ(τ) =

j(τ)− 744 +N does not appear in any entry of the table in [37]. This immediately rules out

the solution in the right column of every case from being a CFT.

In some of these cases, namely rows 10, 11, 13–16, the entry in the right column was

already ruled out by considerations of non-integral multiplicities (d1, d2). That leaves rows 1,

4–9 where we can now rule out the solutions in the right column, namely III42, III26, III21,

III20, III19, V18, III17. The last six of these were already ruled out by Table 3.2.3, a nice

confirmation of the internal consistency of our method. Notice that the reasons for ruling out

these six solutions are slightly different in the two tables – in Table 3.2.3, the pairings gave a

sensible character j
2
3 that actually describes two distinct meromorphic CFT, but there was

no possible embedding to justify the coset relation and this ruled out the uncharacterised

solution. However in Table 3.3.3, the same solutions were ruled out more easily because the
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pairing produced no known theory in the (complete) classification of [37]. Meanwhile the

solution III42 is being ruled out for the first time.

Let us move on to the three remaining cases in rows 2, 3 and 12. In row 3 we cannot

say anything about III28 because its partner III9 is already ruled out. Thus there are no

grounds, from this table, to decide whether III28 is a CFT or not. Fortunately III28 has

already been identified as being of IVOA-type in Table 3.3.3. In row 12, although the pairing

is formally to an invariant that corresponds to a genuine meromorphic theory from the list

of [37], the solution in the right column was already ruled out from the beginning and we get

no new information. That leaves row 2 where the pairing gives rise to a modular invariant

j − 744 + N with the integer N = 336. This appears in the list of [37] and has the Kac-

Moody algebra A2
12,1. However we have verified that there is no embedding of B7,1 in the

above algebra that would give rise to the character III31. It follows that III31 is not a CFT.

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N S#

1. 12
5 (15 ,

3
5) 3 (3, 5) III2

108
5 (95 ,

7
5) 27 (42483, 2295) III42 (1,2) 30 —

2. 15
2 (12 ,

15
16) 105 (15, 128) B7,1

33
2 (32 ,

17
16) 231 (4301, 528) III31 (1,1) 336 60

3. 44
5 (15 ,

7
5) 253 (11, 242) III9

76
5 (95 ,

3
5) 437 (11875, 57) III28 ( 1

5
, 1) 690 —

4. 19
2 (12 ,

19
16) 171 (19, 512) B9,1

29
2 (32 ,

13
16) 261 (3393, 116) III26 (1,1) 432 —

5. 21
2 (12 ,

21
16) 210 (21, 210) B10,1

27
2 (32 ,

11
16) 270 (2871, 54) III21 (1,1) 480 —

6. 11 (12 ,
11
8 ) 231 (22, 210) D11,1 13 (32 ,

5
8) 273 (2600, 26) III20 (1, 2) 504 —

7. 23
2 (12 ,

23
16) 253 (23, 211) B11,1

25
2 (32 ,

9
16) 275 (2325, 25) III19 (1,1) 528 —

8. 12 (13 ,
5
3) 318 (9, 4374) V18 12 (53 ,

1
3) 318 (4374, 9) V18 (1, 1) 636 —

9. 12 (35 ,
7
5) 222 (25, 1275) III17 12 (75 ,

3
5) 222 (1275, 25) III17 (2, 2) 444 —

10. 25
2 (12 ,

25
16) 300 (25, 212) B12,1

23
2 (32 ,

7
16) 276 (1771, 23) III16 (1, 1

2
) 576 —

11. 13 (12 ,
13
8 ) 325 (26, 212) D13,1 11 (32 ,

3
8) 275 (1496, 11) III15 (1,1) 600 —

12. 27
2 (12 ,

27
16) 351 (27, 213) B13,1

21
2 (32 ,

5
16) 273 (1225, 21) III14 (1, 1

4
) 624 67

13. 14 (12 ,
7
4) 378 (28, 213) D14,1 10 (32 ,

1
4) 270 (960, 5) III13 (1,1) 648 —

14. 29
2 (12 ,

29
16) 406 (29, 214) B14,1

19
2 (32 ,

3
16) 266 (703, 19) III11 (1, 1

8
) 672 —

15. 15 (12 ,
15
8 ) 435 (30, 214) D15,1 9 (32 ,

1
8) 261 (456, 9) III10 (1, 1

4
) 696 —

16. 31
2 (12 ,

31
16) 465 (31, 215) B15,1

17
2 (32 ,

1
16) 255 (221, 17) III6 (1, 1

16
) 720 —

Table 3.3.3: Inconsistent pairings, cH = 24 with (n1, n2) = (2, 2). Wherever present, the

entry in the last column identifies a candidate meromorphic theory by its row number in the

table of [40].

Conclusion: From table 3.3.3 we concluded that III31 and III42 are not valid CFTs, and

confirmed that the same holds for III17, V18, III19, III20, III21, III26 which were already
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ruled out previously.

(n1, n2) = (1, 3)

We now turn to bilinear pairs of solutions with (n1, n2) = (1, 3), a class never previously

explored to our knowledge. This set consists of a list of CFT pairings as well as Tables 3.3.4

and 3.3.5. We do not need a table for the consistent CFT pairings with these values of n1, n2

as all the pairs are cosets of the meromorphic theory E1[D24,1] that appears in [37] as the

final entry #71, by B,D type WZW models at level 1. D24 has dimension 1128, so the

integer N in the meromorphic character is 384 for all these cases. These cosets are obtained

through regular embeddings of Br,1 or Dr,1 into D24,1 as discussed in Section 2.4. Thus we

have pairings of (i) Br1,1 and Br2,1 with r1 + r2 = 23, 0 ≤ r1, r2 ≤ 23, (ii) Dr1,1 and Dr2,1

with r1 + r2 = 24, 1 ≤ r1, r2 ≤ 23. Recall that B0,1 is identified with M(4, 3), the Ising

model.

Comments on Table 3.3.4

In this table we have four pairs that are all of IVOA type. 7 of these 8 solutions have appeared

in previous coset pairs where the meromorphic theory had c = 8 or 16 (Tables 3.1.2 and 3.2.2).

The only new one is III48 with c = 156
7 .

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N
1. 12

7

(
2
7 ,

3
7

)
6 (3,2) III1

156
7

(
5
7 ,

18
7

)
1248 (130,799500) III48 (1, 1) 1644

2. 60
7

(
3
7 ,

8
7

)
210 (10,285) III7

108
7

(
4
7 ,

13
7

)
456 (39,20424) III30 (1, 1) 1056

3. 44
5

(
2
5 ,

6
5

)
220 (11,11) III8

76
5

(
3
5 ,

9
5

)
437 (57,19) III28 (1, 1) 1056

4. 68
7

(
3
7 ,

9
7

)
221 (17,782) III12

100
7

(
4
7 ,

12
7

)
380 (55,11495) III25 (1, 1) 1536

Table 3.3.4: IVOA-type pairings, cH = 24 with (n1, n2) = (1, 3). The integer N in the last

column gives the total number of dimension-1 states in the meromorphic character j−744+N .

Conclusion: From table 3.3.4 we conclude that III48 belong to the IVOA category as this

has negative fusion rules and also satisfies the above pairing.

Comments on Table 3.3.5

In this table, rows 1, 2, 4, 7, 10–12, 14–16, 18, 19 are pairings of solutions of III type with

consistent CFTs (we used the fact that III2 was identified as a CFT in Table 3.1.1). These

pairings mostly give us fractional values of N in the meromorphic character, so we do not

learn anything from them. In a few cases we get integer values of N but these too do not

feature in [37].
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In row 17 both solutions were previously ruled out. This leaves rows 3, 5, 6, 8, 9, 13,

where we can hope to get new information. In all these cases except row 13, the solutions

III51, III46, III44,V41,V40 are paired with known CFTs. However the result of the pairing

is not a meromorphic CFT as one readily sees from [37]. That means these five solutions are

ruled out as corresponding to CFTs.

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N
1. 1

2

(
1
16 ,

1
2

)
0 (1,1) B0,1

47
2

(
15
16 ,

5
2

)
4371 (4371,1135003) III55

(
1
2
, 1

) 13113
2

2. 4
5

(
1
5 ,

2
5

)
0 (1,1) I[M(5, 2)⊗2]

116
5

(
4
5 ,

13
5

)
1711 (1653,910803) III53

(
1
5
, 1

) 10218
5

3. 1
(
1
8 ,

1
2

)
1 (1,2) D1,1 23

(
7
8 ,

5
2

)
2323 (575, 32683 · 25) III51 (2, 1) 3474

4. 3
2

(
3
16 ,

1
2

)
3 (2,3) B1,1

45
2

(
13
16 ,

5
2

)
1640 (1595,956449) III49

(
1
4
, 1

) 4881
2

5. 2
(
1
4 ,

1
2

)
6 (2,4) D2,1 22

(
3
4 ,

5
2

)
1298 (154, 847 · 210) III46 (2, 1) 1920

6. 12
5

(
1
5 ,

3
5

)
3 (3, 5) III2

108
5

(
4
5 ,

12
5

)
1404 (459, 153 · 55) III44 (1, 2) 2784

7. 12
5

(
3
5 ,

1
5

)
3 (5, 3) III2

108
5

(
2
5 ,

14
5

)
860 (833, 3015426) III43

(
1
25

, 1
) 5148

5

8. 4
(
1
3 ,

2
3

)
16 (3,9) A⊗22,1 20

(
2
3 ,

7
3

)
890 (135, 10 · 2 · 39) V41 (2, 2) 1716

9. 4
(
2
3 ,

1
3

)
16 (9, 3) A⊗22,1 20

(
1
3 ,

8
3

)
728 (12, 2 · 312) V40 (2, 2) 960

10. 28
5

(
2
5 ,

4
5

)
28 (7,49) G⊗22,1

92
5

(
3
5 ,

11
5

)
690 (299,178802) III38

(
2
5
, 1

) 7776
5

11. 6
(
3
4 ,

1
2

)
66 (32,12) D6,1 18

(
1
4 ,

5
2

)
598 (25, 221 · 210) III36

(
1
4
, 1

)
864

12. 36
5

(
4
5 ,

3
5

)
144 (45, 12) III4

84
5

(
1
5 ,

12
5

)
534 (33,55924) III34

(
2
25

, 1
) 3984

5

13. 8
(
1
2 , 1
)

56 (8,64) D⊗24,1 16
(
1
2 , 2
)

496 (32,215) D16,1
(

8
3
, 13

3

) 3704
3

14. 17
2

(
1
16 ,

3
2

)
255 (17,221) III6

31
2

(
15
16 ,

3
2

)
248 (248,3875) E8,2

(
1
16

, 1
) 1533

2

15. 44
5

(
1
5 ,

7
5

)
253 (11,242) III9

76
5

(
4
5 ,

8
5

)
380 (57,3249) E⊗27.5

(
1
5
, 1

) 3792
5

16. 9
(
1
8 ,

3
2

)
261 (9, 456) III10 15

(
7
8 ,

3
2

)
255 (120, 3640) E [A15,1]

(
1
4
, 1

)
786

17. 19
2

(
3
16 ,

3
2

)
266 (19,703) III11

29
2

(
13
16 ,

3
2

)
261 (116, 3393) III26

(
1
8
, 1

) 1605
2

18. 10
(
1
4 ,

3
2

)
270 (5, 960) III13 14

(
3
4 ,

3
2

)
266 (56,562) E⊗27,1 (1, 1) 816

19. 52
5

(
3
5 ,

6
5

)
104 (26,262) F⊗24,1

68
5

(
2
5 ,

9
5

)
374 (119,12138) III23

(
1
5
, 1

) 5484
5

20. 21
2

(
5
16 ,

3
2

)
273 (21,1225) III14

27
2

(
11
16 ,

3
2

)
270 (54, 2871) III21

(
1
4
, 1

) 1653
2

21. 11
(
3
8 ,

3
2

)
275 (11, 1496) III15 13

(
5
8 ,

3
2

)
273 (26, 2600) III20 (1, 1) 834

22. 23
2

(
7
16 ,

3
2

)
276 (23,1771) III16

25
2

(
9
16 ,

3
2

)
275 (25,2325) III19

(
1
2
, 1

) 1677
2

23. 12
(
2
3 ,

4
3

)
156 (27,272) E⊗26,1 12

(
1
3 ,

5
3

)
318 (9, 4374) V18 (2, 2) 960

Table 3.3.5: Inconsistent pairings, cH = 24 with (n1, n2) = (1, 3). The integer N in the last

column gives the total number of dimension-1 states in the meromorphic character j−744+N .

Conclusion: From Table 3.3.5 we conclude that V40, V41, III44, III46 and III51 are not

valid CFTs.

– 42 –



3.4 Cosets of cH = 32

Now we move on to list coset pairs for cH = 32. The meromorphic character in this case can

be written:

χ(τ) = j(τ)
1
3 (j(τ)− 992 +N ) ∼ q−

4
3 (1 +N q + · · · ) (3.5)

so that N is the dimension of its Kac-Moody algebra.

Since we have (p, `) = (3, 0), we get n1 + n2 = 5 from Eq. (2.5). This again implies that

we have two sub-cases: (n1, n2) = (1, 4) or (2, 3) that lead to distinct sets of coset theories.

We address each one in turn.

(n1, n2) = (1, 4)

Here any admissible character solution that is potentially part of a coset relation has to have

a central charge less than 32. Hence we consider all admissible character solutions from [34]

with c < 32. The consistent cosets all turn out to arise through regular embeddings of Br,1

or Dr,1 into D32,1 as discussed in Section 2.4. Thus we have pairings of (i) Br1,1 and Br2,1

with r1 + r2 = 31, 0 ≤ r1, r2 ≤ 31, (ii) Dr1,1 and Dr2,1 with r1 + r2 = 32, 1 ≤ r1, r2 ≤ 31. It

turns out there are no IVOA-type bilinear pairs with (n1, n2) = (1, 4) so we go on directly to

the table of inconsistent pairings in Table 3.4.1.

Comments on Table 3.4.1

All the pairs (W ↔ W̃) listed in Table 3.4.1 satisfy a bilinear relation to a potential c = 32

character of the form in Eq. (3.5). However the relation is problematic in one or more ways.

In rows 1–4, 6, 7, 14, 18, 19 we have theories that were found to be inconsistent at the outset,

paired with a known CFT. There is nothing left to determine in these cases. Next, in rows

9, 10, 12, 17 both members of the pair are already ruled out.

Rows 5, 8, 15 seem more promising as the pairings lead to integer values of N as seen

in the last column of the table. However in these cases N is greater than 2016, which is

the dimension of D32. It can be shown that the dimension of the Kac-Moody algebra for all

meromorphic theories at c = 8N is less than or equal to the dimension of D8N , we do this

in Appendix C. For rows 5 and 15 this means the bilinear pairing in these cases does not

produce a valid meromorphic theory at c = 32. In turn, this rules out V58 in row 5 since it

is paired with a valid theory. However in row 15 we have already ruled out V18 so we cannot

say anything definite about V41. Fortunately this was ruled out in Table 3.3.5. And in row

8 both partners in the pairing are consistent, it is the pairing which is inconsistent as shown

by the fractional values of d1, d2.

This leaves rows 11, 13, 16. Rows 11 and 13 are inconclusive since the solution in the

first column is inconsistent. Fortunately, again the solutions III51 and III46 in the second
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column were already ruled out by Table 3.3.5. Row 16 is inconclusive for a different reason:

we do not know if a meromorphic theory with N = 1532 exists. However again V40 was also

ruled out in Table 3.3.5.

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N
1. 4

5

(
1
5 ,

2
5

)
2 (1,1) I[M(5, 2)⊗2]

156
5

(
4
5 ,

18
5

)
3612 (14877, 250774426) III62

(
1
25

, 1
) 105227

25

2. 1
(
1
8 ,

1
2

)
1 (1,2) D1,1 31

(
7
8 ,

7
2

)
5239 (9269, 2295147 · 27) III61

(
1
4
, 1

) 30229
4

3. 3
2

(
3
16 ,

1
2

)
3 (2,3) B1,1

61
2

(
13
16 ,

7
2

)
3599 (47763,264580485) III60

(
1
64

, 1
) 163027

32

4. 2
(
1
4 ,

1
2

)
6 (2,4) D2,1 30

(
3
4 ,

7
2

)
2778 (539, 14421 · 214) III59 (1, 1) 3862

5. 4
(
1
3 ,

2
3

)
16 (3,9) A⊗22,1 28

(
2
3 ,

10
3

)
1948 (225, 11 · 2 · 314) V58 (2, 2) 3314

6. 28
5

(
2
5 ,

4
5

)
28 (7,49) G⊗22,1

132
5

(
3
5 ,

16
5

)
1536 (2392,47018049) III57

(
2
25

, 1
) 72588

25

7. 6
(
3
4 ,

1
2

)
66 (32,12) D6,1 26

(
1
4 ,

7
2

)
1118 (117, 3315 · 214) III56

(
1
16

, 1
)

1418

8. 8
(
1
2 , 1
)

56 (8,64) D⊗24,1 24
(
1
2 , 3
)

1128 (48,223) D24,1
(
3, 59

16

)
2336

9. 17
2

(
1
16 ,

3
2

)
255 (17,221) III6

47
2

(
15
16 ,

5
2

)
4371 (4371,1135003) III55

(
1
32

, 1
) 222339

32

10. 44
5

(
1
5 ,

7
5

)
253 (11,242) III9

116
5

(
4
5 ,

13
5

)
1711 (1653,910803) III53

(
1
50

, 1
) 116383

50

11. 9
(
1
8 ,

3
2

)
261 (9, 456) III10 23

(
7
8 ,

5
2

)
2323 (575, 32683 · 25) III51

(
1
4
, 1

) 15511
4

12. 19
2

(
3
16 ,

3
2

)
266 (19,703) III11

45
2

(
13
16 ,

5
2

)
1640 (1595,956449) III49

(
1
32

, 1
) 91297

32

13. 10
(
1
4 ,

3
2

)
270 (5, 960) III13 22

(
3
4 ,

5
2

)
1298 (154, 847 · 210) III46 (1, 1) 2338

14. 52
5

(
3
5 ,

6
5

)
104 (26,262) F⊗24,1

108
5

(
2
5 ,

14
5

)
860 (833,3015426) III43

(
1
25

, 1
) 45758

25

15. 12
(
1
3 ,

5
3

)
318 (9, 1) V18 20

(
2
3 ,

7
3

)
890 (135, 10 · 2 · 316) V41 (1, 1) 2423

16. 12
(
2
3 ,

4
3

)
156 (27,272) E⊗26,1 20

(
1
3 ,

8
3

)
728 (12, 2 · 312) V40 (2, 2) 1532

17. 68
5

(
2
5 ,

9
5

)
374 (119,12138) III23

92
5

(
3
5 ,

11
5

)
690 (299,178802) III38

(
1
25

, 1
) 62181

25

18. 14
(
3
4 ,

3
2

)
266 (56,562) E⊗27,1 18

(
1
4 ,

5
2

)
598 (25, 221 · 210) III36

(
1
4
, 1

)
1214

19. 76
5

(
4
5 ,

8
5

)
380 (57,572) E⊗27.5

84
5

(
1
5 ,

12
5

)
534 (33,55924) III34

(
2
25

, 1
) 26612

25

Table 3.4.1: Inconsistent pairings, cH = 32 with (n1, n2) = (1, 4). The integer N in the last

column gives the total number of dimension-1 states in the meromorphic character j
2
3 (j −

992 +N ).

Conclusion: From table 3.4.1 we obtain the new information that V58 is not a valid CFT.

(n1, n2) = (2, 3)

We go on to consider bilinear pairings to meromorphic characters of c = 32 where the integers

(n1, n2) = (2, 3). In this category we find consistent, IVOA-type and inconsistent solutions

that are listed in Tables 3.4.2, 3.4.3 and 3.4.4 respectively.
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Comments on Table 3.4.2

This table has 22 bilinear pairs, all of which we will argue to be consistent CFTs. In row

1 the Baby Monster CFT with c = 47
2 makes its first appearance in which it is not paired

with the Ising model M(4, 3), being paired instead with B8,1. This has previously appeared

as one in a family of pairings in [45] (entry 1 of Table 2) where it was argued that, since

the existence of Br,1 as well as the Baby Monster CFT are established, the pairing actually

predicts a non-lattice CFT at c = 32.

The pairings in rows 3, 5-7, 10–13, 15, 17–19, 21 all involve the pairing of an affine theory

with a CFT that was explicitly constructed as a coset in [17]. Row 20 is slightly different,

being a pairing between two theories from [17], a phenomenon we are seeing for the first time.

All these theories already made an appearance in our Table 3.3.1 which is the context in

which they were originally discovered in [17]. Their re-appearance illustrates a phenomenon

that was highlighted in [45]: once a new CFT appears as a coset, it appears repeatedly in

distinct coset pairings at higher total central charge.

Rows 9, 16, 22 are pairings between affine theories. Even though these are known theories,

the pairings merit some discussion. Row 9 is a case that was analysed in Example 2 of Section

2.4, and involves a pairing of D12,1 and D20,1 that is distinct from the standard pairing to

D32,1. In the present case the pairing gives rise to the c = 32 lattice theory E1[D12,1D20,1]

without an enhancement of the Kac-Moody algebra. This is a known Kervaire lattice [59].

Row 16 pairs E⊗27,1 with D18,1 to a meromorphic character whose Kac-Moody algebra has

dimension 896. From this pairing one would be led to predict the existence of a meromorphic

theory at c = 32 with Kac-Moody algebra E1[E2
7,1D18,1] of rank 32 and dimension 896. Because

this algebra has only simply-laced factors at level 1, and its rank equals the central charge,

it must be a lattice theory. And indeed, this is again a known Kervaire lattice [59]. Row

22 pairs E8,2 with B16,1 and predicts a new meromorphic theory at c = 32 that must be a

non-lattice theory (given that the rank is less than maximal, one factor has a level greater

than 1, and one factor is non-simply-laced). This is again part of an infinite family in [45],

corresponding to the m = 1 case of entry #15 of Table 3 in that reference.

Next we turn to the remaining cases in rows 2,4,8,14. For row 2, the dual of D9,1 is III50

which was previously identified from Table 3.3.1 as the three-character extension E3[D23
1,1].

Here we see it paired to give a meromorphic theory at c = 32 with a total of 176 generators.

Of these, D9,1 contributes 153 generators and a central charge 9, leaving 23 residual generators

and a residual central charge of 23. These two conditions can only be met by U(1)23. Thus

we predict a lattice theory at c = 32 with Kac-Moody algebra D9,1U(1)23. Comparing with

[60], we see that there is indeed a lattice with 144 roots (plus 32 Cartan generators) having
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a D9,1 factor. This verifies the prediction following from our coset pairing and the fact that

III50 was previously characterised. Note that this is not a Kervaire lattice, since apart from

D9,1 the remaining symmetries are all Abelian.

Moving on to row 4, the dual III45 of D10,1 has been identified in Eq. (3.4) as one of

six possible three-character extensions. This means the pairing in the present table predicts

six meromorphic theories at c = 32. Only one of these corresponds to a lattice, with algebra

D10,1A
22
1,1 and this indeed exists – it is a Kervaire lattice [59] with 224 roots. For the remaining

five cases one has a prediction for new meromorphic theories at c = 32, and this is again part

of the infinite series of predictions in [45] where they correspond to the m = 1 case for entries

18-22 in Table 3.

Row 8 pairs E⊗26,1 with V39 which was identified in Eq. (3.4) with three distinct three-

character extensions. Thus again we have predictions for three meromorphic theories at

c = 32. One is a lattice theory with algebra E2
6,1A

10
2,1 that corresponds to a Kervaire lattice

[59] and the other two are non-lattice theories that were predicted in entries 2,3 of Table 6

[45]. These theories are part of a finite, rather than infinite, collection.

Finally in row 14 we have a pairing of III22 and III37 which have been identified pre-

viously as E3[C8,1] and E3[E6,3G2,1] respectively. This leads to a prediction of a new mero-

morphic theory at c = 32 corresponding to E1[C8,1E6,3G2,1]. This is entry 4 of Table 6 in

[45].

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N
1. 17

2

(
1
2 ,

17
16

)
136 (17,256) B8,1

47
2

(
3
2 ,

31
16

)
0 (4371, 47 · 211) BM (1, 1) 136

2. 9
(
1
2 ,

9
8

)
153 (18,256) D9,1 23

(
3
2 ,

15
8

)
23 (4600, 23 · 211) III50 (1, 2) 176

3. 19
2

(
1
2 ,

19
16

)
171 (19,29) B9,1

45
2

(
3
2 ,

29
16

)
45 (4785, 45 · 210) GHM45 (1, 1) 216

4. 10
(
1
2 ,

5
4

)
190 (20,29) D10,1 22

(
3
2 ,

7
4

)
66 (77 · 26, 11 · 211) III45 (1, 2) 256

5. 21
2

(
1
2 ,

21
16

)
210 (21,210) B10,1

43
2

(
3
2 ,

27
16

)
86 (5031, 43 · 29) GHM86 (1, 1) 296

6. 11
(
1
2 ,

11
8

)
231 (22,210) D11,1 21

(
3
2 ,

13
8

)
105 (5096, 21 · 29) GHM105 (1, 2) 336

7. 23
2

(
1
2 ,

23
16

)
253 (23,211) B11,1

41
2

(
3
2 ,

25
16

)
123 (5125, 41 · 28) GHM123 (1, 1) 376

8. 12
(
2
3 ,

4
3

)
156 (27,272) E⊗26,1 20

(
4
3 ,

5
3

)
80 (5 · 35, 4 · 37) V39 (4, 4) 236

9. 12
(
3
2 ,

1
2

)
276 (211,24) D12,1 20

(
1
2 ,

5
2

)
780 (40,219) D20,1 (1, 1) 1056

10. 12
(
1
2 ,

3
2

)
276 (24,211) D12,1 20

(
3
2 ,

3
2

)
140 (5120,5120) GHM140 (1, 2) 416

11. 25
2

(
1
2 ,

25
16

)
300 (25,212) B12,1

39
2

(
3
2 ,

23
16

)
156 (5083, 39 · 27) GHM156 (1, 1) 456

12. 13
(
1
2 ,

13
8

)
325 (26,212) D13,1 19

(
3
2 ,

11
8

)
171 (5016, 19 · 27) GHM171 (1, 2) 496

13. 27
2

(
1
2 ,

27
16

)
351 (27,213) B13,1

37
2

(
3
2 ,

21
16

)
185 (4921,37 · 26) GHM185 (1, 1) 536

14. 68
5

(
4
5 ,

7
5

)
136 (119,1700) III22

92
5

(
6
5 ,

8
5

)
92 (1196,7475) III37 (1, 2) 228

15. 14
(
3
4 ,

3
2

)
266 (56,562) E⊗27,1 18

(
5
4 ,

3
2

)
198 (9 · 27, 75 · 26) GHM198 (2, 1) 464
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16. 14
(
3
2 ,

3
4

)
266 (562,56) E⊗27,1 18

(
1
2 ,

9
4

)
630 (36,217) D18,1 (1, 2) 896

17. 14
(
1
2 ,

7
4

)
378 (28,213) D14,1 18

(
3
2 ,

5
4

)
198 (75 · 26, 9 · 27) GHM198 (1, 2) 576

18. 29
2

(
1
2 ,

29
16

)
406 (29,214) B14,1

35
2

(
3
2 ,

19
16

)
210 (4655, 35 · 25) GHM210 (1, 1) 616

19. 15
(
1
2 ,

15
8

)
435 (30,214) D15,1 17

(
3
2 ,

9
8

)
221 (4488, 544) GHM221 (1, 2) 656

20. 15
(
7
8 ,

3
2

)
255 (120,3640) GHM255 17

(
9
8 ,

3
2

)
221 (544,4488) GHM221 (2, 1) 476

21. 15
(
3
2 ,

7
8

)
255 (3640, 120) GHM255 17

(
1
2 ,

17
8

)
561 (34,216) D17,1 (1, 2) 816

22. 31
2

(
3
2 ,

15
16

)
248 (3875,248) E8,2

33
2

(
1
2 ,

33
16

)
528 (33,216) B16,1 (1, 1) 776

Table 3.4.2: CFT pairings, cH = 32 with (n1, n2) = (2, 3). The integer N in the last column

gives the total number of dimension-1 states in the meromorphic character j
2
3 (j − 992 +N ).

Conclusion: From Table 3.4.2 we were not able to characterise any admissible solutions as

CFTs or otherwise, but rather started to see several predictions of meromorphic theories at

c = 32. Details of these were presented in [45].

Comments on Table 3.4.3

Here all the entries are of IVOA-type and all of these were previously characterised.

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N
1. 60

7

(
3
7 ,

8
7

)
210 (10,285) III7

164
7

(
11
7 ,

13
7

)
41 (4797,50922) III54 (1, 1) 251

2. 44
5

(
2
5 ,

6
5

)
220 (11,275) III8

116
5

(
8
5 ,

9
5

)
58 (4959,27550) III52 (1, 2) 278

3. 68
7

(
3
7 ,

9
7

)
221 (17,782) III12

156
7

(
11
7 ,

12
7

)
78 (5070,27170) III47 (1, 1) 299

4. 68
7

(
9
7 ,

3
7

)
221 (782,17) III12

156
7

(
5
7 ,

18
7

)
1248 (130,799500) III48 (1, 1) 1469

5. 76
5

(
4
5 ,

8
5

)
380 (57,572) E⊗27.5

84
5

(
6
5 ,

7
5

)
336 (770, 1452) III33 (2, 1) 716

6. 76
5

(
3
5 ,

9
5

)
437 (57,11875) III28

84
5

(
7
5 ,

6
5

)
336 (1452,770) III33 (1, 2) 773

7. 100
7

(
4
7 ,

12
7

)
380 (55,11495) III25

124
7

(
10
7 ,

9
7

)
248 (2108,2108) III35 (1, 1) 628

8. 100
7

(
5
7 ,

11
7

)
325 (55,2925) III24

124
7

(
9
7 ,

10
7

)
248 (2108,2108) III35 (1, 1) 573

9. 108
7

(
6
7 ,

11
7

)
378 (117,3510) III29

116
7

(
8
7 ,

10
7

)
348 (725,1972) III32 (1, 1) 726

10. 108
7

(
4
7 ,

13
7

)
456 (39,20424) III30

116
7

(
10
7 ,

8
7

)
348 (1972,725) III32 (1, 1) 804

Table 3.4.3: IVOA-type pairings, cH = 32 with (n1, n2) = (2, 3). The integer N in the last

column gives the total number of dimension-1 states in the meromorphic character j
2
3 (j −

992 +N ).

Comments on Table 3.4.4

This table consists entirely of inconsistent pairings. In row 1 we see such a pairing between

known theories: the value of d1 is fractional. This corresponds to the non-existence of a
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meromorphic extension E1[D2
4,1D24,1]. If such an extension existed it would be a Kervaire

lattice, however this does not appear in the list of Kervaire lattices, in agreement with the

fact that the pairing is inconsistent.

In row 6 we have a pairing between D9,1 and III51, however the result has N = 2476

which is greater than the maximum allowed value of 2016 at c = 32. This means III51 is not

a CFT, consistent with our conclusion from Table 3.3.5.

In row 14 we have a pairing between D10,1 and III46 with a total N = 1488. However

III46 has been ruled out, and we now argue that this implies the corresponding meromorphic

character is not a CFT. This crucially depends on the fact that the pairing has n1, n2 > 1. In

such pairings, the meromorphic theory – if any – has a Kac-Moody algebra that is the direct

sum of those of the paired solutions. Thus we can conclude that there is no meromorphic

theory at cH = 32 with N = 1488 and a D10,1 factor. Similar considerations hold for rows

15, 16, 23, 24, 27-32, 36, 37, 39, 40 where in each case we get constraints ruling out specific

possibilities for meromorphic theories at c = 32. The details are a little complicated to work

out in some cases, where the valid CFT in the pairing is of GHM type. In these cases one has

to look in [17] for the definition of the theory in terms of a meromorphic theory of Schellekens

type and then read off the answer from [37]. The results are summarised below.

In rows 25, 26, both solutions are of type V. However for row 25 we have ruled out

one member, V18, and characterised V39 in Eq. (3.4), and for row 26 we have already ruled

out both members of the pair V18 (again) and V40. Note that we do not get a constraint

on meromorphic theories in these cases. All remaining rows have an entry of III type, from

which we typically do not get new information.

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N
1. 17

2

(
17
16 ,

1
2

)
136 (256,17) B8,1

47
2

(
15
16 ,

5
2

)
4371 (4371,1135003) III55

(
1
2
, 1

)
4507

2. 17
2

(
1
16 ,

3
2

)
255 (17,221) III6

47
2

(
31
16 ,

3
2

)
0 (47 · 211, 4371) BM

(
1
16

, 1
)

255

3. 17
2

(
3
2 ,

1
16

)
255 (221,17) III6

47
2

(
1
2 ,

47
16

)
1081 (47,223) B23,1

(
1, 1

16

)
1336

4. 44
5

(
1
5 ,

7
5

)
253 (11,242) III9

116
5

(
9
5 ,

8
5

)
58 (27550, 4959) III52

(
1
5
, 1

)
311

5. 44
5

(
6
5 ,

2
5

)
220 (275, 11) III8

116
5

(
4
5 ,

13
5

)
1711 (1653,910803) III53

(
1
5
, 1

)
1931

6. 9
(
9
8 ,

1
2

)
153 (256,18) D9,1 23

(
7
8 ,

5
2

)
2323 (575, 32683 · 25) III51 (2, 1) 2476

7. 9
(
1
8 ,

3
2

)
261 (9, 456) III10 23

(
15
8 ,

3
2

)
23 (23 · 211, 4600) III50

(
1
4
, 1

)
284

8. 9
(
3
2 ,

1
8

)
261 (456, 9) III10 23

(
1
2 ,

23
8

)
1035 (46,222) D23,1

(
1, 1

4

)
1296

9. 19
2

(
19
16 ,

1
2

)
171 (29,19) B9,1

45
2

(
13
16 ,

5
2

)
1640 (1595,956449) III49

(
1
4
, 1

)
1811

10. 19
2

(
3
16 ,

3
2

)
266 (19,703) III11

45
2

(
29
16 ,

3
2

)
45 (45 · 210, 4785) GHM45

(
1
8
, 1

)
311

11. 19
2

(
3
2 ,

3
16

)
266 (703,19) III11

45
2

(
1
2 ,

45
16

)
990 (45,222) B22,1

(
1, 1

8

)
1256

12. 10
(
1
4 ,

3
2

)
270 (5, 960) III13 22

(
7
4 ,

3
2

)
66 (11 · 211, 77 · 26) III45 (1, 1) 336
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13. 10
(
3
2 ,

1
4

)
270 (960, 5) III13 22

(
1
2 ,

11
4

)
946 (44,221) D22,1 (1, 1) 1216

14. 10
(
5
4 ,

1
2

)
190 (29,20) D10,1 22

(
3
4 ,

5
2

)
1298 (154, 847 · 210) III46 (2, 1) 1488

15. 52
5

(
3
5 ,

6
5

)
104 (26,262) F⊗24,1

108
5

(
7
5 ,

9
5

)
27 (2295,42483) III42 (2, 1) 131

16. 52
5

(
6
5 ,

3
5

)
104 (262,26) F⊗24,1

108
5

(
4
5 ,

12
5

)
1404 (459, 153 · 55) III44 (1, 2) 1508

17. 21
2

(
5
16 ,

3
2

)
273 (21,1225) III14

43
2

(
27
16 ,

3
2

)
86 (43 · 29, 5031) GHM86

(
1
4
, 1

)
359

18. 21
2

(
3
2 ,

5
16

)
273 (1225,21) III14

43
2

(
1
2 ,

43
16

)
903 (43,221) B21,1

(
1, 1

4

)
1176

19. 11
(
3
8 ,

3
2

)
275 (11, 1496) III15 21

(
13
8 ,

3
2

)
105 (21 · 29, 5096) GHM105 (1, 1) 380

20. 11
(
3
2 ,

3
8

)
275 (1496, 11) III15 21

(
1
2 ,

21
8

)
861 (42,220) D21,1 (1, 1) 1136

21. 23
2

(
7
16 ,

3
2

)
276 (23,1771) III16

41
2

(
25
16 ,

3
2

)
123 (41 · 28, 5125) GHM123

(
1
2
, 1

)
399

22. 23
2

(
3
2 ,

7
16

)
276 (1771,23) III16

41
2

(
1
2 ,

41
16

)
820 (41,220) B20,1

(
1, 1

2

)
1096

23. 12
(
4
3 ,

2
3

)
156 (272,27) E⊗26,1 20

(
2
3 ,

7
3

)
890 (135, 20 · 39) V41 (2, 2) 1046

24. 12
(
3
5 ,

7
5

)
222 (25, 1275) III17 20

(
7
5 ,

8
5

)
120 (4 · 54, 13 · 54) GHM120 (2, 2) 342

25. 12
(
1
3 ,

5
3

)
318 (32, 2 · 37) V18 20

(
5
3 ,

4
3

)
80 (23 · 37, 10 · 35) V39 (1, 1) 398

26. 12
(
5
3 ,

1
3

)
318 (2 · 37, 32) V18 20

(
1
3 ,

8
3

)
718 (12, 2 · 312) V40 (1, 1) 1046

27. 25
2

(
9
16 ,

3
2

)
275 (25,2325) III19

39
2

(
23
16 ,

3
2

)
156 (39 · 27, 5083) GHM156 (1, 1) 431

28. 25
2

(
3
2 ,

9
16

)
275 (2325,25) III19

39
2

(
1
2 ,

39
16

)
741 (39,219) B19,1 (1, 1) 1016

29. 13
(
5
8 ,

3
2

)
273 (26, 2600) III20 19

(
11
8 ,

3
2

)
171 (19 · 27, 5016) GHM171 (2, 1) 444

30. 13
(
3
2 ,

5
8

)
273 (2600,26) III20 19

(
1
2 ,

19
8

)
703 (38,218) D19,1 (1, 2) 976

31. 27
2

(
11
16 ,

3
2

)
270 (54, 2871) III21

37
2

(
21
16 ,

3
2

)
185 (37 · 26, 4921) GHM185 (1, 1) 455

32. 27
2

(
3
2 ,

11
16

)
270 (2871, 54) III21

37
2

(
1
2 ,

37
16

)
666 (37,218) B18,1 (1, 1) 936

33. 68
5

(
2
5 ,

9
5

)
374 (119,12138) III23

92
5

(
8
5 ,

6
5

)
92 (7475, 1196) III37

(
1
5
, 1

)
466

34. 68
5

(
7
5 ,

4
5

)
136 (1700, 119) III22

92
5

(
3
5 ,

11
5

)
690 (299, 178802) III38

(
2
5
, 1

)
826

35. 14
(
7
4 ,

1
2

)
378 (213,28) D14,1 18

(
1
4 ,

5
2

)
598 (25, 221 · 210) III36

(
1
4
, 1

)
976

36. 29
2

(
13
16 ,

3
2

)
261 (116, 3393) III26

35
2

(
19
16 ,

3
2

)
210 (35 · 25, 4655) GHM210 (1, 1) 471

37. 29
2

(
3
2 ,

13
16

)
261 (3393, 116) III26

35
2

(
1
2 ,

35
16

)
595 (35,217) B17,1 (1, 1) 856

38. 76
5

(
9
5 ,

3
5

)
437 (11875, 57) III28

84
5

(
1
5 ,

12
5

)
534 (33,55924) III34

(
2
25

, 1
)

971

39. 31
2

(
1
2 ,

31
16

)
465 (31,215) B15,1

33
2

(
3
2 ,

17
16

)
231 (4301, 528) III31 (1, 1) 696

40. 31
2

(
15
16 ,

3
2

)
248 (248,3875) E8,2

33
2

(
17
16 ,

3
2

)
231 (528, 4301) III31 (1, 1) 479

Table 3.4.4: Inconsistent pairings, cH = 32 with (n1, n2) = (2, 3) The integer N in the last

column gives the total number of dimension-1 states in the meromorphic character j
2
3 (j −

992 +N ).

Conclusion: From Table 3.4.4 we were not able to newly rule out any solutions from being

CFTs, but instead we were able to predict the absence of meromorphic theories with the

following values of N coupled with a particular factor in their Kac-Moody algebra. This
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happens when either one solution in the bilinear pair is a WZW theory (or a known RCFT)

and the other solution has integral Yi values. Furthermore, these two solutions also have a

nice bilinear pairing, that is, dis are integral. In addition to the above two conditions, the

N value of this bilinear pair must be less than or equal to 2016 which is the dimension of

the Kac-Moody algebra D32,1. Table 3.4.5 lists the cases for which meromorphic theories at

c = 32 with given values of N and simple factor in their Kac-Moody algebras have been ruled

out.

# N Factor

1. 131 F⊗24,1

2. 342 A⊗54,1

3. 342 A9,2B3,1

4. 431 D8,2B4,1

5. 431 C⊗26,1

6. 444 A⊗27,1D5,1

7. 455 E7,2F4,1

8. 471 C10,1

9. 479 E8,2

10. 696 B15,1

11. 856 B17,1

12. 936 B18,1

13. 976 D19,1

14. 1016 B19,1

15. 1046 E⊗26,1

16. 1488 D10,1

17. 1508 F⊗24,1

Table 3.4.5: List of meromorphic theories ruled out by Table 3.4.4

As a mild check of these predictions, wherever the algebra listed above is simply laced

and of level 1 one can check from [59] that there are no lattice theories with complete root

systems at c = 32 having these dimensions and subalgebras.

3.5 Cosets of cH = 40

In this subsection we classify all bilinear pairings that add up to a central charge of 40.

From Eq. (2.7) this means n1 + n2 = 6, from which we find the three possibilities (n1, n2) =

(1, 5), (2, 4) and (3, 3). We consider each one in turn. The meromorphic theory has the
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character χH = j2/3(j − 1240 + N ) where N denotes the dimension of the Kac-Moody

algebra.

(n1, n2) = (1, 5)

As we saw at c = 24, 32, the consistent CFT pairings with n1 = 1 are all of a standard kind,

namely cosets of the cH = 40 meromorphic theory E1[D40,1], whose Kac-Moody algebra has

dimension 3160. Thus we have pairings of (i) Br1,1 and Br2,1 with r1+r2 = 39, 0 ≤ r1, r2 ≤ 39,

(ii) Dr1,1 and Dr2,1 with r1 + r2 = 40, 1 ≤ r1, r2 ≤ 39. The pairing of D20,1 is a self-coset

relation.

There are no IVOA-type pairings with (n1, n2) = (1, 5) so we move on to list the incon-

sistent pairings.

Comments on Table 3.5.1

In row 1 of this table we find V63 which we have so far been unable to characterise as a

CFT or otherwise. It pairs with a consistent theory leading to an invariant at c = 40 with

5344 currents. This is above the bound of 3160 for a meromorphic theory in this dimension

(see Appendix C), hence this is not a genuine pairing to a meromorphic theory at the level

of CFT. We conclude that V63 is not a CFT. This was actually the last admissible character

(other than those of IVOA type) to remain uncharacterised from our original list.

In row 2 we have an inconsistent pairing, visible from the fractional value of one of the

pair (d1, d2), which implies the absence of a c = 40 modular invariant with an algebra of

dimension 2584. If the pairing existed then we would have a lattice theory E1[D⊗24,1D32,1].

Hence such a theory should not exist. This is a prediction about lattices with complete root

systems in 40 dimensions, which we were unable to independently confirm.

The pair in rows 7 and 13, and also III46 in row 11, have been ruled out by tables 3.2.3,

3.3.5 and 3.4.1. All the other entries are self-evidently inconsistent.

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N
1. 4

(
1
3 ,

2
3

)
16 (3,9) A⊗22,1 36

(
2
3 ,

13
3

)
3384 (324, 8 · 320) V63 (2, 2) 5344

2. 8
(
1
2 , 1
)

56 (8,64) D⊗24,1 32
(
1
2 , 4
)

2016 (64,231) D32,1
(
3, 57

16

)
3608

3. 44
5

(
1
5 ,

7
5

)
253 (11,242) III9

156
5

(
4
5 ,

18
5

)
3612 (14877,250774426) III62

(
1

250
, 1

) 1129897
250

4. 9
(
1
8 ,

3
2

)
261 (9, 456) III10 31

(
7
8 ,

7
2

)
5239 (9269, 2295147 · 27) III61

(
1
32

, 1
) 259421

32

5. 19
2

(
3
16 ,

3
2

)
266 (19,703) III11

61
2

(
13
16 ,

7
2

)
3599 (47763,264580485) III60

(
1

512
, 1

) 2886377
512

6. 10
(
1
4 ,

3
2

)
700 (5, 960) III13 30

(
3
4 ,

7
2

)
2778 (539, 14421 · 214) III59

(
1
2
, 1

) 8791
2

7. 12
(
1
3 ,

5
3

)
318 (9, 2 · 37) V18 28

(
2
3 ,

10
3

)
1948 (225, 11 · 2 · 314) V58 (1, 1) 4291

8. 68
5

(
2
5 ,

9
5

)
374 (119,12138) III23

132
5

(
3
5 ,

16
5

)
1536 (2392,47018049) III57

(
1

125
, 1

) 523398
125

9. 14
(
3
4 ,

3
2

)
266 (56,562) E⊗27,1 26

(
1
4 ,

7
2

)
1118 (117, 3315 · 214) III56

(
1
16

, 1
) 3587

2
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10. 84
5

(
1
5 ,

12
5

)
534 (33,55924) III34

116
5

(
4
5 ,

13
5

)
1711 (1653,910803) III53

(
1

125
, 1

) 335174
125

11. 18
(
1
4 ,

5
2

)
598 (25, 221 · 210) III36 22

(
3
4 ,

5
2

)
1298 (154, 847 · 210) III46

(
1
4
, 1

) 5717
2

12. 92
5

(
3
5 ,

11
5

)
690 (299,178802) III38

108
5

(
2
5 ,

14
5

)
860 (833,3015426) III43

(
1

125
, 1

) 442817
125

13. 20
(
1
3 ,

8
3

)
728 (12, 2 · 312) V40 20

(
2
3 ,

7
3

)
890 (135, 10 · 2 · 39) V41 (1, 1) 3238

Table 3.5.1: Inconsistent pairings, cH = 40 with (n1, n2) = (1, 5).

Conclusion: From Table 3.5.1 we learn for the first time that V63 is not a CFT. With

this we have completed the characterisation of all admissible solutions appearing in table 2.1.1.

We also predict that there is no meromorphic theory at c = 40 of the form E1[D⊗24,1D32,1].

(n1, n2) = (2, 4)

We move on to pairings with (n1, n2) = (2, 4). In these cases (as well as the ones to follow

with (n1, n2) = (3, 3)), no non-trivial embeddings of Kac-Moody algebras can be involved, as

we explained earlier. Thus they are relatively simpler to deal with.

Comments on Table 3.5.2

This table is made up entirely of consistent bilinear pairings of known theories. Note that

III50 and III45 have previously been characterised as CFT in Eq. (3.4). Hence these pairings

are predictions about the existence of meromorphic theories at c = 40. More details of these

predictions can be found in [45].

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N
1. 12

(
3
2 ,

1
2

)
276 (211,24) D12,1 28

(
1
2 ,

7
2

)
1540 (56,227) D28,1 (1, 1) 1816

2. 14
(
3
2 ,

3
4

)
266 (562,56) E⊗27,1 26

(
1
2 ,

13
4

)
1326 (52,225) D26,1 (1, 2) 1592

3. 15
(
3
2 ,

7
8

)
255 (3640, 120) GHM255 25

(
1
2 ,

25
8

)
1225 (50,224) D25,1 (1, 2) 1480

4. 31
2

(
3
2 ,

15
16

)
248 (3875,248) E8,2

49
2

(
1
2 ,

49
16

)
1176 (49,224) B24,1 (1, 1) 1424

5. 33
2

(
1
2 ,

33
16

)
528 (33,216) B16,1

47
2

(
3
2 ,

31
16

)
0 (4371, 47 · 211) BM (1, 1) 528

6. 17
(
3
2 ,

9
8

)
221 (561 · 23, 544) GHM221 23

(
1
2 ,

23
8

)
1035 (46,222) D23,1 (1, 2) 1256

7. 17
(
1
2 ,

17
8

)
561 (34,216) D17,1 23

(
3
2 ,

15
8

)
23 (4600, 23 · 211) III50 (1, 2) 584

8. 35
2

(
3
2 ,

19
16

)
210 (4655, 35 · 25) GHM210

45
2

(
1
2 ,

45
16

)
990 (45,222) B22,1 (1, 1) 1200

9. 35
2

(
1
2 ,

35
16

)
595 (35,217) B17,1

45
2

(
3
2 ,

29
16

)
45 (4785, 45 · 210) GHM45 (1, 1) 640

10. 18
(
1
2 ,

9
4

)
630 (36,217) D18,1 22

(
3
2 ,

7
4

)
66 (77 · 26, 11 · 211) III45 (1, 2) 696

11. 18
(
3
2 ,

5
4

)
198 (75 · 26, 9 · 27) GHM198 22

(
1
2 ,

11
4

)
946 (44,221) D22,1 (1, 2) 1144

12. 37
2

(
1
2 ,

37
16

)
666 (37,218) B18,1

43
2

(
3
2 ,

27
16

)
86 (5031, 43 · 29) GHM86 (1, 1) 752

13. 37
2

(
3
2 ,

21
16

)
185 (4921, 37 · 26) GHM185

43
2

(
1
2 ,

43
16

)
903 (43,221) B21,1 (1, 1) 1088

14. 19
(
1
2 ,

19
8

)
703 (38,218) D19,1 21

(
3
2 ,

13
8

)
105 (5096, 21 · 29) GHM105 (1, 2) 808
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15. 19
(
3
2 ,

11
8

)
171 (5016, 19 · 27) GHM171 21

(
1
2 ,

21
8

)
861 (42,220) D21,1 (1, 2) 1032

16. 39
2

(
1
2 ,

39
16

)
741 (39,219) B19,1

41
2

(
3
2 ,

25
16

)
123 (5125, 41 · 28) GHM123 (1, 1) 864

17. 39
2

(
3
2 ,

23
16

)
156 (5083, 39 · 27) GHM156

41
2

(
1
2 ,

41
16

)
820 (41,220) B20,1 (1, 1) 976

18. 20
(
1
2 ,

5
2

)
780 (40,219) D20,1 20

(
3
2 ,

3
2

)
140 (5120,5120) GHM140 (1, 2) 920

Table 3.5.2: CFT pairings, cH = 40 with (n1, n2) = (2, 4). The character of the meromorphic

theory is j
2
3 (j − 1240 +N ) with N given in the last column of the table.

Conclusion: Table 3.5.2 gives us predictions for meromorphic theories at c = 40. We do not

go into detail here since we have already presented these predictions in [45].

Comments on Table 3.5.3

This table has just one pair of admissible characters of IVOA type. Both members have

already been identified as such in previous tables.

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N
1. 124

7

(
9
7 ,

10
7

)
248 (2108,2108) III35

156
7

(
5
7 ,

18
7

)
1248 (130,799500) III48 (1, 1) 1496

Table 3.5.3: IVOA-type pairing, cH = 40 with (n1, n2) = (2, 4). The meromorphic character

is j
2
3 (j − 1240 +N ) with N given in the last column of the table.

Comments on Table 3.5.4

The rows without a type III factor are 12–15, 18, 20, 23, 25, 27, 30, 31. All of them contain

precisely one member that has been shown not to be a CFT. As a consequence we again get

a set of cases for which a meromorphic theory at c = 40 is ruled out. We list these below.

The remaining rows have a type III factor that is paired with an affine theory in most cases,

and with an inconsistent type III solution in the remaining cases. Either way we get no new

information from such pairs.

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N
1. 17

2

(
3
2 ,

1
16

)
255 (221,17) III6

63
2

(
1
2 ,

63
16

)
1953 (63,231) B31,1

(
1, 1

16

)
2208

2. 44
5

(
6
5 ,

2
5

)
220 (275, 11) III8

156
5

(
4
5 ,

18
5

)
3612 (14877,250774426) III62

(
1
25

, 1
)

3832

3. 9
(
9
8 ,

1
2

)
153 (256,18) D9,1 31

(
7
8 ,

7
2

)
5239 (9269, 2295147 · 27) III61

(
1
4
, 1

)
5392

4. 9
(
3
2 ,

1
8

)
261 (456, 9) III10 31

(
1
2 ,

31
8

)
1891 (62,230) D31,1

(
1, 1

4

)
2152

5. 19
2

(
19
16 ,

1
2

)
171 (29,19) B9,1

61
2

(
13
16 ,

7
2

)
3599 (47763,264580485) III60

(
1
64

, 1
)

3770

6. 19
2

(
3
2 ,

3
16

)
266 (703,19) III11

61
2

(
1
2 ,

61
16

)
1830 (61,230) B30,1

(
1, 1

8

)
2096

7. 10
(
5
4 ,

1
2

)
190 (29,20) D10,1 30

(
3
4 ,

7
2

)
2778 (539, 14421 · 214) III59 (1, 1) 2968

8. 10
(
3
2 ,

1
4

)
270 (960, 5) III13 30

(
1
2 ,

15
4

)
1770 (60,229) D30,1 (1, 1) 2040
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9. 21
2

(
3
2 ,

5
16

)
273 (1225,21) III14

59
2

(
1
2 ,

59
16

)
1711 (59,229) B29,1

(
1, 1

4

)
1984

10. 11
(
3
2 ,

3
8

)
275 (1496, 11) III15 29

(
1
2 ,

29
8

)
1653 (58,228) D29,1 (1, 1) 1928

11. 23
2

(
3
2 ,

7
16

)
276 (1771,23) III16

57
2

(
1
2 ,

57
16

)
1596 (57,228) B28,1

(
1, 1

2

)
1872

12. 12
(
4
3 ,

2
3

)
156 (272,27) E⊗26,1 28

(
2
3 ,

10
3

)
1948 (225, 11 · 2 · 314) V58 (2, 2) 2104

13. 25
2

(
3
2 ,

9
16

)
275 (2325,25) III19

55
2

(
1
2 ,

55
16

)
1485 (55,227) B27,1 (1, 1) 1760

14. 13
(
3
2 ,

5
8

)
273 (2600, 26) III20 27

(
1
2 ,

27
8

)
1431 (54,226) D27,1 (1, 2) 1704

15. 27
2

(
3
2 ,

11
16

)
270 (2871, 54) III21

53
2

(
1
2 ,

53
16

)
1378 (53,226) B26,1 (1, 1) 1648

16. 68
5

(
7
5 ,

4
5

)
136 (1700, 119) III22

132
5

(
3
5 ,

16
5

)
1536 (2392,47018049) III57

(
2
25

, 1
)

1672

17. 14
(
7
4 ,

1
2

)
378 (213,28) D14,1 26

(
1
4 ,

7
2

)
1118 (117, 3315 · 214) III56

(
1
16

, 1
)

1496

18. 29
2

(
3
2 ,

13
16

)
261 (3393, 116) III26

51
2

(
1
2 ,

51
16

)
1275 (51,225) B25,1 (1, 1) 1536

19. 33
2

(
17
16 ,

3
2

)
231 (528, 4301) III31

47
2

(
15
16 ,

5
2

)
4371 (4371, 1135003) III55

(
1
2
, 1

)
4602

20. 33
2

(
3
2 ,

17
16

)
231 (4301, 528) III31

47
2

(
1
2 ,

47
16

)
1081 (47,223) B23,1 (1, 1) 1312

21. 84
5

(
6
5 ,

7
5

)
336 (770, 1452) III33

116
5

(
4
5 ,

13
5

)
1711 (1653, 910803) III53

(
1
5
, 1

)
2047

22. 84
5

(
1
5 ,

12
5

)
534 (33,55924) III34

116
5

(
9
5 ,

8
5

)
58 (27550, 4959) III52

(
2
25

, 1
)

592

23. 17
(
9
8 ,

3
2

)
221 (544, 561 · 23) GHM221 23

(
7
8 ,

5
2

)
2323 (575, 32683 · 25) III51 (2, 1) 2544

24. 35
2

(
19
16 ,

3
2

)
210 (35 · 25, 4655) GHM210

45
2

(
13
16 ,

5
2

)
1640 (1595,956449) III49

(
1
4
, 1

)
1850

25. 18
(
5
4 ,

3
2

)
198 (9 · 27, 75 · 26) GHM198 22

(
3
4 ,

5
2

)
1298 (154, 847 · 210) III46 (2, 1) 1496

26. 18
(
1
4 ,

5
2

)
598 (25, 221 · 210) III36 22

(
7
4 ,

3
2

)
66 (11 · 211, 77 · 26) III45

(
1
4
, 1

)
664

27. 92
5

(
6
5 ,

8
5

)
92 (1196, 7475) III37

108
5

(
4
5 ,

12
5

)
1404 (459, 153 · 55) III44 (1, 2) 1496

28. 92
5

(
8
5 ,

6
5

)
92 (7475, 1196) III37

108
5

(
2
5 ,

14
5

)
860 (833,3015426) III43

(
1
25

, 1
)

952

29. 92
5

(
3
5 ,

11
5

)
690 (299,178802) III38

108
5

(
7
5 ,

9
5

)
27 (2295, 42483) III42

(
2
5
, 1

)
717

30. 20
(
4
3 ,

5
3

)
80 (2430, 17496) V39 20

(
2
3 ,

7
3

)
890 (135, 20 · 39) V41 (1, 1) 970

31. 20
(
5
3 ,

4
3

)
80 (17496, 2430) V39 20

(
1
3 ,

8
3

)
728 (12, 2 · 312) V40 (1, 1) 808

Table 3.5.4: Inconsistent pairings, cH = 40 with (n1, n2) = (2, 4). The meromorphic char-

acter is j
2
3 (j − 1240 +N ) with N given in the last column of the table.

Conclusion: From Table 3.5.4 we were able to predict the absence of meromorphic theories

with the following values of N < 3160 coupled with a particular factor in their Kac-Moody

algebra:

# N Factor

1. 808 A⊗102,1

2. 808 A⊗25,2C2,1

3. 808 A8,3

4. 970 A⊗102,1

5. 970 A⊗25,2C2,1
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6. 970 A8,3

7. 1312 B23,1

8. 1496 E6,3G2,1

9. 1496 D⊗36,1

10. 1496 A⊗29,1

11. 1536 B25,1

12. 1648 B26,1

13. 1704 D27,1

14. 1760 B27,1

15. 2104 E⊗26,1

16. 2544 A11,1E6,1

Table 3.5.5: List of meromorphic theories ruled out by Table 3.5.4

(n1, n2) = (3, 3)

Comments on Table 3.5.6

All entries in this table are genuine coset pairs. Several CFTs of GHM type from [17] are

paired with each other. This includes a self-coset in row 9. Rows 3 and 8 are similar, the

theories III45,V39 were not listed in [17] but this should count as an oversight as they properly

belong in Table 2 of that paper. In row 7 we see a self-pairing of D20,1 to a meromorphic

theory at c = 40 without enhancement of Kac-Moody algebra, so the resulting theory can

be written E1[D20,1D20,1] (this is to be contrasted with the pairing of the same factors in the

(n1, n2) = (1, 5) case, where the meromorphic theory is D40,1).

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N
1. 17

(
9
8 ,

3
2

)
221 (544, 4488) GHM221 23

(
15
8 ,

3
2

)
23 (23 · 211, 4600) III50 (2, 1) 244

2. 35
2

(
3
2 ,

19
16

)
210 (4655, 35 · 25) GHM210

45
2

(
3
2 ,

29
16

)
45 (4785, 45 · 210) GHM45 (1, 1) 255

3. 18
(
5
4 ,

3
2

)
198 (9 · 27, 75 · 26) GHM198 22

(
7
4 ,

3
2

)
66 (11 · 211, 77 · 26) III45 (2, 1) 264

4. 37
2

(
3
2 ,

21
16

)
185 (4921, 37 · 26) GHM185

43
2

(
3
2 ,

27
16

)
86 (5031, 43 · 29) GHM86 (1, 1) 271

5. 19
(
3
2 ,

11
8

)
171 (5016, 19 · 27) GHM171 21

(
3
2 ,

13
8

)
105 (5096, 21 · 29) GHM105 (1, 2) 276

6. 39
2

(
3
2 ,

23
16

)
156 (5083, 39 · 27) GHM156

41
2

(
3
2 ,

25
16

)
123 (5125, 41 · 28) GHM123 (1, 1) 279

7. 20
(
1
2 ,

5
2

)
780 (40,219) D20,1 20

(
5
2 ,

1
2

)
780 (219, 40) D20,1 (1, 1) 1560

8. 20
(
4
3 ,

5
3

)
80 (2430, 17496) V39 20

(
5
3 ,

4
3

)
80 (17496, 2430) V39 (1, 1) 160

9. 20
(
7
5 ,

8
5

)
120 (4 · 54, 13 · 54) GHM120 20

(
8
5 ,

7
5

)
120 (13 · 54, 4 · 54) GHM120 (2, 2) 240
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Table 3.5.6: CFT pairings, cH = 40 with (n1, n2) = (3, 3). H with χH = j2/3(j + N0)

where N0 ≥ −1240. The meromorphic character is j
2
3 (j − 1240 + N ) with N given in the

last column of the table.

Comments on Table 3.5.7

This table contains four pairings that all involve characters of IVOA type. Seven of these

have been encountered before, but one of the solutions in row 1, with c = 236
7 , is appearing

here for the first time. This one has been previously noted in [18] in the context of a study

of three-character solutions without Kac-Moody symmetry. Hence we denote this character

as HM(7, 2).

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N
1. 44

7

(
4
7 ,

5
7

)
88 (11,44) III3

236
7

(
17
7 ,

16
7

)
0 (848656, 715139) HM(7, 2) (1, 1) 88

2. 116
7

(
8
7 ,

10
7

)
348 (725,1972) III32

164
7

(
13
7 ,

11
7

)
41 (50922,4797) III54 (1, 1) 389

3. 84
5

(
6
5 ,

7
5

)
336 (770, 1452) III33

116
5

(
9
5 ,

8
5

)
58 (27550, 4959) III52 (2, 1) 394

4. 124
7

(
9
7 ,

10
7

)
248 (2108,2108) III35

156
7

(
12
7 ,

11
7

)
78 (27170,5070) III47 (1, 1) 326

Table 3.5.7: IVOA-type pairings, cH = 40 with (n1, n2) = (3, 3). The meromorphic character

is j
2
3 (j − 1240 +N ) with N given in the last column of the table.

Conclusion: In Table 3.5.7 we find seven IVOA-type solutions that were previously discussed

above, and one that appears for the first time in this table but has been noted before.

Comments on Table 3.5.8

This table contains 10 pairings. Rows 1–8 have one inconsistent solution paired with a known

CFT, while rows 9 and 10 are self-pairings where both members are known to be inconsistent.

As a result, rows 1, 3, 6 and 7 lead to negative predictions for specific types of meromorphic

theories at c = 40, while rows 9 and 10 do not. Meanwhile rows 2, 4, 5 and 8 have one factor

with fractional Yi values, so these also do not lead to negative predictions for meromorphic

theories.

# c (h1, h2) m1 (D1, D2) W c̃ (h̃1, h̃2) m̃1 (D̃1, D̃2) W̃ (d1, d2) N
1. 33

2

(
17
16 ,

3
2

)
231 (528, 4301) III31

47
2

(
31
16 ,

3
2

)
0 (47 · 211, 4371) BM (1, 1) 231

2. 33
2

(
1
2 ,

33
16

)
528 (33,216) B16,1

47
2

(
5
2 ,

15
16

)
4371 (1135003,4371) III55

(
1, 1

2

)
4899

3. 17
(
1
2 ,

17
8

)
561 (34,216) D17,1 23

(
5
2 ,

7
8

)
2323 (32683 · 25, 575) III51 (1, 2) 2884

4. 35
2

(
1
2 ,

35
16

)
595 (35,217) B17,1

45
2

(
5
2 ,

13
16

)
1640 (956449,1595) III49

(
1, 1

4

)
2235
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5. 18
(
1
4 ,

5
2

)
598 (25, 221 · 210) III36 22

(
11
4 ,

1
2

)
946 (221,44) D22,1

(
1
4
, 1

)
1544

6. 18
(
1
2 ,

9
4

)
630 (36,217) D18,1 22

(
5
2 ,

3
4

)
1298 (847 · 210, 154) III46 (1, 2) 1928

7. 92
5

(
6
5 ,

8
5

)
92 (1196, 7475) III37

108
5

(
9
5 ,

7
5

)
27 (42483, 2295) III42 (1, 2) 119

8. 92
5

(
3
5 ,

11
5

)
690 (299,178802) III38

108
5

(
12
5 ,

4
5

)
1404 (153 · 55, 459) III44

(
2
5
, 1

)
2094

9. 20
(
1
3 ,

8
3

)
728 (12, 2 · 312) V40 20

(
8
3 ,

1
3

)
728 (2 · 312, 12) V40 (1, 1) 1456

10. 20
(
2
3 ,

7
3

)
890 (135, 10 · 2 · 39) V41 20

(
7
3 ,

2
3

)
890 (10 · 2 · 39, 135) V41 (1, 1) 1780

Table 3.5.8: Inconsistent pairings, cH = 40 with (n1, n2) = (3, 3). The meromorphic char-

acter is j
2
3 (j − 1240 +N ) with N given in the last column of the table.

From Table 3.5.8 we were able to predict the absence of meromorphic theories with the

following values of N < 3160 coupled with a particular factor in their Kac-Moody algebra:

# N Factor

1. 119 E6,3G2,1

2. 231 BM

3. 1928 D18,1

4. 2884 D17,1

Table 3.5.9: List of meromorphic theories ruled out by Table 3.5.8

4 Discussion and conclusions

In this paper we started with a list of 65 admissible characters, listed in Table 2.1.1, and

found all possible bilinear pairings involving them such that the total central charge is ≤ 40.

We then examined them for consistency as CFTs. 24 of these were ruled out as CFTs at the

outset since they do not have integer multiplicities Y1, Y2. We then studied the remaining 41

through their bilinear pairings to modular invariants, and were able to classify all of them

into three groups: (i) 6 consistent CFTs, for which we have found the Kac-Moody algebra,

(ii) 20 candidates for Intermediate Vertex Operator Algebras, whose fusion rules are not all

positive, (iii) 15 admissible characters that cannot correspond to any CFT.

4.1 Our results

Table 4.1.1 lists the cases that have been classified as CFTs. We see that in some cases there

are multiple CFTs corresponding to a single set of admissible characters, as was already seen

in [17] for the two-character case. All entries of this table were identified by [36].
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# c (h1, h2) m1 W Chiral Algebra

1. 12
5 (15 ,

3
5) 6 III2 E3[A1,8]

2. 68
5 (45 ,

7
5) 136 III22 E3[C8,1]

3. 92
5 (65 ,

8
5) 92 III37 E3[E6,3G2,1]

4. 20 (43 ,
5
3) 80 V39 E3[A⊗102,1 ], E3[A⊗25,2C2,1], E3[A8,3]

5. 22 (32 ,
7
4) 66 III45 E3[A⊗221,1 ], E3[A⊗43,2A

⊗2
1,1], E3[A5,3D4,3A1,1],

E3[A7,4A1,1], E3[D5,4C3,2], E3[D6,5]

6. 23 (32 ,
15
8 ) 23 III50 E3[D⊗231,1 ]

Table 4.1.1: Consistent CFTs

Next we list the cases that were in our Table 2.1.1, other than those already eliminated at

the outset, which cannot be identified as consistent CFTs. These fall into two classes: the first

are those of IVOA type: III1, III3, III4, III5, III7, III8, III12, III24, III25, III27, III28, III29,

III30, III32, III33, III35, III47, III48, III52, III54, while the second are inconsistent in the

sense that they cannot be CFT: III17,V18, III19, III20, III21, III26, III31,V40,V41, III42,

III44, III46, III51,V58,V63 (recall that the (c, h1, h2) and m1 values of these are listed in

Table 2.1.1). From the inconsistent list, the ten type-III solutions were first discovered as

admissible characters in [28] while the five type-V solutions are among the seven that were

newly found last year in [33–35].

Our work once more highlights the intimate relation between general RCFT and mero-

morphic CFT. We see that this relation, when properly applied, allows us to rule in and also

rule out characters from being CFT, and likewise gives positive and negative predictions for

the existence of meromorphic theories.

While we have not aspired to mathematical rigour in this work, we believe our conclusions

can and should be tested at a more formal and rigorous level. Basic properties of Modular

Tensor Categories (MTC) at low numbers of primaries [53] lead us to believe that whenever

two admissible characters pair up and both are known CFTs, the pair is also a CFT – but

technically this is only known up to 4 primaries and a few of our examples have more primaries

than that, despite having only three characters. There are also possible subtleties about linear

equivalence vs equivalence of embeddings, as well as about possibly inequivalent embeddings

in different simple factors of the same algebra. Such questions were addressed in [39] where

the focus was on a rigorous classification for exactly two primaries in a range of central charge.

Something similar can surely be attempted for three primaries (rather than three characters)

in a more rigorous fashion than was done here using the MTC data for theories with three

simple objects.
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On the other hand, a positive aspect of the present approach based on MLDE and bilinear

pairing of q-series is that the classification of pairings is explicit and exhaustive, and does not

rely on mathematically subtle questions. Also it raises intriguing questions about admissible

characters that are not CFT – we do not know why they nevertheless exhibit bilinear pairings,

and what this teaches us. This point may be of interest to the community studying vector-

valued modular forms.

4.2 Complete list of unitary (3,0) CFTs, except c = 8, 16

In this section we tabulate the complete list of unitary (3, 0) CFTs (except at c = 8, 16). Here

IVOA-type solutions are excluded since properly speaking they are not strict CFTs. The last

column #(primaries) denote the number of primaries of the given theory W.

# c (h1, h2) m1 W Chiral Algebra #(primaries)

1. 2r+1
2 (12 ,

2r+1
16 ) 2r2 + r I Br,1 3

2. r (12 ,
r
8) 2r2 − r I Dr,1 (r 6= 8, 16) 4

3. 12
5 (15 ,

3
5) 6 III2 E3[A1,8] 4

4. 4 (25 ,
3
5) 24 I A4,1 5

5. 28
5 (25 ,

4
5) 28 I G⊗22,1 4

6. 52
5 (35 ,

6
5) 104 I F⊗22,1 4

7. 12 (23 ,
4
3) 156 I E⊗26,1 9

8. 68
5 (45 ,

7
5) 136 III22 E3[C8,1] 4

9. 14 (34 ,
3
2) 266 I E⊗27,1 4

10. 15 (78 ,
3
2) 255 GHM255 E3[A15,1] 4

11. 31
2 (1516 ,

3
2) 248 I E8,2 3

12. 17 (98 ,
3
2) 221 GHM221 E3[A11,1E6,1] 4

13. 35
2 (1916 ,

3
2) 210 GHM210 E3[C10,1] 3

14. 18 (54 ,
3
2) 198 GHM198 E3[D⊗36,1] 4

15. E3[A⊗29,1] 4

16. 92
5 (65 ,

8
5) 92 III37 E3[E6,3G2,1] 4

17. 37
2 (2116 ,

3
2) 185 GHM185 E3[E7,2F4,1] 3

18. 19 (118 ,
3
2) 171 GHM171 E3[A⊗27,1D5,1] 4

19. 39
2 (2316 ,

3
2) 156 GHM156 E3[B4,1D8,2] 3

20. E3[C⊗26,1 ] 3

21. 20 (43 ,
5
3) 80 V39 E3[A⊗102,1 ] 9

22. E3[A⊗25,2C2,1] 9

23. E3[A8,3] 9
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24. 20 (75 ,
8
5) 120 GHM120 E3[A⊗54,1] 5

25. E3[A9,2B3,1] 5

26. 41
2 (32 ,

25
16) 123 GHM123 E3[D6,2C4,1B3,1] 3

27. E3[A9,2A4,1] 3

28. 21 (32 ,
13
8 ) 105 GHM105 E3[A⊗73,1] 4

29. E3[A3,1D
⊗2
5,2] 4

30. E3[A7,2C
⊗2
3,1 ] 4

31. E3[D7,3G2,1] 4

32. E3[C7,2] 4

33. 43
2 (32 ,

27
16) 86 GHM86 E3[C⊗32,1D

⊗2
4,2] 3

34. E3[A⊗25,2A
⊗2
2,1] 3

35. E3[A2,1E6,4] 3

36. 22 (32 ,
7
4) 66 III45 E3[A⊗221,1 ], 4

37. E3[A⊗43,2A
⊗2
1,1] 4

38. E3[A5,3D4,3A1,1] 4

39. E3[A7,4A1,1] 4

40. E3[D5,4C3,2] 4

41. E3[D6,5] 4

42. 45
2 (32 ,

29
16) 45 GHM45 E3[A⊗151,2 ] 3

43. E3[A⊗33,4] 3

44. E3[A5,6C2,3] 3

45. E3[D5,8] 3

46. 23 (32 ,
15
8 ) 23 III50 E3[D⊗231,1 ] 4

47. 47
2 (32 ,

31
16) 0 IV Baby Monster 3

Table 4.2.1: Complete list of unitary (3, 0) CFTs (except unitary CFTs at c = 8, 16)

Finally, Table 4.2.2 lists four theories at c = 8, 16 that are well-understood. The first

of these is the tensor product of an affine theory with itself, the second and third are affine

theories and the fourth is more subtle as it is a three-character extension of the fourth power

of an affine theory. The first and the last theories have three characters but 16 primaries

each. A more complete study of the infinite set of cases at c = 8, 16 is left for future work.

# c (h1, h2) m1 W Chiral Algebra #(primaries)

1. 8
(
1
2 , 1
)

56 I D⊗24,1 16

2. 8
(
1
2 , 1
)

120 I D8,1 4

3. 16
(
1
2 , 2
)

496 I D16,1 4
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4. 16
(
3
2 , 1
)

112 III′′(m1 = 112) E3[D⊗44,1] 16

Table 4.2.2: 4 unitary (3, 0) CFTs at c = 8, 16
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A Computations of some embedding indices

Example 1: F4 → A
(a)
1 ×G

(b)
2

Here we consider F4 → A
(a)
1 × G

(b)
2 (which is a maximal S type embedding). We shall

compute a and b which are embedding indices. For the above embedding consider the following

branching,

52 = (3,1)⊕ (5,7)⊕ (1,14) (A.1)

now, LF4(52) = 18

LA1
net = 1× LA1(3) + 7× LA1(5) + 14× LA1(1) = 1× 4 + 7× 20 + 14× 0 = 144

LG2
net = 3× LG2(1) + 5× LG2(7) + 1× LG2(14) = 3× 0 + 5× 2 + 1× 8 = 18

(A.2)

where Lg(irrep) denotes the Dynkin index of the corresponding irrep of the Lie algebra g in

question, LA1
net denotes the net Dynkin index computed from the above branching and L

g
net
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has a similar meaning for the corresponding Lie algebra g.

thus, a =
LA1
net

LF4(52)
=

144

18
= 8

and, b =
LG2
net

LF4(26)
=

18

18
= 1 (A.3)

Hence, we have: F4 → A
(8)
1 ×G

(1)
2 and in the affine case we would have: F̂4,1 → Â1,8 × Ĝ2,1.

Example 2: E8 → A
(a)
1 ×G

(b)
2 ×G

(c)
2

Consider the following embedding, E8 → A
(a)
1 ×G

(b)
2 ×G

(c)
2 (non-maximal)[E8 → III2×G(1)

2 ×
G

(1)
2 ].

To understand the above non-maximal embedding let us first understand the maximal

embeddings from which the above can be obtained,

E8
m−→ G

(1)
2 × F

(1)
4 (A.4)

furthermore, F4
m−→ A

(8)
1 ×G

(1)
2 (A.5)

implying, E8
n−m−→ G

(a)
2 ×A

(b)
1 ×G

(c)
2 . (A.6)

From the first embedding consider the following branching rule,

248 = (14,1)⊕ (7,26)⊕ (1,52) (A.7)

Now let us employ the second embedding to write the above branching rule as,

(14,1)⊕ (7,26)⊕ (1,52) = (14,1,1)⊕ (7, ((5,1)⊕ (3,7)))⊕ (1, ((3,1)⊕ (5,7)⊕ (1,14)))

= (14,1,1)⊕ (7,5,1)⊕ (7,3,7)⊕ (1,3,1)⊕ (1,5,7)⊕ (1,1,14),

(A.8)

where in the second equality we are just expanding the first equality and considering that the

numbers inside a parenthesis have to be multiplied.
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Now let us compute the embedding indices a, b, c,

LE8(248) = 60

LG2
net = 0 + 0 + 42 + 0 + 10 + 8 = 60

LA1
net = 1× 14× LA1(1) + 1× 7× LA1(5) + 7× 7× LA1(3) + 1× 1× LA1(3)

+ 7× 1× LA1(5) + 14× 1× LA1(1) = 0 + 140 + 196 + 4 + 140 + 0 = 480

LG2
net = 8 + 10 + 42 + 0 + 0 + 0 = 60

thus, a =
LG2
net

LE8(248)
=

60

60
= 1

and, b =
LA1
net

LE8(248)
=

480

60
= 8

and, c =
LG2
net

LE8(248)
=

60

60
= 1 (A.9)

Hence we have: E8
n−m−→ G

(1)
2 ×A

(8)
1 ×G

(1)
2 which implies that in the affine case we would get:

Ê8,1
n−m−→ Ĝ2,1 × Â1,8 × Ĝ2,1.

Example 3: Non-maximal embedding

Here let us try to give an example of MMS theory
cH=8←→
n1=1

MMS theory, where a non-maximal

embedding is involved. Consider,

E8
m−→ D

(a)
8

m−→ D
(b)
4 ×D

(c)
4 (A.10)

implying, E8
n−m−→ D

(r)
4 ×D

(s)
4 , (A.11)

where m stands for a maximal embedding and n−m stands for a non-maximal embedding.

Let us compute the embedding indices, a, b, c, r, s, for the above three embeddings.

E8 → D
(a)
8

Now let us consider the embedding E8 → D
(a)
8 (maximal and R type). For the above embed-

ding consider the following branching,

248 = 120⊕ 128 (A.12)

now, LE8(248) = 60

LD8(120) = 28

LD8(128) = 32

thus, a =
LD8(120) + LD8(128)

LE8(248)
=

60

60
= 1 (A.13)
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Hence, we have: E8 → D
(1)
8 .

E8
m−→ D

(a)
8

Let us consider D8 → D
(b)
4 ×D

(c)
4 (maximal and R type),

120 = (8v,8v)⊕ (28,1)⊕ (1,28) (A.14)

now, LD8(120) = 28

LD4
net = 8× LD4(8v) + 1× LD4(28) + 28× LD4(1) = 8× 2 + 1× 12 + 28× 0 = 28

LD4
net = 8× LD4(8v) + 28× LD4(1) + 1× LD4(28) = 8× 2 + 28× 0 + 1× 12 = 28

thus, b =
LD4
net

LD8(120)
=

28

28
= 1

and, c =
LD4
net

LD8(120)
=

28

28
= 1 (A.15)

Hence, we have: D8
m−→ D

(1)
4 ×D

(1)
4 .

E8 → D
(r)
4 ×D

(s)
4

Let us consider E8 → D
(r)
4 ×D

(s)
4 (non-maximal),

248 = 120⊕ 128 = (8v,8v)⊕ (28,1)⊕ (1,28)⊕ (8c,8s)⊕ (8s,8c) (A.16)

now, LE8(248) = 60

LD4
net = 8× LD4(8v) + 1× LD4(28) + 28× LD4(1) + 8× LD4(8c) + 8× LD4(8s)

= 8× 2 + 1× 12 + 28× 0 + 8× 2 + 8× 2 = 60

LD4
net = 8× LD4(8v) + 28× LD4(1) + 1× LD4(28) + 8× LD4(8s) + 8× LD4(8c)

= 8× 2 + 28× 0 + 1× 12 + 8× 2 + 8× 2 = 60

thus, r =
LD4
net

LE8(248)
=

60

60
= 1

and, s =
LD4
net

LE8(248)
=

60

60
= 1 (A.17)

Hence, we have: E8
n−m−→ D

(1)
4 × D

(1)
4 . This implies that, D4 as a sub-algebra of E8 has

commutant D4 inside E8. This is the statement that was made in [17].
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Example 4: D16 → D
(a)
1 ×A

(b)
15

Here we consider D16 → D
(a)
1 ×A

(b)
15 (which is a maximal R type embedding). For the above

embedding consider the following branching,

496 = (1,255)⊕ (1,1) + (1,120)⊕ (1,120) (A.18)

now, LD16(496) = 60

LD1
net = 255× LD1(1) + 1× LD1(1) + 2× 120× LD1(1) = 255× 0 + 1× 0 + 240× 1

4
= 60

LA15
net = 1× LA15(255) + 1× LA15(1) + 2× 1× LA15(120) = 1× 32 + 1× 0 + 2× 1× 14 = 60

(A.19)

Hence, we get, for the embedding indices, a, b,

a =
LD1
net

LD16(496)
=

60

60
= 1

and, b =
LA15
net

LD16(496)
=

60

60
= 1 (A.20)

Hence, we have: D16 → D
(1)
1 ×A

(1)
15 and in the affine case we would have: D̂16,1 → D̂1,1×Â15,1.

Example 5: D16 → A
(a)
1 ×C

(b)
8

Here we consider D16 → A
(a)
1 × C

(b)
8 (which is a maximal S type embedding). For the above

embedding consider the following branching,

496 = (1,136)⊕ (3,1)⊕ (3,119) (A.21)

now, LD16(496) = 60

LA1
net = 136× LA1(1) + 1× LA1(3) + 119× LA1(3) = 136× 0 + 1× 4 + 119× 4 = 480

LC8
net = 1× LC8(136) + 3× LC8(1) + 3× LC8(119) = 1× 18 + 3× 0 + 3× 14 = 60

(A.22)

Hence, we get, for the embedding indices, a, b,

a =
LA1
net

LD16(496)
=

480

60
= 8

and, b =
LC8
net

LD16(496)
=

60

60
= 1 (A.23)

Hence, we have: D16 → A
(8)
1 ×C

(1)
8 and in the affine case we would have: D̂16,1 → Â1,8× Ĉ8,1.
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B Infinite family of c = 8 and c = 16 for category III solutions

In this appendix, we briefly summarise the results of Sec. 2.3 of [34] which explains, from

an MLDE perspective, why there are an infinite family of c = 8 and c = 16 for category

III solutions (this fact was previously noted in [27]). It is shown in [34] that the identity

character χ0 can be written in terms of the other two characters, χ1, χ2 as,

χ0(q) = q
1
2
−α1−α2

∞∑
n=0

[
a0,n +A1 q

− 1
2
+2α1+α2 a1,n +A2 q

− 1
2
+α1+2α2 a3,n

]
qn. (B.1)

where ai,n are the Fourier coefficients in the q-series of the character χi(q) and i = 0, 1, 2.

Now say the values of α1 and α2, for which admissible solutions, exist are such that

−1
2 + 2α1 + α2 and −1

2 + α1 + 2α2 are not non-negative integers, then to get admissible

solution for χ0, we have to set A1 and A2 to be zero. This is what happens in most examples.

However, one can imagine the following situation.

(i) If −1
2 + 2α1 + α2 is a non-negative integer, then A1 isn’t required to vanish. A1 can

take any positive integral value and we would have an admissible solution for χ0.

− 1

2
+ 2α1 + α2 ∈ Z≥0, A1 ∈ Z≥0

χ1(q) = q
1
2
−α2−α3

∞∑
n=0

[
a0,n +A1 q

− 1
2
+2α1+α2 a1,n

]
qn. (B.2)

We thus have an infinite number of admissible character solutions, parametrised by A1, in

(B.2). All members of this infinite family have the same indices and hence the same c, h1,

h2 and also they have the same Wronskian. However, they are different solutions as in they

differ in the identity character.

(ii) If −1
2 + α1 + 2α2 is a non-negative integer, then A2 isn’t required to vanish. A2 can

take any positive integral value and we would have an admissible solution for χ0.

− 1

2
+ α1 + 2α2 ∈ Z≥0, A2 ∈ Z≥0

χ1(q) = q
1
2
−α1−α2

∞∑
n=0

[
a0,n +A2 q

− 1
2
+α1+2α2 a2,n

]
qn. (B.3)

We thus have an infinite number of admissible character solutions, parametrised by A2, in

(B.3). All members of this infinite family have the same indices and hence the same c, h1,

h2 and also they have the same Wronskian. However, they are different solutions as in they

differ in the identity character.

So, in the study of admissible solutions to [3, 0] MLDEs, one encounters the above two

infinite families of CFTs where each family has the same c, h1, h2 values, one following (B.2)

and another following (B.3).
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Note that, D⊗24,1 is a part of the infinite family of c = 8 solutions with m1 = 56, D8,1 is a

part of the infinite family of c = 8 solutions with m1 = 120 and D⊗44,1 is a part of the infinite

family of c = 16 solution with m1 = 112. The key point to note here is that, in the notation

of [34], D⊗24,1, D8,1 and D⊗44,1 are the only three solutions which belong to both category I and

III.

C Upper bound on N for meromorphic theories

Here we prove the following bound: for any meromorphic CFT with c = 8N , the dimension

N of its Kac-Moody algebra is bounded above by 8N(16N − 1). This bound is saturated by

the meromorphic theory E1[D8N ] 15.

To show this, let us first consider meromorphic theories with a “complete” Kac-Moody

algebra with simple factors, i.e. theories whose entire central charge comes from non-Abelian

Kac-Moody factors. This holds for 69 of 71 theories at c = 24, and additional examples come

from lattice theories with “complete root systems” at higher values of c such as Kervaire

lattices in 32d [59]. In this situation we have:

c =
∑
a

ca, ca =
ka dimGa
ka + ga

(C.1)

where ka is the level, ga is the dual Coxeter number and dim Ga is the dimension of the a’th

simple factor. The sum runs over all the simple factors.

Next, we note that simply-laced algebras Ga satisfy the inequality, rank Ga ≤ ca ≤ dimGa
where the first inequality is saturated at ka = 1 and the second as ka → ∞. In fact, as one

can easily check, the same inequality is satisfied by non-simply-laced algebras, except that

the lower bound becomes strict and is never saturated.

Meanwhile, the total dimension of the Kac-Moody algebra is:

N =
∑
a

dimGa (C.2)

Our problem then is to maximise N keeping c fixed.

Now we further restrict to complete Kac-Moody algebras with just one simple factor.

Using standard formulae for the dimensions Nr and dual Coxeter numbers of the classical

15We are grateful to Brandon Rayhaun for suggesting this line of argument.
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compact Lie algebras (Ar, Br, Cr, Dr) we find:

c(Ar,k) =
kr(r + 2)

k + r + 1

c(Br,k) =
kr(2r + 1)

k + 2r − 1

c(Cr,k) =
kr(2r + 1)

k + r + 1

c(Dr,k) =
kr(2r − 1)

k + 2r − 2

(C.3)

It follows that, at fixed central charge, r decreases as k increases. Thus to maximise the rank

in each family (which maximises the dimension, which is monotonic in the rank) we must

take k = 1, which gives the simpler formulae:

c(Ar,1) = r

c(Br,1) = r + 1
2

c(Cr,1) =
r(2r + 1)

r + 2

c(Dr,1) = r

(C.4)

Notice that c(Br,1), c(Cr,1) are non-integral for all r ≥ 2. From the above, the dimension of

the algebra at fixed c is:

Ar,1 : N = c(c+ 2)

Br,1 : N = c(2c− 1)

Cr,1 : N =
1

4

(
7c+ c2 + c

√
1 + 14c+ c2

)
Dr,1 : N = c(2c− 1)

(C.5)

It is easy to verify that for any fixed c ≥ 8, the common value of N for Br, Dr is the

largest in the above set. However since Br has non-integral central charge it cannot be a

complete simple factor. Therefore Dr,1 has the largest possible dimension among simple

algebras at a fixed integral central charge. Moreover there is indeed a meromorphic theory

with Kac-Moody algebra D8N,1 for every r, corresponding to the modular invariant extension

E1[D8N,1] (for N = 1 this is E8,1, while for all N ≥ 2 the extension does not enhance the

Kac-Moody algebra).

Now we can go on to the general case: direct sums of Kac-Moody algebras, including

exceptional as well as Abelian algebras, at arbitrary levels. We also allow meromorphic

theories where the Kac-Moody algebra is not complete (for example the algebra could contain
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minimal model or higher-spin modules). We argue that all these generalisations lower the

dimension of the Kac-Moody algebra, proving the bound. First, when we take direct sums, the

sum of dimensions of the factors is always less than the dimension of a simple algebra of the

same c. Since there are finitely many exceptional algebras one can also verify explicitly that

none of them “wins” over D8N,1. Also for Abelian algebras the dimensions are always smaller

than those of non-Abelian algebras of comparable central charge. Second, raising the level

of any factor raises its central charge without changing its dimension, and therefore lowers

its dimension for fixed central charge. Finally if the Kac-Moody algebra is not complete, its

dimension will be smaller than that of a complete algebra with the same c. This then proves

the result.
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