
Simulating single-cell gene expression count data with

preserved gene correlations by scDesign2

Tianyi Sun 1, Dongyuan Song 2, Wei Vivian Li 3 and Jingyi Jessica Li 1,4,5,6,∗

ABSTRACT

scDesign2 is a transparent simulator that generates high-fidelity single-cell gene expression count

data with gene correlations captured. This article shows how to download and install the scDesign2 R

package; how to fit probabilistic models (one per cell type) to real data and simulate synthetic data from

the fitted models; and how to use scDesign2 to guide experimental design and benchmark computational

methods. Finally, a note is given about cell clustering as a preprocessing step before model fitting and

data simulation.

Background

In the burgeoning field of single-cell transcriptomics, a pressing challenge is to benchmark various

experimental protocols and numerous computational methods in an unbiased manner. Although dozens

1 Department of Statistics, University of California, Los Angeles, CA 90095-1554
2 Interdepartmental Program of Bioinformatics, University of California, Los Angeles, CA 90095-7246
3 Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854
4 Department of Human Genetics, University of California, Los Angeles, CA 90095-7088
5 Department of Computational Medicine, University of California, Los Angeles, CA 90095-1766
6 Department of Biostatistics, University of California, Los Angeles, CA 90095-1772
∗ To whom correspondence should be addressed. Email: jli@stat.ucla.edu

1

2

of simulators had been developed for single-cell RNA-seq (scRNA-seq) data, they lacked the capacity

to simultaneously achieve the following three goals: preserving genes, capturing gene correlations, and

generating any number of cells with varying sequencing depths. To fill in this gap, we developed a new

simulator scDesign2 (Sun et al., 2021) to achieve all three goals. Notably, scDesign2 can generate high-

fidelity synthetic data of multiple scRNA-seq protocols and other single-cell gene expression count-based

technologies.

This article provides a brief guide to the scDesign2 R package. For help troubleshooting or to provide

feedback, please submit an issue to the GitHub page, which contains more documentation.

Installation

The required R version is no earlier than version 3.6.3. To install the scDesign2 package, users can run

the following code in R.

if(!require(devtools)) install.packages("devtools"); library(devtools);

devtools::install_github("JSB-UCLA/scDesign2");

To use the package after the installation, users can run

library(scDesign2);

Model Fitting and Data Simulation

The input of scDesign2 is a real single-cell gene expression count matrix, where each row represents a

gene, each column a cell, and each entry the expression level of a gene in a cell. In addition, each column

needs to be labelled with the cell type that the cell belongs to. Based on this count matrix, scDesign2 would

first fit one parametric probabilistic model for each cell type and then use the fitted models to simulate data.

In the R package, we have included an example scRNA-seq dataset, which profiles the transcriptome

of mouse small intestinal epithelial cells (Haber et al., 2017). The file mouse_sie_10x.rds is the full

dataset, and the file mouse_sie_10x_demo.rds is a sub-dataset containing 1000 genes and 30% cells

for demonstration. In the following example code, we will select four cell types from the sub-dataset and

perform model fitting and data simulation for each cell type. In scDesign2, the function for model fitting is

fit_model_scDesign2(), and the function for data simulation is simulate_count_scDesign2().

• Load data

data_mat_demo <-

3

readRDS(system.file("extdata", "mouse_sie_10x_demo.rds",

package = "scDesign2"));

• Select four cell types; obtain the total cell number and cell type proportions

cell_type_sel <- c("Goblet", "Tuft", "TA.Early", "Enterocyte.Progenitor");

data_mat_demo_sel <-

data_mat_demo[, colnames(data_mat_demo) %in% cell_type_sel];

n_cell_old <- ncol(data_mat_demo_sel);

cell_type_prop <- prop.table(table(colnames(data_mat_demo_sel)));

• Fit models and simulate data for the four cell types (running time within 14 mins on 4 cores)

RNGkind("L'Ecuyer-CMRG"); set.seed(1);

copula_result <- fit_model_scDesign2(

data_mat_demo, cell_type_sel, sim_method = "copula",

ncores = length(cell_type_sel));

sim_count_copula <- simulate_count_scDesign2(

copula_result, sim_method = "copula",

n_cell_new = n_cell_old, cell_type_prop = cell_type_prop);

In this example, the selected cell types are in the cell_type_sel vector, the fitted models are in the

copula_result object, and the synthetic dataset is the the sim_count_copula matrix. We set the

synthetic dataset to have the same total cell number (n_cell_old) and expected cell type proportions

(cell_type_prop) as those of the input data matrix data_mat_demo, but users may change the

n_cell_new and cell_type_prop arguments in the simulate_count_scDesign2() function.

To evaluate the quality of the synthetic dataset, we will combine the synthetic cells with the real cells

and examine whether they are indistinguishable in the t-SNE visualization.

if(!require(Rtsne)) install.packages("Rtsne"); library(Rtsne);

set.seed(1);

Rtsne_combined <-

Rtsne(log(t(cbind(data_mat_demo_sel, sim_count_copula)) + 1));

Rtsne_combined_vis <-

data.frame(x = Rtsne_combined$Y[, 1], y = Rtsne_combined$Y[, 2],

group = factor(c(rep("real", ncol(data_mat_demo_sel)),

rep("synthetic", ncol(sim_count_copula)))),

4

cell_type = factor(c(colnames(data_mat_demo_sel),

colnames(sim_count_copula))));

attach(Rtsne_combined_vis);

plot(x = x, y = y, pch = c(16, 2)[group],

col = c("red", "blue", "green", "black")[cell_type]);

legend("topleft", legend = levels(cell_type),

col=c("red", "blue", "green", "black"), pch = 16, bty="n");

legend("bottomright", legend = c("real", "synthetic"), pch = c(21, 2));

detach(Rtsne_combined_vis);

The t-SNE visualization shows that the synthetic cells mix well with the real cells.

Applications to Experimental Design and Computational Benchmarking

Two important applications of scDesign2 are guiding experimental design and benchmarking computa-

tional methods. This requires generating synthetic data with varying cell numbers and sequencing depths.

Here we demonstrate how to generate synthetic datasets with a fixed total cell number and varying se-

quencing depths. We will use cell_type_sel, n_cell_old, cell_type_prop, and copula_result

from the pervious code. The first step is to calculate the sequencing depth of the real data.

total_count_old <- sum(data_mat_demo_sel);

To vary the sequencing depth, we change total_count_old by a factor of 1/8, 1/4, 1/2, 2, 4, or 8.

The vector adj_factor contains all the multiplicative factors considered.

adj_factor <- c(1/8, 1/4, 1/2, 1, 2, 4, 8);

Finally, we use the following code for data simulation. In the simulate_count_scDesign2()

function, the key arguments include total_count_old, n_cell_old, total_count_new, and

n_cell_new. The first two arguments are the sequencing depth and total cell number of the real data, and

the last two arguments are the sequencing depth and total cell number of the synthetic data to be generated.

To fix the total cell number, we set n_cell_new to n_cell_old; to vary the sequencing depth, we

specify total_count_new as total_count_old multiplied by each factor in the adj_factor

vector, up to rounding. The list sim_count contains the synthetic datasets, one for each new sequencing

depth total_count_new.

set.seed(1);

5

sim_count <- lapply(1:length(adj_factor), function(iter){

simulate_count_scDesign2(copula_result,

total_count_old = total_count_old, n_cell_old = n_cell_old,

total_count_new = round(adj_factor[iter] * total_count_old),

n_cell_new = n_cell_old, cell_type_prop = cell_type_prop,

reseq_method = 'mean_scale', cell_sample = TRUE)});

A Note on Cell Clustering

The model fitting and data simulation of scDesign2 is performed for each cell type separately. Hence,

partitioning cells into cell types is an important preprocessing step of scDesign2. The partitioning can be

done based on biological knowledge, e.g., cell type marker genes, or by a clustering algorithm, e.g., SC3

(Kiselev et al., 2017) or the Louvain algorithm (Blondel et al., 2008).

On the GitHub page, we provide a proof-of-concept demonstration of how to perform cell clustering

using the Louvain algorithm in the Seurat package (Stuart et al., 2019) and how to evaluate the clustering

result using the ROGUE score (Liu et al., 2020). For scDesign2 users who do not have pre-defined cell

types, they may follow our demonstration to do cell clustering before using scDesign2 to simulate data.

Software Availability

The scDesign2 R package is released under the MIT Liscence and available at https://github.com/JSB-

UCLA/scDesign2.

Competing Interests

The authors declare no competing interests.

Funding

This work was supported by the following grants: NSF DBI-1846216 and DMS-2113754, NIGMS

R01GM120507 and R35GM140888, Johnson & Johnson WiSTEM2D Award, Sloan Research Fellowship,

and UCLA David Geffen School of Medicine W.M. Keck Foundation Junior Faculty Award (to J.J.L);

Rutgers School of Public Health Pilot Grant and NJ ACTS BERD Mini-Methods Grant (to W.V.L).

https://github.com/JSB-UCLA/scDesign2
https://github.com/JSB-UCLA/scDesign2

6

References

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communities in

large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10).

Haber, A. L., Biton, M., Rogel, N., Herbst, R. H., Shekhar, K., Smillie, C., Burgin, G., Delorey, T. M.,

Howitt, M. R., Katz, Y., et al. (2017). A single-cell survey of the small intestinal epithelium. Nature,

551(7680):333–339.

Kiselev, V. Y., Kirschner, K., Schaub, M. T., Andrews, T., Yiu, A., Chandra, T., Natarajan, K. N., Reik,

W., Barahona, M., Green, A. R., and et al. (2017). Sc3: consensus clustering of single-cell rna-seq data.

Nature Methods, 14(5):483–486.

Liu, B., Li, C., Li, Z., Wang, D., Ren, X., and Zhang, Z. (2020). An entropy-based metric for assessing the

purity of single cell populations. Nature communications, 11(1):1–13.

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., III, W. M. M., Hao, Y., Stoeckius, M.,

Smibert, P., and Satija, R. (2019). Comprehensive integration of single-cell data. Cell, 177:1888–1902.

Sun, T., Song, D., Li, W. V., and Li, J. J. (2021). scDesign2: a transparent simulator that generates high-

fidelity single-cell gene expression count data with gene correlations captured. Genome biology, 22(1):1–

37.

