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Let An = εn · · ·ε1, where (εn)n≥1 is a sequence of independent ran-
dom matrices taking values in GLd(R), d ≥ 2, with common distribution
µ. In this paper, under standard assumptions on µ (strong irreducibility and
proximality), we prove Berry-Esseen type theorems for log(‖An‖) when µ
has a polynomial moment. More precisely, we get the rate

√
logn/

√
n when

µ has a moment of order 3 and the rate 1/
√
n when µ has a moment of order

4, which significantly improves earlier results in this setting.

1. Introduction. Let (εn)n≥1 be independent random matrices taking values in G =
GLd(R), d ≥ 2 (the group of invertible d-dimensional real matrices) with common distri-
bution µ. Let ‖ · ‖ be the euclidean norm on Rd, and for every A ∈ GLd(R), let ‖A‖ =
supx,‖x‖=1 ‖Ax‖. We shall say that µ has a moment of order p≥ 1 if∫

G
(logN(g))pdµ(g)<∞ ,

where N(g) := max(‖g‖,‖g−1‖).
LetAn = εn · · ·ε1. It follows from Furstenberg and Kesten [11] that, if µ admits a moment

of order 1 then

(1.1) lim
n→∞

1

n
log ‖An‖= λµ P-a.s.,

where λµ := limn→∞ n
−1E log ‖An‖ is the so-called first Lyapunov exponent.

Let now X := P (Rd) be the projective space of Rd and write x̄ as the projection of x ∈
Rd − {0} to X . An element A of G = GLd(R) acts on the projective space X as follows:
Ax̄ = Ax. Let Γµ be the closed semi-group generated by the support of µ. We say that µ
is proximal if Γµ contains a matrix that admits a unique (with multiplicity 1) eigenvalue of
maximal modulus. We say that µ is strongly irreducible if no proper union of subspaces of
Rd is invariant by Γµ. Throughout the paper, we assume that µ is strongly irreducible and
proximal. In particular, there exists a unique invariant measure ν on B(X), meaning that for
any continuous and bounded function h from X to R,

(1.2)
∫
X
h(x)dν(x) =

∫
G

∫
X
h(g · x)dµ(g)dν(x) .
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Note that, since µ is assumed to be strongly irreducible, the following strong law holds (see
for instance [3], Proposition 7.2 page 72): for any x ∈Rd − {0},

(1.3) lim
n→∞

1

n
log ‖Anx‖= λµ P-a.s.

To specify the rate of convergence in the laws of large numbers (1.1) and (1.3), it is
then natural to address the question of the Central Limit Theorem for the two sequences
log ‖An‖−nλµ and log ‖Anx‖−nλµ. To specify the limiting variance in these central limit
theorems, let introduce some notations: W0 will denote a random variable with values in the
projective space X , independent of (εn)n≥1 and with distribution ν. By the invariance of
ν, we see that the process (AnW0)n≥1 is a strictly stationary process. Denote also by V0 a
random variable such that ‖V0‖= 1 and V̄0 =W0. Setting, Sn = log ‖AnV0‖−nλµ, Benoist
and Quint [1] proved that if µ has a moment of order 2, then

(1.4) lim
n→∞

1

n
E(S2

n) = s2 > 0 ,

(1.5) lim
n→∞

sup
t∈R

sup
x,‖x‖=1

∣∣P (log ‖Anx‖ − nλµ ≤ t
√
n
)
−Φ(t/s)

∣∣= 0 ,

and

(1.6) lim
n→∞

sup
t∈R

∣∣P (log ‖An‖ − nλµ ≤ t
√
n
)
−Φ(t/s)

∣∣= 0 ,

where Φ is the cumulative distribution function of a standard normal distribution. Let us
mention that (1.5) has been firstly established by Le Page [16] under an exponential moment
for µ (meaning that

∫
G(N(g))αdµ(g) <∞ for some α > 0, see also [9]) and then by Jan

[13] under the condition that µ has a moment of order p > 2.
In the present paper, we are interested in Berry-Esseen type bounds in these central limit

theorems, under polynomial moments for µ (more precisely we shall focus on the case of
moments of order p= 3 or p= 4). Before giving our main results, let us briefly describe the
previous works on this subject.

When µ has an exponential moment, Le Page [16] proved the following inequality: there
exists a positive constant C such that

(1.7) sup
t∈R

sup
x,‖x‖=1

∣∣P (log ‖Anx‖ − nλµ ≤ t
√
n
)
−Φ(t/s)

∣∣≤Cvn with vn =
1√
n
.

Still in the case of exponential moments, Edgeworth expansions (a strengthening of the
Berry-Esseen theorem) have been recently obtained by Fernando and Pène [8] and Xiao et al.
[18]. In these three last papers, the assumption that µ has an exponential moment is crucial
since it allows to use the strength of the so-called Nagaev-Guivarc’h perturbation method
(indeed in case of exponential moments, the associated complex perturbed transfer operator
has spectral gap properties).

Now, under the assumption that all the moments of order p of µ are finite, Jan [13] obtained
the rate vn = n−1/2+ε for any ε > 0 in (1.7). Next, Cuny et al. [4] gave an upper bound of
order vn = n−1/4

√
logn in (1.7) provided µ has a moment of order 3 (as a consequence of

an upper bound of order n−1/2 logn for the Kantorovich metric). More recently, Jirak [15]
proved that, if µ has a moment of order p > 8, then there exists a positive constant C such
that

(1.8) sup
t∈R

∣∣P (log ‖AnV0‖ − nλµ ≤ t
√
n
)
−Φ(t/s)

∣∣≤Cvn with vn =
1√
n
.
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This result is based on some refinements of the arguments developed in a previous paper of
the same author (see [14]) and is based on a completely different method than the perturbation
method for the transfer operator. Since our proofs will use a similar scheme let us briefly ex-
plain it. First, due to the cocycle property (see the beginning of Section 2), log ‖AnV0‖− nλ
is written as a partial sum associated with functions of a stationary Markov chain, which can
be viewed also as a Bernoulli shift (that is a function of iid random elements). Using the con-
ditional expectation, the underlying random variables are then approximated bym-dependent
variables, say Xk,m. Next the partial sum

∑n
k=1Xk,m is decomposed in two terms. The first

one can be rewritten as the sum of random variables which are defined as blocks, say Y (1)
j ,

of size 2m of the Xk,m’s. These random blocks have the following property: conditionally
to Fm (a particular σ-algebra generated by a part of the εk’s), they are independent. In ad-
dition, for any bounded measurable function h, the random variables Zj = E(h(Y

(1)
j )|Fm)

are one-dependent. On another hand, the second term in the decomposition of
∑n

k=1Xk,m

is Fm-measurable and can be written as a sum of independent blocks of the initial random
variables. For both terms in the decomposition, the conditional independence of the blocks
comes from the independence of the εk’s. The next steps of the proof consist first to work
conditionally to Fm and then to give suitable upper bounds for the conditional characteristic
function of the blocks Y (1)

j .
Concerning matrix norms, we first note that the Berry-Esseen bound of order n−1/4

√
logn

under a moment of order 3 is still valid for log ‖An‖−nλµ instead of log ‖Anx‖−nλµ (see
the discussion in Section 8 of [4]). Moreover, if µ has an exponential moment, Xiao et al.
[19] proved that there exists a positive constant C such that

(1.9) sup
t∈R

∣∣P (log ‖An‖ − nλµ ≤ t
√
n
)
−Φ(t/s)

∣∣≤Cwn with wn =
logn√
n
.

Note that in [19], the authors also proved a similar upper bound for log(ρ(An)) where ρ(An)
is the spectral radius of An.

In the present paper, we prove that:

• If µ has a moment of order 3, then the rate in (1.7) (and then in (1.8)) is vn =
n−1/2(logn)1/2 and the rate in (1.9) is wn = n−1/2(logn)1/2.

• If µ has a moment of order 4, then the rate in (1.7) (and then in (1.8)) is vn = n−1/2 and
the rate in (1.9) is wn = n−1/2.

To prove these results, we follow the approach developed in Jirak [14, 15], but with sub-
stantial changes. We refer to Comment 3.1 to have a flavor of them. One of the main changes
is the use of the dependency coefficients defined in [4] (see also (3.11) below) which are well
adapted to the study of the process (log ‖Anx‖ − nλµ)n≥1, instead of the coupling coeffi-
cients used in [15],

The paper is organized as follows. In Section 2, we state our main results about Berry-
Esseen type bounds in the context of left random walks when µ has either a moment of order
3 or a moment of order 4. All the proofs are postponed to Section 3. Some technical lemmas
used in the proofs are stated and proved in Section 4.

In the rest of the paper, we shall use the following notations: for two sequences (an)n≥1

and (bn)n≥1 of positive reals, an � bn means that there exists a positive constant C not
depending on n such that an ≤Cbn for any n≥ 1. Moreover, given a σ-algebra F , we shall
often use the notation EF (·) = E(·|F).
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2. Berry-Esseen bounds. Recall the notations of the introduction: let (εn)n≥1 be inde-
pendent random matrices taking values in G = GLd(R), d ≥ 2, with common distribution
µ. Let An = εn · · ·ε1 for n ≥ 1, and A0 =Id. We assume that µ is strongly irreducible and
proximal, and we denote by ν the unique distribution on X = P (Rd) satisfying (1.2).

Let now V0 be a random variable independent of (εn)n≥1, taking values in Rd, such that
‖V0‖= 1 and V0 is distributed according to ν.

The behavior of log ‖AnV0‖−nλµ (where λµ is the first Lyapunov exponent defined right
after (1.1)) can be handled with the help of an additive cocycle, which can also be viewed as a
function of a stationary Markov chain. More precisely, let W0 = V0 (so that W0 is distributed
according to ν), and let Wn = εnWn−1 = AnW0 for any integer n ≥ 1. By definition of ν,
the sequence (Wn)n≥0 is a strictly stationary Markov chain with values in X . Let now, for
any integer k ≥ 1,

(2.1) Xk := σ(εk,Wk−1)− λµ = σ(εk,Ak−1W0)− λµ ,

where, for any g ∈G and any x̄ ∈X ,

σ(g, x̄) = log
(‖g · x‖
‖x‖

)
.

Note that σ is an additive cocycle in the sense that σ(g1g2, x̄) = σ(g1, g2x̄) + σ(g2, x̄). Con-
sequently

(2.2) Sn =

n∑
k=1

Xk = log ‖AnV0‖ − nλµ .

With the above notations, the following Berry-Esseen bounds hold.

THEOREM 2.1. Let µ be a proximal and strongly irreducible probability measure on
B(G). Assume that µ has a finite moment of order 3. Then n−1E(S2

n)→ s2 > 0 as n→∞
and, setting vn =

√
logn/

√
n, we have

(2.3) sup
y∈R

∣∣∣P(Sn ≤ y√n)−Φ(y/s)
∣∣∣� vn ,

(2.4) sup
y∈R

∣∣∣P( log(‖An‖)− nλµ ≤ y
√
n
)
−Φ(y/s)

∣∣∣� vn ,

and

(2.5) sup
x,‖x‖=1

sup
y∈R

∣∣∣P( log ‖Anx‖ − nλµ ≤ y
√
n
)
−Φ(y/s)

∣∣∣� vn .

REMARK 2.1. As mentioned in the introduction, the fact that n−1E(S2
n)→ s2 > 0 has

been proved by Benoist and Quint [1] (see Item (c) of their Theorem 4.11). Let us mention
that we also have s2 = E(X2

1 ) + 2
∑

k≥2 Eν(X1Xk), which follows for instance from the
proof of item (ii) of Theorem 1 in [4].

Now if µ has a finite moment of order 4 then the following result holds:

THEOREM 2.2. Let µ be a proximal and strongly irreducible probability measure on
B(G). Assume that µ has a finite moment of order 4. Then n−1E(S2

n)→ s2 > 0 as n→∞
and (2.3), (2.4) and (2.5) hold with vn = 1/

√
n.
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Recall that the classical Berry-Esseen theorem for independent random variables, which
corresponds to the case d = 1 in our setting, provides the rate 1/

√
n under a finite moment

of order 3. Hence, one may wonder whether the conclusion of Theorem 2.2 holds under the
assumptions of Theorem 2.1. Note also that we have chosen to focus on the cases where µ
has a finite moment of order 3 (since it corresponds to the usual moment assumption for the
Berry-Esseen theorem in the iid case) or a finite moment of order 4 (since in this case we
reach the rate 1/

√
n), but we infer from the proofs that if µ has a finite moment of order

q ∈ (3,4) then the above results hold with vn = (logn)(4−q)/2/
√
n.

3. Proofs.

3.1. Proof of Theorem 2.1. As usual, we shall denote by Xk,x̄ the random variable Xk

defined by (2.1) when the Markov chain (Wn)n≥0 starts from x̄ ∈X . We then define Sn,x̄ :=
log ‖Anx‖−nλµ =

∑n
k=1Xk,x̄. We shall first prove the upper bound (2.3) and then the upper

bounds (2.4) and (2.5) in Sections 3.1.2 and 3.1.3 respectively.

3.1.1. Proof of the upper bound (2.3).

As usual, the proof is based on the so-called Berry-Esseen smoothing inequality (see e.g.
[10, Ineq. (3.13) p. 538]) stating that, for any positive T ,

(3.1) sup
x∈R

∣∣∣Pν(Sn ≤ x√n)−Φ(x/s)
∣∣∣� ∫ T

−T

∣∣E(eiξSn/
√
n
)
− e−ξ

2s2/2
∣∣

|ξ|
dξ + T−1 ,

where we recall that Sn has been defined in (2.2).
To take care of the characteristic function of Sn/

√
nwe shall take advantage of the fact that

Xk is a function of a stationary Markov chain generated by the iid random elements (εi)i≥1.
As in [14], the first steps of the proof consist in approximating the Xk’s by m-dependent
random variables Xk,m, and then in suitably decomposing the partial sum associated with
the Xk,m. This is the subject of the following paragraph.

Step 0. Notations and Preliminaries. We shall adopt most of the time the same notations as in
Jirak [14]. Let Eji = σ(εi, . . . , εj) for i≤ j, and m be a positive integer that will be specified
later. For any k ≥m, let

(3.2) Xk,m = E(Xk|Ekk−m+1) := fm(εk−m+1, . . . , εk) ,

where fm is a measurable function. More precisely, we have

Xk,m =

∫
X
σ(εk,A

k−m+1
k−1 x̄)dν(x̄)− λµ ,

where we used the notation Aij = εj · · ·εi for i≤ j. Note that E(Xk,m) = 0.
Next, let N be the positive integer such that n= 2Nm+m′ with 0≤m′ ≤ 2m− 1. The

integers N and m are such that N ∼ κ1 logn (where κ1 is a positive constant specified later)
and m ∼ (2κ1)−1n(logn)−1 (see (3.26) for the selection of κ1). Define now the following
σ-algebra

(3.3) Fm = σ((ε(2j−1)m+1, . . . , ε2jm), j ≥ 1) .

Let U1 =
∑m

k=1Xk and, for any integer j ∈ [2,N ], define

(3.4) Uj =

(2j−1)m∑
k=(2j−2)m+1

(Xk,m −E(Xk,m|Fm)) .
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For any integer j ∈ [1,N ], let

(3.5) Rj =

2jm∑
k=(2j−1)m+1

(Xk,m −E(Xk,m|Fm)) ,

(3.6) Y
(1)
j = Uj +Rj and S

(1)
|m =

N∑
j=1

Y
(1)
j .

Let also

UN+1 =

min(n,(2N+1)m)∑
k=2Nm+1

(Xk,m −E(Xk,m|Fm))

and

RN+1 =

n∑
k=(2N+1)m+1

(Xk,m −E(Xk,m|Fm)) ,

where an empty sum has to be interpreted as 0. Note that under PFm (the conditional probabil-
ity given Fm), the random vectors (Uj ,Rj)1≤j≤N+1 are independent. Moreover, by station-
arity, the r.v.’s (Uj ,Rj)2≤j≤N have the same distribution (as well as the r.v.’s (Rj)1≤j≤N ).

Next, denoting by S(2)
|m =

∑n
k=m+1 E(Xk,m|Fm), the following decomposition is valid:

Sn,m :=

m∑
k=1

Xk +

n∑
k=m+1

Xk,m = S
(1)
|m + S

(2)
|m +UN+1 +RN+1 .

To simplify the exposition, assume in the rest of the proof that n = 2Nm (so that m′ = 0).
There is no loss of generality by making such an assumption: the only difference would
be that since (UN+1,RN+1) does not have the same law as the (Uj ,Rj)’s, 2 ≤ j ≤ N , its
contribution would have to be treated separately. Therefore, from now we consider m′ = 0
and then the following decomposition

(3.7) Sn,m = S
(1)
|m + S

(2)
|m .

We are now in position to give the main steps of the proof. We start by writing∣∣E(eiξSn/
√
n
)
− e−ξ

2s2/2
∣∣≤ ∣∣E(eiξSn/

√
n
)
−E

(
eiξSn,m/

√
n
)∣∣+ ∣∣E(eiξSn,m/

√
n
)
− e−ξ

2s2/2
∣∣ .

Next∣∣E(eiξSn,m/
√
n
)
− e−ξ

2s2/2
∣∣

=
∣∣∣E(eiξS

(2)

|m /
√
n
[
EFm

(
eiξS

(1)

|m /
√
n
)
− e−ξ

2s2/4
])

+ e−ξ
2s2/4

(
E
(
eiξS

(2)

|m /
√
n
)
− e−ξ

2s2/4
)∣∣∣

≤
∥∥EFm

(
eiξS

(1)

|m /
√
n
)
− e−ξ

2s2/4
∥∥

1
+
∣∣∣E(eiξS

(2)

|m /
√
n
)
− e−ξ

2s2/4
∣∣∣ .

Hence, starting from (3.1) and selecting T =
√
n/ logn, Inequality (2.3) of Theorem 2.1 will

follow if one can prove that

(3.8)
∫ T

−T

∣∣E(eiξSn/
√
n
)
−E

(
eiξSn,m/

√
n
)∣∣

|ξ|
dξ�

√
logn√
n

,
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(3.9)
∫ T

−T

∥∥EFm
(
eiξS

(1)

|m /
√
n
)
− e−ξ

2s2/4
∥∥

1

|ξ|
dξ�

√
logn√
n

and

(3.10)
∫ T

−T

∣∣E(eiξS
(2)

|m /
√
n
)
− e−ξ

2s2/4
∣∣

|ξ|
dξ�

√
logn√
n

.

The objective is then to prove these three upper bounds, and the main differences compared
to [14, 15] lie in the intermediate steps and the technical tools developed for this purpose.
They will be based on the following dependence coefficients that are well adapted to our
setting. Let p≥ 1. For every k ≥ 1, define

(3.11) δpp,∞(k) = sup
x̄,ȳ∈X

E
∣∣Xk,x̄ −Xk,ȳ

∣∣p .
If µ has a finite moment of order q > 1, then, by [4, Prop. 3], we know that

(3.12)
∑
k≥1

kq−p−1 δpp,∞(k)<∞ ∀p ∈ [1, q) .

Hence, since (δp,∞(k))k≥1 is non increasing, it follows that (if µ has a moment of order
q > 1)

(3.13) δp,∞(k) = o
(
1/kq/p−1

)
∀p ∈ [1, q) .

COMMENT 3.1. Let us give an idea of the interest of considering these coefficients com-
pared to the coupling coefficients ϑ′k(p) and ϑ∗k(p) defined in [15, Eq. (7)] (even if δp,∞(k)
provides an upper bound for these coefficients). For instance, as we shall see in Lemma 4.3,
using a suitable Rosenthal’s inequality and the strength of the δp,∞ coefficients allowing to
control also the infinite norm of conditional expectation (see for instance (4.7)), we have
‖R1‖p� 1 for p ∈ [2,3] provided that µ has a moment of order q = p+ 1. As a counterpart,
Lemma 5.4 in [15] entails that ‖R1‖p�

∑m
k=1 δp,∞(k) and then ‖R1‖p� 1 as soon as µ

has a moment of order q > 2p. Let us mention that requiring ‖R1‖p � 1 for some p ≥ 2

is a key ingredient to take care of the characteristic function of the Y (1)
j ’s conditionally to

Fm that we will denote by ϕj(t) in what follows (see the definition (3.16)). More precisely,
if the condition (among others) ‖R1‖p � 1 holds for p = 2, then we get the upper bound
(3.19) and if it holds for p= 3 then we get the better upper bound (3.34) (this difference in
the upper bounds is the reason why in the statements of Theorem 2.1 we have an extra loga-
rithmic term compared to Theorem 2.2). Note that the upper bounds (3.19) and (3.34) come
from Lemmas 4.6, 4.11 and 4.12. Another crucial fact that we would like to point out is the
following: Imposing that µ has a moment of order q = 3 implies ‖R1‖p� 1 only for p= 2
and then Lemma 4.5 in [14] cannot be used to prove the upper bound (3.23) which is widely
used to prove (3.9). Indeed for [14, Lemma 4.5] to be applied it is necessary that ‖R1‖p� 1
for some p > 2. The role of our Lemma 4.1 is then to overcome this drawback (see the step 3
below and in particular the control of both I1,N (ξ) and I3,N (ξ)).

On another hand, in view of (3.13), it is clear that, as k→∞, the coefficient δr,∞(k) has
a better behavior than δp,∞(k) for any r ∈ [1, p[. Hence, in some cases, it can be preferable
to deal with the Lr-norm rather than with the Lp-norm. For instance, in our case, it is much
more efficient to control ‖Sn−Sn,m‖1 (see the forthcoming upper bounds (3.14) and (3.15))
rather than ‖Sn−Sn,m‖33 as done in Jirak [15] (see his upper bound (50)). In both cases these
quantities have to be controlled by 1/

√
n and to see the differences between the two upper

bounds takem equals to n up to a logarithmic term both in (3.15) and in [15, Ineq. (50)]. This
is the reason why we can start directly from Inequality (3.1) and work with the characteristic
function rather than using the decomposition given in [15, Lemma 5.11].
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Let us now come back to the proof. The next steps will consist in proving the upper bounds
(3.8)-(3.10).

Step 1. Proof of (3.8). Note that∫ T

−T

∣∣E(eiξSn/
√
n
)
−E

(
eiξSn,m/

√
n
)∣∣

|ξ|
dξ ≤ (logn)−1/2‖Sn − Sn,m‖1 .

But, by stationarity and [5, Lemma 24],

(3.14) ‖Sn − Sn,m‖1 ≤ n‖Xm+1 −Xm+1,m‖1 ≤ nδ1,∞(m) .

Hence, by (3.13) and the fact that µ has a moment of order q > 1, we derive

(3.15) ‖Sn − Sn,m‖1� nm−(q−1) .

So, overall, since q = 3, it follows that∫ T

−T

∣∣E(eiξSn/
√
n
)
−E

(
eiξSn,m/

√
n
)∣∣

|ξ|
dξ� n(logn)−1/2m−2 .

The upper bound (3.8) follows from the fact that we will select m∼ κ2n(logn)−1.

Step 2. Proof of (3.9). For any x ∈R and any integer j ∈ [1,N ], let

(3.16) ϕj(x) = E
(

eixY
(1)
j /
√

2m|Fm
)
.

Since, under PFm , the Y (1)
j ’s are independent we write

(3.17)
∥∥EFm

(
eiξS

(1)

|m /
√
n
)
− e−ξ

2s2/4
∥∥

1
= E

[∣∣∣ N∏
j=1

ϕj

( ξ√
N

)
−

N∏
j=1

e−ξ
2s2/(4N)

∣∣∣]
As in [14, Section 4.1.1], we use the following basic identity: for any complex numbers
(aj)1≤j≤N and (bj)1≤j≤N ,

∏N
j=1 aj −

∏N
j=1 bj =

∑n
i=1(

∏i−1
j=1 bj)(ai − bi)(

∏N
j=i+1 aj) to

handle the right-hand side of (3.17). Taking into account that (ϕj(t))1≤j≤N forms a one-
dependent sequence and that the r.v.’s (Uj ,Rj)2≤j≤N have the same distribution, we then
infer that

(3.18) E
[∣∣∣ N∏
j=1

ϕj

( ξ√
N

)
−

N∏
j=1

e−ξ
2/(4N)

∣∣∣]≤ I1,N (ξ) + I2,N (ξ) + I3,N (ξ) ,

where

I1,N (ξ) = (N − 1)‖ϕ2(ξ/
√
N)− e−ξ

2s2/(4N)‖1
∥∥∥ N−1∏
j=N/2

∣∣∣ϕj( ξ√
N

)∣∣∣∥∥∥
1
,

I2,N (ξ) =Ne−ξ
2s2(N−6)/(8N)‖ϕ2(ξ/

√
N)− e−ξ

2s2/(4N)‖1
and

I3,N (ξ) = ‖ϕ1(ξ/
√
N)− e−ξ

2s2/(4N)‖1
∥∥∥ N−1∏
j=N/2

∣∣∣ϕj( ξ√
N

)∣∣∣∥∥∥
1
.
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To integrate the above quantities, we need to give suitable upper bounds for the two terms
‖ϕj(t)− e−s

2t2/4‖1 and ‖
∏N−1
j=N/2 |ϕj(t)|‖1. Applying the first part of Lemma 4.6 and using

stationarity, we derive that for any 2≤ j ≤N ,

(3.19) ‖ϕj(t)− e−s
2t2/4‖1�

t2√
m

+
|t|
m3/2

.

Moreover the second part of Lemma 4.6 implies that

(3.20) ‖ϕ1(t)− e−s
2t2/4‖1�

t2√
m
.

On another hand, according to [14, Inequality (4.14)], for any integer ` ∈ [1,m],∥∥∥ N−1∏
j=N/2

|ϕj(t)|
∥∥∥

1
≤
∥∥∥∏
j∈J

∣∣ϕ(`)
j (t

√
(m− `)/(2m))

∣∣∥∥∥
1
,

where J = [N/2,N − 1]∩ 2N,

ϕ
(`)
j (x) = E

(
eixH

(`)
j,m

∣∣H(`)
j,m

)
with H(`)

j,m = Fm ∨ σ(ε2(j−1)m+1, . . . , ε2(j−1)m+`) and

H
(`)
j,m =

1√
m− `

( (2j−1)m∑
k=2(j−1)m+`+1

(Xk,m −E(Xk,m|H
(`)
j,m)) +Rj −E(Rj |H(`)

j,m)
)
.

We shall apply Lemma 4.1 with

Aj =
1√
m− `

(2j−1)m∑
k=2(j−1)m+`+1

(Xk,m −E(Xk,m|H
(`)
j,m)), Bj =Rj −E(Rj |H(`)

j,m)

and a= (m− `)−1/2. By stationarity, for any j ∈ J ,

P
(
EH(`)

j,m
(A2

j )≤ s2/4
)

= P
(
EH(`)

2,m
(A2

2)≤ s2/4
)

= P
(

(m− `)−1Em
(( 2m−`∑

k=m+1

(Xk,m −Em(Xk,m)
)2)
≤ s2/4

)
,

where Em(·) means E(·|Gm) with Gm = σ(W0, ε1, . . . , εm). Let K be a positive integer and
note that ∥∥∥ m+K∑

k=m+1

(Xk,m −Em(Xk,m))
∥∥∥

2
−
∥∥∥ m+K∑
k=m+1

Xk

∥∥∥
2

≤
m+K∑
k=m+1

‖Xk,m −Xk‖2 +

m+K∑
k=m+1

‖Em(Xk,m)‖∞

≤
m+K∑
k=m+1

δ2,∞(k) +

m+K∑
k=m+1

δ1,∞(k) .
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Therefore, by taking into account (3.13) and the fact that µ has a moment of order 3, we get
that ∥∥∥ m+K∑

k=m+1

(Xk,m −Em(Xk,m))
∥∥∥

2
−
∥∥∥ m+K∑
k=m+1

Xk

∥∥∥
2

= o(K1/2) .

But, using stationarity, we have K−1/2
∥∥∥∑m+K

k=m+1Xk

∥∥∥
2

= K−1/2
∥∥∥∑K

k=1Xk

∥∥∥
2
→ s > 0.

Hence provided that (m− `) is large enough, we have

(3.21) (m− `)−1E
(( 2m−`∑

k=m+1

(Xk,m −Em(Xk,m)
)2)

> s2/2 .

So, overall, setting X̄k,m :=Xk,m −Em(Xk,m), for (m− `) large enough, we get

P
(
EH(`)

2,m
(A2

2)≤ s2/4
)

≤ P
(

(m− `)−1
∣∣∣Em(( 2m−`∑

k=m+1

X̄k,m

)2
−E

(( 2m−`∑
k=m+1

X̄k,m

)2)∣∣∣≥ s2

4

)
.

Using Markov’s inequality and the same arguments as those used in the proof of Lemma 4.2,
we then derive that, for (m− `) large enough and any j ∈ J ,

P
(
EH(`)

j,m
(A2

j )≤ s2/4
)
� (m− `)−5/7 .

Hence, provided that m− ` is large enough, Item (ii) of Lemma 4.1 is satisfied with u− =
s2/4. Note now that by stationarity, for any j ∈ J ,

E(B2
j )≤ 4E(R2

j ) = 4E(R2
1)� 1 ,

by using Lemma 4.3 with p= 2. This proves Item (iv) of Lemma 4.1. Next, for p≥ 2, using
stationarity and [17, Cor. 3.7], we get that for any j ∈ J ,
(3.22)

E(|Aj |p)≤ 2p(m−`)−p/2
∥∥∥ 2m−`∑
k=m+1

Xk,m

∥∥∥
p
�
[
‖X1+m,m‖p+

2m−`∑
k=m+1

k−1/2‖Em(Xk,m)‖p
]p
.

But ‖X1+m,m‖p ≤ ‖X1‖p <∞ if p ≤ 3 (indeed recall that it is assumed that µ has a mo-
ment of order 3) and ‖Em(Xk+m,m)‖p ≤ ‖Em(Xk+m,m)‖∞ ≤ δ1,∞(k). Hence, by (3.12)
and since µ has a moment of order q = 3, Item (iii) of Lemma 4.1 is satisfied for any p ∈ [2,3].
So, overall, noticing that |J | ≥N/8≥ 16, we can apply Lemma 4.1 to derive that there exist
positive finite constants c1, c2 and c3 depending in particular on s2 but not on (m,n) such
that for (m− `) large enough (at least such that a= (m− `)−1/2 ≤ c1), we have∥∥∥∏

j∈J

∣∣ϕ(`)
j (x)

∣∣∥∥∥
1
≤ e−c3x

2N/8 + e−N/256 for x2 ≤ c2,

implying overall that, for (m− `) large enough and for t2(m− `)/(2m)≤ c2,

(3.23)
∥∥∥ N−1∏
j=N/2

|ϕj(t)|
∥∥∥

1
≤ e−c3t

2(m−`)N/(16m) + e−N/256 .

The bounds (3.19), (3.20) and (3.23) allow to give an upper bound for the terms I1,N (ξ),
I2,N (ξ) and I3,N (ξ) and next to integrate them over [−T,T ] when they are divided by |ξ|.
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Hence the computations in [14, Sect. 4.1.1., Step 4] are replaced by the following computa-
tions. First, as in [14], we select

(3.24) `= `(ξ) = 1{ξ2<Nc2} + (m− [nc2/(2ξ
2)] + 1)1{ξ2≥Nc2} .

Therefore m − ` is either equal to m − 1 or to [nc2/(2ξ
2)] − 1. Since |ξ| ≤ T =

n1/2(logn)−1/2, it follows that nc2/(2ξ
2) ≥ 2−1c2(logn) (and then for n large enough

m − ` ≥ c−2
1 ). So, starting from (3.23) and taking into account the selection of `, we get

that for any |ξ| ≤ T and n large enough,

(3.25)
∥∥∥ N−1∏
j=N/2

|ϕj(ξ/
√
N)|
∥∥∥

1
� e−c3ξ

2/321{ξ2<Nc2} + e−c3c2N/321{ξ2≥Nc2} + e−N/256 .

Select now

(3.26) N = [κ logn] with κ > 2 max(256,32(c2c3)−1)

and then m∼ (2κ)−1n/ logn. Taking into account (3.19), (3.20) and (3.25), we get

(3.27)∫ T

−T
(I1,N (ξ) + I3,N (ξ))/|ξ|dξ�N

∫ T

0

( |ξ|
N
√
m

+
1√

Nm3/2

)(
e−c1ξ

2/32 + n−2
)

dξ

� 1√
m

+

√
N

m
√
m

+
T 2

n2
√
m

+
T
√
N

n2m
√
m
�
√

logn√
n

.

Next, using (3.19), we derive

I2,N (ξ)�
( ξ2

√
m

+

√
N |ξ|
m3/2

)
× e−s

2ξ2/16 .

Therefore, by the selection of m and N ,

(3.28)
∫ T

−T
I2,N (ξ)/|ξ|dξ�

√
logn√
n

.

Starting from (3.17) and taking into account (3.18), (3.27) and (3.28), the upper bound in
(3.9) follows.

Step 3. Proof of (3.10). Recall that S(2)
|m =

∑n
k=m+1 E(Xk,m|Fm), and recall that we assume

that 2Nm= n. Denoting

Y
(2)
j = U

(2)
j +R

(2)
j for j = 1, . . . ,N ,

where U (2)
N =

∑n
k=(2N−1)m+1 E(Xk,m|Fm), R(2)

N = 0,

U
(2)
j =

2jm∑
k=(2j−1)m+1

E(Xk,m|Fm) and R
(2)
j =

(2j+1)m∑
k=2jm+1

E(Xk,m|Fm) for j = 1, . . . ,N − 1 ,

we have S(2)
|m =

∑N
j=1 Y

(2)
j . Note that the random vectors (U

(2)
j ,R

(2)
j )1≤j≤N are indepen-

dent. The proof of (3.10) can be done by using similar (but even simpler) arguments to those
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developed in the step 2. In this part, one of the important fact is to notice that the R(2)
j ’s also

have a negligible contribution. Indeed, for any 2m+ 1≤ k ≤ 3m,

‖E(Xk,m|Fm)‖∞ =
∥∥∥∫ ∫ (fm(εk−m+1, . . . , ε2m, a2m+1, . . . , ak)

− fm(bk−m+1, . . . , b2m, b2m+1, . . . , bk)
) k∏
i=2m+1

dµ(ai)

k∏
i=k−m+1

dµ(bi)
∥∥∥
∞

≤ sup
x̄

∣∣∣E(Xk−2m|W0 = x̄)−
∫

E(Xk−2m|W0 = ȳ)dν(ȳ)
∣∣∣≤ δ1,∞(k− 2m) .

Hence by stationarity and (3.12) we derive that ‖R(2)
j ‖∞� 1 for any j = 1, . . . ,N .

To complete the proof of the upper bound (2.3), we just have to put together the results in
the steps 1, 2 and 3.

3.1.2. Proof of the upper bound (2.4). Recall the notation Sn,ū :=
∑n

k=1Xk,ū where
Xk,ū denotes the random variable Xk defined by (2.1) when the Markov chain (Wn)n≥0

starts from ū ∈X . Our starting point is the following upper bound:

(3.29) sup
n≥1

∥∥∥ log(‖An‖)− nλµ −
∫
X
Sn,ūdν(ū)

∥∥∥
∞
<∞ .

The proof of (3.29) is outlined in Section 8.1 in [4] but, since it is a key ingredient in the proof
of (2.4), we shall provide more details here. Let g ∈G and ū ∈X . By item (i) of Lemma 4.7
of [1], there exists v̄(g) such that

log ‖g‖ − σ(g, ū)≤− log δ
(
ū, v̄(g)

)
,

where δ(ū, v̄) := |〈u,v〉|
‖u‖‖v‖ . Integrating with respect to ν, it follows that

(3.30) 0≤ log ‖g‖ −
∫
X
σ(g, ū)dν(ū)≤ sup

v̄∈X

∫
X
| log δ(ū, v̄)|dν(ū) .

But, according to Proposition 4.5 in [1], since µ has a polynomial moment of order 2,
supv̄∈X

∫
X

∣∣ log δ(ū, v̄)
∣∣dν(ū) <∞. Therefore, (3.29) comes from an application of (3.30)

with g =An.
Now, using (3.29) and Lemma 1 in [2], the upper bound (2.4) will follow if one can prove

that

(3.31) sup
y∈R

∣∣∣P(∫
X
Sn,ūdν(ū)≤ y

√
n
)
−Φ(y/s)

∣∣∣� (logn)/
√
n .

We proceed as for the proof of the upper bound (2.3) with the following differences. First we
consider

Sn,m =

m∑
k=1

∫
X
Xk,ūdν(ū) +

n∑
k=m+1

Xk,m ,

where Xk,m is defined by (3.2). Hence∥∥∥∫
X
Sn,ūdν(ū)− Sn,m

∥∥∥
1
≤
∫
X

n∑
k=m+1

‖Xk,ū −Xk,m‖1dν(ū)≤ nδ1,∞(m) .
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It follows that the step 1 of the previous subsection is unchanged. Next, we use the same
notation as in subsection 3.1.1 with the following change: U1 is now defined by

(3.32) U1 =

m∑
k=1

∫
X
Xk,ūdν(ū) ,

and then, when n = 2mN , the decomposition (3.7) is still valid for Sn,m. The step 3 is
also unchanged. Concerning the step 2, the only difference concerns the upper bound of the
quantity ‖ϕ1(t)− e−s

2t2/4‖1 since the definition of U1 is now given by (3.32). To handle this
term, we note that for f(x) ∈ {cosx, sinx}, we have∥∥∥EFm

[
f
(
t

∑m
k=1

∫
XXk,ūdν(ū) +R1√

2m

)]
−EFm

[
f
(
t

∑m
k=1Xk +R1√

2m

)]∥∥∥
1

≤ |t|√
2m

∫
X

n∑
k=m+1

‖Xk,ū −Xk‖1dν(ū)≤ |t|√
2m

m∑
k=1

δ1,∞(k)� |t|√
m
.

The last upper bound comes from (3.12) together with the fact that µ is assumed to have a
moment of order q = 3. Next, by taking into account (3.25), note that∫ T

−T

|ξ|√
N
√
m

∥∥∥ N−1∏
j=N/2

|ϕj(ξ/
√
N)|
∥∥∥

1
dξ� 1/

√
n .

This implies in particular that (3.27) still holds. Compared to subsection 3.1.1 the rest of the
proof is unchanged.

3.1.3. Proof of the upper bound (2.5). Once again we highlight the differences with re-
spect to the proof given in Subsection 3.1.1. For x ∈ Sd−1, we consider

Sn,m,x̄ =

m∑
k=1

Xk,x̄ +

n∑
k=m+1

Xk,m ,

and we note that

sup
x̄∈X
‖Sn,x̄ − Sn,m,x̄‖1 ≤

n∑
k=m+1

sup
x̄∈X
‖Xk,x̄ −Xk,m‖1 ≤ nδ1,∞(m) .

Once again Step 1 of Subsection 3.1.1 is unchanged. Next, U1 is now defined by

(3.33) U1,x̄ = U1 =

m∑
k=1

Xk,x̄ ,

and the step 3 is also unchanged. Concerning the step 2, due to the new definition (3.33) of
U1, the only difference concerns the upper bound of the quantity ‖ϕ1(t) − e−s

2t2/4‖1. To
handle this term, we note that for f(y) ∈ {cosy, siny}, we have, by using (3.12) together
with the fact that µ is assumed to have a moment of order q = 3.

sup
x̄∈X

∥∥∥EFm

[
f
(
t

∑m
k=1 Xk,x̄ +R1√

2m

)]
−EFm

[
f
(
t

∑m
k=1Xk +R1√

2m

)]∥∥∥
1

≤ |t|√
2m

n∑
k=m+1

sup
x̄∈X
‖Xk,x̄ −Xk‖1�

|t|√
m
.

We then end the proof as in subsection 3.1.1.
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3.2. Proof of Theorem 2.2. Let us point out the differences compared to the proof of
Theorem 2.1 (the selections of N and m being identical). To get the upper bound (3.25), we
still establish an upper bound similar to (3.23) valid for any ` ∈ [1,m] and any t such that
t2(m− `)/(2m)≤C . Since µ has a finite moment of order q = 4, according to Lemma 4.3,
‖R1‖3� 1. Hence, using Lemma 4.1 with a= 0 (here Lemma 4.5 in [14] can also be used),
the desired upper bound follows and the constant C appearing above in the restriction for t
can be taken equal to c2 (which is the constant appearing in Lemma 4.1). The fact that a= 0
implies that we do not need to verify, as in the proof of Theorem 2.1 that (m− `)−1/2 ≤ c1.
Next, we select ` as in (3.24). This selection makes sense if ξ2 ≤ nc2/2. Therefore, we use
(3.1) by selecting T = η

√
n with η small enough (more precisely such that c2/(2η

2) is large
enough for (3.21) to be satisfied whenm−` is of order c2/(2η

2)). Therefore, for any |ξ| ≤ T ,
the upper bound (3.25) is still valid. The second difference, in addition to the choice of T , is
that instead of using Lemma 4.6 we use Lemmas 4.11 and 4.12 with r = 3 which then entail
that for any j ≥ 1,

(3.34) ‖ϕj(ξ/
√
N)− e−s

2ξ2/(4N)‖1�N−1|ξ|3n−1/2 + |ξ|n−1/2m−3/14 .

Note that the upper bound (42) in Jirak [15] with p = 3 has the same order as (3.34) and is
obtained provided

∑
k≥1 k

aδ3,∞(k)<∞ for some a > 0 (indeed [15, Lemma 5.8 (iii)] is a
key ingredient to get (42)). Now using (3.12) we see that

∑
k≥1 k

aδ3,∞(k) <∞ for some
a > 0 as soon as µ has a moment of order q > 6. As we shall see [15, Lemma 5.8] is not
needed in its full generality to get an upper bound as (3.34). Indeed our Lemmas 4.11 and
4.12 are rather based on an estimate as (4.22) which involves the L1-norm rather than the
L3/2-norm .

4. Technical lemmas. Suppose that we have a sequence of random vectors {(Aj ,Bj)}1≤j≤J
and a filtration {Hj}1≤j≤J such that(

EHj (A2
j ),EHj (|Aj |p),EHj (B2

j )
)
j∈J

is a sequence of independent random vectors (with values in R3). For any real a, let Hj(a) =
Aj + aBj and

ϕHj,a(x) = E
(
exp(ixHj(a))|Hj

)
.

With the notations above, the following modification of [14, Lemma 4.5] holds:

LEMMA 4.1. Let p > 2. Let J ≥ 16 be an integer. Assume the following
(i) EHj (Aj) = EHj (Bj) = 0, for any 1≤ j ≤ J
(ii) there exists u− > 0 such that P(EHj (A2

j )≤ u−)< 1/2, for any 1≤ j ≤ J ,
(iii) supj≥1 E(|Aj |p)<∞,
(iv) supj≥1 E(B2

j )<∞.
Then there exist positive finite constants c1, c2 and c3 depending only on p, u−, supj≥1 E(|Aj |p)
and supj≥1 E(B2

j ) such that for any a ∈ [0, c1] and any x2 ≤ c2,

E
( J∏
j=1

|ϕHj,a(x)|
)
≤ e−c3x

2J + e−J/32 .

Proof of Lemma 4.1. The beginning of the proof proceeds as the proof of [14, Lemma 4.5].

Let 1≤ j ≤ J be fixed for the moment. Using a Taylor expansion we have

E
(
exp(ixHj(a))|Hj

)
= 1−EHj (H2

j (a))x2/2 + x2/2

∫ 1

0
(1− s)I(s,x)ds ,
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where, for any h > 0 and any s ∈ [0,1],

|I(s,x)| ≤ 4a2EHj (B2
j ) + 2EHj

(
A2
j

∣∣(cos(sxHj(a))− cos(0)) + i(sin(sxHj(a))− sin(0))
∣∣)

≤ 4a2EHj (B2
j ) + 8EHj (A2

j )|xh|+ 4EHj (A2
j1|Hj(a)|≥2h) .

Using the fact that for any reals u and v, u21|u+v|≥2h ≤ u21|u|≥h + v2, we get

|I(s,x)| ≤ 8a2EHj (B2
j ) + 8EHj (A2

j )|xh|+ 4EHj (A2
j1|Aj |≥h)

≤ 8a2EHj (B2
j ) + 8EHj (A2

j )|xh|+ 4h2−pEHj (|Aj |p) .

Now for any α> 0,

|EHj (H2
j (a))−

(
EHj (A2

j ) + a2EHj (B2
j )
)
| ≤ α−1EHj (A2

j ) + αa2EHj (B2
j ) .

So, overall, for any h > 0 and any α> 0,∣∣∣E(exp(ixHj(a))|Hj
)
− 1 +EHj (A2

j ))x
2/2
∣∣∣≤ x2(4a2 + αa2)EHj (B2

j )

+EHj (A2
j )(x

2α−1/2 + 4h|x|3) + x2h2−pEHj (|Aj |p) .

Let us take h= |x|−1/(p−1) and α= a−1. Set δ(p) := (p− 2)/(p− 1).

Let ũ, u+ be positive numbers to be chosen later.

Recall that by the conditional Jensen inequality, EHj (A2
j ) ≤

(
EHj (|Aj |p)

)2/p P-almost
surely. For the sake of simplicity, we shall assume that this inequality takes place everywhere.

From the above computations, we infer that, on the set {EHj (B2
j )≤ ũ} ∩ {EHj (|Aj |p)≤

u+}, one has∣∣∣E(exp(ixHj(a))|Hj
)
− 1 +EHj (A2

j ))x
2/2
∣∣∣

≤ x2(4a2 + a)ũ+ x2(u+)2/pa/2 + |x|2+δ(p)(4(u+)2/p + u+) .

Set

u(x) := x(4a2 + a)ũ+ x2(u+)2/pa/2 + |x|δ(p)(4(u+)2/p + u+) .

Let u− be a positive number (u− will be given by (ii) but it is unimportant at this stage).
We infer that, for every x2 ≤ 2/u−, on the set

Γj := {EHj (B2
j )≤ ũ} ∩ {EHj (A2

j )> u−} ∩ {EHj (|Aj |p)≤ u+}

one has ∣∣∣E(exp(ixHj(a))|Hj
)∣∣∣≤ 1− u−x2/2 + x2u(x) .

Since 0 < u−, u+, ũ <∞, there exist positive constants c1, c2 <∞ (depending only on
(u−, u+, ũ)) such that

a≤ c1⇒ (4a2 + a)ũ+ (u+)2/pa/2≤ u−/8 ,

x2 ≤ c2⇒ |x|δ(p)(4(u+)2/p + u+)≤ u−/8 .
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Therefore, there exist constants 0< c1, c2 <∞ (depending only on (ũ, u−, u+)) such that for
any a≤ c1, any x2 ≤ c2, on the set Γj ,∣∣E(exp(ixHj(a))|Hj

)∣∣≤ 1− u−x2/4≤ e−u−x2/4 .

Set also ΣJ :=
∑J

j=1 1Γj and ΛJ := {ΣJ ≥ J/8}.

From the previous computations and the trivial bound
∣∣E(exp(ixHj(a))|Hj

)∣∣≤ 1, we see
that, for any 0 < ũ,u−, u+ <∞, there exists positive contants c1, c2, c3 such that for every
x2 ≤ c2 and every a≤ c1, on the set ΓJ , one has (recall that J ≥ 16),

E
( J∏
j=1

|ϕHj,a(x)|
)
≤ e−u

−x2[J/8]/2 ≤ e−u
−x2J/32 .

Using the the above trivial bound again, the lemma will be proved if, with u− given by
(ii), one can chose ũ, u+ > 0 such that P(ΛJ)≤ e−J/32.

By Markov’s inequality,

P(EHj (B2
j )> ũ)≤

supj∈J E(B2
j )

ũ
−→
ũ→+∞

0 .

Hence there exists ũ > 0 such that, for any 1≤ j ≤ J , P(EHj (B2
j )> ũ)≤ 1/8.

Similarly, there exists u+ > 0 such that , for any 1≤ j ≤ J , P(EHj (|Aj |p)> u+)≤ 1/8.

By assumption (ii) and by definition of ũ and u+, we have

E(ΣJ)≥
J∑
j=1

(1− (1/2 + 1/8 + 1/8)) = J/4 .

Hence,

P(ΛcJ) = P(ΣJ < J/8) = P(ΣJ −E(ΣJ)< J/8−E(ΣJ))

≤ P(ΣJ −E(ΣJ)<−J/8) = P(−ΣJ +E(ΣJ)> J/8) .

Hence, using Hoeffding’s inequality (see [12, Theorem 2]),

P(ΛcJ)≤ e
−2(J/8)2

J = e−J/32 .

�

LEMMA 4.2. Assume that µ has a moment of order q = 3. Let Xk,m be defined by (3.2).
Then, setting X̄k,m =Xk,m −Em(Xk,m), we have∥∥∥Em( 2m∑

k=m+1

X̄k,m

)2
−E

( 2m∑
k=m+1

X̄k,m

)2∥∥∥
1
�m2/7 ,

where Em(·) means E(·|Gm) with Gm = σ(W0, ε1, . . . , εm). In addition if q = 4, then∥∥∥Em( 2m∑
k=m+1

X̄k,m

)2
−E

( 2m∑
k=m+1

X̄k,m

)2∥∥∥
1
� 1 .
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Proof of Lemma 4.2. Note first that∥∥∥Em( 2m∑
k=m+1

X̄k,m

)2
−E

( 2m∑
k=m+1

X̄k,m

)2∥∥∥
1

≤
∥∥∥Em( 2m∑

k=m+1

Xk,m

)2
−E

( 2m∑
k=m+1

Xk,m

)2∥∥∥
1

+ 2
∥∥∥Em( 2m∑

k=m+1

Xk,m

)∥∥∥2

2

:= Im + IIm .

But

(4.1)
∥∥∥Em( 2m∑

k=m+1

Xk,m

)∥∥∥
2
≤

2m∑
k=m+1

‖Em(Xk,m)‖∞�
m∑
k=1

δ1,∞(k)� 1 ,

by taking into account (3.12) and the fact that q > 2. It remains to handle Im. With this aim,
we first write the following decomposition: for any γ ∈ (0,1]

(4.2) Im ≤
m∑
k=1

‖Em(X2
k+m,m)−E(X2

k+m,m)‖1

+ 2

m∑
`=1

`γ sup
`≤j<i≤2`

‖Em(Xi+m,mXj+m,m)−E(Xi+m,mXj+m,m)‖1

+ 2

m∑
`=1

m−∑̀
k=`γ+1

‖Em(X`+m,mX`+k+m,m)−E(X`+m,mX`+k+m,m)‖1 .

Note that for 1≤ i, j ≤m,

‖Em(Xi+m,mXj+m,m)−E(Xi+m,mXj+m,m)‖1 ≤ sup
x̄1,x̄2∈X
ȳ1,ȳ2∈X

E
∣∣Xi,x̄1

Xj,x̄2
−Xi,ȳ1

Xj,ȳ2

∣∣
With the same arguments as those developed in the proof of [4, Prop. 4], we infer that, if µ
has a moment of order q = 3,

(4.3)
∑

k≥m+1

‖Em(X2
k,m)−E(X2

k,m)‖1� 1 ,

and, for every β < 1/3,

(4.4)
∑

`≥m+1

`β sup
`≤j<i≤2`

‖Em(Xi+m,mXj+m,m)−E(Xi+m,mXj+m,m)‖1� 1 .

On another hand, with the same arguments as those used to prove [4, Relation (34)], we have

(4.5)
m∑
`=1

m−∑̀
k=`γ+1

‖Em(X`+m,mX`+k+m,m)−E(X`+m,mX`+k+m,m)‖1

�
( 2m∑
`=m+1

‖Em(X`,m)‖2
)2

+

2m−1∑
i=m

‖Em(Xi,m)‖2 ×
m∑
k=1

k1/γ−1/2‖Em(Xk+m,m)‖2 .

But, by taking into account (3.12) and the fact that µ has a moment of order q = 3, we have,
for any 1≤ k ≤m,

‖Em(Xk+m,m)‖2 ≤ ‖Em(Xk+m,m)‖∞ ≤ δ1,∞(k)≤ k−2 .
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Hence, using this upper bound in (4.5) and considering the estimates (4.3) and (4.4), we get,
for any γ ∈ (0,1] and any β < 1/3,

Im ≤ 1 +mγ−β1γ≥β +

m∑
k=1

k1/γ−5/2 .

Hence, selecting γ = 2β and β = 2/7, we derive that Im ≤m2/7 which gives the desired
inequality, when µ has a moment of order q = 3 .

Assume now that µ has a moment of order q = 4. In this case, with the same arguments
as those developed in the proof of [4, Prop. 4], we infer that (4.4) holds with β < 1 + 1/4.
Then, selecting γ = 1 in the decomposition (4.2) and using similar computations as above,
the desired upper bound follows.

LEMMA 4.3. Let p ∈ [2,3]. Assume that µ has a moment of order q = p + 1. Then
‖R1‖p� 1, where R1 is defined by (3.5).

Proof of Lemma 4.3. Setting X̃k,m =Xk,m−EFm(Xk,m) and applying [6, Proposition 3.1]
with N = 1, we have

‖R1‖p ≤
(

2(p− 1)

2m∑
i=m+1

γi,m

)1/2
+
( 2m∑
k=m+1

‖X̃k,m‖pp,ν + p(p− 1)

2m∑
i=m+2

αi,m

)1/p
,

where

γi,m =
1

2
‖X̃i,m‖22 +

i−1∑
j=m+1

‖X̃j,mE(X̃i,m|Ej2)‖p/2

and

αi,m =
1

2

i−1∑
j=m+1

‖|X̃j,m|p−2E(X̃2
i,m −E(X̃2

i,m)|Ej2)‖1 .

But, for any integer k ∈ [m+ 1,2m] and any p≥ 1,

E
∣∣X̃k,m

∣∣p
= E

∣∣∣fm(εk−m+1, . . . , εm, εm+1, . . . , εk)−
∫
fm(vk−m+1, . . . , vm, εm+1, . . . , εk)

m∏
i=k−m+1

dµ(vi)
∣∣∣p

≤
∫

E
∣∣∣fm(εk−m+1, . . . , εm, εm+1, . . . , εk)−fm(vk−m+1, . . . , vm, εm+1, . . . , εk)

∣∣∣p m∏
i=k−m+1

dµ(vi) .

Hence, for any integer k ∈ [m+ 1,2m] and any p≥ 1,

E
∣∣X̃k,m

∣∣p ≤ ∫ ∫ E
∣∣∣fm(uk−m+1, . . . , um, εm+1, . . . , εk)

− fm(vk−m+1, . . . , vm, εm+1, . . . , εk)
∣∣∣p m∏
i=k−m+1

dµ(vi)

m∏
i=k−m+1

dµ(ui)

≤ sup
x̄,ȳ∈X

E|Xk−m,x̄ −Xk−m,ȳ|p = δpp,∞ (k−m) .(4.6)
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By taking into account (3.12) and the fact that µ has a moment of order q = p+ 1, it follows
that

2m∑
k=m+1

‖X̃k,m‖pp,ν ≤
∑
k≥1

δpp,∞(k)<∞ .

On another hand, for m+ 1≤ j < i≤ 2m,

(4.7) ‖E(X̃i,m|Ej2)‖∞ ≤ 2δ1,∞(i− j) .

By taking into account (3.12) and the fact that µ has a finite moment of order q = p+ 1 (and
then q ≥ 3 and q > p), it follows that

2m∑
i=m+1

γi,m ≤ 2−1
m∑
i=1

δ2
2,∞(i) + 2

2m∑
i=m+1

i−1∑
j=m+1

(
δp/2,∞(j −m)

)
δ1,∞(i− j)

�
m∑
i=1

δ2
2,∞(i) +

m∑
j=1

δp/2,∞(j)

m∑
i=1

δ1,∞(i)� 1 .

On another hand, for any m+ 1≤ i≤ 2m, by Lemma 4.4,

‖E(X̃2
i,m −E(X̃2

i,m)|Ej2)‖∞ ≤ 4 sup
x̄1,x̄2∈X
ȳ1,ȳ2∈X

E
∣∣Xi−j,x̄1

Xi−j,x̄2
−Xi−j,ȳ1

Xi−j,ȳ2

∣∣ .
Again, by (3.12) and the fact that µ has a moment of order q = p+ 1 (and then q ≥ 3 and
q ≥ p− 1) and by using (4.8), it follows that

2m∑
i=m+2

αi,m�
2m∑

j=m+1

δp−2
p−2,∞(j −m)

m∑
k=1

sup
x̄1,x̄2∈X
ȳ1,ȳ2∈X

E
∣∣Xk,x̄1

Xk,x̄2
−Xk,ȳ1

Xk,ȳ2

∣∣� 1 .

Putting together all the computations above we get the lemma.

LEMMA 4.4. Let X̃k,m =Xk,m −EFm(Xk,m). For any m+ 1≤ j < i≤ 2m,

‖E(X̃2
i,m −E(X̃2

i,m)|Ej2)‖∞ ≤ 4 sup
x̄1,x̄2∈X
ȳ1,ȳ2∈X

E
∣∣Xi−j,x̄1

Xi−j,x̄2
−Xi−j,ȳ1

Xi−j,ȳ2

∣∣ .
In addition, if µ has a finite moment of order q > 2,

(4.8)
∑
k≥1

kq−3 sup
x̄1,x̄2∈X
ȳ1,ȳ2∈X

E
∣∣Xk,x̄1

Xk,x̄2
−Xk,ȳ1

Xk,ȳ2

∣∣<∞ .

Proof of Lemma 4.4. The upper bound (4.8) can be proved by using the same arguments
as those used to show Equation (8) in [4]. Let us prove the first part of the lemma. Let
Aij = εi · · ·εj . For any integer i in [m+ 1,2m], write that

X̃i,m =

∫
X
σ(εi,A

i−1
i−m+1x̄)dν(x̄)−

∫
X

∫
G
σ(εi,A

i−1
m+1gm · · ·gi−m+1x̄)dν(x̄)

m∏
k=i−m+1

dµ(gk)

:= Yi,m −Zi,m .

Now, for any m+ 1≤ j < i≤ 2m,

E(Y 2
i,m|E

j
2) =

∫
σ(gi, gi−1 · · ·gj+1A

j
i−m+1x̄)σ(gi, gi−1 · · ·gj+1A

j
i−m+1ȳ)dν(x̄)dν(ȳ)

i∏
k=j+1

dµ(gk) ,
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and

E(Y 2
i,m) =

∫
σ(gi, gi−1 · · ·gj+1gj · · ·gi−m+1x̄)

× σ(gi, gi−1 · · ·gj+1gj · · ·gi−m+1ȳ)dν(x̄)dν(ȳ)

i∏
k=i−m+1

dµ(gk) .

Hence, using stationarity, we get

‖E(Y 2
i,m|E

j
2)−E(Y 2

i,m)‖∞ ≤ sup
x̄1,x̄2∈X
ȳ1,ȳ2∈X

E
∣∣Xi−j,x̄1

Xi−j,x̄2
−Xi−j,ȳ1

Xi−j,ȳ2

∣∣ .
Next, for any m+ 1≤ j < i≤ 2m,

E(Yi,mZi,m|Ej2) =

∫
σ(ui, ui−1 · · ·uj+1A

j
i−m+1x̄)

× σ(ui, ui−1 · · ·uj+1A
j
m+1gm · · ·gi−m−1ȳ)dν(x̄)dν(ȳ)

i∏
k=j+1

dµ(uk)

m∏
k=i−m−1

dµ(gk) ,

By stationarity, we derive

‖E(Yi,mZi,m|Ej2)−E(Yi,mZi,m)‖∞ ≤ sup
x̄1,x̄2∈X
ȳ1,ȳ2∈X

E
∣∣Xi−j,x̄1

Xi−j,x̄2
−Xi−j,ȳ1

Xi−j,ȳ2

∣∣ .
We get a similar upper bound for ‖E(Z2

i,m|E
j
2) − E(Z2

i,m)‖∞. The first part of the lemma
follows by taking into account all the above computations.

LEMMA 4.5. Assume that µ has a finite moment of order q ≥ 2. Then
∥∥∑2m

k=m+1Xk

∥∥
q
�

√
m and

∥∥∑2m
k=m+1Xk,m

∥∥
q
�
√
m.

Proof of Lemma 4.5. The two upper bounds are proved similarly. Let us prove the second
one. As to get (3.22), we use [17, Cor. 3.7], to derive that∥∥∥ 2m∑

k=m+1

Xk,m

∥∥∥
q
�
√
m
[
‖X1+m,m‖q +

2m∑
k=m+1

k−1/2‖Em(Xk,m)‖q
]
,

where Em(·) means E(·|Gm) with Gm = σ(W0, ε1, . . . , εm). But ‖X1+m,m‖q ≤ ‖X1‖q <∞
and ‖Em(Xk+m,m)‖q ≤ ‖Em(Xk+m,m)‖∞ ≤ δ1,∞(k). Hence, the lemma follows by con-
sidering (3.12).

For the next lemma, we recall the notations (3.3) and (3.6) for Fm and Y (1)
j .

LEMMA 4.6. Assume that µ has a finite moment of order q = 3. Then for f(x) ∈
{cosx, sinx}, we have∥∥∥EFm

[
f
(
t
Y

(1)
2√
2m

)]
−E

[
f(tsN/

√
2)
]∥∥∥

1
� t2√

m
+
|t|
m3/2

.

In addition ∥∥∥EFm

[
f
(
t
Y

(1)
1√
2m

)]
−E

[
f(tsN/

√
2)
]∥∥∥

1
� t2√

m
.
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Proof of Lemma 4.6. Since the derivative of x 7→ f(tx) is t2-Lipschitz, making use of a
Taylor expansion as done in the proof of Item (2) of [7, Lemma 5.2], we have

(4.9)
∥∥∥EFm

[
f
(
t
Y

(1)
2√
2m

)]
−E

[
f(tsN/

√
2)
]∥∥∥

1

≤
∥∥∥EFm

[
f
(
t
U2√
2m

)]
−E

[
f(tsN/

√
2)
]∥∥∥

1
+

t2

2m

(
‖R2‖2‖U2‖2 + ‖R2‖22

)
.

Now note that U2 =
∑3m

k=2m+1 X̃k,m where

X̃k,m =Xk,m −EFm(Xk,m) .

In the above formula, recall that Xk,m = E(Xk|Ekk−m+1) := fm(εk−m+1, . . . , εk). Let (ε∗k)k
be an independent copy of (εk)k. Define

(4.10) X̃∗k,m = fm(ε∗k−m+1, . . . , ε
∗
2m, ε2m+1, . . . , εk) and U∗2 =

3m∑
k=2m+1

X̃∗k,m .

Clearly U∗2 is independent of Fm. Using again the fact that the derivative of x 7→ f(tx) is
t2-Lipschitz, we get

(4.11)
∥∥∥EFm

[
f
(
t
U2√
2m

)]
−E

[
f(tsN/

√
2)
]∥∥∥

1

�
∣∣∣E[f(t U∗2√

2m

)]
−E

[
f(tsN/

√
2)
]∣∣∣+ t2

2m

(
‖U2 −U∗2 ‖2‖U∗2 ‖2 + ‖U2 −U∗2 ‖22

)
.

But, by stationarity, ‖R2‖2 = ‖R1‖2, and by Lemma 4.3, since µ has a moment of or-
der q = 3, we have ‖R1‖2 � 1. Moreover, by using Lemma 4.5 and the fact that X̃∗k,m
is distributed as Xk,m, we get that ‖U2‖2 + ‖U∗2 ‖2 �

√
m. On another hand, setting

Gk,m = σ(ε∗k−m+1, . . . , ε
∗
2m, εk−m+1, . . . , ε2m, ε2m+1, . . . , εk), we have

‖U2 −U∗2 ‖22 ≤
3m∑

k=2m+1

‖X̃k,m − X̃∗k,m‖22

+ 2

3m∑
k=2m+1

3m∑
`=k+1

‖(X̃k,m − X̃∗k,m)E(X̃`,m − X̃∗`,m|Gk,m)‖1 .

Now, for p≥ 1, ‖X̃k,m − X̃∗k,m‖
p
p ≤ δpp,∞(k− 2m) and, for ` > k,

‖E(X̃k,m − X̃∗k,m|Gk,m)‖∞ ≤ δ1,∞(`− k) .

Since µ has finite moment of order q = 3, by (3.12), we obtain

‖U2 −U∗2 ‖22�
m∑
k=1

δ2
2,∞(k) +

( m∑
k=1

δ1,∞(k)
)2
� 1 .

So, the inequalities (4.9) and (4.11) together with the above considerations, lead to
(4.12)∥∥∥EFm

[
f
(
t
Y

(1)
2√
2m

)]
−E

[
f(tsN/

√
2)
]∥∥∥

1
�
∣∣∣E[f(t U∗2√

2m

)]
−E

[
f(tsN/

√
2)
]∣∣∣+ t2√

m
.
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Next, note that U∗2 =D
∑m

k=1Xk+m,m and Sm =D S2m − Sm. So, taking into account that
x 7→ f(tx) is t-Lipschitz, it follows that∣∣∣E[f(t U∗2√

2m

)]
−E

[
f
(
t
Sm√
2m

)]∣∣∣≤ |t|√
2m

∥∥∥ m∑
k=1

(Xk+m,m −Xk+m)
∥∥∥

1
.

But, by stationarity, [5, Lemma 24] and (3.12), we have∥∥∥ m∑
k=1

(Xk+m,m −Xk+m)
∥∥∥

1
≤mδ1,∞(m)� 1/m,

implying that

(4.13)
∣∣∣E[f(t U∗2√

2m

)]
−E

[
f
(
t
Sm√
2m

)]∣∣∣� |t|
m3/2

.

Hence starting from (4.12) and taking into account (4.13), we derive that

(4.14)
∥∥∥EFm

[
f
(
t
Y

(1)
2√
2m

)]
−E

[
f(tsN/

√
2)
]∥∥∥

1

�
∣∣∣E[f(t Sm√

2m

)]
−E

[
f(tsN/

√
2)
]∣∣∣+ t2√

m
+
|t|
m3/2

.

Next note that x 7→ f(tx) is such that its first derivative is t2-Lipshitz. Hence, by the definition
of the Zolotarev distance of order 2 (see for instance the introduction of [7] for the definition
of those distances),∣∣∣E[f(t Sm√

2m

)]
−E

[
f(tsN/

√
2)
]∣∣∣≤ t2ζ2

(
PSm/

√
2m,Gs2/2

)
.

Next we apply [7, Theorem 3.2] and derive that (since µ has a finite moment of order q = 3),

ζ2

(
PSm/

√
2m,Gs2/2

)
�m−1/2 .

Note that the fact that the conditions (3.1), (3.4) and (3.5) required in [7, Theorem 3.2] hold
when µ has a finite moment of order q = 3 has been established in the proof of [4, Theorem
2]. Hence

(4.15)
∣∣∣E[f(t Sm√

2m

)]
−E

[
f(tsN/

√
2)
]∣∣∣� t2√

m
.

Starting from (4.14) and considering (4.15), the first part of Lemma 4.6 follows. Now to
prove the second part, we note that

∥∥∥EFm

[
f
(
t
Y

(1)
1√
2m

)]
−E

[
f(tsN/

√
2)
]∥∥∥

1

≤
∥∥∥E[f(t Sm√

2m

)]
−E

[
f(tsN/

√
2)
]∥∥∥

1
+

t2

2m

(
‖R1‖2‖Sm‖2 + ‖R1‖22

)
,

where we used the fact that Sm is independent of Fm. Hence the second part of Lemma 4.6
follows by using (4.15) and by taking into account Lemma 4.3 and the fact that, by Lemma
4.5, ‖Sm‖2�

√
m.

LEMMA 4.7. Let p ∈ [2,3]. Assume that µ has a finite moment of order q = p+ 1. Then
‖U2 −U∗2 ‖p� 1, where U2 is defined by (3.4) and U∗2 is defined by (4.10).
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Proof of Lemma 4.7. Let Zk,m := Xk,m − X̃∗k,m where X̃∗k,m is defined by (4.10). Using
once again [6, Proposition 3.1] with N = 1, we get

‖U2 −U∗2 ‖p ≤
3m∑

k=2m+1

‖E(Xk,m|Fm)‖p +
(

2(p− 1)

3m∑
i=2m+1

γ∗i,m

)1/2

+
( 3m∑
k=2m+1

‖Zk,m‖pp + p(p− 1)

3m∑
i=2m+2

α∗i,m

)1/p
,

where, setting FZj = σ(εm+2, . . . , εj , ε
∗
m+2, . . . , ε

∗
2m), we have

γ∗i,m =
1

2
‖Zi,m‖22 +

i−1∑
j=2m+1

‖Zj,mE(Zi,m|FZj )‖p/2,ν

and

α∗i,m =
1

2

i−1∑
j=2m+1

‖|Zj,m|p−2E(Z2
i,m −E(Z2

i,m)|FZj )‖1 .

But, for any integer k in [2m+ 1,3m],

‖E(Xk,m|Fm)‖p = ‖E(Xk,m|F2m)‖p ≤ ‖E(Xk,m|F2m)‖∞ ≤ δ1,∞(k− 2m) ,

and, for 2m+ 1≤ j ≤ i− 1,

‖E(Zi,m|FZj )‖∞ ≤ 2‖E(Xi,m|Fj)‖∞ ≤ δ1,∞(i− j) .

In addition, we infer that, for 2m+ 1≤ j ≤ i− 1,

‖E(Z2
i,m −E(Z2

i,m)|FZj )‖∞ ≤ 4 sup
x̄1,x̄2∈X
ȳ1,ȳ2∈X

E
∣∣Xi−j,x̄1

Xi−j,x̄2
−Xi−j,ȳ1

Xi−j,ȳ2

∣∣ := 4η(i− j) .

On another hand, for any r ≥ 1 and any integer k ∈ [2m+ 1,3m],

E
∣∣Zk,m∣∣r = E

∣∣∣fm(εk−m+1, . . . , εm, ε2m+1, . . . , εk)− fm(ε∗k−m+1, . . . , ε
∗
2m, ε2m+1, . . . , εk)

∣∣∣r
≤
∫ ∫

E
∣∣∣fm(uk−m+1, . . . , u2m, ε2m+1, . . . , εk)

− fm(vk−m+1, . . . , v2m, ε2m+1, . . . , εk)
∣∣∣r 2m∏
i=k−m+1

dµ(vi)

2m∏
i=k−m+1

dµ(ui)

≤ sup
x̄,ȳ∈X

E|Xk−2m,x̄ −Xk−2m,ȳ|r = δrr,∞ (k− 2m) .(4.16)

So, taking into account the above computations, we infer that

‖U2 −U∗2 ‖p�
m∑
k=1

δ1,∞(k) +
( m∑
i=1

δ2
2,∞(i) +

m∑
j=1

δp/2,∞(j)

m∑
i=1

δ1,∞(i)
)1/2

+
( m∑
k=1

δpp,∞(k) +

m∑
j=1

δp−2
p−2,∞(j)

m∑
i=1

η(i)
)1/p

,

The lemma follows by taking into account (3.12), (4.8) and the fact that µ has a moment of
order q = p+ 1.
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For the lemmas below, we recall the definitions (3.4), (3.5), (3.6) and (4.10) for U2, R2,
Y

(1)
2 and U∗2 .

LEMMA 4.8. Let r ∈]2,3]. Assume that µ has a finite moment of order r+ 1. Let αm =√
EFm ((U2+R2)2)

EFm ((U∗2 )2) . Then for f(x) ∈ {cosx, sinx}, we have∥∥∥EFm

[
f
(
t
Y

(1)
2√
2m

)]
−EFm

[
f
(
tαm

U∗2√
2m

)]∥∥∥
1
� |t|rm−1/2 .

Proof of Lemma 4.8. Note that h = f/23−r is such that |h′′(x) − h′′(y)| ≤ |x − y|r−2.
Using the arguments developed in the proof of [7, Lemma 5.2, Item 3] and setting V =
U2 +R2 −U∗2 and Ṽ = V + (1− αm)U∗2 , we get

(4.17) 2r−3(r− 1)× (2m)r/2
∣∣∣EFm

[
f
(
t
Y

(1)
2√
2m

)]
−EFm

[
f
(
tαm

U∗2√
2m

)]∣∣∣
≤ |t|r

{
αr−1
m

(
EFm(|Ṽ |r)

)1/r(E(|U∗2 |r)
)(r−1)/r

+ αr−2
m

(
EFm(|Ṽ |r)

)2/r(E(|U∗2 |r)
)(r−2)/r

+EFm(|Ṽ |r)
}
.

Next, note that, by Hölder’s inequality,

E
(
αr−1
m

(
EFm(|Ṽ |r)

)1/r)≤ E
(
αr−1
m

(
EFm(|V |r)

)1/r)
+E

(
αr−1
m × |1− αm|

)
‖U∗2 ‖r

≤ ‖αm‖r−1
r ‖V ‖r + ‖αm‖r−1

r ‖1− αm‖r‖U∗2 ‖r .
Proceeding similarly for the two last terms in (4.17) and taking the expectation, we derive

2r−3(r− 1)× (2m)r/2
∥∥∥EFm

[
f
(
t
Y

(1)
2√
2m

)]
−EFm

[
f
(
tαm

U∗2√
2m

)]∥∥∥
1

≤ |t|r‖αm‖r−1
r ‖V ‖r‖U∗2 ‖r−1

r + |t|r‖αm‖r−1
r ‖1− αm‖r‖U∗2 ‖rr

+ 2|t|r‖αm‖r−2
r ‖V ‖2r‖U∗2 ‖r−2

r + 2|t|r‖αm‖r−2
r ‖1− αm‖2r‖U∗2 ‖rr

+ 2r−1|t|r‖V ‖rr + 2r−1|t|r‖1− αm‖rr‖U∗2 ‖rr .
According to Lemmas 4.3 and 4.7, since µ has a moment of order r+1, ‖V ‖r� 1. Moreover
‖U∗2 ‖r = ‖U2‖r ≤

√
m. On another hand,

‖U∗2 ‖2 × ‖1− αm‖r =
∥∥∥√EFm((U2 +R2)2)−

√
EFm((U∗2 )2)

∥∥∥
r

≤
∥∥∥√EFm((U2 +R2 −U∗2 )2)

∥∥∥
r
≤ ‖V ‖r� 1 .

Since limm→∞m
−1‖U∗2 ‖22 = s2 > 0, it follows that for m large enough ‖1 − αm‖r �

m−1/2. The lemma follows from all the above considerations.

LEMMA 4.9. Let r ∈]2,3]. Assume that µ has a finite moment of order r+ 1. Recall the

notation αm =
√

EFm ((U2+R2)2)
EFm ((U∗2 )2) . Then for f(x) ∈ {cosx, sinx}, we have∥∥∥EFm

[
f
(
tαm

U∗2√
2m

)]
−EFm

[
f
(
tαm

smN√
2

)]∥∥∥
1
� |t|rm−1/2 + |t|m−5/2 ,

where s2
m = E(S2

m)/m and N is a standard Gaussian random variable independent of Fm.
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Proof of Lemma 4.9. Let W ∗0 be distributed as W0 and independent of W0. Let (ε∗k)k≥1

be an independent copy of (εk)k≥1, independent of (W ∗0 ,W0). Define S∗m =
∑2m

k=m+1X
∗
k

where X∗k = σ(ε∗k,W
∗
k−1)− λµ. Note that S∗m is independent of Fm and has the same law as

Sm. In addition

(4.18)
∥∥∥EFm

[
f
(
tαm

S∗m√
2m

)]
−EFm

[
f
(
tαm

U∗2√
2m

)]]∥∥∥
1

� |t|√
2m

E|αm| ×
2m∑

k=m+1

‖Xk,m −Xk‖1�
|t|√
m
×mδ1,∞(m)� |t|m−5/2 .

On another hand, let h= f/23−r and note that |h′′(x)− h′′(y)| ≤ |x− y|r−2. Hence, by the
definition of the Zolotarev distance of order r,∥∥∥EFm

[
f
(
tαm

S∗m√
2m

)]
−EFm

[
f
(
tαm

smN√
2

)]∥∥∥
1
≤ 23−r|t|r×‖αm‖rrζr

(
PSm/

√
2m,Gs2

m/2

)
.

Next we apply [7, Theorem 3.2, Item 3.] and derive that since µ has a moment of order at
least 3,

ζr
(
PSm/

√
2m,Gs2

m/2

)
�m−1/2 .

As we mentioned before, the fact that the conditions (3.1), (3.4) and (3.5) required in [7,
Theorem 3.2] hold when µ has a moment of order at least 3 has been proved in the proof of
[4, Theorem 2]. Hence, since we have previously proved that ‖αm‖r� 1,

(4.19)
∥∥∥EFm

[
f
(
tαm

S∗m√
2m

)]
−EFm

[
f
(
tαm

smN√
2

)]∥∥∥
1
� |t|r√

m
.

Considering the upper bounds (4.18) and (4.19), the lemma follows.

LEMMA 4.10. Let r ∈]2,3]. Assume that µ has a finite moment of order q = r+1. Recall

the notations αm =
√

EFm ((U2+R2)2)
EFm ((U∗2 )2) and s2

m = E(S2
m)/m. . Then, for f(x) ∈ {cosx, sinx},∥∥∥EFm

[
f
(
tαm

smN√
2

)]
−EFm

[
f
(
t
sN√

2

)]∥∥∥
1
� |t|

m1/2+η
.

where η = min( 3
14 ,

r−2
2 ) and N is a standard Gaussian random variable independent of Fm.

Proof of Lemma 4.10. We have

(4.20)
∥∥∥EFm

[
f
(
tαm

smN√
2

)]
−EFm

[
f
(
t
sN√

2

)]∥∥∥
1

≤ |t|E|N |
(
‖αm‖1|s− sm|+ s× ‖1− αm‖1

)
.

But, since limm→∞m
−1‖U∗2 ‖22 = s2 > 0,

‖1− α2
m‖1 ∼

1

s2m

∥∥EFm((U2 +R2)2)−EFm((U∗2 )2)
∥∥

1
.

On another hand∥∥EFm((U2 +R2)2)−EFm((U∗2 )2)
∥∥

1
≤
∥∥EFm(U2

2 )−E(U2
2 )
∥∥

1
+ ‖R2‖22 + 2‖EFm(U2R2)‖1 .

But, by stationarity,∥∥EFm(U2
2 )−E(U2

2 )
∥∥

1
=
∥∥∥Em( 2m∑

k=m+1

X̃k,m

)2
−E

( 2m∑
k=m+1

X̃k,m

)2∥∥∥
1
.
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Hence, by Lemma 4.2, since q = r+ 1,∥∥EFm(U2
2 )−E(U2

2 )
∥∥

1
�m2/71r 6=3 + 1r=3 .

By stationarity and Lemma 4.3, we also have ‖R2‖2 = ‖R1‖2� 1. Therefore

(4.21)
∥∥EFm((U2 +R2)2)−EFm((U∗2 )2)

∥∥
1
�m2/71r 6=3 + 1r=3 + ‖EFm(U2R2)‖1 .

Next, note that

‖EFm(U2R2)‖1 =
∥∥∥EFm

(
R2

3m∑
k=2m+1

Xk,m

)∥∥∥
1
.

Let h(m) be a positive integer less than m. Using stationarity, Lemma 4.3 and similar argu-
ments as those developed in the proof of Lemma 4.5, we first notice that∥∥∥EFm

(
R2

3m∑
k=3m−h(m)+1

Xk,m

)∥∥∥
1
≤ ‖R2‖2

∥∥∥ 3m∑
k=3m−h(m)+1

Xk,m

∥∥∥
2
�
√
h(m) .

We handle now the term ‖EFm
(
R2
∑3m−h(m)

k=2m+1 Xk,m

)
‖1. Let (ε∗k)k≥1 be an independent copy

of (εk)k≥1. For 2m+ 1≤ k ≤ 3m, define

X∗k,m = fm(ε∗k−m+1, . . . , ε
∗
2m, ε2m+1, . . . εk) ,

where we recall that fm is defined as follows:Xk,m = E(Xk|Ekk−m+1) := fm(εk−m+1, . . . , εk).
Using (3.13), note that

3m−h(m)∑
k=2m+1

‖Xk,m −X∗k,m‖2 ≤
3m∑

k=2m+1

δr′,∞(k− 2m)�
m∑
k=1

k−(q/2−1) .

Hence ∥∥∥ 3m−h(m)∑
k=2m+1

(Xk,m −X∗k,m)
∥∥∥

2
�m(3−r)/21r<3 + 1r=3 log(m) .

This estimate combined with ‖R2‖2� 1 entails∥∥∥EFm

(
R2

3m−h(m)∑
k=2m+1

Xk,m

)∥∥∥
1
�m(3−r)/21r<3 +1r=3 log(m)+

∥∥∥EFm

(
R2

3m−h(m)∑
k=2m+1

X∗k,m

)∥∥∥
1
.

Since (X∗k,m)2m+1≤k≤3m is independent of Fm, we have E(X∗k,m|Fm) = 0 for any 2m+ 1≤
k ≤ 3m. Hence∥∥∥EFm

(
R2

3m−h(m)∑
k=2m+1

X∗k,m

)∥∥∥
1

=
∥∥∥EFm

( 3m−h(m)∑
k=2m+1

X∗k,m

4m∑
`=3m+1

X`,m

)∥∥∥
1
.

Next, note that if ` −m + 1 ≥ k + 1, conditionally to Fm, X∗k,m is independent of X`,m,
which implies that EFm(X∗k,mX`,m) = 0. Hence

∥∥∥EFm

( 3m−h(m)∑
k=2m+1

X∗k,m

4m∑
`=3m+1

X`,m

)∥∥∥
1

=
∥∥∥EFm

( 3m−h(m)∑
k=2m+1

X∗k,m

4m−h(m)−1∑
`=3m+1

X`,m

)∥∥∥
1
.

Now, for any 3m+ 1≤ `≤ 4m− h(m)− 1, let

X
(h(m),∗)
`,m = fm(ε∗`−m+1, . . . , ε

∗
3m−h(m), ε3m−h(m)+1, . . . ε`) ,
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and note that EFm(X∗k,mX
(h(m),∗)
`,m ) = 0 for any k ≤ 3m − h(m) and any ` ≥ 3m + 1. So,

overall, setting q′ = q/(q− 1),

∥∥∥EFm

(
R2

3m−h(m)∑
k=2m+1

X∗k,m

)∥∥∥
1

=
∥∥∥EFm

( 3m−h(m)∑
k=2m+1

X∗k,m

4m−h(m)−1∑
`=3m+1

(X`,m −X
(h(m),∗)
`,m )

)∥∥∥
1

≤
∥∥∥ 3m−h(m)∑
k=2m+1

X∗k,m

∥∥∥
q

4m−h(m)−1∑
`=3m+1

‖X`,m −X
(k,∗)
`,m ‖q′ .

But ‖X`,m − X
(k,∗)
`,m ‖q′ ≤ δq′,∞(` − 3m + h(m)). Hence, taking into account (3.13) and

Lemma 4.5, we get∥∥∥EFm

(
R2

3m−h(m)∑
k=2m+1

X∗k,m

)∥∥∥
1
�
√
m

∑
`≥h(m)

1

`q−2
�
√
m(h(m))2−r .

Taking into account all the above considerations and selecting h(m) =m1/(2r−3), we derive

(4.22) m‖1− αm‖1� (m(3−r)/2 +m2/7)1r<3 +m1/(4r−6)�m(3−r)/2 +m2/7 .

On another hand, since s2 > 0, |s− sm| ≤ s−1|s2− s2
m|. Hence by using Remark 2.1 and the

definition of s2
m, we derive that

|s− sm| ≤
2

sm

∑
k≥1

k|Cov(X0,Xk)| .

By the definition of δ1,∞, |Cov(X0,Xk)| ≤ ‖X0‖1δ1,∞(k). So, using (3.12), it follows that

(4.23) |s− sm| �m−1 .

Starting from (4.20) and taking into account (4.22) and (4.23), the lemma follows.

Combining Lemmas 4.8, 4.9 and 4.10, we derive

LEMMA 4.11. Let r ∈]2,3]. Assume that µ has a finite moment of order q = r+ 1. Then,
for f(x) ∈ {cosx, sinx},∥∥∥EFm

[
f
(
t
Y

(1)
2√
2m

)]
−E

[
f(tsN/

√
2)
]∥∥∥

1
� |t|rm−1/2 + |t|m−(1/2+η) ,

where η = min( 3
14 ,

r−2
2 ).

Let R1 be defined by (3.5). Proceeding similarly as to derive the previous lemma, we get

LEMMA 4.12. Let r ∈]2,3]. Assume that µ has a finite moment of order q = r+ 1. Then
for f(x) ∈ {cosx, sinx},∥∥∥EFm

[
f
(
t

∑m
k=1Xk +R1√

2m

)]
−E

[
f(tsN/

√
2)
]∥∥∥

1
� |t|rm−1/2 + |t|m−(1/2+η) ,

where η = min( 3
14 ,

r−2
2 ).

Acknowledgements. This research was partially supported by the NSF grant DMS-
2054598



28

REFERENCES

[1] Benoist, Y. and Quint, J.-F. (2016). Central limit theorem for linear groups, Ann. Probab. 44 no. 2, 1308–1340.
[2] Bolthausen, E. (1982). Exact convergence rates in some martingale central limit theorems. Ann. Probab. 10,

no. 3, 672–688.
[3] Bougerol, P. and Lacroix, J. Products of random matrices with applications to Schrödinger operators. Progress

in Probability and Statistics, 8. Birkhäuser Boston, Inc., Boston, MA,1985.
[4] Cuny, C., Dedecker, J. and Jan, C. (2017). Limit theorems for the left random walk on GLd(R). Ann. Inst.

H. Poincaré Probab. Statist. 53, no. 4, 1839–1865.
[5] Cuny, C., Dedecker, J. and Merlevède, F. (2018). On the Komlós, Major and Tusnády strong approximation

for some classes of random iterates. Stochastic Process. Appl. 128, no. 4, 1347–1385.
[6] Dedecker, J. (2010). An empirical central limit theorem for intermittent maps. Probab. Theory Related Fields

148, no. 1-2, 177–195.
[7] Dedecker, J., Merlevède, F. and Rio, E. (2009). Rates of convergence for minimal distances in the central

limit theorem under projective criteria. Electron. J. Probab. 14, no. 35, 978–1011.
[8] Fernando, K. and Pène, F. (2022). Expansions in the local and the central limit theorems for dynamical

systems. Commun. Math. Phys. 389, 273–347.
[9] Guivarc’h, Y. and Raugi, A. (1985). Frontière de Furstenberg, propriétés de contraction et théorèmes de

convergence, Z. Wahrsch. Verw. Gebiete 69 no. 2, 187-242.
[10] Feller, W. An introduction to probability theory and its applications. Vol. II. Second edition John Wiley &

Sons, Inc., New York-London-Sydney 1971 xxiv+669 pp.
[11] Furstenberg, H. and Kesten, H. (1960). Products of Random Matrices. Ann. Math. Statist. 31, no. 2, 457–469.
[12] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc.

58, 13–30.
[13] Jan, C. (2001). Vitesse de convergence dans le TCL pour des processus associés à des systèmes dy-

namiques ou des produits de matrices aléatoires, Thèse de l’Université de Rennes 1 (2001), thesis
number 01REN10073

[14] Jirak, M. (2016). Berry-Esseen theorems under weak dependence. Ann. Probab. 44, no. 3, 2024–2063.
[15] Jirak, M. (2020). A Berry-Esseen bound with (almost) sharp dependence conditions. arXiv:1606.01617
[16] Le Page, E. (1982). Théorèmes limites pour les produits de matrices aléatoires, Probability measures on

groups (Oberwolfach, 1981), pp. 258–303, Lecture Notes in Math., 928, Springer, Berlin-New York.
[17] Merlevède, F., Peligrad, M. and Utev, S. Functional Gaussian approximation for dependent structures. Ox-

ford Studies in Probability, 6. Oxford University Press, Oxford, 2019. xv+478 pp
[18] Xiao, H. Grama, I. and Liu, Q. (2021). Berry-Esseen bound and precise moderate deviations for products of

random matrices. Journal of the European Mathematical Society, European Mathematical Society, In
press, 10.4171/JEMS/1142. hal-03431385.

[19] Xiao, H. Grama, I. and Liu, Q. (2021). Berry Esseen bounds and moderate deviations for random walks on
GLd(R). Stochastic Process. Appl. 142, 293–318.


	Introduction
	Berry-Esseen bounds
	Proofs
	Proof of Theorem 2.1
	Proof of the upper bound (2.3)
	Proof of the upper bound (2.4)
	Proof of the upper bound (2.5)

	 Proof of Theorem 2.2

	Technical lemmas
	Acknowledgements
	References

