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Let Ap =en---€1, where (en),>1 is a sequence of independent ran-

dom matrices taking values in GL4(R), d > 2, with common distribution
w. In this paper, under standard assumptions on p (strong irreducibility and
proximality), we prove Berry-Esseen type theorems for log(||An||) when
has a polynomial moment. More precisely, we get the rate v/log n/+/n when
w has a moment of order 3 and the rate 1/1/n when p has a moment of order
4, which significantly improves earlier results in this setting.

1. Introduction. Let (¢,,),>1 be independent random matrices taking values in G =
GL4(R), d > 2 (the group of invertible d-dimensional real matrices) with common distri-
bution y. Let || - || be the euclidean norm on R¢, and for every A € GLg(R), let || Al =
SUDPg ||||=1 || Az||. We shall say that x has a moment of order p > 1 if

/G(logN(g))pdu(g) < oo,

where N (g) := max(||g]], lg~"])-
Let A, =&, - --e1. It follows from Furstenberg and Kesten [11] that, if 1+ admits a moment
of order 1 then

!
(1.1) nlggoﬁlogHAnll =\, P-as.,

where )\, := lim,,_,o n 'Elog||A,|| is the so-called first Lyapunov exponent.

Let now X := P(R?) be the projective space of RY and write Z as the projection of €
R? — {0} to X. An element A of G = GL4(R) acts on the projective space X as follows:
Az = Az, Let ', be the closed semi-group generated by the support of . We say that p
is proximal if I, contains a matrix that admits a unique (with multiplicity 1) eigenvalue of
maximal modulus. We say that y is strongly irreducible if no proper union of subspaces of
R? is invariant by I',. Throughout the paper, we assume that . is strongly irreducible and
proximal. In particular, there exists a unique invariant measure v on B(X ), meaning that for
any continuous and bounded function A from X to R,

(1.2) [ r@avta)= [ [ wt-2)in(o)ivia).
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Note that, since p is assumed to be strongly irreducible, the following strong law holds (see
for instance [3], Proposition 7.2 page 72): for any 2 € R% — {0},

o1
(1.3) nlggoglog |Anx|| = Ay P-as.

To specify the rate of convergence in the laws of large numbers (1.1) and (1.3), it is
then natural to address the question of the Central Limit Theorem for the two sequences
log || Ay || — nA, and log || Apx|| — nA,. To specify the limiting variance in these central limit
theorems, let introduce some notations: W, will denote a random variable with values in the
projective space X, independent of (&,,),>1 and with distribution v. By the invariance of
v, we see that the process (A, Wy),>1 is a strictly stationary process. Denote also by 1} a
random variable such that ||V = 1 and Vp = Wy, Setting, S, = log || 4, Vo|| — nA,, Benoist
and Quint [1] proved that if 4 has a moment of order 2, then

1

(1.4) lim ~E(S?)=s%>0,

n—oo n,
(1.5) lim sup sup [P (log|lAnz| —nA, <tv/n) — ®(t/s)| =0,

T LER g |z =1
and
(1.6) lim sup P (log || Ap|| — nA, < tv/n) — ®(t/s)| =0,
00 teR

where ® is the cumulative distribution function of a standard normal distribution. Let us
mention that (1.5) has been firstly established by Le Page [16] under an exponential moment
for ;1 (meaning that [,(N(g))*du(g) < oo for some a > 0, see also [9]) and then by Jan
[13] under the condition that ¢ has a moment of order p > 2.

In the present paper, we are interested in Berry-Esseen type bounds in these central limit
theorems, under polynomial moments for p (more precisely we shall focus on the case of
moments of order p = 3 or p = 4). Before giving our main results, let us briefly describe the
previous works on this subject.

When p has an exponential moment, Le Page [16] proved the following inequality: there
exists a positive constant C' such that

(1.7) sup sup |P(log||Anz| — nA, <tv/n) — ®(t/s)| < Cuv, with v, = i
teR z|z]=1 vn

Still in the case of exponential moments, Edgeworth expansions (a strengthening of the
Berry-Esseen theorem) have been recently obtained by Fernando and Péne [8] and Xiao et al.
[18]. In these three last papers, the assumption that p has an exponential moment is crucial
since it allows to use the strength of the so-called Nagaev-Guivarc’h perturbation method
(indeed in case of exponential moments, the associated complex perturbed transfer operator
has spectral gap properties).

Now, under the assumption that all the moments of order p of y are finite, Jan [13] obtained
the rate v,, = n~ /2% for any ¢ > 0 in (1.7). Next, Cuny et al. [4] gave an upper bound of
order v, = n~'/4\/logn in (1.7) provided p has a moment of order 3 (as a consequence of
an upper bound of order n~/2logn for the Kantorovich metric). More recently, Jirak [15]
proved that, if ;x has a moment of order p > 8, then there exists a positive constant C' such
that

(1.8) sup |P (log | AnVo|| — nA, < tv/n) — ®(t/s)| < Cvy, with v, = L
teR vn
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This result is based on some refinements of the arguments developed in a previous paper of
the same author (see [14]) and is based on a completely different method than the perturbation
method for the transfer operator. Since our proofs will use a similar scheme let us briefly ex-
plain it. First, due to the cocycle property (see the beginning of Section 2), log || A, Vo || — nA
is written as a partial sum associated with functions of a stationary Markov chain, which can
be viewed also as a Bernoulli shift (that is a function of iid random elements). Using the con-
ditional expectation, the underlying random variables are then approximated by m-dependent
variables, say X}, ,. Next the partial sum >, X}, ,,, is decomposed in two terms. The first

one can be rewritten as the sum of random variables which are defined as blocks, say Y}(l),
of size 2m of the X} ,,,’s. These random blocks have the following property: conditionally
to ), (a particular o-algebra generated by a part of the €;’s), they are independent. In ad-
dition, for any bounded measurable function h, the random variables Z; = £/ (h(Yj(l))HFm)
are one-dependent. On another hand, the second term in the decomposition of » ' | Xj
is [F,,,-measurable and can be written as a sum of independent blocks of the initial random
variables. For both terms in the decomposition, the conditional independence of the blocks
comes from the independence of the ¢;’s. The next steps of the proof consist first to work
conditionally to IF,,, and then to give suitable upper bounds for the conditional characteristic
function of the blocks Yj(l).

Concerning matrix norms, we first note that the Berry-Esseen bound of order n~/4/Iogn
under a moment of order 3 is still valid for log || A4, || — n\, instead of log || A,z | —nA, (see
the discussion in Section 8 of [4]). Moreover, if p has an exponential moment, Xiao et al.
[19] proved that there exists a positive constant C' such that

logn

Vi
Note that in [19], the authors also proved a similar upper bound for log(p(A,,)) where p(Ay,)
is the spectral radius of A,,.

(1.9) sup |P (log || An | — nA, < tv/n) — ®(t/s)| < Cw, with wy, =
teR

In the present paper, we prove that:

e If ;4 has a moment of order 3, then the rate in (1.7) (and then in (1.8)) is v, =
n~1/2(logn)'/? and the rate in (1.9) is w, = n~"/2(logn)"/2.

« If 1, has a moment of order 4, then the rate in (1.7) (and then in (1.8)) is v, = n~*/2 and
the rate in (1.9) is w,, = n~1/2.

To prove these results, we follow the approach developed in Jirak [14, 15], but with sub-
stantial changes. We refer to Comment 3.1 to have a flavor of them. One of the main changes
is the use of the dependency coefficients defined in [4] (see also (3.11) below) which are well
adapted to the study of the process (log||Anz|| — nA,)n>1, instead of the coupling coeffi-
cients used in [15],

The paper is organized as follows. In Section 2, we state our main results about Berry-
Esseen type bounds in the context of left random walks when p has either a moment of order
3 or a moment of order 4. All the proofs are postponed to Section 3. Some technical lemmas
used in the proofs are stated and proved in Section 4.

In the rest of the paper, we shall use the following notations: for two sequences (a )n>1
and (by,),>1 of positive reals, a, < b, means that there exists a positive constant C' not
depending on n such that a,, < Cb,, for any n > 1. Moreover, given a o-algebra F, we shall
often use the notation Ex(-) = E(-|F).



2. Berry-Esseen bounds. Recall the notations of the introduction: let (&,,),>1 be inde-
pendent random matrices taking values in G = GL4(R), d > 2, with common distribution
w. Let A, =¢€,---e1 forn > 1, and Ag =Id. We assume that 4 is strongly irreducible and
proximal, and we denote by v the unique distribution on X = P(R?) satisfying (1.2).

Let now Vj be a random variable independent of (&;,),>1, taking values in R4, such that
Vol =1 and Vj is distributed according to v.

The behavior of log || A, Vo || —nA, (where ), is the first Lyapunov exponent defined right
after (1.1)) can be handled with the help of an additive cocycle, which can also be viewed as a
function of a stationary Markov chain. More precisely, let Wy = Vj (so that Wy is distributed
according to v), and let W, = ¢,W,,_1 = A,,W for any integer n > 1. By definition of v,
the sequence (W;,),>0 is a strictly stationary Markov chain with values in X. Let now, for
any integer k > 1,

(2.1) XkZ: U(Ek,kal)—)\u:J(Ek,Ak,1W0)—)\'“,

where, for any g € G and any = € X,

o(g,z)=log (‘ﬁxﬁu) .

Note that o is an additive cocycle in the sense that o(g1g2,Z) = (g1, g2%) + (g2, ). Con-
sequently

(2.2) Sn=_ Xi=log||AnVo|| — nA,.
k=1

With the above notations, the following Berry-Esseen bounds hold.

THEOREM 2.1. Let i be a proximal and strongly irreducible probability measure on
B(G). Assume that i has a finite moment of order 3. Then n 'E(S2) — s? > 0 as n — oo

and, setting v, = +/logn/\/n, we have

23) sup|P(Sy < yv/n) — (y/s)| < vn.
yeR
(24) sup | P (log([| Aull) = n, < yv/n) = 2(y/s)| < vn,
ye
and
(2.5) sup sup P(log |Apz|| —nA, < y\/ﬁ) — @(y/s)‘ < Uy -
z,||z||=1 yER

REMARK 2.1.  As mentioned in the introduction, the fact that n='E(S2) — s% > 0 has
been proved by Benoist and Quint [1] (see Item (c) of their Theorem 4.11). Let us mention
that we also have s> = E(X?) + 2,5, E, (X1 X)), which follows for instance from the
proof of item (i7) of Theorem 1 in [4].

Now if p has a finite moment of order 4 then the following result holds:

THEOREM 2.2. Let i be a proximal and strongly irreducible probability measure on
B(G). Assume that ;1 has a finite moment of order 4. Then n~'E(S2) — 52 >0 as n — oo
and (2.3), (2.4) and (2.5) hold with v, = 1/+/n.
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Recall that the classical Berry-Esseen theorem for independent random variables, which
corresponds to the case d = 1 in our setting, provides the rate 1/y/n under a finite moment
of order 3. Hence, one may wonder whether the conclusion of Theorem 2.2 holds under the
assumptions of Theorem 2.1. Note also that we have chosen to focus on the cases where
has a finite moment of order 3 (since it corresponds to the usual moment assumption for the
Berry-Esseen theorem in the iid case) or a finite moment of order 4 (since in this case we
reach the rate 1/y/n), but we infer from the proofs that if x has a finite moment of order
q € (3,4) then the above results hold with v,, = (logn)*~9/2/,/n.

3. Proofs.

3.1. Proof of Theorem 2.1. As usual, we shall denote by X}, z the random variable X,
defined by (2.1) when the Markov chain (W), ),,>¢ starts from z € X. We then define S, z :=
log [|Apz|| —nA, = p_; Xk z. We shall first prove the upper bound (2.3) and then the upper
bounds (2.4) and (2.5) in Sections 3.1.2 and 3.1.3 respectively.

3.1.1. Proof of the upper bound (2.3).

As usual, the proof is based on the so-called Berry-Esseen smoothing inequality (see e.g.
[10, Ineq. (3.13) p. 538]) stating that, for any positive 7',

T lgsn/\/H _ *£282/2
3.1 sup [P, (S, < zv/n) — @(x/s)‘ <</ [E(e ) —e |
zEeR _r ‘é"

where we recall that .S, has been defined in (2.2).

To take care of the characteristic function of S,, /\/n we shall take advantage of the fact that
X is a function of a stationary Markov chain generated by the iid random elements (&;);>1.
As in [14], the first steps of the proof consist in approximating the X}’s by m-dependent
random variables X, ,,,, and then in suitably decomposing the partial sum associated with
the X}, ,,. This is the subject of the following paragraph.

de+T771,

Step 0. Notations and Preliminaries. We shall adopt most of the time the same notations as in
Jirak [14]. Let & = o(e;, ..., ¢;) for i < j, and m be a positive integer that will be specified
later. For any k > m, let

(3.2) X = E(Xp|EF i) = Frn(Ehmmt1s -1 Ek)

where f,, is a measurable function. More precisely, we have
_ 1- _
Xjom = / o(er, AF=T T dv(T) — Ay
X

where we used the notation A; =¢;---¢; for i < j. Note that E(Xy, ,,) = 0.

Next, let N be the positive integer such that n = 2Nm + m’ with 0 < m’ < 2m — 1. The
integers N and m are such that N ~ k1 logn (where k; is a positive constant specified later)
and m ~ (2k1) " 'n(logn) =" (see (3.26) for the selection of x1). Define now the following
o-algebra

(3.3) Fm=0((e@j—1ymt15--- €2jm),J > 1).
Let Uy = )", X} and, for any integer j € 2, N], define

(2j—1)m

(3‘4) Uj = Z (X’%m — E(Xk,m‘Fm)) :
k=(2j—2)m+1
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For any integer j € [1, N, let

25m
(3.5) Ri= > (Xgm—EXpm|Fn)),
k=(2j—1)m+1
(3.6) v}V =U;+R; and §)) = ZY“)
Let also
min(n,(2N+1)m)
UN—H = Z (Xk,m - E(Xk,m’Fm))
k=2Nm+1
and
RN+1 = Z (Xk,m - E(Xk,m|Fm)) )

k=(2N+1)m+1

where an empty sum has to be interpreted as 0. Note that under Py, (the conditional probabil-
ity given F,,,), the random vectors (U;, Rj)lg j<N+1 are independent. Moreover, by station-
arity, the r.v.’s (Uj, R; )2<]<N have the same distribution (as well as the 1.v.’s (R;)1<j<n).

Next, denoting by S = h—mt1 E(Xk,m|Frm), the following decomposition is valid:

Spm = ZXk i Z Xpm = S‘(ml) + Sﬁj +Uns1+ Ryt
k=1 k=m+1
To simplify the exposition, assume in the rest of the proof that n = 2Nm (so that m’ = 0).
There is no loss of generality by making such an assumption: the only difference would
be that since (Un+1, Rn+1) does not have the same law as the (Uj, R;)’s, 2 < j < N, its
contribution would have to be treated separately. Therefore, from now we consider m’ =0
and then the following decomposition

R

We are now in position to give the main steps of the proof. We start by writing

5 (665:/¥7) — 12| < [0 /) — B ) | (55 V) )

3.7) Spm =15

Next
[E (f65nm/ V)  o=€%5%/2]
= ‘E(eiﬁsﬁf/\/ﬁ[mm( SERD. —5282/4}) 4 o5/ (E( es{ V) _ —5252/4>’
< HE]Fm (eigsm/f) —5282/4H1 i ‘E(eigsfi?/\/ﬁ) _ e_5252/4‘ .

Hence, starting from (3.1) and selecting 7' = \/n/ logn, Inequality (2.3) of Theorem 2.1 will
follow if one can prove that

T || (e65/VA) _ i (€Snm/vi
s [ [T B )

Viogn
v

IR
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T ||E IS /Y _ g% /4 /]
(39) / H F. (e | ) e Hl dg < logn
T [3 Vvn
and
T R (51 /VY) _ g—€2s*/4 JIogn
(3.10) / B2 ) —e ‘d§<< logn
T €] Vvn

The objective is then to prove these three upper bounds, and the main differences compared
to [14, 15] lie in the intermediate steps and the technical tools developed for this purpose.
They will be based on the following dependence coefficients that are well adapted to our
setting. Let p > 1. For every k > 1, define
G.11) 08 (k) = sup E|Xpz— Xig|".

z,geX
If 1 has a finite moment of order ¢ > 1, then, by [4, Prop. 3], we know that

(3.12) > kPTler (k) <oo  Vpe(lq).
k>1

Hence, since (8, oc(k))k>1 is non increasing, it follows that (if 1 has a moment of order
q>1)

(3.13) Opoo(k) = 0(1/K9P7Y)  Wpe[l,q).

COMMENT 3.1. Letus give an idea of the interest of considering these coefficients com-
pared to the coupling coefficients ¥} (p) and 9} (p) defined in [15, Eq. (7)] (even if 0y o (k)
provides an upper bound for these coefficients). For instance, as we shall see in Lemma 4.3,
using a suitable Rosenthal’s inequality and the strength of the J,, , coefficients allowing to
control also the infinite norm of conditional expectation (see for instance (4.7)), we have
|R1]|p < 1 for p € [2,3] provided that ;2 has a moment of order ¢ = p + 1. As a counterpart,
Lemma 5.4 in [15] entails that || R ||, < > ;- dp.oo(k) and then || Ry|[, < 1 as soon as
has a moment of order ¢ > 2p. Let us mention that requiring ||R1||, < 1 for some p > 2

is a key ingredient to take care of the characteristic function of the Yj(l)’s conditionally to
[F,,, that we will denote by ¢;(¢) in what follows (see the definition (3.16)). More precisely,
if the condition (among others) ||R;||, < 1 holds for p = 2, then we get the upper bound
(3.19) and if it holds for p = 3 then we get the better upper bound (3.34) (this difference in
the upper bounds is the reason why in the statements of Theorem 2.1 we have an extra loga-
rithmic term compared to Theorem 2.2). Note that the upper bounds (3.19) and (3.34) come
from Lemmas 4.6, 4.11 and 4.12. Another crucial fact that we would like to point out is the
following: Imposing that £ has a moment of order ¢ = 3 implies || R1||, < 1 only for p =2
and then Lemma 4.5 in [14] cannot be used to prove the upper bound (3.23) which is widely
used to prove (3.9). Indeed for [14, Lemma 4.5] to be applied it is necessary that || R, < 1
for some p > 2. The role of our Lemma 4.1 is then to overcome this drawback (see the step 3
below and in particular the control of both I; () and I3 n(£)).

On another hand, in view of (3.13), it is clear that, as k — oo, the coefficient 5T,OO(I<:) has
a better behavior than 6, o (k) for any r € [1,p[. Hence, in some cases, it can be preferable
to deal with the L"-norm rather than with the LP-norm. For instance, in our case, it is much
more efficient to control ||S;, — Sy, |1 (see the forthcoming upper bounds (3.14) and (3.15))
rather than ||S,, — Sy, ||3 as done in Jirak [15] (see his upper bound (50)). In both cases these
quantities have to be controlled by 1/4/n and to see the differences between the two upper
bounds take m equals to n up to a logarithmic term both in (3.15) and in [15, Ineq. (50)]. This
is the reason why we can start directly from Inequality (3.1) and work with the characteristic
function rather than using the decomposition given in [15, Lemma 5.11].



Let us now come back to the proof. The next steps will consist in proving the upper bounds
(3.8)-(3.10).

Step 1. Proof of (3.8). Note that

[ b G PR
-7

[3
But, by stationarity and [5, Lemma 24],
(314) HSTL - Sn,m”l < n”Xm+1 - Xm—&-l,m”l < nél,oo(m) .

Hence, by (3.13) and the fact that 1 has a moment of order ¢ > 1, we derive
(3.15) 1S — Spmlli < nm =@~

So, overall, since ¢ = 3, it follows that

/T EE) _E(eigsnywﬁ)‘df<<n(logn)71/2m 2
-7 §

The upper bound (3.8) follows from the fact that we will select m ~ kan(logn)~

1
Step 2. Proof of (3.9). For any z € R and any integer j € [1, N], let
(3.16) i(x) = E(eixyf”/@wm) .

Since, under Py _, the Yj(l) ’s are independent we write

(3.17) [, (550 /VT) — e €%/4|| —E H ﬁ 0 (\/%) _ ﬂ o—E757/(4N) H
j=1 j=1

As in [14, Section 4.1.1], we use the following basic identity: for any complex numbers

N N 1 N
(aj)1<j<n and (bj)i<j<n, [I;21 a5 — [1;20 05 = 2205 (TTj20 05) (@i — ba) (T 12541 @)) to
handle the right-hand side of (3.17). Taking into account that (ap]( ))i<j<n forms a one-
dependent sequence and that the r.v.’s (U. s Rj)ggjg ~ have the same distribution, we then
infer that

Gy Ef ﬁsoj(fﬁ) - ﬁe—fz/w)]] <IN(E) +In(E) + L),
j=1

j=1
where
22 §
LN () = (N = 1)[ga(§/VN) — e & 5/6N) ©;
1T o G5)
I n(§) = Ne &5 (N=0/BN)|jo0 (¢ /3/N) — e/ BN) |y
and

T (6) = lpr(€/ V) — /M) H \%( I
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To integrate the above quantities, we need to give suitable upper bounds for the two terms
o (t) —e=="**/4||; and || H;‘V:_]\}ﬂ l0;(t)]]]1. Applying the first part of Lemma 4.6 and using
stationarity, we derive that for any 2 < j < N,

242 t? It|
(1) — o—5°1?/4 -
(3.19) lei(t) —e I < T + 3
Moreover the second part of Lemma 4.6 implies that
2t2/4 t2
3.20 t)y—e?® —.

On another hand, according to [14, Inequality (4.14)], for any integer ¢ € [1,m],

)
1

| it il <[ TT Il ev/om = 0)7m))|
j=N/2 jeJ

where J = [N/2, N — 1] N 2N,

L iwHW l
o (@) =B 15,
with ’ngr)n =Fm Vo(ea-1ymt1,- - ->E2(j—1)m+e) and
® 1 = ® ®
Ho=———=( Y (X~ EXualH0) + Ry~ E(R[H))

k=2(j—1)m+l+1
We shall apply Lemma 4.1 with

(2j—1)m

jmz

k=2(j—1)m+0+1

L L
(Xk,m - E<Xk,m‘,H](,r)n>)7 Bj = Rj - E<RJ’,H§J)”)

and a = (m — £)~/2. By stationarity, for any j € 7,

P(Ey (A7) < 5*/4) =P(E 0 (43) < 5°/4)

=B((m—0~"Eu(( 3 ~En(Xim) ) 57/4).

=m-+

where E,, (-) means E(:|G,,) with G,,, = c(Wp,e1,...,&m). Let K be a positive integer and
note that

m+K m+K
5 s, -] 5 s,
m+K m+K
<Y Xk = Xl D B (Xkm)lloo
k=m+1 k=m+1
m+K m+K

< ) Grelk)+ Y Greo(k).

k=m+1 k=m+1
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Therefore, by taking into account (3.13) and the fact that i+ has a moment of order 3, we get
that

m+K m+K
| > G EnXn))|, || D2 X, =otr72).
=m-+1 k=m+1

But, using stationarity, we have K_I/QH ZZETIL{H Xk”z = K_I/QH Zle Xk”z — s> 0.
Hence provided that (m — /) is large enough, we have

2m—~L

(3.21) (m — E)_1E<( S (K — Em(Xk,m))Q) > 52/2.

k=m+1

So, overall, setting Xy m 1= Xgm — Epy (Xgm), for (m — £) large enough, we get
P(EH(a) (A%) S 82/4)

2

g}P’((m—é)*l)Em<< 2%3( Xk,m>2 _E(<:§:n:1)zk’m)2)) = SZ) )

:m+
Using Markov’s inequality and the same arguments as those used in the proof of Lemma 4.2,
we then derive that, for (m — /) large enough and any j € 7,
IP(EH(/) (AJQ) < 32/4) < (m — 6)75/7 .

Hence, provided that m — £ is large enough, Item (ii) of Lemma 4.1 is satisfied with u~ =
52 /4. Note now that by stationarity, for any j € 7,

E(B}) <4E(R;) =4E(R}) <1,

by using Lemma 4.3 with p = 2. This proves Item (iv) of Lemma 4.1. Next, for p > 2, using
stationarity and [17, Cor. 3.7], we get that for any j € 7,
(3.22)

2m—¢ 2m—¢
_ _ p
E(4;7) < 2m=07" 3 K| < [1Kuemmlot D KB ml]
k=m+1 k=m+1

But || X14mmllp < | X1][p < oo if p < 3 (indeed recall that it is assumed that 4 has a mo-
ment of order 3) and ||E,,(Xgtmm)|lp < [|Em(Xktmm)|loo < 01,00(k). Hence, by (3.12)
and since 1 has a moment of order ¢ = 3, Item (iii) of Lemma 4.1 is satisfied for any p € [2, 3].
So, overall, noticing that | 7| > N/8 > 16, we can apply Lemma 4.1 to derive that there exist
positive finite constants c1, co and c3 depending in particular on s? but not on (m,n) such
that for (m — £) large enough (at least such that a = (m — £)~'/2 < ¢;), we have

H H |‘P§‘£) (95)’H < e N/8 4 o= N/256 for 12 < ¢y,
JjeT !
implying overall that, for (m — £) large enough and for t?(m — £)/(2m) < ca,

N-1
(3.23) H H |<'0j(t)|H < ot (mM=ON/(16m) | (~N/256
J=N/2 !

The bounds (3.19), (3.20) and (3.23) allow to give an upper bound for the terms I n (&),
I> n(€) and I3 (&) and next to integrate them over [—7',T] when they are divided by |].



BERRY-ESSEEN TYPE BOUNDS FOR THE LEFT RANDOM WALK ON GL;(R) 11

Hence the computations in [14, Sect. 4.1.1., Step 4] are replaced by the following computa-
tions. First, as in [14], we select

(3.24) 0=0U(€) = Ligzaneyy + (m — [ne2/(26%)] + D) 1{es ) -

Therefore m — ¢ is either equal to m — 1 or to [neg/(26%)] — 1. Since |¢| < T =
n'/2(logn)~1/2, it follows that ncy/(262) > 27 ca(logn) (and then for n large enough
m—{> 01_2)~ So, starting from (3.23) and taking into account the selection of ¢, we get
that for any || < T and n large enough,

N-1
(3.25) H H |¢j(§/\/ﬁ)|Hl<<e—ca£2/321{£2<N62}+e—caczN/321{§22Nc2}_{_e—N/256‘
J=N/2

Select now
(3.26) N = [klogn] with k > 2max(256,32(cac3) ")
and then m ~ (2x)~'n/logn. Taking into account (3.19), (3.20) and (3.25), we get

(3.27)

' (. L (et -
[ i@+ na@igas < [ (o r ) et ag

1 VN T2 TVN _ logn
NN RN R Ay

<

Next, using (3.19), we derive

(G ) e

Therefore, by the selection of m and IV,

I n(§) <

Viogn

vnoo
Starting from (3.17) and taking into account (3.18), (3.27) and (3.28), the upper bound in
(3.9) follows.

T
(3.28) /_T I n(§)/]€]dE <

Step 3. Proof of (3.10). Recall that S () _ = —ms1 E(Xk,m|Fm), and recall that we assume
that 2Nm = n. Denoting

v =0+ R? forj=1,...,N,

2 n 2
where U](V) =2 k=@N—1)m+1 E(Xkm|Fm), Rgv) =0,

2im (25+1)m
U]@: S E(XimlFim) andR = > E(Xgm[Fm) forj=1,...,N—1,
k=(2j—1)m+1 k=2jm+1

we have Sﬁ) = E;V: ) Yj(z) . Note that the random vectors (U’ ;2) ; R;-Q) )i<j<n are indepen-
dent. The proof of (3.10) can be done by using similar (but even simpler) arguments to those
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developed in the step 2. In this part, one of the important fact is to notice that the R;Z)’

have a negligible contribution. Indeed, for any 2m + 1 < k < 3m,

s also

||E(Xk,m|Fm)Hoo:H// (fm(gk—m-l—la'--752m7a2m+17---aak’)

k k
- fm(bk—m—i-la--->b2m7b2m+1a-“7bk)) H d,u(az) H d,u(bz)

(SncanlWo =)~ [ ECXin|Wo = 9o (5)| < b1l — 2m).
Hence by stationarity and (3.12) we derive that ||R§2) loo < 1forany j=1,...,N.

To complete the proof of the upper bound (2.3), we just have to put together the results in
the steps 1, 2 and 3. U

3.1.2. Proof of the upper bound (2.4). Recall the notation S,z := > ;_; Xjz Where
Xk,a denotes the random variable X}, defined by (2.1) when the Markov chain (W,),>0
starts from @ € X. Our starting point is the following upper bound:

(3.29) sup
n>1

log([| Anll) — n A, — /X Snﬂdv(ﬁ)Hoo < 0.

The proof of (3.29) is outlined in Section 8.1 in [4] but, since it is a key ingredient in the proof
of (2.4), we shall provide more details here. Let g € G and u € X . By item () of Lemma 4.7
of [1], there exists v(g) such that

log|lg| — o(g,u) < —logd(a,v(g)),

where 6(4, ) := % Integrating with respect to v, it follows that
(3.30) 0 <logllg| — / o(g,u ) < sup/ | log 6(u, v)| dv(u) .
X veX

But, according to Proposition 4.5 in [1], since p has a polynomial moment of order 2,
SUPze x f x ‘ logd(a,v ‘ dv(u) < oo. Therefore, (3.29) comes from an application of (3.30)
with g = A,,.

Now, using (3.29) and Lemma 1 in [2], the upper bound (2.4) will follow if one can prove
that

(3.31) sup [B( /X S acdi(i) < /i) — B(y/s)

yeR

< (logn)/v/n.

We proceed as for the proof of the upper bound (2.3) with the following differences. First we
consider

nm—z/ XkudV Z Xkrru

k=m+1
where X, ,, is defined by (3.2). Hence

H /X Sn,ﬂduw)—sn,mHls /X k£1||xk,u—xk,m||1du(a)<n51,oo(m)-
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It follows that the step 1 of the previous subsection is unchanged. Next, we use the same
notation as in subsection 3.1.1 with the following change: U; is now defined by

(3.32) U =) / Xpadv(a),
—Jx

and then, when n = 2mN, the decomposition (3.7) is still valid for S, ,,. The step 3 is
also unchanged. Concerning the step 2, the only difference concerns the upper bound of the
quantity |1 (t) —e~%"t"/4||; since the definition of U; is now given by (3.32). To handle this
term, we note that for f(x) € {cosz,sinz}, we have

HERH[ (Zk 1fXXkudV( )+R1)} . [f(tZ?lek+R1)}"1

V2 V2m
al / al 4
< X — Xpllrdv( § 5100 (k) < =
. Eerl” k kllrdv(u 1 <<\/%

The last upper bound comes from (3.12) together with the fact that x is assumed to have a
moment of order ¢ = 3. Next, by taking into account (3.25), note that

/TT\FM\’ﬁH H eile/ V|| de < 1/vm.

This implies in particular that (3.27) still holds. Compared to subsection 3.1.1 the rest of the
proof is unchanged. 0

3.1.3. Proof of the upper bound (2.5). Once again we highlight the differences with re-
spect to the proof given in Subsection 3.1.1. For z € S?~!, we consider

k=m+1

and we note that

n

sup [[Sz — Sl < S sup | Xz — Xiulls < nd1,00(m).
zeX k=m-+1 zeX

Once again Step 1 of Subsection 3.1.1 is unchanged. Next, U; is now defined by
m
(3.33) Uz=U1=Y Xpsz,

and the step 3 is also unchanged. Concerning the step 2, due to the new definition (3.33) of
Uy, the only difference concerns the upper bound of the quantity ||¢q(t) — e~***/4||;. To
handle this term, we note that for f(y) € {cosy,siny}, we have, by using (3.12) together
with the fact that p is assumed to have a moment of order ¢ = 3.

o (L, [ Ry

zeX V2m V2m
IS |t |
<7 Sup HXk Xk”1<< =
/ Z :E

m+1

We then end the proof as in subsection 3.1.1. O
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3.2. Proof of Theorem 2.2. Let us point out the differences compared to the proof of
Theorem 2.1 (the selections of IV and m being identical). To get the upper bound (3.25), we
still establish an upper bound similar to (3.23) valid for any ¢ € [1,m] and any ¢ such that
t2(m — £)/(2m) < C. Since y has a finite moment of order g = 4, according to Lemma 4.3,
| R1]|s < 1. Hence, using Lemma 4.1 with a = 0 (here Lemma 4.5 in [14] can also be used),
the desired upper bound follows and the constant C' appearing above in the restriction for ¢
can be taken equal to co (which is the constant appearing in Lemma 4.1). The fact that a =0
implies that we do not need to verify, as in the proof of Theorem 2.1 that (m — E)_l/ 2<¢.
Next, we select ¢ as in (3.24). This selection makes sense if 52 < ncy /2. Therefore, we use
(3.1) by selecting T = n/n with 1 small enough (more precisely such that co/(21?) is large
enough for (3.21) to be satisfied when m — £ is of order c2/(2n?)). Therefore, for any |¢| < T,
the upper bound (3.25) is still valid. The second difference, in addition to the choice of 7', is
that instead of using Lemma 4.6 we use Lemmas 4.11 and 4.12 with » = 3 which then entail
that for any 7 > 1,

(3.34) ||<Pj(§/\/ﬁ) _ e_8252/(4N)||1 < N_1|§|3n_1/2 + ‘§|n_1/2m_3/14. 0

Note that the upper bound (42) in Jirak [15] with p = 3 has the same order as (3.34) and is
obtained provided ) ;- k%93 o0 (k) < oo for some a > 0 (indeed [15, Lemma 5.8 (iii)] is a
key ingredient to get (42)). Now using (3.12) we see that ), -, k%03 (k) < oo for some
a > 0 as soon as u has a moment of order ¢ > 6. As we shall see [15, Lemma 5.8] is not
needed in its full generality to get an upper bound as (3.34). Indeed our Lemmas 4.11 and
4.12 are rather based on an estimate as (4.22) which involves the L!-norm rather than the
L3/2-norm .

4. Technical lemmas. Suppose that we have a sequence of random vectors {(4;, Bj) }1<j<J
and a filtration {#; }1< ;< such that

(Bw, (43). Eae, (14,17, Ex, (B)))

is a sequence of independent random vectors (with values in R3). For any real a, let H j(a) =
Aj —+ (IBJ‘ and

jeJ

pra(z) = E(exp(izHj(a))|H,) .

With the notations above, the following modification of [14, Lemma 4.5] holds:

LEMMA 4.1. Let p > 2. Let J > 16 be an integer. Assume the following

(i) By, (Aj) =E3,(B;) =0, forany 1 < j < J

(ii) there exists u™ > 0 such that P(Eq,, (AJQ) <uT)<1/2 forany1<j<.J,

(iii) sup;>1 E(|4;]7) < oc,

(iv) sup;>q IE(BJZ) < 00.
Then there exist positive finite constants cy, ¢ and c3 depending only onp, u™, sup,>1 E(|A4;[P)
and sup ;>4 E(BJQ) such that for any a € [0, c1] and any 2% < c,

J
([T ) <o e
j=1

Proof of Lemma 4.1. The beginning of the proof proceeds as the proof of [14, Lemma 4.5].

Let 1 < j < J be fixed for the moment. Using a Taylor expansion we have

1
E(explizH;(a))H;) = 1 — By, (H2(a))2?/2 +x2/2/0 (1— 8)I(s,2)ds,
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where, for any 4 > 0 and any s € [0, 1],
1I(s,7)| < 4a*Eq, (BJQ) + 2K, (A? ’ (cos(szHj(a)) — cos(0)) +i(sin(szHj(a)) — sin(0)) ‘)
<4a’Eq, (B) + 8B, (A7)|xh| + 4E4, (A3, (a)228) -
Using the fact that for any reals u and v, U1}, y|>2, < 1)y > + v7, We get
|1(5,2)| < 8a”Ey, (B) + 8Ea, (A7) |xh| + 4B, (A7)0, 1)

< 8a°Ey, (B}) + 8B, (A7)|xh| + 4h* PEyy, (| A;1P).

Now for any o > 0,
[Eqq, (H?(a)) — (Egq; (A3) + 0By, (BF))| < o "By, (A7) + 0aEagy, (B) .

So, overall, for any A > 0 and any o > 0,

’E(exp(ixHj(a)) 1) — 1+ Eg, (A2))a” /2\ < 2?(4a2 + aa?) By, (B?)
+ Egy, (A7) (21 /2 + 4h|x[?) + 2 h* PRy, (| A;]P) .
Let us take = ||~ ®~1 and o = a~". Set 6(p) := (p — 2)/(p — 1).

Let @, u™ be positive numbers to be chosen later.

Recall that by the conditional Jensen inequality, B4, (A7) < (EHJ(]Aj]p))W P P-almost
surely. For the sake of simplicity, we shall assume that this inequality takes place everywhere.

From the above computations, we infer that, on the set {Eq, (BJZ) <afNA{Eqy, (|4;7) <
u*}, one has

[E(exp(izHy(a))[Hy) — 1+ En, (A)a? /2
< 2?(4a® 4 a) i + 2?(uF)?/Pa)2 + |z 7P (4(uF)2/P o).
Set
w(z) = z(4d® + a)a+ 2> (W) Pa)2 + |z)°®) (4P + ut).

Let u™~ be a positive number (v~ will be given by (i) but it is unimportant at this stage).
We infer that, for every 22 <2 /u~, on the set

Tj = {En, (BF) <a} N {Ey, (A7) > u™} 0 {Eyy, (|4;]7) <u'}
one has

’E(exp(ixHj(a)ﬂHj)‘ <1—u2?/24 2%u(x).

Since 0 < u™,u™, @ < oo, there exist positive constants c1,co < oo (depending only on
(u™,u",@)) such that

a<ec = (4a® +a)i+ (uh)¥Pa/2 <u” /8,

2% < g = [x)0P) (4(uh)?P 4 uT) <u/8.



16

Therefore, there exist constants 0 < ¢, ca < oo (depending only on (1,4, u™)) such that for
any a < c1, any 22 < ¢y, on the set L,

|E(exp(izHj(a))|H;)]| <1 - Tt /A< e T
Set also X7 := Z}']:1 1p, and Ay :={¥; > J/8}.
From the previous computations and the trivial bound |E(exp(izH;(a))|H;)| < 1, we see

that, for any 0 < @,u ", u" < oo, there exists positive contants cy, ¢z, c3 such that for every
22 < ¢y and every a < ¢y, on the set I' 7, one has (recall that .J > 16),

J
E( H ’(pjfa(x)‘) < e W /82 < gruTa? /32
j=1

Using the the above trivial bound again, the lemma will be proved if, with u~ given by
(i), one can chose @, u™ > 0 such that P(A ;) < e=7/32,
By Markov’s inequality,

suijJE(BJZ) 0

u u——+00

P(EHJ'(BJQ‘) >a) <

Hence there exists % > 0 such that, for any 1 < j < .J, P(Ey, (BJQ) >au) <1/8.
Similarly, there exists u™ > 0 such that , for any 1 < j < J, P(Ey, (J4;F) > u™) <1/8.

By assumption (i7) and by definition of % and u™, we have

J

E(S,)>> (1—(1/2+1/8+1/8))=J/4.
j=1

Hence,
P(AT) =P(Xs < J/8) =P(X; —E(Xs) < J/8 —E(%,))
<PXE;—-EX;)<-J/8)=P(-X;,+E(X;)>J/8).
Hence, using Hoeffding’s inequality (see [12, Theorem 2]),
P(A9) < o o3z,
O

LEMMA 4.2.  Assume that ;i has a moment of order q = 3. Let X, ;, be defined by (3.2).
Then, setting Xy, = Xprm — Er (X m ), we have

m 2 m 2
fou( 3% )5 8 5 s

where By, (-) means E(-|Gp,) with G, = 0(Wo,€1,...,m). In addition if ¢ = 4, then

foul 5% o) -2( 3 Fun)], <1
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Proof of Lemma 4.2. Note first that

But

@n e 5 Xim) |, < 55 B (Kl < 32109 < 1.
1 k=1

by taking into account (3.12) and the fact that ¢ > 2. It remains to handle I,,,. With this aim,
we first write the following decomposition: for any v € (0, 1]

k=1

m

+22m SUp || B (Xipm,m Xjrmm) = E(XitmmXjamm) 1
o (<j<is2e

m  m—£

+2 Z Z ”Em (Xf—l—m,mXE—&—k’-i-m,m) - E(X€+m,mX€+k+m,m)||1 .
(=1 k=0"+1

Note that for 1 <1i,j < m,
||Em(Xi+m,ij+m,m) - E(XHm,ij-i-m,m)Hl < sup E‘Xi,lejwz Xi g X, yz‘

Ty, @9€X
Y1,92€X

With the same arguments as those developed in the proof of [4, Prop. 4], we infer that, if
has a moment of order ¢ = 3,

43) S IEn(XE,) —E(XE,)lh <1,
k>m+1

and, for every 5 < 1/3,

(4.4) >0 sup B XipmmXjrman) = E(Xipmm X pmm) [l < 1.
o Si<is2e

On another hand, with the same arguments as those used to prove [4, Relation (34)], we have

m m—L
(45) Z Z |’Em(X£+m,mXZ+k+m,m) _E(Xé+m,mX€+k+m,m)||1
=1 k=£7+1
2m 2m—1 m
< (2 IEa(Kmlk) + 2 En (Kl x 3k B K)o
f=m+1 k=1

But, by taking into account (3.12) and the fact that ;¢ has a moment of order ¢ = 3, we have,
forany 1 <k <m,

N (Xntrmm) |2 < B (Xitmm)lloo < 01,00 (k) < k72
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Hence, using this upper bound in (4.5) and considering the estimates (4.3) and (4.4), we get,
for any v € (0,1] and any 3 < 1/3,

m
Iy S14m Pl Y K752
k=1
Hence, selecting v = 23 and § = 2/7, we derive that I,,, < m?/7 which gives the desired
inequality, when p has a moment of order ¢ =3 .

Assume now that p has a moment of order ¢ = 4. In this case, with the same arguments
as those developed in the proof of [4, Prop. 4], we infer that (4.4) holds with 5 < 1+ 1/4.
Then, selecting v = 1 in the decomposition (4.2) and using similar computations as above,
the desired upper bound follows. 0

LEMMA 4.3. Let p € [2,3]. Assume that p has a moment of order ¢ = p + 1. Then
|R1l|p < 1, where Ry is defined by (3.5).

Proof of Lemma 4.3. Setting X km = Xim — Er,, (Xk,m) and applying [6, Proposition 3.1]
with NV =1, we have

2m 2m 2m

1/2 - 1/p
IRily < (20— 1) Y %)+ (D 1Kkl +00-1) > aim)
i=m+1 k=m+1 i=m-+2
where
1 - i—1 ~ ~ '
Yim = 51 Ksm 3+ Y 1K imE Kiml€D) o
Jj=m+1
and
1 i—1 ~ ~ '
Gim=5 > IXjml *E(X2,, ~E(X2,)IED
j=m+1

But, for any integer k € [m + 1,2m/| and any p > 1,

E| X, m|"
m
p
:E‘fm(gkm+la"'76m7€m+17'"78145)_/fm(vkm+17"-7vm7€m+17'-'a5k) H dﬂ(vz)
i=k—m-+1
m
p
S/E‘fm(fk—m—&-la"'35m75m+1a---agk)_fm(vk—m—&-la'“7Um75m+1y---a5k¢)‘ H d“(vl)
i=k—m-+1

Hence, for any integer k € [m + 1,2m/| and any p > 1,

]E‘Xk‘,m‘pS//E‘fm(uk‘—m-i—la"'7uma€m+17"')€k)

m m
p
_fm(vk—m+la"'avma5m+1a---ygk)‘ H dﬂ(vi) H dM(uz)
i=k—m+1 i=k—m-+1

(4.6) < sup E[Xy iz — Xk—mgl’ =0) o (k—m).
z,5eX
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By taking into account (3.12) and the fact that 1 has a moment of order ¢ = p + 1, it follows
that

2m
> 1Kkl <D 6b (k) < o0

k=m+1 k>1
On another hand, form +1 < j <1 < 2m,
4.7) E(X: 0 |€3) oo < 201,003 — 7).

By taking into account (3.12) and the fact that ; has a finite moment of order ¢ = p + 1 (and
then ¢ > 3 and ¢ > p), it follows that

2m i—1
Z ’YzmSQ 125200 +2 Z Z D/2,00 j_ ))61,00(1_])
1=m+1 i=m+1j=m+1

KD 05 0o (1) + Y 02,000 25100 <1.
i=1 j=1

On another hand, for any m + 1 < i < 2m, by Lemma 4.4,
IE(XE 0 — E(XE)IED oo <4 sup E|Xijz, Ximjz, — Ximjgu Ximjg |-

z1,T2€X
Y1,92€X

Again, by (3.12) and the fact that ;4 has a moment of order ¢ = p + 1 (and then ¢ > 3 and
q > p — 1) and by using (4.8), it follows that

m 2m
2 .
Z Qim K Z 65 2 oo Z SuIE)X Xk@lxk@‘z - Xk??le7g2‘ <1.
1=m-+2 j=m+1 k=1 yi y;EX
Putting together all the computations above we get the lemma. 0

LEMMA 4.4. Let Xp. = Xpm — Br,, (Xpm). Foranym +1<j <i<2m,
HE(XZQ,m - E(X2 )|5])HOO <4 sup E‘XZ jachz —JZT2 T Xi_jvglxi_j7g2‘ :

z1,22€X
Y1,¥2€X

In addition, if v has a finite moment of order q > 2,

(4.8) D kT sup E|Xps Xig, — Xig Xig| <00
T1,To€
k>1 i.iaex

Proof of Lemma 4.4. The upper bound (4.8) can be proved by using the same arguments
as those used to show Equation (8) in [4]. Let us prove the first part of the lemma. Let
Aj =¢g;---¢;. For any integer i in [m + 1, 2m], write that

Kim = /X (60 AL 1 7)1 (7) — /X /G o At g gommr@)dv(@) [] duor)

k=i—m-+1
= Yi,m - Zi,m .
Now, forany m+ 1 < j <i < 2m,

E(K,megg):/a(gi,gi1"'9j+1Af_m+1f)0(9i79i1 g AL g)dv(z H dp(gr,)
k=j+1
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and

E(Y?,) :/U(Qiagi—l"'gj-i-lgj"'gi—m-i-ll‘)

X 0(9is Gi—1" " 9j+195 ** Gi—m+1)dv(T)dv () H dp(gr) -
k=i—m-+1

Hence, using stationarity, we get

||E(}/z,2m|g§) - E(Y;,Zm)HOO < B SPFE)X E Xi—j7f1Xi—j@2 - Xi_jvngi_jvg2‘ :
z1,29
71,92€X

Next, forany m+1 < j <1 <2m,
B(Yin Ziml€d) = [ oluitir w1 AL,02)

X 0 (Ui i1+ i1 AL G Gieme1 @)dv(@)dv(g) [ dplw) dp(gr) ,

m
k=j+1 k=i—m—1
By stationarity, we derive

E(YmZiml€3) — E(Yin Zim)lloo < sup E|Xijz Xiojz, — Xiejg Xiojg| -
Tq1,70€
Y1,J2€X

We get a similar upper bound for ||E(Zl2m\$§) - E(me)Hoo The first part of the lemma
follows by taking into account all the above computations. O

LEMMA 4.5. Assume that i has a finite moment of order ¢ > 2. Then H Zzzm-s—l Xk Hq <

Vmand | 8, X, < Vm.

Proof of Lemma 4.5. The two upper bounds are proved similarly. Let us prove the second
one. As to get (3.22), we use [17, Cor. 3.7], to derive that

2m 2m
| > x| <vm[IXimmllo+ > F B Kim) o]
q

where E,, (-) means E(-|G,,) with G, = 0(Wo,e1,...,6m). But | Xipmmllq < | X1llg < o0
and [|Ep (Xitmm)llg < Em (Xktm,m)|loo < 1,00(k). Hence, the lemma follows by con-
sidering (3.12). [

For the next lemma, we recall the notations (3.3) and (3.6) for IF,,, and Yj(l).

LEMMA 4.6. Assume that p has a finite moment of order q = 3. Then for f(x) €
{cosx,sinx}, we have

(1)
e [1 (2] -l )| e 1
In addition
.| ('f?%)} ~E[fsN/VD)] | < jm
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Proof of Lemma 4.6. Since the derivative of = + f(tx) is t>-Lipschitz, making use of a
Taylor expansion as done in the proof of Item (2) of [7, Lemma 5.2], we have

49 |[Es, [£(t r )] - Elresn/ v

V2m
<[[Be. [#(t5=)] - Elresniva) | + L (1 RalllValle + I1Ral3).

Now note that Uy = 337, | X}, ,, where
Xim = X — Er, (Xpm) -

In the above formula, recall that X}, ,,, = E(Xklé',’j ma1) = fm(Er—mi1,. .- €x). Let (e)x
be an independent copy of (gx). Define

(4.10) Xim = Fm(Ehmits - Eoms E2mt1, - - k) and Uy = Z Xim-
k=2m+1

Clearly Uj is independent of [F,,,. Using again the fact that the derivative of x — f(tz) is
t2-Lipschitz, we get

@.11) HE]F [f(t\/zim)} —E[f(tsN/V2)] Hl

Us t2
<<‘IE[ (t2=)] —Elresnyv2 \+— Us — US|l | US N2 + U2 — UZ|12) .
1(t7=)] ~ ELF0sN/VD)| + 5 (102 = U5 el U5 e + 102~ U5 18)
But, by stationarity, || R2||2 = [[R1]|]2, and by Lemma 4.3, since x has a moment of or-
der ¢ = 3, we have |[R:[[2 < 1. Moreover, by using Lemma 4.5 and the fact that X}

is distributed as Xy ,,, we get that ||Uz||2 + [|[Us]l2 < v/m. On another hand, setting

gkm = U(SZ—m—o—l? e 75§m75k—m+17 e 82myE2mtls - - ,€k), we have
3m
V2 =Us13< Y 11Xk — Xill3
k=2m+1

+2 Z Z H(Xk,m - X:,m)E(XZ,m - sz’gk,m)nl .
k=2m+1¢=k+1

Now, for p > 1, || Xgm — X* mllp < 0p.oo(k —2m) and, for £ > k,

||E(Xk,m - Xl;k,m‘gk,m)”oo < 51700(5 - k) :

Since p has finite moment of order ¢ = 3, by (3.12), we obtain

102~ U513 < D Bch) + (D d1ek) < 1.
k=1 k=1

So, the inequalities (4.9) and (4.11) together with the above considerations, lead to
(4.12)

HEFM {f(tf/g;;)] —E[f(tsN/V?2)] H1 < ‘E[f(t;;imﬂ —E[f(tsN/v2)] ‘ + \;m .

2
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Next, note that Uy = =D S i1 Xktm,m and Sy, = D Sorm — Sm. So, taking into account that
x +— f(tzx) is t-Lipschitz, it follows that

Bl (1) B (]| < | e = K

But, by stationarity, [5, Lemma 24] and (3.12), we have

m
| > Kretmam = Xiem) || S mbrolm) < 1/m.,
k=1

implying that

i ()] el )] = o

Hence starting from (4.12) and taking into account (4.13), we derive that

@14 |[Bs, [£( 522(1—;)} ~E[f(sN/v2)] |

S t2 It

< [E[#(t=2)] - ELf(tsN/VR)]| + =+ Lo

£t )] LGNV | + 7+ g

Next note that x +— f(tz) is such that its first derivative is t2-Lipshitz. Hence, by the definition

of the Zolotarev distance of order 2 (see for instance the introduction of [7] for the definition
of those distances),

‘E[f(tj%)}—E[f(tsN/\@)H<t G2(Ps,, jyzs Gz )

Next we apply [7, Theorem 3.2] and derive that (since p has a finite moment of order g = 3),
42( S, /\/%,Gsz/g) <<m_1/2.
Note that the fact that the conditions (3.1), (3.4) and (3.5) required in [7, Theorem 3.2] hold
when 4 has a finite moment of order ¢ = 3 has been established in the proof of [4, Theorem
2]. Hence
)

S,
4.15 ’E[ (t—m)} f(tsN/V2 ‘ < —=
Starting from (4.14) and considering (4.15), the first part of Lemma 4.6 follows. Now to
prove the second part, we note that

[e=. [5(2 ~ BLreanyva),

S t2
<|[E[f (=) ] ~ Bl tsN/VD)|| + o (1Rl Rill2),
<|E[#(t 5= )] ~ElesN/ V| + 5 (IRl Sl + 171 15)
where we used the fact that .S,,, is independent of F,,,. Hence the second part of Lemma 4.6

follows by using (4.15) and by taking into account Lemma 4.3 and the fact that, by Lemma
4.5, ]|Smll2 < v/m. O

LEMMA 4.7. Let p € [2,3]. Assume that p has a finite moment of order ¢ = p + 1. Then
|Us — Us|lp < 1, where Uy is defined by (3.4) and Uy is defined by (4.10).
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Proof of Lemma 4.7. Let Zj ,,, := X}, — X;,, where X} is defined by (4.10). Using
once again [6, Proposition 3.1] with N =1, we get

3m 3m 1/2
102 =Uslp < > IEKkmlEm)lp+ (20-1) 3 %)
k=2m+1 1=2m+1
3m 3m 1/p
(X 1zl p-1) Y ala)
k=2m+1 i=2m+2
where, setting FJZ =0(Em42,--1E5,Epmiar- - Edy ), WE have
1 i—1
7
Vim =51 Ziml3+ > 1ZimE(Zim|F]) /2
j=2m+1
and
1 i—1
* — A
Am=5 2 NZiml (22, —EZ2)F)-
j=2m+1

But, for any integer k in [2m + 1,3m],
IE(X k[ Frm ) llp = IE(Xkm| Fam) lp < NE(X g m | Fom)lloo < 01,00 (k = 2m),
and, for2m+1<j5<¢—1,
IE(Zim | F oo < 20 E(Xim|Fj)lloo < 81,00(E — 7)) -
In addition, we infer that, for 2m +1 <5 <7 —1,
IE(ZE 0 — B(ZE )1 F ) lso < 4 sup E|Xijz Xi-jz — Xiejg Xi—jg | = 4n(i = j).
1.52€X

On another hand, for any r > 1 and any integer k € [2m + 1,3m],

r

E’Zk,m‘r - E‘fm(£k—m+1, e EmyE2mA41y - - ,Ek) - fm(fz—m-t,-la oo 7£§m7€2m+17 oo 7Ek)

g//E‘fm(ukm+17-~7u2m752m+1?”'7€k)

. 2m 2m
— fm(Vk—m+1s - s V2my E2m41, - - - ,Ek:)’ H dp(v;) H dp(u;)
i=k—m+1 i=k—m+1

4.16) < sup E|Xi_omz — Xp—omgl = 57';00 (k—2m).
z,§€X

So, taking into account the above computations, we infer that

1/2

102 = Uslly <" 1.00(k) + (D 8300 (0) + D 0p/200() D 1.(0))
k=1 =1 j=1 =1

S OILMEED S0 DC)
k=1 j=1 i=1

The lemma follows by taking into account (3.12), (4.8) and the fact that x4 has a moment of
orderg=p+ 1. O
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For the lemmas below, we recall the definitions (3.4), (3.5), (3.6) and (4.10) for Us, Ro,
Y(l) and UJ
2 2-

LEMMA 4.8. Let r €]2,3]. Assume that  has a finite moment of order r + 1. Let oy, =

W. Then for f(x) € {cosz,sinx}, we have

Y2(1) Us
[e. (¢ )] — B |1 (tam o
Proof of Lemma 4.8. Note that h = f/237" is such that |h"(x) — h"(y)| < |z — y|" 2.

Using the arguments developed in the proof of [7, Lemma 5.2, Item 3] and setting V' =
Uy+Ry—Ujand V=V + (1 —ay,)Uj, we get

)} Hl <tfrm=2.

(1) *

@17) 2773 = 1) x (2m)"/2[Ex, |1 <t§2z*m>] = (t“m\/iim)} |

< It {a (Bx, (V1) " (E(U7)

+ a2 (Ex, (V1) (B(U1M) ™ + Bz, (V1) ]
Next, note that, by Holder’s inequality,
E (ol (B, (V")) <E(al (Ba, (V")) + E(afy ™ x 1= am|) U5 |1

< el IV [l + ol 7HIT = cma e [1U3 -

Proceeding similarly for the two last terms in (4.17) and taking the expectation, we derive

S

< [t o = HIVIRITS 1771+ [ e 17T = a1 U5 117
+ 20t am 2 NVIRIUS 12 + 20 o 1772111 = amlIZIUS 17
+ 27V + 27 L = I7IU3 117

According to Lemmas 4.3 and 4.7, since p has a moment of order r + 1,
U5l = | U]l < v/m. On another hand,

V|| < 1. Moreover

10312 111 = amllr = || Es,, (T2 + R2)?) = \/Ex, (U5)?)

r

< | VEe, (@2 + R - U3 <IVIl-<1.

Since limy, 0o m LU |3 = s? > 0, it follows that for m large enough ||1 — ay,, <
m~1/2, The lemma follows from all the above considerations.

LEMMA 4.9. Let r €]2,3]. Assume that u has a finite moment of order r + 1. Recall the
Epp, (U24R2)?)

notation o, = /) —z2=22"_ Then for f(x) € {cosx,sinx}, we have
Er,,, (Us3)?)
Us smiV roo—1/2 —5/2
HIE]Fm 1 (tem 2m)} ~ Bz, [/ (tom ¥ )M1<< [t7m Y2 4 |tfm 572,

where s2, =E(S2)/m and N is a standard Gaussian random variable independent of F,.
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Proof of Lemma 4.9. Let W be distributed as W, and independent of W Let (sk) E>1

be an independent copy of (£x)r>1, independent of (W, Wy). Define S}, = k 1 X
where X; = o(e;, W}_;) — A, Note that S}, is independent of IF,,, and has the same law as
S In addition

* *

418 |[Bs, [f(tam \Z%)} ~Es, |f (mm%)ﬂ I

2m
It] 2] _5/2
< E|a,,| x E X Xilli € —=—= xmd m) < [tm =%
\/% | m| W H km — kH1 \/* 1,00( ) | |

On another hand, let h = f/23~" and note that |h"(z) — h”(y)| < |x — y|"~2. Hence, by the
definition of the Zolotarev distance of order r,

[ 1 (rom )| s [ (ren ") ], <2771 ¢ G (P, i G )

Next we apply [7, Theorem 3.2, Item 3.] and derive that since p has a moment of order at
least 3,

Cr( S, /m,Gsz /2) <Lm 1/2.

As we mentioned before, the fact that the conditions (3.1), (3.4) and (3.5) required in [7,
Theorem 3.2] hold when p has a moment of order at least 3 has been proved in the proof of
[4, Theorem 2]. Hence, since we have previously proved that ||, ||, < 1,

Sy smIN [t
419 [Be. |1 (ton =) | =B 1 (ten 2 ) ], <
(4.19) F,. |f o F,. |f Jm
Considering the upper bounds (4.18) and (4.19), the lemma follows. O

LEMMA 4.10. Let r €]2,3]. Assume that u has a finite moment of order ¢ = r + 1. Recall

W and s2, =E(S2,)/m. . Then, for f(x) € {cosx,sinx},

Jes. s (ton®3)] B [1 (SN, < s

where 1 = min(%, %) and N is a standard Gaussian random variable independent of F,,.

the notations o, =

Proof of Lemma 4.10. We have
SmIN sN
@20) ||Bx, [f (t“mﬁ)} ~Es, |/ (tﬁ)} I,
< EIN|(lamll1ls = sm| 45 x |1 = cuml1) -

But, since lim, 0o m|U; |13 = s* > 0,

1
11— a,|l1~ %HEFW((% + Ry)?) —

F, (U3)%)]]; -
On another hand
|Ee,, (U2 + R2)?) — Eg,, (Us)?)]|, < ||Eg,, (Us) —EU3) |, + | R2ll5 + 2| Ex,, (U2R2) |1 -
But, by stationarity,
2m 2m

[, @3) - 2@, = [En( 3 Kam) ~E( X Fin) .-
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Hence, by Lemma 4.2, since ¢ =r + 1,

B, (U3) — E(U3)||, < m* " Lz3 + 1,—3.
By stationarity and Lemma 4.3, we also have || Ra||2 = || R1||2 < 1. Therefore
Next, note that

|, <m* 125+ 1,3 + |[ s, (UsRo) |1 -

3m
1Ee,, (UaRo) = |[Be, (B2 > Xew)] -

=2m+1

Let h(m) be a positive integer less than m. Using stationarity, Lemma 4.3 and similar argu-
ments as those developed in the proof of Lemma 4.5, we first notice that

3Im 3Im
(e 3 x| <t 3 ] v

k=3m—h(m)+1 k=3m—h(m)+1

We handle now the term ||Er,, (R2 Zim%’j(ﬁ

of (ex)k>1. For 2m 41 < k < 3m, define

Xjm) 1. Let (€} )k>1 be an independent copy

X;c(m = fm(gl:—m—i-l? s ezma52m+17 .- 'gk’) )
where we recall that f,,, is defined as follows: X, ,,, = E(Xk\é'k ma1) = fm(Ek—mt1,- -, ER)
Using (3.13), note that
3m—h(m) 3m m
Yo IXkm = Xila < D Geolk—2m) < Y kW,
k=2m~+1 k=2m+1 k=1
Hence
3m—h(m)
H S (X — X,jj’m)H <mB21, 3 +1,_3log(m).
k=2m+1 2

This estimate combined with || Ra||2 < 1 entails

3m—h(m) 3m—h(m)

HEF (RZ Z Xk m)H <<m (3= T)/21r<3+1r SIOg "‘HE]F ( 2 Z Xl:,m)Hl
k=2m+1 k=2m+1

Since (Xk m)2m+1<k<3m is independent of IF,,,, we have E(X;’mﬂﬁ‘m) =0forany 2m+1<

k <3m. Hence

—h(m) 3m—h(m) Am
[, (e > Xi) | = e (2 Kb X Xew)|
=2m+ k=2m+1 {=3m+1
Next, note that if £ — m 4+ 1 > k + 1, conditionally to F,,, X ,’g’m is independent of X ,,,
which implies that E,, (X}, Xr,m) = 0. Hence

3m—h(m) 4m 3m—h(m) 4m—h(m)—
e 3 Xin 3 Kew)| =[Ee( X K 3 ESIR
k=2m+1 {=3m+1 =2m+1 {=3m+1

Now, for any 3m + 1 < ¢ <4m — h(m) — 1, let

h sk * *
Xe(’ﬂgm) ) f fm(Ez_m_,’_l, . ’53m—h(m)’€3m—h(m)+17 cee 5[) B
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and note that Er (X} mXé};gm)’*)) =0 for any k < 3m — h(m) and any ¢ > 3m + 1. So,
overall, setting ¢ = ¢q/(q¢ — 1),

3m—h(m) 3m—h(m) dm—h(m)—1
e (B2 > Ki)|, =B ( 3 Xiw 3 Ko=),
k=2m+1 k=2m+1 {=3m+1
3m—h(m dm—h(m)—1
k,x
H Z Xk: mH Z HX&m_XZ(,m)H‘I"
k=2m+1 {=3m+1

But || Xy, — Xélj;L*)Hq, < dg' 00(¢ — 3m + h(m)). Hence, taking into account (3.13) and
Lemma 4.5, we get

3m—h(m)

[ (e X i), < v > W<<m< )

Taking into account all the above considerations and selecting h(m) = m!/(?*=3)_ we derive
422)  m|l = am|li < (MBI 4 m2 M1, 5+ m W0 « ()2 2/

On another hand, since 52 > 0, |s — s,,| < s7![s? — s2,|. Hence by using Remark 2.1 and the
definition of s2,, we derive that

2
|s — sm| < - kZZlk\COV(XO,Xk)].
By the definition of §; o, |Cov(Xo, Xi)| < || Xo0][101,00(k). So, using (3.12), it follows that
(4.23) |s — sm| < m~ L.
Starting from (4.20) and taking into account (4.22) and (4.23), the lemma follows. ]

Combining Lemmas 4.8, 4.9 and 4.10, we derive

LEMMA 4.11.  Let r €]2,3]. Assume that p has a finite moment of order ¢ = r + 1. Then,

for f(z) € {cosz,sinx},

.| (t%ﬂ ~E[f(tsN/VR)] || < ldrm™ im0 /240,

where n = min(, "52).
Let R; be defined by (3.5). Proceeding similarly as to derive the previous lemma, we get

LEMMA 4.12.  Let r €]2,3]. Assume that p has a finite moment of order ¢ = r + 1. Then

for f(x) € {cosz,sinz},

[e-..|s @WH ~E[f(tsN/VD))|| <[t m Y2 4 a0/

where 1) = min(3;, "52).
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