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ABSTRACT: We consider a Hayden & Preskill like setup for both maximally chaotic and sub-
maximally chaotic quantum field theories. We act on the vacuum with an operator in a Rindler
like wedge R and transfer a small subregion I of R to the other wedge. The chaotic scrambling
dynamics of the QFT Rindler time evolution reveals the information in the other wedge. The
holographic dual of this process involves a particle excitation falling into the bulk and crossing
into the entanglement wedge of the complement to » = R\I. With the goal of studying the
locality of the emergent holographic theory we compute various quantum information measures
on the boundary that tell us when the particle has entered this entanglement wedge. In a
maximally chaotic theory, these measures indicate a sharp transition where the particle enters
the wedge exactly when the insertion is null separated from the quantum extremal surface
for r. For sub-maximally chaotic theories, we find a smoothed crossover at a delayed time
given in terms of the smaller Lyapunov exponent and dependent on the time-smearing scale
of the probe excitation. The information quantities that we consider include the full vacuum
modular energy R\ as well as the fidelity between the state with the particle and the state
without. Along the way, we find a new explicit formula for the modular Hamiltonian of two
intervals in an arbitrary 141 dimensional CFT to leading order in the small cross ratio limit.
We also give an explicit calculation of the Regge limit of the modular flowed chaos correlator
and find examples which do not saturate the modular chaos bound. Finally, we discuss the
extent to which our results reveal properties of the target of the probe excitation as a “stringy
quantum extremal surface” or simply quantify the probe itself thus giving a new approach to

studying the notion of longitudinal string spreading.
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1 Introduction

Quantum extremal surfaces exist in a variety of previously unforseen places [1-3]|. The position
of these surfaces must obey constraints set by the scrambling of quantum information, as first
detailed in the work of Hayden & Preskill [4]. For example, in the context of an AdS black
hole evaporating into a bath, Hayden & Preskill tell us that the quantum extremal surface
associated to the post-Page time radiation must be null separated from a slice on the AdS
boundary which is a scrambling time in the past. Since theories of gravity are expected to
be dual to quantum systems which saturate the bound on chaos [5, 6], a natural question is

what happens to the bulk picture of a quantum extremal surface sitting a scrambling time
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Figure 1. We consider a region LI which is given by the union of two disjoint boundary spheres. We
will be particularly interested in the limit where the radius of I, §¢, is small. The distance between L
and [ is controlled by r;y.

into the past if the dual quantum system is sub-mazimally chaotic.! Sub-maximally chaotic
quantum systems are expected to be dual to a bulk theory with a non-zero string length.
Our question can then effectively be rephrased as: how does a non-zero string length affect
our conventional notion of a quantum extremal surface? In this work, we will try to examine
this question by computing various boundary quantities that can sense the presence of an
excitation in the entanglement wedge of some boundary region. This will allow us to probe
the transition between when the particle enters or leaves the entanglement wedge.

To make our calculations concrete, we will focus on a scenario inspired by the work of
Hayden & Preskill [4]. Consider a CFT in the vacuum state in any dimension. Take the
region which is given by the union of a half space at t = 0, L = {(t = 0,z < 0,%%)} and a
small sphere I of radius 6¢ in the complementary half-space, L = R. The sphere is centered
about the point z = r; and also about the origin in the transverse coordinates. We denote
the complement by LI = r.

We will then perturb the vacuum by inserting an excitation located at ¥ =t + 2 = e’&.

IThis question was first presented to the authors by Douglas Stanford and Ahmed Almheiri.
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Figure 2. As we evolve the particle back in time, eventually it will pass from the entanglement wedge
of r to the entanglement wedge of LI.

We create this excitation by acting with a conformal primary ¢r to get the state
[¢5) = Zs p(a™ = —e,a" =€) [Q), (1.1)

where |Q2) is the vacuum state. Note that to make the state have finite energy, we have
included a small amount of Euclidean time evolution §, which can be implemented by acting
with an imaginary boost af{ ) 026/ S A‘SR/ZW, where op 1, is the vacuum reduced density
matrix for R, L. For a brief review of the full modular operator see Appendix A.

We then evolve this state back in time using the boost generator
iTR /2
[65) = AR [d5) (1.2)

At some point this excitation will move into the past of the sphere I. By boost symmetry of
the vacuum, the excitation in the bulk can always be localized within the quantum extremal
wedge of the boundary region R. On the other hand, the quantum extremal wedge of r
is actually strictly smaller than that of R. Indeed, the excitation will only remain in the
quantum extremal wedge of r until some (large) value of Tg. If we assume that the boundary
operator is dual to a massless field in the bulk, eventually the excitation will pass cleanly from

the wedge of r to the quantum extremal wedge of LI, as illustrated in Figure 2. While this



setup can be analyzed in any dimension, for simplicity we will work with a toy model in two
dimensions first introduced by [7]. The model involves two dimensional JT gravity coupled
to a 141 dimensional CFT. The gravitational theory is coupled to a non-gravitational bath
at finite temperature. In this setup, the region I is taken to be an interval in the right bath
while the region L is taken to be the whole left bath plus the left black hole exterior (see
Figure 4). In Section 8, we will come back to higher dimensions and argue that our results
are qualitatively unchanged.

Consider the fidelity on the region r between the state
|a) = cos(N) |Q2) + isin(N) |ps) (1.3)

and the vacuum |Q),

Fal$r) = sup (x| ULr |, (1.4)

where Ups is an arbitrary unitary on LI. For fixed non-zero 0 < A\ < 7/2 the fidelity in (1.4)
tells us the distinguishability of these two states reduced to r. If the fidelity is 1 then we can
safely conclude that the excitation has left the r entanglement wedge.

It is much simpler to compute the small A\ limit of this fidelity. In this limit, the fidelity

is close to one. Namely,
F(al:r) = 1= Ax (9, 7) + O(N) (1.5)

where y is often referred to as the fidelity susceptibility. If x vanishes, then we again conclude
that the excitation has left the r entanglement wedge.? As we will see explicitly in the 2-d toy
model first discussed in |7], for a maximally chaotic boundary theory the fidelity susceptibility
transitions to zero when the boundary operator ¢r(Tr) becomes null separated from the
quantum extremal surface of LI in the bulk.?

We also compute the susceptibility for boundary theories which are dual to bulk theories
with a non-zero string length.? For a theory with sub-maximal chaos which is expected to be

dual to a bulk theory with non-zero string length, we find several differences with the gravi-

2This conclusion is less obvious than at finite A, see Section 2.

3 After submission of this work, the authors were made aware of previous results using the fidelity of two
holographic CFT states to image extremal surfaces in the bulk [35, 36]. While these two works focused on
the classical position of the extremal surface, we concern ourselves here with the 1/N or quantum corrections
to the quantum extremal surface as well as the finite coupling corrections to the fidelity. We thank Tadashi
Takaynagi for discussions on this point.

4Strictly speaking, we will use a phenomenological model put forth in [8] for the effect of non-zero string
length. We discuss more realistic models briefly in Section 8.



tational case. In particular, the transition between the excitation being in the entanglement
wedge of r and being in the entanglement wedge of LI is less sharp than for a theory with zero
string length. Moreover, in the sub-maximally chaotic case the transition time itself is shifted
by a d-dependent amount. In 7, we will provide a speculative interpretation of these results in
terms of stringy physics in the bulk. We now provide a detailed overview of the main points

of the paper which should be sufficient for the reader uninterested in computational details.

A detailed summary of results

A cruder but more easily computable diagnostic of when the probe excitation has left the

entanglement wedge of r is the difference
S(WrQ 1) — S(9x|Q LI) = —sin’(A) (log A, ), (1.6)

where S(¢|Q2; B) is the relative entropy between the states |1y) defined in (1.3) and the vacuum
|2) reduced to the region B. Here the operator log A, = —logo, + logors is the vacuum
modular operator for the region r. For regions which are Rindler wedges, log A, generates
boosts. For more general regions, log A, generates complicated non-local flows [9]. Note that
in the equality in (1.6), we have used purity of the global state together with the definition of

the relative entropy as
S(¢|Q2; 1) = Trlp, log pr] — Tr[p, log o,]. (1.7)

where pyx is the reduced density matrix for subregion X and global state |¢). We will refer to
the quantity in (1.6) as the full modular energy. The relative entropy is a good measure of the
distinguishability of two quantum states; the relative entropy is non-negative and zero if and
only if p, = 0. Furthermore, when the relative entropy is large, the states are in some sense
easier to distinguish operationally. Such boundary states accordingly have “more” differing
states of the bulk quantum fields on their entanglement wedges via the equivalence between
bulk and boundary relative entropies [10]. Thus, one might expect that when the difference
in (1.6) is positive, the excitation is mostly contained in the entanglement wedge of r and
when it is negative the excitation is mostly contained in the entanglement wedge of LI. The
quantity in (1.6) has the advantage that it is simpler to compute. The downside is that there
is no rigorous reason (that we know of) for why such a quantity should encode whether an
excitation is in the entanglement wedge or not.

In order to compute this quantity, we will need the form of the half-sided modular Hamil-



tonian for the region LI, Hyr, where —log A, = 2n(H, — Hry). We thus begin in Section
3 by computing Hpy; via a replica trick in the limit where the size of I, §¢, is small. The
modular Hamiltonian for LI can be computed via a replica trick where twist operators are
inserted at the boundaries of LI. Since [ is small, we can do a twist OPE and consider the
leading contribution to the OPE, which will be governed by the lightest operators, O, in the
spectrum of the CFT, as was the case in the work of [11]. Roughly speaking, what we find is
that Hpr is quadratic in this lightest operator

Hup = HE + B+ [ dody f(a.) 0(@)0() +0((602+) (1.8)
where f(x,y) ~ (6)*20 with Ao the conformal dimension of O. H ZLO‘} are the vacuum modular
Hamiltonians for L, I respectively. In a CFT, these Hamiltonians generate a local flow and
so are just given by integrals of the stress tensor over the region. In Section 3, we will find
explicit forms for f(x,y) in the small 6¢ limit. It is interesting to note the similarity between
the Hamiltonian discussed in (1.8) and those discussed in the context of traversable wormholes
[12, 13|, where a bilocal interaction was added between the two sides of the thermo-field double.
Here the analog of the thermo-field double is just the vacuum, viewed as thermally entangled
between two Rindler wedges. In the bulk dual of maximally chaotic theories, the action of
unitaries generated by bilocal Hamiltonians such as in (1.8) is often just a simple null shift
as discussed in [14]. We will find this to be the case in our work as well. The result (1.8) is
also reminiscent of the connection between modular Hamiltonians and particle worldline time
evolution as discussed in [15].

With equation (1.8) in hand, we consider a toy model in Section 4 which will allow us
to compute the full modular energy in (1.6). The setup will be to consider a theory dual to
a 1+1 dimensional CFT coupled to JT gravity on AdSs. The gravitating region will also be
coupled to a flat space bath at finite temperature. This setup was first considered in |7, 16].
In this case, the expectation value of the full modular operator in (1.6) is given by an out-of-
time-order correlator (OTOC) of the type studied in |6, 8]. We will find that the answer is

(up to overall coefficients)

Ay sin®(N)

S(alQ7) = S(Pa|Q; LT) ~ 5

(1 - e_TRda:g) , (1.9)

where 5x25 is the null shift, in Kruskal coordinates, of the quantum extremal surface for region
LI due to the inclusion of I. Here Ay is the dimension of the probe operator ¢ and ¢ is the

amount of Euclidean evolution introduced in (1.1). We see immediately from this formula that



the difference in relative entropies changes sign precisely when the excitation is null separated
from the vacuum entanglement wedge for r (which is the same as the entanglement wedge for
LI).

To get this formula, we had to assume the boundary theory was maximally chaotic. We
can mock up the case where the boundary theory has a sub-maximal Lyapunov exponent by
following [8]. The OTOC needed to compute (1.6) can be calculated via a bulk scattering
amplitude in the eikonal limit. The gravitational scattering matrix in the eikonal limit is
just a simple phase in momentum space, namely e0(s) = ¢=iGNP+I- where p+ and g_ are the
null momenta of the particles being scattered [17-20]. We will model the stringy scattering
amplitude by modifying the scattering phase to have the form e’/ = ¢~ G~ (ip+q—)J71, where
1 < J < 2 is the so-called Pomeron spin. A theory with maximal chaos has J = 2, which is
the spin of a graviton. On the boundary side, we can think in terms of a conformal diagram
between the 1) and O operators. In the maximally chaotic case, the leading contribution to the
diagram comes from stress tensor exchange. In the sub-maximally chaotic case, the exchange
includes an effective “Pomeron” operator which resums the lightest Regge trajectory. The
stringy physics is encoded in this Pomeron exchange [21-23]. Using this modified scattering

phase, we find in Section 4

Ay sin?(N)

S| r) — S(aA[Q; LI) ~ 5

(1 — 52T e~ (UDTrgy( . A¢)/2) . (1.10)

This formula has two interesting features:
e The change in sign occurs at an earlier time due to the smaller Lyapunov exponent.

e The exact time at which this transition occurs depends both on the smearing length o
and the dimension of the perturbing operator Ay. For J = 2, dx(J = 2) is independent
of A(z)

Having computed the full modular energy in (1.6), we turn to computing the fidelity
susceptibility between the state [¢)) defined in (1.3), and the vacuum. We use the results of
Hijano & May [24] to calculate the fidelity (susceptibility) explicitly. In order to compute the

susceptibility, we find that we need to first compute the modular flowed correlation function

Fltrotrs) = oo ot o " dr(tr)) (1.11)

in the limit of large t;, — tg, which we will refer to as the Regge limit. More explicitly, one

can directly relate the susceptibility to an integral over modular flow parameter, s, of the



correlator in (1.11). See Appendix D for details. Similar correlation functions to that in
(1.11) were computed in the proof of the quantum null energy condition [25, 26]. We compute
this correlation function in Section 5 for theories with both maximal and sub-maximal chaos.
It was shown in [26, 27| that correlation functions like that in (1.11) obey a version of the
chaos bound, where the modular evolution parameter s plays the role of time. We find
that for the correlator in (1.11), the modular Lyapunov exponent is just the same as the
more standard Lyapunov exponent defined in terms of out-of-time-order correlators of local
operators. Furthermore, we argue that F must obey a reality condition in the complex s-plane
and we prove that our answer obeys this reality condition for 1 < J < 2.

In Section 6, we use the results for the correlator in (1.11) to compute the fidelity
susceptibility x (1, §2). We argue that for probe operators of integer dimension Ay, as J — 2
the fidelity approaches a step function in the limit where the smearing scale d goes to zero.
For the sub-maximally chaotic case, we compute the fidelity susceptibility when Ay =1/2 in
the small § limit and at large e~7%. We find that the fidelity takes the form

F(alr) ~ 1 =222 (exp (—(c 62())0* e T 77) £ 0(9)) + 00 (112)

where ¢ is an order unity numerical coefficient and 6z(J) = dz(J, Ay = 1/2) is the same
number that appears in (1.10). We also can compute the fidelity numerically for special J,
namely J = 3/2. We find numerical agreement with (1.12). We see that the fidelity approaches
the value one more slowly and the time at which it gets close to one depends logarithmically
on ¢ at small 0. This agrees with the dependence on ¢ of the turnover time, T}, where (1.10)
becomes negative. Furthermore, we see that the turnover gets sharper as J approaches 2,
which is the gravity limit. Our numerical results are presented in Figures 6 and 5.

In Section 7, we discuss possible bulk interpretations of these results. We firstly discuss
how we might interpret our results in terms of a “stringy” notion of the quantum extremal
surface. Since the bulk theory no longer has a sharp notion of locality we expect a stringy QES
to also not be local - and indeed this is indicated by the smoothed transition of x as a function
Tr. However we also point out that such an interpretation cannot completely account for our
computation - in particular we cannot account for the strong dependence of the crossover time
on the smearing scale §. As a counterpoint, we then discuss whether our results could instead
be interpreted in terms of longitudinal string spreading, first predicted in [28] and explored in
[20-32]. Our results suggest that in a theory with non-zero ¢4 the probe string remains in the
entanglement wedge of r for a longer time. This might suggest that the string’s wavefunction

is more spread out in the longitudinal direction (the z* direction in Kruskal coordinates).



Figure 3. The setup we consider in a 1+1 dimensional CFT.

One can try to read off the longitudinal size of the excitation by finding a region LI from
which the excitation is just barely reconstructable. A naive estimate on the size of the string
is then 6z .~ 5w5(LI) —eTr. We find

string

1
+ Tr 2
0% ying ~ (2 — J)e Flog (rféeTR) +0((2-J)%). (1.13)

Remembering that 2 — J is proportional to the string length in more realistic models, we
see that this formula describes an object which is spreading logarithmically but also length
contracting. In this case the length contraction wins out. We compare this with previously
discussed calculations of longitudinal string spreading in [33, 34].

Finally in Section 8, we end with a discussion of how our results generalize to more
realistic models in higher dimensions. We also comment on a connection between the modular
flowed correlator in (1.11) and the expectation value of continuous spin null energy operators

in modular flowed states.

2 The Setup

In this section we describe the setup which will be used throughout this work. We also fix
the notation and conventions adapted to this setup. Our goal in this work is to compute
a boundary quantity which is sensitive to the position of a quantum extremal surface in the
bulk. To accomplish this goal, we will consider a variant of the Hayden & Preskill [4] protocol,
adapted to the vacuum state of a CFT in arbitrary dimensions, which we now describe.
Consider the vacuum state of a CFTy on R4 11 We will be interested in studying

the quantum extremal surface in the bulk associated to the boundary region, which we will



denote LI = L U I, where L is the Rindler wedge L = {(¢,z,vy")|z <0, * <t < —z} with
i=1,...d — 2. The region I will be the domain of dependence associated to a sphere at t =0
of radius 6¢/2 centered at y* = 0 and x = r;. We will denote the complementary region of LI
as LI = r. We will also denote the complement of L by R. The notation is laid out in Figure
3.

In this paper, we consider the “long distance” limit, where §¢/r; < 1, as a simplifying
limit. We expect the qualitative features of our results to generalize away from this limit. For
small §¢/r, the quantum extremal surface (QES) associated to LI will be slightly displaced
from the AdS-Rindler horizon. The displacement will be, to leading order, determined by
the entanglement due to bulk quantum fields. In principle, the position of the QES can be

computed by solving the equation

0% 1 5Shu

AGy ~  Jn oxXt

(2.1)

where (1) is the null-expansion of QES. Here, the position of the surface can be described
via embedding functions X* (o) with o the internal coordinates of the surface and h is the
induced area element of the surface. Entanglement wedge nesting [37] dictates that the QES
of LI must be as large as that of L alone. Since this statement is only saturated in highly
symmetric cases, we expect the QES of LI to be strictly larger than that of L, which we shall
see explicitly.

Modeling after the Hayden & Preskill protocol, we drop a message (particle) from the far
past into the bulk. To determine when the message is reconstructable from LI we consider a
code subspace which is spanned by the vacuum and the state |¢5) defined in (1.1), which we

repeat here

|65) = ZsARoR(Tr) Q) - (2.2)

Here |2) is the vacuum state, ¢ is some conformal primary of dimension Ay and Z; =
(25sin(8))?29 is the normalization. We assume that Ay is small enough so that we can neglect
backreaction due to this insertion.

Note that we are evolving ¢ with the boost generator around z= = z* = 0, which is
Kpgr. We have included some amount of Euclidean time evolution to make [¢)) normalizable.
For small §, one can replace this Euclidean evolution with a small amount of Lorentzian time

smearing to project out high energy contributions.

,10,



At Tr = 0, ¢r(Tg) is an operator in® the commutant of LI, assuming 0 < X < r—8§//2.
In other words, ¢r(Tr = 0) is in the algebra associated to » = LI. When Ty is large
and negative, we can imagine that this insertion corresponds to a shockwave in the bulk
propagating along a light ray. Such states have been discussed before in [38]. As we move Tg
to more and more negative values, eventually the shockwave will cross out of the entanglement
wedge of . Our goal is to devise a boundary quantity which senses when this transition occurs.
Our main tool will be entanglement wedge reconstruction [39] interpreted in an error correcting

language [40].

2.1 Reconstructing the excitation

To identify when the particle leaves the entanglement wedge of r, we need to know when the
two dimensional code subspace spanned by the vacuum and the state with the particle, |¢s), is
reconstructable from LI. Note that by symmetry, (¢s|Q2) = 0. To quantify when this qubit’s
worth of information is reconstructable from LI, we can imagine maximally entangling a qubit

in Eve’s system with the qubit in the LR system to form the state

D1 (T)) = jﬁ (10) 5 192) 1+ 1100 165 (T} 1) (2.3)

If the mutual information I(E,7)s ~ 0 then there exists an isometry V, that approx-

LI—ILEE'
imately extracts the entanglement with the references on the LI Hilbert space:

Viropige) [®Lire) = ‘EE/> @ [Pg,rp) (2.4)

with ‘EE’ > = % (|00) 4 |11)). The existence of such an isometry guarantees that any single
qubit operator on Eve’s system can be represented as an operator acting only on LI. Unfortu-
nately, computing I(FE,r)g as a function of Ty is difficult so in this work we opt for studying
a different object.

To this aim, consider the converse: if we know that the logical X and Y operators, defined

as

ox = |¢s) (2 + [2) (¢s]
oy =i(|ps) (Q —[2) (¢s]) (2.5)

5This operator is unbounded so it does not belong to the usual notion of an algebra, mathematically it
should be thought of as being affiliated to the algebra - meaning that the spectral projections are in the algebra.
We will not worry about making this distinction moving forward.

— 11 —



can be reconstructed on the code-subspace from LI, then we can conclude that I(E : r)p =0
[41]. To find when ox and oy are reconstructable on LI, consider the fidelity on the region

r between the states
") = e Q) (2.6)

and the vacuum |Q),

P00 = ol (617 )]

Q;r) = sup , (2.7)
ULt

where the previously defined 1, in (1.3) corresponds to d}f . We will often suppress the
superscript on ¥, when a given equation holds for both [¢5) and [/} ). The fidelity in (2.7)
tells us how well we can reconstruct the action of oxy when just given access to unitaries on
LI

In more detail, when the bulk excitation is well localized within the QES of LI, it should
be reconstructable from LI. This means that for both logical unitaries e*?X.¥ | where ox and
oy are the two Pauli operators on the two-dimensional code subspace spanned by [€2) and
|ps), there should exist unitaries Ufl’y which act identically to e**?X.Y on the code subspace.

In equations,
XY XY i XY
UL | Upp Q) ey |Q) = gy ) . (2.8)

It is clear from the definition in (2.7) that this condition is then directly measured by the
quantum fidelity between |¢y) and [Q).

We can also consider taking the small A limit so that [¢¥) = [2) + i) [¢s) + O(A?) and
[WY) = Q) — X|ps) + O(A?). In this limit, the fidelity is close to one. Namely,

P |90r) =1 = 3%, Q1) + O(A%) (2.9)

where x is often referred to as the fidelity susceptibility. When the fidelity susceptibility
vanishes so that the fidelity is even closer to one, F\(¢s|Q) ~ 1 — O(A*), then we know that

there exists a unitary Urr such that

USY [oY) = 19) + 0(02). (2.10)

5Note that the fidelity is always less than or equal to one and so only even powers of A can appear as the
leading order correction to one.

- 12 —



Since A is small, we can assume that the maximizing unitary Uﬁ’y can also be expanded in
A\ as Ui(l’y =1+i\hxy — %2(5hx7y)2 + ... with dhx y Hermitian. Plugging this into (2.10)
tells us that dhxy |Q) = oxy [Q?). Strictly speaking, this equality is not enough to claim
that we can reconstruct the whole two-dimensional code subspace. For that, we also need
the equality (5h§(7y |2) = |2) so that we also get the algebra correct. To get this, one needs
to argue that the fidelity is one up to order A\® corrections.” Finding when F = 1 — O(\%)
requires computing the fidelity up to order A* which is more involved.

In this work, we opt for just computing the fidelity susceptibility x (%Y, Q) and looking
for when it vanishes. As we will see, for a maximally chaotic boundary theory, we find that
the fidelity susceptibility transitions to zero when the boundary operator ¢r(Tr) becomes
null separated from the quantum extremal surface of LI in the bulk. In the § — 0 limit, the
transition becomes sharp. Since we know from general reasoning about entanglement wedge
reconstruction in gravitational theories that the order A* term in the fidelity should also go
to zero at this time, this suggests to us that the order A* term in the fidelity is controlled by
similar correlators as the susceptibility and so will vanish at the same time as the susceptibility
regardless of the bulk string length. In the remainder of this work, we will assume that the
timescale for the transition of the order A* term is the same as for the susceptibility. The reader
should keep the caveat discussed here in mind. We could in principle prove this assumption

by going to higher orders in A but we leave that for future work.

2.2 Other information measures of the transition

As discussed in the introduction, we will be interested in states which are perturbatively close
to the vacuum A < 1, and so we can use the work of [24] to expand the fidelity to leading order
in A. This will be the content of Section 6. Since this is technically involved, however, we first
introduce a different quantity which captures the same qualitative aspects of the transition
between the particle existing in EW (LI) versus EW ().

Consider the relative entropy defined as
S(plo) = Tr[plog p] — Tr[plogo]. (2.11)

The relative entropy S(p|o) is yet another measure of distinguishability between two states p

and o. Indeed, the relative entropy bounds the fidelity [42]

1— F(p,o) < e 2509, (2.12)

"We leave as an exercise for the reader that this is sufficient to get the equality 5h§(7y ) = Q).

,13,



When S(p|o) is large, the two states are more easily distinguishable.® On the other hand,
when S(p|o) is small, the states are indistinguishable.

As described in the introduction, when S(pf*|o2) is large, the excitation is well localized
in r. Here p}m is the reduced density matrix of the state |¢)y) on 7 and o, is the reduced
density matrix of the vacuum on r. When the relative entropy on r is small, we know from

equation (2.12) that the excitation has left EW (7). Thus one might expect that the quantity
S(p¥*or) = S(pilorr) (2.13)
Pr-|Or PrIlOLI 8

is a measure of when the excitation has left the entanglement wedge of r. The point at which
this quantity crosses from positive to negative should be roughly when the majority of the
excitation has transitioned out of EW (r).

Using purity of the global state, we can write this difference of relative entropies as the

full modular energy
S0 lor) — S(filows) = 2m (Hyy, — 2 (Hus)y, = — (05 Bay), (214)
where we have used the definition of the “full” modular operator,
Agy =0, ® 0;} = ¢ 2mHr @ 2mHLL (2.15)

in terms of the “half” modular Hamiltonians H,, Hyr;. As we will see, the full modular energy
is much simpler to compute than the fidelity, so we will start there. Computing the full
modular energy will require understanding the modular Hamiltonian for LI, Hy;. In general,
finding explicit formulae for Hpy is prohibitively difficult. We will find that progress can be
made in the large distance limit, 6¢/r; < 1.

Before turning to computing Hy; in the large distance limit, we describe a toy model in
two dimensions which we use to more explicitly illustrate our formulae and compute exact

results.

2.3 Solvable toy model in AdS»

As we will show, the information measures introduced in the previous subsection can be di-

rectly related to (integrals of) out-of-time-ordered correlators, similar to those considered in

8This statement should be treated with some caution: the relative entropy is sometimes a bit too fine
grained a measure of distinguishability. The relative entropy can in principle be large even when the fidelity
is close to one. The real operational distinguishability of the two states is given by the trace-norm distance,
which upper and lower bounds the fidelity via the Fuchs Van de Graaf inequalities.
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[8]. We will be interested in studying the non-zero string length corrections to these correla-
tors. In higher dimensions, computing such OTOCs can be complicated by the presence of a
direction transverse to the axis of scattering. In order to ignore this subtlety and make some
of our computations more tractable, we consider a model first described in [16].

We consider a theory of JT gravity coupled to a generalized free theory in AdSs. We look
at the theory at finite temperature and place it in equilibrium with a bath. The metric in
the bath will be that of flat space. There will be transparent boundary conditions between
the AdS, region and the flat space bath region. As discussed in |7, 16|, we should think of
this description as a coarse grained description. The true microscopic description is given by
two 0+1 dimensional quantum systems coupled to a 1+1 dimensional flat space theory. We
imagine that the total system is in the thermofield double. Following the convention of [7],

we take the action of the gravitational system to be

I= / /=g (6R + 26 — d0)) + Iopr (2.16)

where ¢ is the dilaton and ¢q is the extremal entropy of the black hole. Here Ioppr will be
the action of K decoupled CFTs. We take the limit that 1/Gx > K > 1 in order to enhance
quantum effects due to bulk entanglement.

In this case, the region LI will be given by the union of the whole left bath plus quantum
system — L — and a small interval I in the right, flat space bath, as in Figure 4. As discussed
in [16], there is a corresponding quantum extremal surface in the coarse grained description
(the “bulk” dual to the microscopic description). This surface then lies in the exterior of the

AdS, black hole closest to the interval I. We consider the metric in the AdSs region to be

Adxtdx~
2 _
where we have set fags = 1.
The dilaton profile takes the form?
_ A 1 —ata™

The position of the quantum extremal surface for LI can be found by extremizing the gener-

9Note that there are two “Gn"’s in JT gravity. One Gy, inversely proportional to the extremal entropy,
controls the suppression of higher topologies. The other controls the coupling to the Schwarzian mode of bulk

fields. The Gn we use here is the latter. In the notation of [7], Gy = %
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Figure 4. Our setup in a model with JT gravity coupled to a 1+1 dimensional CFT, which is also
coupled to an external bath.

alized entropy functional
Sgen(e(LI)) = (x5, 75) + Spuik (), 24) (2.19)

where e(LI) is a region in the bulk which includes the whole left black hole exterior (plus
bath) and a bit in the right exterior, see Figure 4. The endpoints of e(LI) in right exterior
lie at 2t = x$ The quantum extremal surface can be found by extremizing over all the
endpoints of e(LI) which do not lie in the bath region.

Because the generalized entropy involves a bulk entropy term, it is quite hard to compute
in general, especially when the region is disconnected. Thankfully we can make progress in

the limit where [ is small and the bulk matter is given by a CFT, with conformal dimension

J for the lightest operator in its spectrum. In that case, the answer was computed in [11] and
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is given by

Spuik(e(LI)) =

VAT (200 + 1) (5@)2% (2.20)

2180 +2T(2A0 + 3/2) \rr

where 04 is the length of the interval, I, r; is the null-coordinate distance from the quantum
extremal surface to I, and Ao is the conformal dimension of the field. Note that we will be
working here with purely right-moving fields in the bulk. Our results can be easily extended
to non-chiral fields.

In order to well separate the quantum extremal surface from the horizon, we imagine that
there are K flavors of this field which all contribute to support the quantum extremal surface.
For simplicity, we assume that 1 < K < 1/Gy. In that case, the quantum extremal surface
for LI lies close to the bifurcation surface at x+ = = = 0. Extremizing (2.19) with respect
to ™ gives us an equation for 2. We find that the surface lies at

1 VTAOT (200 + 1) 60220

Sz, = —GNK .
TQ = 4N 24A0+2F(2Ao+3/2)r?AOH

(2.21)

To probe the quantum extremal surface position, we need to scatter strings in the bulk.

In the eikonal limit, the gravitational scattering matrix is given just by a phase €92(%) with

ei02(s) _ eiGNpMI—’ (2.22)

where pyq_ is the center of mass energy of the collision. In string theory, this scattering phase

gets modified {17, 23]. We model a stringy bulk theory by using the scattering “phase”

¢107(s) — o=COn(=ipyq-)’~" (2.23)

Note that we put “phase” in quotes because this amplitude has magnitude less than one. As
discussed in 17, 23], this has to do with inelastic effects in string scattering. We will see that
the imaginary component of d; is key to preserving the necessary causality conditions in the
correlation functions we consider.

With this model in mind, we now turn to understanding the corrections to the modular

Hamiltonian for Hy; in the small I limit.
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3 Modular Hamiltonian in the Large Distance Limit

In this section, we use the replica trick to compute the form of the vacuum modular Hamilto-
nian for the region LI. We will summarize the main results, leaving the details to Appendix
B. To make the problem tractable in general, we work to leading order in the “large-distance
limit,” where the region I is a sphere far from L, relative to I’s size. The basic idea is to
extend the work of [11]. In a 141 dimensional CFT, this large distance limit is quantified by
taking the cross ratio associated to the four endpoints of the intervals L and I to be small.
See figure 3 for a reminder of the setup.

Our strategy will be to find a formula for the expectation value of Hy; in a dense set
of states and extract the form of the modular Hamiltonian from this expectation value. We
can compute the expectation value of the modular Hamiltonian via a replica trick, using the

formula

1 _
(Hrr)y = _%aﬂn:lTrW)Lledjzpz[l]a (3.1)

where the 1;, are state creation operators inserted some amount into Euclidean time. We will
attempt to compute Tr[¢L,0LI¢}L;PE1] at integer n and then continue in n.

This calculation can be done by computing correlation functions involving twist operators,
which are operators in the CFT®™ theory that can be thought of as living at the boundaries
of L and I and which implement the twisted boundary conditions. As before, we take the
small I limit so that we can do the OPE of the twist operator(s) at I’s boundary. Denoting
the I twist operators by ¥/ and the diameter of I by 6/, we have the formula

n

Sh~ (B gen | 14 (50220 ) ;s 0D0W 4 o(57220) (3.2)

Jj#k

where OU) = 1® ...0 ® ...1, with the O inserted in the j’th copy of the CFT. The analytic
continuation in n of the coefficients c¢;_j were computed by Agon & Faulkner around n = 1
in any dimension and are fixed by conformal symmetry. Note that there are no contributions
from single copy operators because (XL0WU)) can be computed by conformally transforming
to hyperbolic space, where the one-point function vanishes by symmetry. Furthermore, the

OPE coefficients ¢;_j depend only on the difference j — k because of replica symmetry.
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Plugging this ansatz into equation (3.1), we find that we need to compute

Telpf; "oprrd’]  Te[o} pryl] + (50220 = T 12012t
Tr[pL[] TI'[,OL] ( ) ;)Ck I‘[,O w Pr, ¢ ]
n—3n—2—j
+ (802203 N Tl L0V, pp ] ] (3.3)
j=0 k=1

—Jj— 1/20 j+1/2'

where OU) = pLJ Olp = pr Now we just need to analytically continue the

latter two terms in n. We follow the method in [11, 43] wherein we rewrite the sums as

contour integrals. We focus on the first of the two sums.

Analytically continuing the first sum

Following Agon & Faulkner, we write

i
[N}

e Tr[py L 0Wyr oy 20py 2]

k=0
= jqids kn(8) cn(—is)Tr[ph L O(—is + W)i/}LplL/zOplL/Qz/JT] (3.4)
where
O(—is) = p/*"0p, """ (3.5)
and
. 1 1 1
kn(3+2ﬂ'Z)—% <65_1 - es/n+27ri/n_1> (36)

and where the contour C circles the poles at Ims = 27wk for £k = 0,...,n — 2. Note that the
second term in k,(s) does not have poles at any of these values of k. We have added it in for
later convenience, following the strategy in [11].

The OPE coefficients ¢, (—is) were computed in [11] and are equal to a hyperbolic space
thermal two-point function. Other than the thermal periodicity condition, ¢, (—is+2mn—e¢) =
cn(—is + €), we will not need the explicit form of ¢, away from n = 1. At n = 1, they take

the form

1

ci(=is +7) = (2cosh(s/2))2R0"

(3.7)
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Note that this formula holds for any spacetime dimension d of the CFT. Below, we specialize
to d = 2 and resum a particular set of descendant contributions to d Hy;. For this we will
need more information about ¢,.

To analytically continue the sum in (3.4), we unwrap the contour C and we will be left with
two contributions, one along the Ims = 27(n — 2) + € line and the other along the Ims = —e
line. We can drop any contributions at infinity [43]. After deforming the contour, we choose

to set any phases of the form €27

in the denominators of k, to 1. This is a particular choice
in analytic continuation away from integer n, but it is the choice that has worked consistently
in several other papers [11, 43]. After making this choice, everything else is now writable in
terms of thermal correlators, for which the analytic continuation in n is just a continuation
in (inverse) temperature. For this, as always, we pick the obvious continuation provided by
continuing in temperature.

Having done this, we can shift the lower contour at Ims = —e down by 7 without hitting
a branch cut since 17, and O are separated by an angle of 7 (O is inserted in the I region).
We can also shift the upper contour by +iw. Taking the n — 1 limit, we find that the two

contours cancel off each other to give
Z kTI' TL 10 k)¢LP1/QOp1/21/JT]
k=0
~(n—1) / as S ) 0 2021 O(—is)i] + O(n — 1)?)

“oo  4cosh®(s/2)

~(n-— 1)/_ ds éfﬁiﬁ?(z))zﬁg +O((n=1)2). (3.9)

where we used (3.7) to plug in for ¢;.

Second Sum

For the second sum, we follow the same procedure. The details can be found in Appendix B.

The answer is

Z ca (21K) Tep P OFDOW ]

n—3n—2—j
=0 k=1

.

o (n — 1) / dedSk 1 4 1 %
27 4cosh2(sj/2) esktie — 1 = eSktsi 4]

61(—i8k + 6) X <¢TOL(—iSk — iSj)OL(—iSj)¢> + O((n — 1)2). (3.9)
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Plugging (3.9) and (3.8) into (3.3), we find the operator equation

i = / X 1 FOL(=r)p;O1(rr) (3.10)
" 2r ) (cosh(s/2))PBore PLYLTTDPL I _

i(60)280 ds;dsy, 1 1 ) . . ,
+ 12 / 4cosh]2(sj/2) prTeT—] + P c1(—isg + €)Or(—isy — is;)Op(—is;)

+0Hr

where —r; denotes the Rindler reflected position (i.e. O(—ry) = JO(ry)Jr. The final term,
0Hpy, is just the second term mapped under the conformal transformation which exchanges
the two intervals, L and 1. We will discuss this transformation further below. The d Hy; term
needs to be there since the full answer H; needs to be invariant under this transformation.
We do not see the contribution from §H;; expanding about small §¢. The dHyr; and dH;

terms will not affect most of our analysis below and so we do not focus on them.

3.1 Contributions from Descendants

When we compute the fidelity in Section 6, we need to also include contributions to the
modular Hamiltonian from a certain class of descendants. In particular, we can write the

twist operator OPE as
T nOn ~ (0 pon) | 14 (50720 > (o)™ om0WomoW + . (3.11)
j#k n,m=0

where the operators 0" O are located at the center of the interval I.
As we did for the non-descendant primaries O, we can extract these coefficients c?’,zn by

computing the overlap

(0_nonO9) (2)OP) (2)) ~ (o_pop) %

L+ (80)220 3 (60" cty (0°0D (0)0Y)(2)) (0P 0™ (0)0M) (') + ..
a,b=0
e a+b 2
_ 280 ath ab (=1)""T'(240 +1) 1
(0-non) x (80) a;)((%) T80 71T —m)T @Ay T 1= m) FhoTe(7)moT *
(3.12)

where for simplicity we have moved the center of the interval I to z = z = 0. We see that we
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can extract the coeflicients c?’,ls by expanding (0,,0,09)(2)O%)(2)) as a double power series

in small §¢/z, 6¢/z'. In Appendix B, we compute the coefficients c?;o’b for general b. We find

wij/n —imj/n b
Ca:()’b . 1 e +e 1
30 (emii/n — e—iwj/n)ZAO emij/n — e=imj/n | pl2b pb+280

+ (terms proportional to n — 1).
(3.13)

We can account for this infinite sum of descendant contributions to d Hy; by analytically

continuing

-2

3

> = mlpp oWy pp 20 0py 2. (3.14)
k=0 b

Running through the same steps as detailed after equation (3.4) above, we find that the

modular Hamiltonian takes the form

~1 1 1
§H :(SEQMO/d —(6¢/2)™ tanh(s/2) x O (re*)d°Or(—r) | .
= g 20 [ds s (bz; 57 (0/2)" tank'(s/2) x O (re)2"0; (=1)
(3.15)
One can neatly resum these contributions by writing
SHy = —— (5020 / ds ! % O (re*) O (7e¥) (3.16)
27 (2 cosh(s/2))2A0+2 '
where
— T+ Ty
T=—r_— =r+d/2. 1
x T T ot/ (3.17)

This map is a Mobius transformation that exchanges the interval I with the Rindler wedge L.
To see that (3.16) gives (3.15), we have expanded Oj(re®) in §¢/r; and dropped terms that
are higher order in §¢ (i.e. terms of the form 509901 where a > b). This form of dHpr will

be used below in Section 5.

4 Computing the Full Modular Energy

We turn now to computing the difference in relative entropies

S(al ) — S(WAlQ LI) = 2m (H,),, — 2 (Hyp),, = — (log A,y (4.1)
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where H,, Hy; are the vacuum Hamiltonians for the regions r and LI respectively. We aim
to prove our main result (1.10) by utilizing our knowledge of Hy; in the small interval limit.
Since [1)y) is just unitary evolution of the vacuum by the Pauli’s defined in (2.5), we can

write
—(log Ay),, = —27Z5 sin*(A) (pr(Tr — i6) (H, — Hrr) or(Tr +i6))q , (4.2)

where Zs is the overall normalization for the state ¢r(Tg +id) |©2) which is Z5 = (2sin(8))2¢.

We can compute this expectation value by analytically continuing the correlator

M(tp,tr) = —2m Z§ sin®(N) (¢ (tr) (Hy — Hpr) dr(tr))q = —27Z3 sin®(A) ([HLr, ¢L]éR)q
(4.3)

toty — —1Tgr —im + id from real t; and tg — T + id. In the second equality, we have used
that [H,, ¢1] = 0 since r is contained in R = L together with the equality H, |Q2) = Hp |S2).

In the previous section, we found that'®
Hyy=H,+H;+0H+0Hp, +6Hyy, (4.4)

where the § H operators are bilocal in the lightest operator O in the CFT. Plugging this into
(4.3), we see that

M(tL,tR)/(Zg SiHZ()\)) = =27 <[HL + 5HL17 ¢L]¢R>Q — 27 <[5HLL7 ¢L]¢R>Q . (45)

Assuming that we do not pick ¢ to be the same operator as O, this final term is suppressed
by Gn. Furthermore, unlike the first two terms, this final term does not grow like e 7% as
TR gets large and negative and so will just result in a G'y-suppressed shift in the time T at
which — (log A,) transitions from positive to negative. We thus ignore this term.

To compute the remaining terms, we plug in for 0 Hy; using (3.16) and find that M is

given by the sum of a two-point function and an out-of-time-order commutator

M(tr,tr)/(Z3 sin®(N)) = 2mi (D, ¢1) o) — 27T/Ldf€f($) ([OL(2)0}(2), ¢rloR) . (4.6)

ONote that when we plug in for Hp; from the previous section, strictly speaking we are using the equivalence
between bulk and boundary modular Hamiltonians in the 2-d setup in 2. The “boundary” region L is the whole
left bath together with the left boundary quantum mechanical system. The “bulk” region L, to the order we
work, can effectively be taken to just be the whole left black hole exterior together with the bath. We use the
same symbol for both since this distinction will be unimportant for us.
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Four-point functions of just this form have been computed in [8]. As just discussed, we are
looking for a term which is growing exponentially with Tr. The only ordering that produces

this growing piece is
~2n [ dof(@) (610306n). (4.7)
L

As discussed in [8, 17|, this can be computed via a bulk scattering amplitude. Working
in momentum-space, we can expand the boundary operators in the momentum basis and

integrate the wavefunctions against the scattering phase in (2.23). One then gets

—27r/dxf(x) (¢L07019R)
L

— 20K [ dpy (616" Ip2) (polon(e) [ daf(e) [ da- (O(@la-) (a- |0} (a)) 01
(4.8)

where the scattering phase id;(p;q_) = —Gn(—ipyq)’~" and the momentum wavefunctions

are given by

6A¢>(_tL+tR) (2Z'p+)2A¢
['(244) (=p+)

. , efos  (24q_)?Ro
(Or(z™ =7re)lg-) (¢-|OL(z~ =re’)) = T'(2A0) (Q(q—q)—)

o —t t
e~ i2(e7 L te R)p+9(

(dr(e")p+) (p+|PR(e™)) = —D+),

e~ ha-g(_q ). (4.9)

We will be interested in the probe limit, where ¢ does not backreact significantly on the
geometry. This limit can be implemented by expanding the exponential scattering phase in
small §7. At leading order in this expansion, we find a term which factorizes. This is just
the Wick contraction of the ¢’s and O’s amongst themselves. This term will be canceled by
a corresponding term in the other ordering of the four-point function in (4.6). At next order,

we find a term which grows exponentially with t;, — tgr:

_on / duf(z) (61,05 Ol R)
L

= —/dpJr (61, (e")|py) (py|PR(eR)) (—p+)‘]_1(5;ig) + (term which cancels out)  (4.10)
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with

~(J * s . _
diy = (80)*20 v K / 95 comi( 3/2 e / (OR(re®)la-) {g-|0L(re)) (ig-)"""!

C(Ao, J) VL(2A0 + DHI(J + 2AO)

= (6020 GNK
(6¢) N 7%Ao—i-J—l 22AO+1F(2AO + § +1 )F(QAO + 5 +1)

(4.11)

where

F(ZAO +J - 1)
F(2A0)4Ao+(J—1)'

C(Aop, J) = (4.12)

The p; integral in (4.10) can be done explicitly and we find

27 sin?(\)A _
—(logA,),, = sm((<5))¢ (cos(a) — 82l e U DTR sin?7 (5) + O((Gy) )) (4.13)
where
A
() _ 470C(Ag, J) ()
dxgy’ = —27TA¢ 6Ly (4.14)

For small 4, this precisely matches the form in (1.10). Equation (4.13) is the main result
of this section and one of the main results of this paper. We now reiterate a few comments

made in the introduction:

e As can be checked, for J = 2, the time at which this quantity switches from positive to
negative, T5(J = 2), is independent of Ay and only weakly dependent on the smearing

scale 6.

o For 1 < J < 2, Tg(J) is larger in magnitude than in the case of gravity, |T/(J)| >
TR(2)]-

e For 1 < J < 2, the time T§(J) depends on the smearing scale as T/(J) DO (2 —
J)log(sin(0)) which diverges with a smaller smearing scale. Of course, we should keep
in mind that for too small a smearing scale backreaction effects of the excitation will

become important.

The full modular Hamiltonian is equal to the difference in relative entropies between the
region r and its complement, LI = 7. Intuitively, when the relative entropy between the
excited state and the vacuum is large in r, it should be small in LI leading to a positive

difference in relative entropies. This is because when the relative entropy in r is large, this
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means the density matrices are more easily distinguishable in r. This means the excitation in
the state ¢ must be more well-localized in r’s entanglement wedge than in LI’s.

Thus, one might want to interpret T5(.J) as roughly the time at which the excitation in
|1) crosses from being mostly in 7’s entanglement wedge to being mostly in LI’s. Indeed, for

J = 2, the turnover time is at
eTr(7=2) = 5m8). (4.15)

Using equation (4.11), comparing with equation (2.21) and remembering that for near right-
boundary operators T = e’®, we see that the full modular energy transitions from positive
to negative precisely when the operator is null-separated from the quantum extremal surface.
Thus, this interpretation appears to check out in the case with bulk gravity, J = 2. Unfortu-
nately, we can be less sure for J < 2, since there is no rigorous reason why the difference in
the relative entropies we have computed needs to encode whether the string is reconstructable
from LI or 7.

The quantity that does rigorously encode which region the string’s state is reconstructable
from is the quantum fidelity susceptibility, which we turn to estimating in the next two

sections.

5 Computing modular flowed correlators in the Regge limit

In the previous section we computed the difference in relative entropies, which served as an
intuitive measure of when the perturbation transitions from the entanglement wedge of LI
to that of r. However, as discussed in the introduction, it is the fidelity (2.7) that rigorously
encodes which entanglement wedge the perturbation resides in. Therefore, our ultimate goal
is to compute it using perturbation theory. As will become clear in the next section, at leading

order in A the fidelity can be obtained from the correlator
— 1821 A —is/2m
F(to,tr;s) = (oL(tL) AL AL or(tr)). (5.1)

In this section we compute F(tr,tr;s) in the Regge limit, which we take to mean the
limit of large t; —tR, before turning to the fidelity in the next section. As in previous sections,
we work to leading order in the size of the interval, §¢. To proceed, note that we can write

(5.1) in terms of density matrices as

F(s) = gy pr oo oy o) (5.2)
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where we have temporarily suppressed the kinematics of the state insertions to avoid clutter. In
this form we can readily expand F(s) perturbatively in § Hy; using Baker-Campbell-Hausdorff
(BCH). At leading order in 64, the expression is

F(s) =(oLor) + 73/08 dt'([¢r, 0HL1(t')|or) + /OS dtdt'(6Hpr(t)¢r0Hri(t' ) or)

B ;/s dtdt' (T ((5HLI(t)5HLI(t,)) LdR) — ;/3 dtdt' (1T (5HLI(t)5HLI(t’)) PR)
) 0

(5.3)

where 0Hp(t) = (pr ® p[)it/27r6HL[(pL ® ,()1)_’75/27r and 7 and 7 denote time-ordering and
anti time-ordering with respect to evolution by (pr ® pr)™/*"
terms of the form (0HOH ¢p¢) and (pdHIH p) will not grow in the Regge limit, so we can

ignore them for our purposes.

, respectively. In the end, the

The form of the modular Hamiltonian that we found in Section 3 is'!

1
(2 cosh(s/2))2Rro+2

SHy, = —%(55)%0 / ds Op(116)0, (7). (5.4)
At face value it would appear as if equation (5.3) includes terms subleading in 64 by going to
second order in the BCH formula (5.3). However, from (5.4), note that the second order term
in BCH will contain, at leading order in 1/N, a Wick contraction between the two O; inser-
tions. Since we are working perturbatively in §¢, this contraction generates an enhancement
1/(60)?20 essentially due to both operators being inserted within the same small interval.
Thus the second term in (5.3) actually contributes at the same order as the naive leading
term.!?

In order to proceed, we break up the computation of (5.3) into three parts. At leading
order in 1/N, both terms in (5.3) involve four-point functions analogous to those in Section
4. Therefore, we compute these in the Regge limit in the same way by mapping them onto a
bulk scattering process. We allow for the exchange of operators of spin 1 < J < 2 between
the scattered particles. In Section 5.1 we first compute (5.3) to linear order in Gy. In Section
5.2 we show that the result satisfies an important consistency condition that is interesting in
its own right. Finally in Section 5.3 we show that the result exponentiates in terms of Gy,

when working at large K.

1We will drop the indices on the O’s and implicitly sum over all K flavors.

120ne might worry that for this reason we need to include an infinite number of terms from BCH. One can
check that the third term in (5.3) is the only one which receives a large enough 1/6¢ enhancement to compete
with the second term in (5.3).
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5.1 Computing F(s) at linear order in Gy

We start by working out 0 Hr;(t). The pr, factor simply corresponds to a Rindler time trans-

lation of Op. The p; factor does the same to Oy, up to an overall conformal factor:

OI(rles)pI QAO(S t)Or(rres=t), (5.5)
where
_ cosh?(s/2)
Ust) = cosh?((s +1)/2) (5.6)

See Appendix C for more details.

Let us now denote the first and second terms in (5.3) by Fi(s) and Fa(s), respectively.
To begin with, note that both F; and F» contain multiple operator orderings. However, since
we are working in the Regge limit we only need to keep the growing terms, which corresponds
to the ordering (¢ OrLOR®R).

In the Regge limit, the first term is easily evaluated:

Fils) ~ i | " dt{6L5H (1)6R)

0

i 5 ds’ cosh?20 (s’ /2
:_(55)2%/0 dt/coshm G 4,00 ) Or (e

27m2280+2 0+2(5/2) cosh?20((s' — t)/2)

N 0 i (-1, (60)*20 in(J—1)/2
~ O(Gy) + KGye 7C(A0,J)C(A¢,J)6

92A0+29 r%Ao—l—J—l
s ds' (J-1)(—s"+t)/2
x | dt / - — T (5.7)
0 cosh?(s'/2) cosh*20T/=1((s — ¢)/2)
where
A -1
(A, ) = R0+ T = 1) (5.8)

F<2A0)4Ao+(.]—1) )

By shifting 8" — s’ + t and doing the ¢ integral we are left with

1 KGye(7-DTr (9¢)>20

F1(8) ~ — 5585735, 280+T-1
I

/
(Do, NC(A ) [ds— 9769
(B0, J)C(Ag )/ Scosh4A0+‘]_1(s’/2)

(5.9)
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where we define

/
gs(s', s) = 2ie!™D/2g=(J=1)s'/2 <tanh(s’/2) — tanh (S ;S)> . (5.10)

Now we evaluate the second term in the Regge limit. To start with we have

6€ 4A0 dsds’
Fols) = dtdt
2 cosh 5/2 2Ao+2(2 COSh( //2))2Ao+2

X (Q(S If)Q(S t)) <OL(7"[€S t)O[(?“jes t)quOL(r]e )O[(T[@S,_t)¢3> (5.11)

Naively this looks higher order in §¢ than the first term. However, note that at leading order

in 1/N one of the possible Wick contractions is between the two Oy insertions:

Fol g / dtdt’ / dsds
2( 2 cosh(s/2))280+2(2 cosh(s’/2))2A0+2

X (Q(S, t)Q(S , T )) <O[(’I”[63_t)01(7‘[€8/_t)><OL(T[@Sit)¢LOL(T[€sl7t)d)R> (5.12)

The two-point function can be computed from the results in Appendix C:

p; e Noy-imBogang COSHP20 ((s — 1)/2) cosh®20((s' — t') /2)
(Or(rre=))Or(rre ™)) = (60 2 > smh2AO((8 —s —t+t —ie€)/2) '

(5.13)

The important point is that this diverges like (6¢)~22¢ which arises from the fact that both
Oy insertions are in the same small interval and hence contain a leading UV divergence as
o¢ — 0.

Now, the remaining four-point function in (5.12) can be evaluated in the Regge limit by
analytically continuing from the growing correlator (¢ OrOgr¢r) without crossing any branch

cuts,

(OL(r1e* Hpr0L(r1e” ) or) = (Or(rre* DO (rie” ) dr)|. : (5.14)

t——im

which can be evaluated as before in terms of bulk scattering. The result is

! T o¢ 200 i i (J—
.FZ(S) ~ O(G?V) — WKGNe v 1)TRT§AO)+J10(AO’ J)C(A¢, J)€2 Ao+im(J—1)/2
* ! (J—1)(—s—s'+t+t')/2
X / dtdt// 2 dsds 2 . 1 4A i—l - (5]_5)
0 cosh?(s/2) cosh™(s'/2) sinh*20F /= (s + 1 — 5 — t/ +i€) /2)
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We now perform a series of contour manipulations. First we shift s — s+, s/ — s’ +t/, and
evaluate the t integrals. Then we shift s — s’ + s, which allows us to evaluate the s integral.

We are left with the following expression:

1 —(J— (60)2R0 fr(s,s)
. (J-1)Tr _\9¢) ! !
fQ(s) ~ 7722A0+4 KGNG RT?Ao-i-J—l C(AO) J)C(A¢, J) /ds COSh4Ao+J—1(S//2)
(5.16)
where

fr(s',s) = V=132 ginh(s/2)
(—2cosh(Js'/2) sinh((J — 2)s/2) — sinh(J(s — s')/2 + §') 4 sinh(s' — J(s + §')/2))

. cos(mJ/2) cosh(s’/2) cosh((s" + s)/2) cosh((s — s')/2)

(5.17)

Summing the two terms in (5.3) we find

1 e (60)280 (95(s',8) + 3£5(5,9))
_ (J-1)Tr \9Y) / 2
F (S) = 722AO+227TKGN6 RT?Ao-i-J—l C(Ao, J)C(A¢, J) /ds COSh4AO+J—l(S//2) ;

(5.18)

where we remind the reader that we have dropped the terms that order G]OV. We will add
them back in the next subsections.
This answer has a few interesting features. First, one can check that g; + % f7 goes to

zero at s = 0. At large s, this quantity takes the form
1
91(s',5) + 5 13(5 5) ~ 7VC(S), (5.19)

which grows exponentially but at a slower rate given by the different Lyapunov exponent.
It was shown in [26, 27| that correlation functions of the form (5.2) obey a “modular-chaos”
bound, which states that the growth of the correlator in s cannot exceed e®. Here we find an
example of a correlation function which does not saturate the bound. In this case, the modular
chaos Lyapunov exponent just inherits the value of the ‘“regular” Lyapunov exponent.

5.2 Reality condition

Equation (5.18) passes multiple checks, one of which we now discuss. Consider the correlator

G(tr trss) = (S1(t) AL T A o (tr)) (5.20)
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This is related to the correlator in (5.1) by
g(tL,tR;S) :.F(tL—S,tR—i-S;S). (5.21)

There is a non-trivial consistency condition which G(t1, tg; s) must satisfy. Namley, G(t1,tr; s+
im) must be real. This property follows from the fact that this correlator can be written in

terms of a map which acts as an inclusion, which we now explain. Consider the map'3
Xs(¢R) — AiS/Qﬂ'JTJRA;Z'S/27T¢RAZT"S/27TJRJTA;iS/QW' (522)

Since the modular conjugation operator J maps observables in one algebra to its commutant,

one can check that ys(¢r) € A, if ¢g € Ag. A simple computation shows that
(Or(tr)xs(Or(tr))) = (SLt) AL AL g (tR)) = Gltr,trs +im)  (5.23)
where we have used both (A.3) and (A.4). Now,

2im(¢L(tr)xs(¢r(tR))) = ([PL(tL), Xs(PR(ER))]) (5.24)

but note that xs(¢r) € A, so this commutator vanishes, hence the reality condition follows.
We now show that the reality condition is indeed satisfied using the results from the

previous section. We start by noting that

G(tr,tr;s +im) = O(GY) —

KGye U=DEr=t)(50/r1)220C(A0)C(Ay) s Gy(s,s)
22AO+2COSh2A¢+J 1(tL+tR Cosh4Ao+J 1( //2)

(5.25)

where

—(J-1)s/2 h(s/2
(s 5) = e 2cos (s/2)

" (—2cosh(Js'/2) cosh((J — 2)s/2) + cosh(J(s — §') /2 + &) + cosh(s' — J(s+ &) /2))
cos(wJ/2)sinh((s — s’ —i€)/2) sinh((s + s’ — i€)/2) cosh(s/2) '

(5.26)

Now, in the s’ plane this expression has poles at s’ = —s + i€ and s’ = s — ie. Evaluating

the residue at this pole yields a vanishing result as ¢ — 0. Therefore, we can separately do

13This map coincides with the twirled Petz map under an inclusion [44]. This map is defined respect to a
vector (the vacuum in our setup) that is jointly cyclic and separating for the two regions.
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the following: push the s’ contour up by im — i€ or push it down by —im + ie. Since these
two expressions are just contour deformations of the original integral which don’t cross any
poles with non-zero residue, we can just add the two expressions and divide by two to get
back G(tr,tr;s + im). Doing so, we find that the lower contour simply yields the complex

conjugate of the upper contour, hence G(tr,,tr; s + i) is indeed a real function.

5.3 Exponentiation in Gy

Thus far we have been working to linear order in Gy, expanding the scattering phase e/ (P+3-) ~
14 4ds(py+q—). As explained in Section 2, we ultimately want to work in the large K limit.
We now show that in this limit, the linear order result we derived in Section 5.1 actually
exponentiates. To this aim, we return back to the correlator we were computing in Section

5.1, ie.
F(s) = (SLAFALPoR) = (0oL dLoT L OR) - (5.27)

Now, if we expand Hyy = Hr, + Hr + §Hy 1, then using BCH, we have that

PZ}S = pzis ® p;isTexp <z/ dt'éH(t')) (5.28)
0
where
SH(') = (pr ® p1)" 6H (pr, @ pr) ", (5.29)

and the time-ordering symbol is with respect to time generated by pr ® pr. Thus, we just get

the correlator
F(s) = <7- <efif; dt’zSHLI(t’)) 6. T (ei I dt’(SHLI(t’)) ¢R> 7 (5.30)

where T denotes anti time-ordering.
Now, we can expand these exponentials and then begin computing the correlators at
each order using Wick contractions. The only contractions which will actually notice the

time-ordering symbols are contractions involving two § Hy; operators. Accounting for this, we
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get

F(s) —/dp+ (PLlp+) (P+|dR) ¥

S S (otonontion ) ((6utbonto) )
m,n=0 k1+k2]j?2k4:n
ki+ks+2ks=m

(GH) T <<6H(5H>k4> T ((6H5H>k5) x Cy, (n,m)

+ (terms which do not grow with e 7% or are down in K counting) (5.31)

where we have abbreviated notation so that 6H = [ dtdHy(t). Furthermore, we have defined

the various factors

(6HoL(p2)HoR) ) H / dgi ¢ On i)
></dxlidfﬁéfLI(w’i)sz(ﬂfé)(OL($§)|qi_>(qi_\OL(l"é» (O1(2))O1 ()

(tor00n(p-)) )" H/@f%ww>/w%mw@wwmw@w>
(5.32)

where the fr; are placeholders for the smearing function in (5.4) together with the integral
from 0 to s in the defintion of 0H. The coefficients Cy_(n,m) are combinatorial factors,

counting all the ways of contracting various operators. We find

= " m 12k, — DN(2k= — 1)1
Cr. (n,m) <k:1,k2> (khkS)kl.( kg — 1)1(2ks — 1) (5.33)

where the multinomial factors are for choosing the ki, ko and k3 factors from n and m. The
k1! counts the number of ways to contract the  H’s. The double factorials are for all the ways
of contracting the remaining 2k, 5 factors of 6 H amongst themselves. Note that we have also

dropped terms which have fewer K-index loops, since these will suppresed in the K — oo
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limit. Using that (2k — 1)!! = (2k)!/(k!2%), we get

k1 ™ ko
(6Hor(p+)0Hor) (pLOHOR(p+))
/dp+ (pLlp+) (P+|PR) Z Z ( - IZ;)! - ) ( - (]:j)!pJr ) %

m,n=0

k1+ka +2/€4 n
k1+k3+2ks=m

(—i)ks <5H>k37_ <(—1)’<f4 <6H6H)k4> - ((—1)’% <6H5H)k5>
(k’g)' 2k4(k4)! 2k5(k‘5)' ’

(5.34)

where we have moved the time-ordering symbol into the sum to act on the only factors which

are actually affected by the time-ordering symbol. One can show that that

k“ 5H(5H> 1
Z T LT(SHSH)
( 2ka (ky)! ) ©’ ’ (5.35)

along with the analogous formula for the anti time-ordered factors in (5.34). We see that all

the factors in (5.34) exponentiate and we just get

F(s) = /dp+ (oLlp+) (p+|¢R) exp[—i (0H) — ((HIH)| x exp |(0H ¢ (p+)SHoR) +i <¢L<§{¢R(p+)>] ;

(5.36)
where we have also used the fact that § (T +7) ({HSH) = (§HOH).
In the end, we can write the final expression as
F(s) = [ dos (6ulps) (oslon) exp [Fy(5)(-p)” ] (5.37)
where Fj(s) is essentially what we obtained in Section 5.1, modulo the p integral:
Fy(s) = —627:;‘;:1/22 N%C(A J) / ds' % (;41”5 {‘E (f;;')) (5.38)

with g7, f7 given in (5.10), (5.17) respectively. This is the main result of this section. Armed
with this expression, in the next section we describe how to use (5.37) to obtain the fidelity,

and compute it for various operator dimensions and spins.
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5.4 A Check for J =2

The correlator in (5.1) was recently computed in maximally chaotic (J = 2) CFTs in [45].
The answer found there was that Fj(s) ~ 2i(e® — 1)(51’5 where 53:5 is the null shift of the
quantum extremal surface for LI from including I. For J = 2, our function F in (5.38) takes

the form

i Ao (80)220 /ds, (g2(',8) + 3 fa(s',5))

Fo(s) = WGNK p2ho+l cosh*20 T (s//2)
I

(5.39)

where (g2(s', s) + 1 fo(s, s))jL is g2(s', s) + 1 f2(s', s) but symmetrized under s’ — —s’ since it

is integrated against an even function. Plugging in equations (5.10) and (5.17), we find

()1 Lpa(ss) =S L (5.40)
G2, 8] T 9Ins, 8 ~ cosh(s'/2)° '
Thus, we get
i Ap(60)%20 \/aT(2A0 + 1) o
Fy(s) = K S_1)=2 | 41
2(5) PESTIVEER patotl  T(2A0 +3/2) (7= 1) = 2idrg(e” ~1) (541)

where (530&5 is the null position of the quantum extremal surface, given in equation (2.21).

Thus, we find agreement with [45].

6 Computing the fidelity

We now turn to computing the fidelity susceptibility. As discussed in the introduction, the
fidelity between \wf’y> = eMoxy |Q) and |Q) directly measures how well one can reconstruct

the excitation from LI. The fidelity only depends on the density matrices of 1 and 2 on r.

V'V ngzf\/ o | = 51/2,1/2(,071”0?)- (6.1)

where S, ;(p|o) = is the a — z relative entropy. For small A, our states Wf\(’y> are perturba-

One can derive an explicit formula

—2log F(¢, ;r) = Tr

tively close to the vacuum, so we know that

pPr = ot 4 Adp. (6.2)
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We can then expand the above expression for the fidelity to leading order in A. As discussed

in the introduction, the fidelity takes the form

2
P, 97) = 1= 5x(, 2 7) + OO

with x the fidelity susceptibility.
The fidelity susceptibility was computed in [24] where the authors found

1 d?
X, ) = I (51/2,1/2(P§«p*\0r)>

= / dspl/27l/2 (s)Tr[o " 6po"5/27 5 po?/?7]

where P; /2,1/2(8) is the Fourier transform of the function

1

Pyrja1p2(w) = T ozme

For states of the form
[¥) = (1 +iAAY?70,) |©)

we show in Appendix D that the susceptibility takes the form

_ is/2m is/2m
x(¥, ) = Q;Im/ds < OVIATT Jou) (0¥l Jr5¢>>

sinh((s + i€)/2) cosh(s/2)
with
|69) = iA70, |9).
Note that our states at small A take the form

) = (1 + QA Z5A§3/2W¢R(TR)) 2)

(6.3)

(6.6)

(6.7)

(6.8)

(6.9)

where A is pure real for X and pure imaginary for Y. These states differ from the states in

(6.6) since the Euclidean and Lorentzian time evolutions are with respect to the region R and

not the region r. However, we want to compute the fidelity for » and not R. To get such

a formula, we can imagine starting our operators ¢p in r (since r C R). We can smear the
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operators a bit in Lorentzian time so as to make the states normalizable, but only over times
such that the smeared ¢p still lies in . Then we can justifiably use (6.7). To compute the
fidelity for the true states of interest, (6.9), we can imagine analytically continuing the fidelity
in the position of the operator ¢r(Tr) out of the region r while remaining in R. The question
is then how to do this analytic continuation. We choose to analytically continue each term in
(6.7) in T separately. We will see below that this gives us self consistent results (i.e. a real
and positive fidelity susceptibility). Of course, this does not amount to a rigorous justification
of the formulae we use. It would be interesting to prove equation (6.7) for a more general
class of |61) that includes the states of interest for us.

Nevertheless, plugging our states in (6.9) into equation (6.7) and doing the aforementioned

analytic continuation, we get the equation

X, Q) = —i‘ilm/ds <<¢R(TR — i0) A" pr (T + i6)) L $0r(Tr i6) AT T bR (T + ié)))

sinh((s + i€)/2) cosh(s/2)
(6.10)
where we have been careful to remember that J,.i = —i.J, since J, is anti-unitary. The formula

for x(¢¥,Q;7) is the same as (6.10) but with the sign on the second term reversed.
To proceed, we need to compute each term in (6.10) separately. To do this, we utilize the
results in the previous section. We notice that each term in (6.10) can be recast in terms of

the correlation function F(tr,tg;s) defined in the previous section
i8/2m A —is/2m
F(to,tris) = (dr(tL)AL A" " ¢r(tr)) - (6.11)
In particular, the first term takes the form
(0r(TR — i6)AB/*T g p(Tr +i0)) = Flty, = —Tr — s — im +i0,tg = Tr +id;s).  (6.12)

The second term can be computed by inserting le% = 1 to the right of ¢pr(Tr—1id). We can then
act the Jr on ¢ and use (| ¢pr(Tr —i6)Jr = (| ¢r.(—Tr —id). Finally, we will be left with

the product JgrJ,. = JrJrr. This product acts on a dense set of states as JpJry = AZI/2A1L/IQ.
Using this, we see that the second term can be written as
(r(Tr — i6) NS/ . p(Tg +i0)) = (1.(~Tr — i6) AL 2AVZT2T 4 0 (T 4 i6))
=F(tp=-Tg—s—id,tg = Tgr +1i0;s + im). (6.13)

— 37 —



We can thus directly use the result (5.37) of the previous section to compute the fidelity
susceptibility in (6.10). To illustrate what we get, we begin with the case of gravity, J = 2.
6.1 The case of gravity, J =2

When J = 2, we can plug equation (5.41) into (5.37). Using the form of the momentum

wavefunction

€A¢(—tL+tR) (2,Lp+)2A¢
I'(244)  (-p+)

(@L(tL)lp+) (p+|PR(tR)) = e e e (g ) (6.14)

we have that the two terms in the fidelity take the form

(bR(TR — i6) AL/ > G p(Tg + i0))

0 eiﬂA¢eA¢(S+2TR) 2,Lp 2A¢ ) i o—i ) s
= / dpy T(2A,) ( (_;1) exp (*Z2€TR(6 I _e 6)p+ — 2@5:65(6 — 1)p+) ,
(r(Tr — i) AL*" J.¢r(Tk + i6))

0 Do (s+2TR+2i6) (94, 128 ' o . .
= / dps+ T(2Ay) ( (;)Jr) exp (—zQeTR+ %(e* + 1)py + 21(5355(6 + 1)p+> (6.15)

Plugging these into (6.10), we can do a rough analysis of the behavior of the fidelity
susceptibility as follows. First we know that in the strict limit 6 — 0, the second term is
perfectly well defined and finite whereas the first term diverges. To leading order in § we can
then ignore this term. We can now try to deform the s contour on the first term in (6.10)
by s — s+ im, avoiding the pole at s = —ie. If we can implement this contour deformation
without crossing any non-analyticities in the complex s-plane, then we see from (6.15) that
the first term just becomes order §° as well. A quick way to check whether this deformation
is allowable is whether the real part of the exponential in the first line of (6.15) is negative
for s — s+ 60 (with 6 > 0). This ensures that the p integral is convergent.

Thus, we need
Re (—iQeTR(ei‘; — eSO, — 2i5w$(es - 1)p+) <0 (6.16)

which implies that
el”(e®sin(f — &) — sin(4)) < sin(@)eséng. (6.17)

For small §, we see that this condition becomes just that e’® < 5935. If this condition is not
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6=.001
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6=.1

Tr-Log(6xq)

Figure 5. We plot the fidelity susceptibility normalized by its value at Tr = oo for J =2, Ay =1/2
and Ap = 1/8. Again, we have shifted the time axis so that the origin corresponds to e’® = dxq
where dx¢ is the null position of the QES, computed in (2.21). The dependence of the turnover time
on the smearing scale, §, has disappeared.

obeyed, we can instead deform the s-contour for the first term in (6.10) down in the complex
s-plane so that the first term is order 6° at small 6. In other words, at small §, we have the

formula
x(p, o) = O(elr — (5:1:5) + O(6%29) (6.18)

where ©(z) = 1 for x > 0 and ©(z) = 0 for x < 0. The transition is sharp for small .
Futhermore, the transition time is independent of any features of the probe other than its
coordinate position. This is what we expect for chiral operators probing a sharply defined
quantum extremal surface. As a check of this result, we also have numerically computed the

s-integrals in (6.10) for J =2 and A = 1/2. We have ploted the results in Figure 5.

6.2 Saddle point analysis for J < 2

When the bulk string length is non-zero, we can analyze the integrals in (6.10) via a saddle

approximation. At small 0, the dominant term is the first term of (6.10) since it goes to
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infinity in the small ¢ limit. Indeed,

2 i is/2m i
50 ~ T [ as <<¢R(TR Smi)é’" +q§7§§FR . 5)>> O, (6.19)

To simplify the computation and to compare with numerical results in the next subsection,

we consider the case where the probe particle has Ay = 1/2. The integral we need to compute

for this case is

h ds ; is/2m .
/_Oo (s ey /2) \Pr(Tr — i) AT OR(T +i0)
> ds 0 o . i . .
=2 /_OO sinh((s + i€)/2) /_OO dp, exp <4z sinh(s/2 — i6)py + Fy(s)e Tr=D(—p )7 1)

(6.20)

with Fj(s) = Fy(s)e~*(/=1/2 and F; defined in (5.38).
We can do the p; integral by saddle point. We find a solution at

co (T =1)F(s)e"TrU-D 7
_p+(s)_< 4z‘sin}}](s/2—¢5) ) : (6.21)

Plugging this solution back in, the remaining s integral becomes

1
(J—1)Fy(s)e=V-DTR\2=7 (o9_J
_ 2/°° ds P (( (4isinh(s/2-16))7~" ) (J—1)>

_oo Sinh((s +i€)/2) \/(J —9)(J — 1)FJ(3)6—TR(J—1)(—pi(s))J_g-

(6.22)

Now, we would like to evaluate the s-integral via saddle point as well. Since we are working in

the limit where e~ % is large. We can do this by finding the saddle point solutions. One solu-

—Tr(J-1)/(2—J)

tion will be where the derivative of the coefficient of e vanishes. This derivative

is (including the terms in the denominator which we exponentiate)

(J — 1)FJ(S)€_TR = F (s) . . FJ(S)
((41' Sinh(s/2 — ié))J—1> ((41' Sh(s/2 i) (]~ D2icosh(s/2 —id)

1 F(s) J -
22— J) Fy(s) 4(2-1J)

a %Coth(s /2) + coth(s/2 — i6) = 0. (6.23)

Finding solutions to this equation is difficult in general since we do not have an analytic

handle on F;. We can try to find solutions at small s as well as large positive and negative
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s. The latter two will be suppressed in the limit of small § and so we can ignore them. We
can look for solutions of the form s ~ 4. In this limit, the two terms in the parenthesis in
the first line above need to vanish. The second line will just give corrections to the answer

Tr(J=1)/(2=J) In this limit, we find a saddle at s, = %M.

suppressed by e

Note, in order for our assumption that s, is small to hold, we need to always be taking
the limit where § <« 2 — J. Furthermore, note that since 2 — J < 1, then s, is above the
singularity of the exponent in at s = 2i§ in the complex plane. This requires us to deform the
defining contour in (6.15) up and around the branch cut in the exponent. Presumably a more
careful saddle point analysis would justify this point, but we just do a preliminary analysis
here.

Plugging this saddle point back into (6.15) and accounting for the square root determinant,

we get that the susceptibility is

555)(52_J6_(J_1)TR ﬁ

X(@ZJX’Y, Q;r)~2exp | — + O(9), (6.24)

27T22J—3

where we have used (5.38) and (4.11) to write |F’(0)| = 5568).
So far we have just computed the susceptibility for the region r. We can easily compute the
fidelity for LI as well just by sending s — —s in (6.10), where we are using that A%, = A%,

Since the second term in (6.10) is order 6°, we see that the susceptibilities obey the equation
XLI + Xr =2+O(5), (6.25)

where we have picked up the pole in the s integral at s = —ie in (6.10). This formula means
that the susceptibility transition happens for the region and its complement simultaneously.
We can compare these analytic results to numerical calculations for a specific choice of A’s

and J.

6.3 Numerical results for Ay =1/2, Ap =1/8, J=3/2

Computing the susceptibility in (6.10) for general Ay and 1 < J < 3/2 is quite difficult, even
numerically. The reason is that in order to compute the susceptibility, one needs to compute
F(tr,tr;s) as given in (5.37). This requires computing Fj(s) in (5.38), which as far as we
could tell cannot be done analytically for general J and Ap. Thus, in order to compute the
susceptibility numerically one would need to compute three coupled integrals: one for the s

integrals in (6.10), one for the p integral in (5.37) and one for the s’ integral in (5.38).
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Figure 6. We plot the fidelity susceptibility normalized by its value at Tp = oo for J = 3/2, A, =1/2
and Ao = 1/8. We have shifted the time axis so that the origin corresponds to e(/~1)Tr = 5mg) where

5x(QJ) is defined in (4.14) as the crossover time for the full modular energy. The dots are numerically
generated values and the lines are given by equation (6.24) for the various d’s. We see fairly good
agreement with the answer found via saddle point methods.

Thankfully, there are special values of Ap, Ag and J such that F;(s) can be computed
analytically as well as the py integral in (5.37). This leaves only the s-integrals in (6.10) that
need to be done numerically.

The values we pick are Ay = 1/2, Ap = 1/8 and J = 3/2. In this case, we find

e*’iﬂ‘l/4 ((%)2AO
Fyas) = — 9228012 N 2o+
I

C(Ao, J)Hsa(s) (6.26)

where

Ages/? (sinh (i) + sinh (%) + 7 cosh (i) - 2)
(/0 (e 1) |

Hs)o(s) = (6.27)

The py integrals can then be done analytically in terms of error functions. The results are

plotted for various ¢ in Figure 6. We see good numerical agreement with the saddle point

results in the previous subsection.
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7 Possible Bulk Interpretations

In this work we have computed two measures of when an excitation that has been dropped
into a black hole leaves the entanglement wedge of some boundary region. We now briefly

make some comments about possible bulk interpretations of these results.!*

7.1 A stringy QES?

One might be tempted to associate our results on the stringy fidelity susceptibility to a change
in the quantum extremal surface itself. In particular it is natural to expect the extremal surface
to become fuzzy on the string scale and indeed the transition curves we find are smoothed out
on this scale (see Figure 6 and (6.24)). Since the effects we are discussing are controlled by
ls, a hypothesis is that these stringy effects could be explained by including higher curvature
corrections in the quantum extremal surface prescription. Such corrections were fully detailed
in [46]. Higher curvature terms in the quantum extremal surface equation will only produce

Tk which are analytic in £, which is not the effect we are

changes to the position 5x5 ~ e
looking for. On the other hand we expect the higher derivative expansion to break down on
stringy scales and so the Dong corrections might not be a good comparison.

There is however a more serious problem with this interpretation, which is related to the
shift in the turnover time relative to a maximally chaotic theory. The turnover time for J < 2
depends on details of the string that was thrown in. The dimension (mass) and the smearing
scale of the probe both affect the turnover time, as seen in Sections 4 and 6. This suggests
that a simple change to the quantum extremal surface prescription, which one might have
expected is probe independent, won’t completely capture the effect we have seen.

Nevertheless, we can think of our calculations as providing a stringy notion of the quantum
extremal surface in the following sense. A boundary observer can ascertain the average location
of the quantum extremal surface in the bulk from the turnover time in the fidelity. In the
gravitational case, this would correspond to the true quantum extremal surface in the bulk
obtained from the standard prescription. When stringy corrections are included, the boundary
observer can still use the fidelity to define the location of a “stringy” quantum extremal surface.
The location of this surface would then depend on the boundary probe. This would be an
operational definition of a stringy quantum extremal surface, albeit one that goes beyond our
usual understanding of an entanglement wedge. Since this is not entirely satisfying, we turn

now to a different interpretation of these results.

14We thank Douglas Stanford for first suggesting the interpretation in terms of longitudinal string spreading.
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7.2 Longitudinal string spreading?

Another possibility is that we are seeing an effect which is inherent to the stringy probe itself
and not to the quantum extremal surface. If we assume that the quantum extremal surface
position does not change appreciably (i.e. not more than order ¢, in null coordinate distance),
then we can use our results to try to estimate the magnitude of string spreading.

As a first guess at the amount of longitudinal string spreading, we can imagine finding a
region LI such that the string is just barely, yet definitely, in the entanglement wedge of that
region. To find such a region, we can throw the string in at some fixed time e’® and then
tune the size of the interval, §¢, and its distance from the bifurcation surface, r;, such that
eTR is right at the crossover time for the full modular energy, which as we saw in the previous
section is approximately the turnover time for the fidelity susceptibility. Namely, we want to

find 0¢*,r7 that solve the equation
eTrUI=D = 62T 525D (60%, r7) (7.1)

with 51:5” given in equation (4.11). Up to order one Ap-dependent factors, we know that
(53:8) ~ (56)2A0/T?AO+J_1. Of course, there are an infinite family of 6¢*,77 that satisfy
equation (7.1) for fixed Tr,d. This amounts to a choice of what combination of r; and 6¢; we
hold fixed. One natural choice is to fix r; at some J-independent value but tune §¢ such that
(7.1) is satisfied. Making this choice gives an estimate on the size of the string that is just
the difference between e’# and the quantum extremal surface position for the region with §¢*

that solves (7.1). We get the estimate

~ (2) Th ~ TR Q(AO,J)
5%m%~&%(MQ—eRNeR<“m%®%J—1. (7.2)
with a(Ap, J) some order unity coefficient which goes to 1 as J — 2. In the small 2 — J limit,

we get the logarithmic dependence
OZstring ~ —(2 — J)el® log(rre’®8) + ..., (7.3)

where we have neglected terms which don’t grow as T — —oo. Note, however, that the
estimate of dZstring depends on which solution 6¢*,r} of (7.1) one chooses.

This formula suggests that the size of the string is proportional to (2 — J). As discussed
in the next subsection, (2 — J) is proportional to ¢ /EQAdS' Remembering that we have set

{aqs to one, we have that (2 — J) ~ £2/fxqs which is much smaller than the naive estimate
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for the string length of ¢,. For this reason it is more natural to associate 0Zsiring in (7.3)
with (d22) /z(TR), where 2 (TR) = e"R{xqg is the boundary position of the infalling string
in Kruskal coordinates and (dz?) is the squared deviation of the string. If we make this
identification, then interestingly our formula looks similar to the estimate computed in [34],

who found a squared deviation of the form
+12 T E _r
((0x™)*) = lse' Rlog(—e "), (7.4)
€

where E is the energy of the string and € is related to the time resolution of the detector

measuring the string. This suggests that we further make the identifications
E~1/5 r;~e (7.5)

The first identification is reasonable: the boost energy of the string is just 1/6. The second
identification is more non-trivial and, if correct, tells us that our use of the quantum extremal
surface as a detector comes with an inherent cut-off scale set by r;. Note that as T — —o0
length contraction wins out as the growth in (7.3) is only logarithmic. This is different from
the string spreading effect predicted for strings falling across a Rindler horizon in |28, 33|.
From our saddle point calculations of the fidelity in Section 6, we have more information
about the size of the string. In the estimate in (7.3), we have assumed that the infalling
string inserted at Kruskal coordinate e’% is supported all the way from 53:8) (0¢,) down to
eTr_ This might not be the case. To examine this, we can consider two intervals, denoted I
and Iy, in the right bath centered around the same point. Both intervals will be a Kruskal-
coordinate distance r7 from the bifurcation surface. We can tune the size of §¢1 2/7r so that
the string is definitely in LI; and also definitely in LI> (i.e. reconstructable from LI; and
LI3). Quantitatively, we want to find the two intervals with ratio 6¢1/6¢s closest to one such
that the fidelity susceptibility is very small for both LI; and LIs. The dz7T size of the string

is then estimated by computing (see Figure 7)
S string ~ 0a 5 (601) — Sy (362). (7.6)

where 5365 is given in equation (2.21).
As we saw in Section 6, the fidelity susceptibility at very negative Tr can be evaluated

via saddle point. For a probe operator of dimension A, = 1/2, we found that the fidelity
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™. QES(LL)

QES(LL)

Tr

Figure 7. We can use our calculations of the fidelity (susceptibility) to infer the longitudinal extent
of the string. For a fixed time Ty at which we throw in the probe, we can find two different regions
LI, and LI, for which the object is definitely in neither the entanglement wedge of LI; nor the
entanglement wedge of LI;. This is illustrated here.

susceptibility for region LI} = 7 is

1 —Tr(J-1)

x(r1) ~ 2exp (-\Fg(o)ywewz?’—”a) + O(6). (7.7)

o
The dependence on ¢/ in the turnover time is entirely contained in |F"(0)] ~ (E) 7=1-

For the complementary region, we found in (6.25) that

—TR(J—1)

X(LIy) ~ 2 (1 — exp <—1F3(0)|er 2=J 23—2J5>> +O(9). (7.8)

The turnover time, T’, is defined to be when the argument of the exponential is one. We can
quantitatively identify when the expression in (7.7) begins to dip and when it hits roughly zero

as when the function’s second derivatives in T peak. These occur at T ~ T3 (0f) £ %5Ti,

respectively, where 0Ty = + log(LQ\/g).
Thus, we want to find §¢1 and §¢5 such that
. 2—J N 2—J
()

Using these equations and the formulae for 0z, in equation (4.11), we find

AO log(5€1/5€2) ~ 32— J, (7.10)
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where we have dropped order one coefficients. Plugging this into the formulae for the position
of the quantum extremal surface, we find that the null coordinate distance between the two
quantum extremal surfaces scales as

elr

(1—e/)~ — (1 -’ (7.11)

2A
Szt 06
(rreTrg)2—7

string ™ m
I

where in the second approximate equality we used (7.9) to exchange 6¢; for e’#, § and r;. In
this case, for small 2 —.J, the logarithmic dependence on 6, e’ appears only at order (2 —.J)?.
Note, however, that to use the saddle point methods of Section 6, we needed to scale § < 2—.J
(see the discussion around (6.24)). In the limit where we hold 2—.J fixed and make § < 1, then
we find agreement between (7.11) and (7.3). If we choose to scale § ~ (2 — J)? — 0, however,
we find a discrepancy between the two. If indeed it is possible to interpret (7.11) in terms of
string spreading, then it suggests that the string actually propagates on a time-like trajectory.
This would be a novel aspect of stringy physics in the bulk which (to our knowledge) has not
been discovered before. It would be interesting to investigate this possibility in more detail
and to understand better the discrepancy between (7.3) and (7.11).

We should also mention one important point regarding the interpretation in terms of string
spreading. We could have considered a different setup: consider throwing a probe string into
vacuum AdS. We can ask about whether the string is reconstructable from the AdS-Rindler
wedge of some single-component, spherical boundary region, A. We can go through the same
calculations for the fidelity that we have considered here and we would end up with (6.10) but
with r given by the boundary region A. For a boundary conformal field theory, the modular
flow for A is just a conformal boost. Thus, the fidelity is fixed entirely by conformal invariance
up to the dimension of the operator. All the stringy effects would be in the dependence on
the string length of the mass of the bulk particle. The essential qualitative aspects of the
effects we have described would be absent. In other words, the dependence of the turnover
time T, on the string length described in the previous sections is due to interactions between

the string and the quantum extremal surface.

7.3 Comparison with previous work

If our interpretation of equations (7.11) and (7.3) in terms of longitudinal string spreading is
correct, then our results naively seem quite different from those found in previous works on
this subject [28-30, 47|. In order to make a precise comparison with these works, however,

one needs to be careful about what is playing the role of the detector in our setup.
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A first guess would be that the quantum extremal surface itself is playing the role of
the detector. Indeed, one might imagine computing the modular flowed correlation functions
in (6.10) via a replica trick similar to that discussed in [26]. The correlators can then be
interpreted as a scattering experiment where the probe string is colliding with excitations
from the twist operator sitting at the quantum extremal surface.

This is somewhat reminiscent of the calculations in [47], where a space-time varying string
coupling acts as a marker for the location of stringy interactions. Here we are similarly using
properties of the bulk geometry to mark the location of the string. Interestingly, for very high
detector resolution, the magnitude of string spreading in [47] is also logarithmic in the cut-off
frequency. It would be nice to explore in future work whether this logarithmic dependence is
analogous to the logarithms in (7.11) and (7.3). One point, however, is that the results in [47]
are exact in o/ whereas the logarithm in (7.3) appears only to leading order in o’/ E?&dS'

It should also be pointed out that we have not been careful to track the evolution of the
string state as it falls toward the horizon. The calculations in [28-30, 47] work in the string
vacuum. It is possible that we are effectively computing the magnitude of string spreading in
a different string state. For these reasons, we believe that our calculations are not in obvious

contradiction with previous work.'®

8 Discussion

We end with some comments on higher dimensions and the role of light ray operator expec-

tation values in this work. We also discuss possible future directions.

8.1 Higher Dimensions

We have worked mostly in two dimensions in this paper since the formulae are more tractable.
We should mention what happens in higher dimensions. Since in retrospect the full modular
energy was a good indicator of when the particle has left the entanglement wedge of r, we can
just focus on that quantity for now.

The setup we consider in higher dimensions is the one laid out in Section 2 (see Figure
1), where L is a Rindler wedge on the boundary and I is a sphere separated from the Rindler
wedge by a distance r; and with radius 6¢/2. In that case, we can run through all the steps
for the full modular energy that we ran through in Section 4, except with the wavefunctions

and scattering phase modified to their higher dimensional form. For simplicity we can work

15The points in this subsection are due to a discussion with Eva Silverstein.
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in AdSs/Rindler. Using the formulae in [17], we find that

2rA
— (log Ar)y = 4 cos(0)

© Jk etkb
— 928 - - —(J(B)=1)Tr (g 1-J(k)
2 /OO SRy 1(5xQ(J(k:), b)e (sin(9)) (8.1)

where now the Pomeron spin depends on the transverse momentum k as [17]

k2 +1)

J(k)=2—
20345

+O(£3). (8.2)

The shift in the quantum extremal surface dx¢ now also depends on the transverse position,

b, of the probe operator, ¢ as

02 (J(k),b) = —2K (86£)*20 G Laas (€7 /4)* ) / dp ) (D4, D) (p, ) (—p) ") Lazl) )

(8.3)
and
) T(2A0 + DT (J(k) + 2A0) . B
550 VT [ da-ta g e ia 0
© ot B lgano1p(2a6 + L8 4 hr2a + L8 4 1) A

(8.4)

where the momentum wavefunctions can be found in [17]. The region I is centered around
the origin in transverse coordinates and so small b corresponds to the probe being boosted
directly into the past of the small region I. The important point for us will be that for small b
there is a saddle in the & integral in (8.1) at small imaginary k ~ ib. We see that we effectively
get the same behavior as in (4.13) with J = 2 —¢2/2/3 ;o + O(¢£3). We expect to see the same

type of behavior for the fidelity that we saw in this work in higher dimensions as well.

8.2 Relationship between modular flowed correlator and light ray operators

In the work of [45], the computation of the correlator in (5.1) was interpreted as a scattering

process between the ¢ particle and a shock of size
(T——(27)) ~ d(x" ) H'(L : I)(e* - 1), (8.5)

where H(L : I) = S(L) + S(I) — S(LI) is the mutual information between L and I and
H'(LI) is the derivative of this quantity with respect to moving L’s endpoint in the outward
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null direction. As seen in (5.41) and discussed more generally in [45], this shock has just the
right value to shift the particle from the edge of the entanglement wedge of LI into the causal
wedge of LI in the limit that s — —oo. This shock appears because, in computing (5.1),
we are effectively acting on the vacuum with the operator p’fjpgispfs, which the authors in
[45] noted is the Connes cocycle between the vacuum and a split vacaum on LI. In the state
Q) = us(QSq) |Q) where us(Q|Sq) = p,**p; %, [45] found that

/OO (T—_(a7))g, ~ H'(L: T)(e* — 1) (8.6)

where = = 0 is the entangling surface for L as in Fig. 4.
For J < 2, we lose the interpretation of (5.1) in terms of scattering off a gravitational

)

shockwave. Instead, we find that the string is scattering off a “stringy” shock, such as those
discussed in [48]. Thus it is natural to guess that the function F(s) defined in (5.38) represents
the expectation value of a continuous spin null energy in the state excited by the cocycle,

pflpzispf_is. Roughly speaking, we would like

Frio)~ [ 3, (8.7

where Jj is the conformal primary operator of even spin J on the same Regge trajectory
as the stress tensor. The expression on the right hand side should then be thought of as an
analytic continuation in spin J from even spins to 1 < J, < 2.

We can understand this expression by expanding us in the small interval limit. Then

formally we have
s =1+ Wy, +6@ug + ... (8.8)

Expanding for even J, we get

<ul©}}a1fus> _ < [@ga1f7 5(1)us]> + <5(2)ul@galf> _ <5(1)us@1}a1f5(1)u8> 4 <©}}a1f5(2)us>,
(8.9)

where we have defined @}J‘alf = fooo dx~ Jy(xz~). Using the fact that @yl + 8@y, = ((5(1)us)2

which follows from expanding the equation ulus = 1 to second order, we can rewrite this as

<ul@§alfus> = < [(O)}}alf, 5(1)u5}> — <(5(1)u5 {(O)}}alf, 5(1)u3}> + < {(O)}}alf, 5(2)%} > . (8.10)
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If we write 6w, schematically as Or,O;, where we have suppressed the integrals, and
8@y, ~ 0.0.0 7O, then we can see that the final term vanishes, since to leading order in

the small interval expansion it just becomes
(|0%,6®u,| ) ~ (0101) ([OF",0,01)) = (0101) ([0, 0,.0x]) = 0. (8.11)

Thus, we are just left with the two first terms on the right hand side of (8.10). It is not
hard to see that these two terms correspond to the two non-trivial terms in the right hand
side of (5.3). Thus, we get the pleasingly simple interpretation of Fj(s) as the expectation

value of the continuous spin null “energy” in the Connes cocycle flowed state us(2]Sq) [€2).

8.3 Conclusion

We have examined stringy corrections to the full modular energy and fidelity for a region LUT
which includes the whole left side of a black hole together with a small subregion of the right
black hole in a state with a probe string. We have found that in the limit of £; — 0, there is a
sharp transition between when the particle is inside or outside the entanglement wedge of LI.
In string theory, this transition gets smoothed out. We suggest that this can be interpreted
in terms of longitudinal string spreading. There are many open directions. For example,
it would be interesting to try to use our calculations to predict the existence of quantum
extremal surfaces in various models where the bulk dual is not entirely under control (such
as in SYK). It would also be interesting to examine whether there is a connection between
the information theoretic quantities we have discussed and notions of scrambling involving
operator size [49-51]. Both are sensitive to the bulk momentum of the probe particle and so
it would be nice if there were a connection between these ideas purely within the boundary

theory. We leave a more detailed discussion of these points for future work.
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A Review of modular operators

In this section we briefly summarize the relevant aspects of the Tomita-Takesaki formalism.
For more details see [52]. Throughout this section we consider a Cauchy slice ¥ of Minkowski
spacetime. Consider a subregion &/ C X, and denote by A;, the algebra of operators associated
to this subregion. We denote the commutant algebra by A7,. Given a state [¢), the Tomita

operator associated to Ay is defined by
Spualy) = al|p), Va € Ay (A1)
Since Sy is invertible, it has a polar decomposition:
Syt = Jpu Al (A.2)

where Jyg and Ayg are the modular conjugation operator and modular operator, respec-
tively. In the main text we will often take [¢)) = |Q) and U to be the region LI defined in
Section 2.

The modular conjugation operator is anti-unitary, and also satisfies Jy.¢ f (Ayas) = ?(A;;lu)g]w;u
for any function f. Using this, we can combine (A.1) and (A.2) to get the relation

Tpualp) = Ay al|v) (A.3)

which we will make use of in the main text when « is the state insertion ¢. We also note the

important commutant relations

‘]1/11;1/{ = JT/HU
v =Dy (A.4)

where Aip;u is defined in the same way as A,/ but is associated to A7, and similarly for J;M/f'
We end this appendix by recalling the relationship between the modular operator and

density matrices. If we have a factorizable Hilbert space H = Hy ® Hyy, as is the case for
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finite dimensional Hilbert spaces, then
Ad,;u =pu® p&,l (A5>

B Modular Hamiltonian in the Small §¢/ Limit

In this Appendix, compute the analytic continuation of the sums in (3.3). In particular, we
focus on the term with a double sum in (3.3).

B.1 Double Sum Term

We need to continue the term

n—3n—

—J

2—
Z cn(27k)Tr[p}~ Lo+ wLpLdJL] (B.1)
k=1

<
Il
o

As in the main text, we write both the j and k£ sums as contour integrals. We do this

first for the sum over k at fixed j. We get

n—3n—2—j
Z cn(27k) Tr[p}~ Lo+ ¢LPL7/)L}
j=0 k=1
5! dsk, —3/2— 1/2
. . o
= 2 5 (7{ T 1Cn(_25k) x Tr[p} O(—zsk)OpJL ¢PL¢T]) (B.2)

Unwrapping the s integral, we have a contribution from a contour when Imsy = 27i(n —

2 — j) and one when Imsy = 27mi. These two terms together give (at fixed j)

1 dsg, n—3/2—j j41/2 t
271 </ esktie _ 10( s + 6) x Tr[ O( is )Op Ypry ]
1 dsp ) . 1/2 . n—2—j j+1/2 i

o (/ WC(—ZS]C +2m(n —2) = 2mj +€) x Tr[p,/"O(—isy)p; Op YL’ ) .

(B.3)

Now, note that for j = n — 2, these two terms cancel off each other. Thus, we can move the
upper limit on the j sum to n — 2 for free, which we choose to do.

We now introduce an s; contour integral for the j sum. We unwrap the s; contour and
we get four terms in total. We focus on the two terms coming from the top contour contour

of the s; integral.
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Bottom contour of s; integral in (B.3)

Unwrapping the s; contour on the bottom contour of the s; integral, we get

1 ds;jdsy, . n—3/2 , . o\ 172 +
-0 </ (7 1)(eontie 1)0(—7,sk +€) x Trlp; " O(—isy —is;)O(—isj)p, “wpri']

1 dsjdsy, . 1/2 . . .\ n—3/2 t
t 2 </ (5 — 1) (evntic 1)0(—zsk +e) x Tr[p,/"O(—isy —is;)O(—isj)p; ~'“Ypryp'] | .

(B.4)

To get something that can be analytically continued to n = 1, we shift s; — s; —im + i€ in
the first term and s; — s; + i — de in the second term. We then take the n — 1 limit and

strip off leading term. We get

—(n—1) ds;dsy, ) ) . . t
2 / (esj + 1)(6Sk+ie _ 1)0(_7’Sk + 6) X TI‘[[H, O(_Z‘Sk - ZSj)O(—ZS]’)]l/}le/J ]
_(n—1) dsjdsy, . d . . ) . . i
=5 (5 T D)(enti = 1)C(—zsk +€) x pn t:o Tr[O(—isy, —is; —it)O(—is; — it)Ypra']
(B.5)
Integrating by parts, we get for the first term in (B.3) summed over j becomes
(n—1) / ds;dsy, . . . . 1 2
_ T —ish — 18O (—iss —1)?).
2ri Acosh?(s;/2)(eswtic — 1)0( isk + €) X Tr[O(—isp —is;)O(—is;)hprd'] | + O((n —1)7)
(B.6)
Lower contour of the s; integral in (B.3)
Unwrapping the second term we get
i / ISk (st 2m(n — 2) + sy + €) x Te[py/20(—ise)ol20(—is; )l ppr ]
47-‘-2 (65]'716 _ 1)(65k—|—z€ . 1) J L L J L
1 ds;dsy, . . 1/2 . .\ n—3/2
o ([ Gy Ot s+ % Tepl*0(-is0)0(is b
(B.7)

Again, in order to make this something that can be continued to n = 1, we shift around
the contours. In the top line, we shift s; — s; — i and s, — s + i¢m. In the bottom line we

shift s, — s, +4m and s; — s; +im. We then shift the s; contour s, — s, + s; and take the
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n — 1 limit to get

(7’L — 1) ds -dsk . ) . .
2 </ (e + 1)(JeSk+S:‘ + 1)Tr[p[H’ O(~isk)]O] x Tr[O(—isy — 251)0(—1%)1/%@1}*])
(n—1) dsjdsy, , o |

- </ (e + 1) (e + 1)Tr[p0(—zsk)0] x Tr[O(—isy — Zsj)[H,O(—@Sj)W;prT]) ‘

(B.8)

After converting H commutators to time derivatives and then integrating by parts as we did

above, we find that the second term in (B.3) summed over j becomes

(n—1) / dsjdsy, , . . , +
Tr[pO(— O] x Tr|O(—isg — is;)O(—1is; .
ri (] Teotts oy ) PO (isk + Q0] x TO(isy — isy)O(isy pr]
(B.9)
Adding the top and bottom contours of the s; integral
Putting this all together we get
n—3n—2—j ‘
ST N k) Trfpr Lo 0Dy pr
j=0 k=1
(n—1) dsds 1 1
~ ; 2 s'+ie + s'+s X
27 4cosh®(s/2) \e -1 et +1
Tr[pO(—is’ + €)O] x Tr[O(—is’ — is)O(—is)hprp] + O((n —1)?). (B.10)

B.2 Computing descendant contributions to édH

In this subsection, we compute the OPE coefficients for the descendant contributions to the
twist-anti-twist OPE. We will verify equation (3.13). As discussed in the main text, we just

need to expand the correlator

(0-non OV (2)OW) () ~ (0_pop) X

((56)2AO i (5€)a+b a,b ( )a+br(2AO + 1)2 1

= <U—nan> X ]’kF(QAO +1— n) (2AO +1— m) 22A0+a(zl)2Ao+b

+ ...
a,b=0
(B.11)

as a double power series in 6¢/z, 6¢/z'.
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The correlation function (o_,0,,09) (2)O0%®)(2’)) can be computed by introducing the

5 1/n
#(2) = (x(2))"/" = (Hgﬁfb (B.12)

which implements the insertion of the (anti-)twist operators at z = +6¢/2. We can then
compute (o_,0,00)(2)0%)(2')) by conformally transforming a vacuum two-point function of

O'’s from Z coordinates to z coordinates. We get
< 1 [dx Bo /gyt Ao o 2mijAo/n
@ (") — &b 1/n—1 axr . N1/n—1
(7-nonOF(z)O0T0(2)) n2lo (dzx ) <dz’ (=) ) ((a!)V/me2mid/n — xl/n)QAO

(B.13)

We then expand this answer to leading order in §¢/z’ and to all orders in 6¢/z, dropping

terms that are proportional to n — 1, since these will not contribute in the n — 1. We find

(020,09 ()0 (2))
(6¢)%A0 1 200\ (~1)PT(2A0 +1) [ emii/n 4 emimi/n '
=) (Fv2e)

T n2Bo(z7/)2h0 (emid/n — e—z’wj/n)QAO 22) BINPT(2A0 + 1 —b) \ emid/n — e—imi/n

b=0
+ (terms proportional to n — 1). (B.14)

Comparing with (B.11) above, we see that

a—0p 1 e7m'j/n + efiwj/n 1 -
G0 T (grii/n _ gimim) P50 (w’j/n —o—imin | piappieeag T (terms proportional to n— 1)

(B.15)

which agrees precisely with (3.13).

C Conformal factors from embedding space

In this Appendix, we briefly review the embedding space formalism for CFTs and then argue
for equation (5.5) in the main text. Conformal field theories in (d — 1) 4+ 1 dimensions can be
viewed as living on the null cone in d 4 2 dimensions defined by P - P = 0 where P € R%2
together with the condition that rescalings AP ~ P are pure gauge.

Since our calculations in the main text are mainly for d = 2, we focus on that case,

although everything we say can be upgraded to higher dimensions. There are two frames or
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gauge choices we will be interested in. In Lorentzian signature, the embedding space metric

is
ds* = —dP} + dP?; — dP§. (C.1)

Then the two choices are the flat frame

502 2 &2 2
. o x e +x
HF—< L . ,Q (C2)
and hyperbolic
Pl = (1,cosh(t),sinh(t)). (C.3)

The conformal transformation between these two frames maps the interval x € (—§¢/2,¢/2)

to the hyperbolic line. If we define €2 such that
QP|p = Ply (C.4)

we get that

Y4

Q = 2(1 + cosh(t))/6¢ = (2cosh(t/2))?/6¢ = S

(C.5)
The two-point function of two scalar conformal primaries of dimension Ao in a given

frame is

1

(O(P)O(R)) = (P Py)Bo-

(C.6)
Conformal boosts for the region I corresponds to just time translation in the hyperbolic frame.

If we denote the boosts by M(t), then we have

M) Plr = 010 Plr % ) (©7)

where this equation follows from having to map P|r to the hyperbolic frame, time evolve and

then map back to the flat frame. The conformal boost keeps us within the flat frame up to
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the conformal transformation €(0,t) where

~ _ Q(s)  cosh®(s/2)
Us:t) = Qt+s)  cosh®((s+1)/2) (C8)

The point (M (t) - P)|r corresponds to the flow

v (s) = —r+ % <1+

2z~ + 1 — 64/2)
5 ) . (C.9)

—r+060/2 —x~ +es(x +1+060/2)
We can introduce the Mobius transformed coordinate

F=_p 2TTH (C.10)
x+r_

which maps points > 0 to points x € (—ry, —r_) where r4 = r; £ 6£/2. One can that if
2~ (0) = res, then

x(t) = retts. (C.11)
Putting equations (C.11) and (C.7) into (C.6), we find that
e 1t O (red)e 1t = R0 (5,1)0; (resH). (C.12)

D Computing the fidelity susceptibility

In this appendix, we write down the fidelity susceptibility for perturbatively differing states
in terms of modular operators, using the result in [24], which was derived in terms of density
matrices. For two density matrices p, o on some region r, and associated to global states [i)

and |Q) respectively, the fidelity is given by

F(plo;r) =Tr ((0'1/2p0'1/2) UZ) (D.1)

For the special case of perturbative states, i.e.

pr o+ Ap+ O\, (D.2)
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Hijano & May [24] computed the fidelity to leading order in small A, which is just the fidelity
susceptibility x(p, o). As quoted in the main text, they found that

X 01) = [ AP (o) Tlo™ 5po /2 6pa /27 (D.3)

where P, /2,1/2(8) is the Fourier transform of the function

1
P1/2,1/2(W) = 15 e2mw” (D.4)
In particular, we have
Prpipals) = ——— ! (D.5)
S) = — . .
1/2,1/2 A7 sinh((s — 7€) /2)

Our goal is now to argue for equation (6.7) in the main text. We consider states p such
that the perturbation dp is given by the insertion of an operator O in the Euclidean time

plane. Namely,
6p =01 706Y + 000!~ (D.6)

where a < 1/2.

Inserting for dp into (D.3), we have two terms

Tr[afl(spo,fis/%répa,is/%r]
= Tr[o (O, () 6™/ 26715 po /27 4 N2 Tx[00™/? 6 5po /2" O ()] (D.7)

with O, (a) = 0*O,0~% and where we have used cyclicity of the trace.

These are just correlators in the state o and so we have

Tr[a—l(spa—is/%répo_is/%r] _ )\2 (((OT(a))Tais/%rU—lé-pU—is/Qw) + <Uis/27r0—15pa—is/27rOT(a)>>
(D.8)

where these are correlators in the purification of the state o onto the full system.

Now,

02T po 2T Q) = ABPT (A0 4 AT0T) Q) (D.9)
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and when we plug this back in, we can do the s-integral to get

1+1A(1 + AY27)|64) (D.10)
with
[ox¥) = A7 O |).. (D.11)
Furthermore,
(Q|o™PT o 5po 2T = (Q (OAT™ + OTA™) AT/2T, (D.12)

We can rewrite this expression in terms of the Tomita operator S, which implements Hermitian
conjugation SO Q) = OT|Q) and also we can remember JA®J = A~ for a real. Thus, we
get

X(¥, Q1) = 2Re (69| P | 6) (D.13)

where

. 1
P.o=——(1+AY2)). D.14
1+A( + J) (D.14)

We would like to rewrite this in terms of modular flow, so we can go back to the spectral

representation, where (D.13) can be written as

is/2m is/2m
) =Re / (MA 0wy (6¥1A J|5w>>, (D.15)

sinh((s + i¢€)/2) cosh(s/2)

which is equation (6.7).
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