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Abstract

Outcome labeling ambiguity and subjectivity are ubiquitous in real-world datasets. While
practitioners commonly combine ambiguous outcome labels for all data points (instances)
in an ad hoc way to improve the accuracy of multi-class classification, there lacks a prin-
cipled approach to guide the label combination for all data points by any optimality crite-
rion. To address this problem, we propose the information-theoretic classification accuracy
(ITCA), a criterion that balances the trade-off between prediction accuracy (how well do
predicted labels agree with actual labels) and classification resolution (how many labels
are predictable), to guide practitioners on how to combine ambiguous outcome labels.
To find the optimal label combination indicated by ITCA, we propose two search strate-
gies: greedy search and breadth-first search. Notably, ITCA and the two search strategies
are adaptive to all machine-learning classification algorithms. Coupled with a classifica-
tion algorithm and a search strategy, ITCA has two uses: improving prediction accuracy
and identifying ambiguous labels. We first verify that ITCA achieves high accuracy with
both search strategies in finding the correct label combinations on synthetic and real data.
Then we demonstrate the effectiveness of ITCA in diverse applications, including medical
prognosis, cancer survival prediction, user demographics prediction, and cell type classi-
fication. We also provide theoretical insights into ITCA by studying the oracle and the
linear discriminant analysis classification algorithms. Python package itca (available at
https://github.com/JSB-UCLA/ITCA) implements ITCA and the search strategies.
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1. Introduction

Machine-learning prediction algorithms play an increasingly important role in data-driven,
computer-based scientific research and industrial applications, thanks to the rapid advances
in data availability, computing power, and algorithm development. Prominent examples in-
clude fraud detection based on historical transactions (Brockett et al., 2002), cardiovascular
risk prediction (Wilson et al., 1998; Weng et al., 2017), and risk evaluation for multiple dis-
eases using genomics data (Chen et al., 2016). Accurate algorithm prediction carries great
promise because powerful algorithms can extract wisdom from human experts’ numerous
decisions made over the years.

However, a bottleneck in the development of reliable algorithms is the availability of
high-quality data, especially in medical diagnosis/prognosis and other biomedical applica-
tions. For example, medical records are inherently noisy, containing diagnostic/prognostic
outcomes that are mislabeled or labeled inconsistently by graders (Krause et al., 2018). Fur-
ther, labeling ambiguity is common for ordinal outcomes—whose ordered levels represent
degrees of symptom severity or treatment effectiveness—because of graders’ subjectivity in
assigning patients to levels.

Ambiguous outcome labels would inevitably deteriorate the prediction accuracy of algo-
rithms. Nevertheless, prediction accuracy may be boosted by combining the outcome labels
that are hard to distinguish in training data, at the cost of losing classification resolution
because label combination reduces the number of predictable outcome labels. Hence, how
to find a balance between prediction accuracy and classification resolution is a computa-
tional challenge. Although outcome labels are often combined in an ad hoc way to train
algorithms in practices (Feldmann and Steudel, 2000; Hemingway et al., 2013), there lacks
a principled approach to guide the combination by any optimality criterion.

Besides outcome prediction, another critical application of machine learning is to refine
the outcome labels that are predefined by human experts. For example, in medical infor-
matics, an important task is to use treatment outcomes to retrospectively refine diagnosis
categories (Lindenauer et al., 2012; Kale and Korenstein, 2018). This task can be formu-
lated as a multi-class classification problem, where the features are treatment outcomes and
the response is a categorical variable indicating diagnosis categories. In this task, if patients
in different diagnosis categories exhibit indistinguishable treatment outcomes, these cate-
gories should be combined. Such data-driven prediction has been used to update existing
grading systems for diagnosis, such as the Gleason score for prostatic carcinoma (Epstein
et al., 2015), the glomerular filtration rate (GFR) grade for chronic kidney disease, and
the ACC/AHA classification for high blood pressure (Muntner et al., 2018). For another
example, in single-cell gene expression data analysis, a typical procedure is to cluster cells
based on gene expression levels and subsequently annotate the cell clusters using domain
knowledge (Butler et al., 2018). This procedure is inevitably subjective because how to
determine the number of clusters remains a challenge, and some cell clusters may be hardly
distinguishable by gene expression levels. Hence, a principled method is called to guide the
decision of combining ambiguous labels defined by human experts.
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How to find an “optimal” class combination is not a trivial problem. The reason is
that, even if prediction is completely random, i.e., assigning data points with random labels
irrespective of features, prediction accuracy would still be boosted by label combination. In
such an extreme case, the increase in prediction accuracy does not outweigh the decrease
in classification resolution. Hence, our rationale is that label combination must be guided
by a criterion that reasonably balances prediction accuracy and classification resolution.

Motivated by this rationale, we propose a criterion from an information theory per-
spective to evaluate prediction accuracy together with classification resolution. This data-
driven criterion, called the information-theoretic classification accuracy (ITCA), can guide
the combination of class labels given a multi-class classification algorithm. ITCA also al-
lows choosing a multi-class classification algorithm among the available algorithms based
on their respective optimal label combinations.

There are three lines of research seemingly related to our work. The first line is clas-
sification in the presence of labeling noise (Frénay and Verleysen, 2013). It includes three
major approaches for handling labeling noise: (1) using robust losses or ensemble learning
(Beigman and Klebanov, 2009; Zou et al., 2021) (2) removing data points that are likely
mislabeled (Zhang et al., 2006; Pleiss et al., 2020; Pu et al., 2021); (3) modeling labeling
noise using data generative models (Kim and Ghahramani, 2008; Lee et al., 2019).

The second line is set-valued prediction, which predicts a set of labels, instead of a single
label, for each data point. It includes two major approaches: (1) conformal prediction and
(2) set-based utility maximization. Conformal prediction constructs a set of labels that
contains the actual label with probability no less than the pre-specified confidence level
(Vovk et al., 2005; Balasubramanian et al., 2014; Tibshirani et al., 2019; Chernozhukov
et al., 2021). Set-based utility maximization constructs a set of labels that maximizes a
set-valued utility function, which evaluates the utility of the set and typically decreases as
the set’s cardinality increases (Corani and Zaffalon, 2008; Del Coz et al., 2009; Zaffalon
et al., 2012; Mortier et al., 2021).

The third line is nested dichotomies (ND), which recursively splits the classes into two
subsets, inducing a binary tree of classes; then the multi-class classification problem can be
solved recursively by a binary classification algorithm (Frank and Kramer, 2004; Leathart
et al., 2016; Melnikov and Hüllermeier, 2018). ND aims to find such a binary tree of classes
that the multi-class classification accuracy is maximized (Melnikov and Hüllermeier, 2018).

ITCA differs from these three lines of research. First, ITCA is not specific to a loss,
algorithm, or generative model, and ITCA does not require data removal. Second, set-valued
prediction approaches assume that the observed class labels are accurate at the global level,
and they aim to find a specific class combination for each data point. As a result, they cannot
suggest how to combine class labels at the global level for all data points. Third, while the
ND methods take a global approach and build a binary tree of classes so that the multi-
class classification problem can be solved recursively by a binary classification algorithm,
they cannot output an optimal class combination without an optimality criterion. Note
that ITCA is also fundamentally different from cost-sensitive learning, which allows users
to favor certain classes by modifying the loss function of a specific classification algorithm,
e.g., logistic regression (Khan et al., 2017; Natarajan et al., 2017; Fernández et al., 2018;
Li et al., 2020). ITCA does not alter the loss function of a specific classification algorithm
given the class labels; in fact, ITCA works for any multi-class classification algorithms,
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regardless of whether the loss function is cost-sensitive or not, or whether the algorithm is
decomposable into binary classification tasks (as in ND) or not.

ITCA is a criterion for global class combination. Given a multi-class prediction algo-
rithm, say random forest, ITCA is defined as a weighted prediction accuracy, in which each
data point is weighted by the entropy attributable to the data point’s class. As a result,
ITCA balances the trade-off between prediction accuracy and classification resolution, thus
offering guidance for finding an “optimal” class label combination. In particular, ITCA can
guide where to cut in an ND method’s binary tree of classes so that a class combination can
be determined. ITCA has broad applications, including medical diagnosis and prognosis,
cancer survival prediction, user demographics prediction, and cell type classification. We
will demonstrate these applications in Section 4.

A prominent advantage of ITCA is its adaptivity to all classification algorithms, thus
allowing practitioners to choose the most suitable classification algorithm for a specific task.
As a side note, one may intuitively consider using a clustering algorithm to combine similar
classes; for example, one may use the K-means algorithm or the hierarchical clustering
algorithm to cluster the K0 class centers into K < K0 clusters, so that the K0 observed
classes are correspondingly combined into K classes (see Section 3). However, this intuitive
approach has a drawback: since a distance metric is required to define the class centers and
their distances, a gap exists between the choices of a metric and a classification algorithm. In
other words, clustering-guided class combination based on a certain metric (e.g., Euclidean
distance) does not guarantee to optimize the classification accuracy of a specific algorithm
(e.g., support vector machine with Gaussian kernel). In contrast, ITCA does not have this
drawback because it is defined based on the classification accuracy of the algorithm.

The rest of this paper is structured as follows. In Section 2, we first formulate the prob-
lem, define ITCA, and explain the intuition behind the definition. Then we introduce two
search strategies—greedy search and breadth-first search—to find the optimal class com-
bination guided by ITCA given a classification algorithm. In Section 3, we use extensive
simulation studies to verify the effectiveness of ITCA and the two search strategies. In
Section 4, we demonstrate the broad applications of ITCA by applying it to multiple real-
world datasets, including prognosis data of traumatic brain injury patients, glioblastoma
cancer survival data, mobile phone user behavioral data, and single-cell RNA-seq data. In
these applications, we also show the versatility of ITCA in working with various classifi-
cation algorithms. Section 5 is the conclusion. Some key details are in the Appendix. In
Appendix A, we propose five alternative criteria that may also guide class combination and
compare them with ITCA. In Appendix B, we theoretically analyze the property of ITCA
and the search strategies; specifically, in Appendix B.1, we define ITCA at the population
level and conduct theoretical analysis on two classification algorithms—the oracle and the
linear discriminant analysis (LDA)—to characterize ITCA and provide insights for its use in
practice; in Appendix B.2, we propose the soft LDA algorithm to improve LDA for finding
the optimal class combination defined by ITCA; in Appendix B.3, we theoretically analyze
the optimality of the breadth-first search with the oracle algorithm. In Appendix C, we
propose a pruning procedure to reduce further the search spaces of the two search strategies.
Further details are provided in the Supplementary Material.
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2. Method

2.1 Problem formulation

Let (X, Y ) ∼ P be a random pair where X ∈ X ⊂ IRd is a feature vector, Y ∈ [K0] :=
{1, . . . ,K0} is a class label indicating one of K0 observed classes that are potentially am-
biguous, and P is the joint distribution of (X , Y ). For a fixed positive integer K (< K0),
a class combination is represented by an onto mapping: πK : [K0] → [K]. For exam-
ple, if K0 = 4 classes are combined into K = 3 classes by merging the original classes 3
and 4, then π3(1) = 1, π3(2) = 2, π3(3) = 3, and π3(4) = 3. We define π−1K as follows:
π−1K (k) := {k0 ∈ [K0] : πK(k0) = k}, ∀k ∈ [K]. Then in this example, π−13 (1) = {1},
π−13 (2) = {2}, π−13 (3) = {3, 4}. For notation simplicity, we write π3 as {1, 2, (3, 4)}. Given
a class combination πK , a classification algorithm C, and a training dataset Dt, we denote
by φC,DtπK : X → [K] a multi-class classifier trained by C on Dt to predict K combined classes.
The prediction is accurate if and only if φC,DtπK (X) = πK(Y ).

Given K, how to find an “optimal” πK is a twofold problem. First, we need an optimality
criterion of πK that balances the trade-off between prediction accuracy and classification
resolution. Mathematically, given a dataset D := {(Xi, Yi)}ni=1, a class combination πK , and
a classification algorithm C, we split D into training data Dt and validation data Dv, train a
classifier φC,DtπK on Dt, and evaluate the prediction accuracy of φC,DtπK on Dv. Then we define
an optimality criterion of πK given Dt, Dv, and C, denoted by m(πK ;Dt,Dv, C), based on the
prediction accuracy of φC,DtπK and the resolution of πK ’s K combined classes. To define the
classification resolution, we adopt the entropy concept in information theory. The entropy
of πK ’s K combined classes’ empirical distribution in Dv is

∑K
k=1

[
−pDvπK (k) · log pDvπK (k)

]
,

where pDvπK (k) := 1
|Dv |

∑
(Xi,Yi)∈Dv 1I(πK(Yi) = k) is the proportion of the k-th combined class

in Dv. Note that this entropy measures the uncertainty of πK(Y ) based on its empirical
distribution in Dv, and it increases as K increases or as the balance of the K classes increases
(Figure 1). Hence, we find it reasonable to use this entropy to describe the resolution of πK .
In Section 2.2, we will define m(πK ;Dt,Dv, C) as ITCA, a criterion that can be interpreted
as an entropy-weighted accuracy, to balance the trade-off between prediction accuracy and
classification resolution.

Second, given the criterion m(·;Dt,Dv, C), we need a search strategy to find the optimal
class combination π∗K that maximizes the criterion:

π∗K = arg max
πK∈A

m(πK ;Dt,Dv, C) , (1)

where A is the set of allowed class combinations. For example, if the outcome labels are
ordinal, A contains all combinations that only combine adjacent class labels. We will address
this search problem in Section 2.3.

2.2 Information-theoretic classification accuracy (ITCA)

To explain the intuition of ITCA, we first introduce the classification accuracy (ACC), a
widely-used evaluation criterion for a classifier. ACC is defined on a validation dataset Dv
for a classifier φC,DtπK , which is trained by the algorithm C on the training dataset Dt given
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Figure 1: Entropy of the class label distribution reflects the classification resolution. Each
pie chart indicates a class label distribution. Left: the number of balanced classes
increases from left to right. Right: the class label distribution is increasingly
balanced from left to right. The classification resolution increases from left to
right in both plots, reflected by the entropy increase.

the combined classes defined by πK .

ACC(πK ;Dt,Dv, C) :=
1

|Dv|
∑

(Xi,Yi)∈Dv

1I
(
φC,DtπK

(Xi) = πk(Yi)
)

=

K∑
k=1

pDvπK (k) ·

∑
(Xi,Yi)∈Dv

1I(φC,DtπK (Xi) = k, πK(Yi) = k)

1
∨ ∑

(Xi,Yi)∈Dv
1I(πK(Yi) = k)

,

(2)

where pDvπK (k) := 1
|Dv |

∑
(Xi,Yi)∈Dv

1I(πK(Yi) = k) is the proportion of πK ’s k-th (combined)

class inDv, and 1
∨ ∑

(Xi,Yi)∈Dv
1I(πK(Yi) = k) means the maximum of 1 and

∑
(Xi,Yi)∈Dv

1I(πK(Yi) =

k), preventing the denominator of (2) from being zero.

That is, ACC is a weighted sum of class-conditional out-of-sample prediction accuracies,
with the k-th class weighted by its proportion pDvπK (k). Note that ACC does not reflect the
classification resolution because its maximal value of 1 can be achieved by combining all
classes into one, the scenario with the lowest classification resolution. The reason is that the
class weights in ACC are class proportions, making ACC dominated by the major classes
with large proportions. This issue motivates us to modify the class weights to reflect the
classification resolution.

Based on the ACC definition, we define ITCA by weighting each class using its contri-
bution to the classification resolution, defined as the entropy of the distribution of πK(Y ).

ITCA(πK ;Dt,Dv, C) :=
K∑
k=1

[
−pDv

πK
(k) · log pDv

πK
(k)
]
·

∑
(Xi,Yi)∈Dv

1I(φC,Dt
πK

(Xi) = k, πK(Yi) = k)

1
∨ ∑

(Xi,Yi)∈Dv

1I(πK(Yi) = k)
. (3)
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In this definition, πK ’s k-th combined class has weight −pDvπK (k) · log pDvπK (k), i.e., the

class’s contribution to the classification resolution
∑K

k=1−pDvπK (k) · log pDvπK (k). Figure 2
illustrates the different class weights used in ACC and ITCA under four scenarios of class
proportions. Intuitively, ITCA overweighs minor classes, so it would be less dominated by
major classes than ACC is.

Figure 2: Comparison of class weights in ACC and ITCA under four scenarios of class
proportions. ACC’s class weights (green bars with slanting lines) are equal to
the class proportions. ITCA’s class weights (red bars) are shown after being
normalized to sum up to 1. Mathematically, if the k-th class has weight pk in
ACC, its weight would be −pk log pk in ITCA.

Note that the ITCA definition in (3) is equivalent to

ITCA(πK ;Dt,Dv, C) =
1

|Dv|
∑

(Xi,Yi)∈Dv

− log pDvπK (πK(Yi)) · 1I
(
φC,DtπK

(Xi) = πK(Yi)
)
, (4)

where every validation data point is weighted by the negative logarithm of the proportion
of its (combined) class, unlike in ACC, where all validation data points have equal weights.
This alternative definition (4) has an intuitive interpretation. Imagine that we represent
the K0 original classes in Dv as K0 non-overlapping intervals in [0, 1] such that class k0 is
represented by an interval Ik0 with length equal to its proportion in Dv; then ∪K0

k0=1Ik0 =
[0, 1]. With this representation, we can introduce a random variable U ∼ Uniform([0, 1])
such that Y =

∑K0
k0=1 k01I(U ∈ Ik0); that is, the event U ∈ Ik0 is equivalent to the event

Y = k0. For a data point Xi ∈ Dv, when φC,DtπK correctly predicts its combined class label
πK(Yi), i.e., φC,DtπK (Xi) = πK(Yi), we weight this correct prediction in (4) by difficulty,
which should be higher if the combined class πK(Yi) is smaller, i.e., the total length of
∪k0∈π−1

K (πK(Yi))
Ik0 is shorter. Hence, we define the weight as the difference between the
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entropy of Uniform([0, 1]) (i.e., the distribution of Ui without knowledge of Yi) and the
entropy of Uniform(∪k0∈π−1

K (πK(Yi))
Ik0) (i.e., the distribution of Ui conditional on πK(Yi));

this difference is bigger when the total length of ∪k0∈π−1
K (πK(Yi))

Ik0 is shorter, satisfying our

requirement. It can be derived that the entropy of Uniform([0, 1]) is 0, and the entropy of
Uniform(∪k0∈π−1

K (πK(Yi))
Ik0) is log pDvπK (πK(Yi)). Hence, the correct prediction of πK(Yi) has

the weight − log pDvπK (πK(Yi)) as in (4). We summarize the attributed weights of ACC and
ITCA in Table 1.

Table 1: The attributed weights in ACC(πK ;Dt,Dv, C) and ITCA(πK ;Dt,Dv, C)
Weight attributed to data point Yi Weight attributed to πK ’s k-th class

ACC 1 pDvπK (k)
ITCA − log pDvπK (πK(Yi)) −pDvπK (k) · log pDvπK (πK(k))

To address the issue that ITCA is defined based on one random split on D (each data
point is used only once for either training or validation) in (3) and (4), we further define
the R-fold cross-validated (CV) ITCA as

ITCACV(πK ;D, C) :=
1

R

R∑
r=1

ITCA(πK ;Drt ,Drv, C) , (5)

where the dataset D is randomly split into R equal-sized folds, with the r-th fold Drv serving
as the validation data and the union of the remaining R−1 folds Drt serving as the training
data. In the following text, we will refer to ITCACV as the ITCA criterion if without
specification.

By definition, ITCA is non-negative and becomes equal to zero when K = 1, i.e., the de-
generate case when all classes are combined as one and classification becomes meaningless.
This gives ITCA a nice property: unless all predictions are wrong for all K ≥ 2—an unre-
alistic scenario, the class combination that maximizes ITCA would not be the degenerate
π1.

An advantage of ITCA is that it is adaptive to all machine-learning classification algo-
rithms and its values are comparable for different algorithms. Hence, ITCA allows users
to choose the most suitable algorithm for a specific classification task. In a task where
prediction accuracy is of primary interest, users may compare algorithms by their optimal
ITCA values (whose corresponding class combinations may differ for different algorithms)
and choose the algorithm (along with the class combination) that gives the largest optimal
ITCA value. Granted, if a classification algorithm has a sufficiently high accuracy for pre-
dicting the original K0 classes, ITCA would not suggest any classes to be combined. Hence,
in exploratory data analysis where the goal is to find similar classes, users may use ITCA
with a weak classification algorithm (e.g., LDA) so that the class combination found by
ITCA can reveal similar classes.

2.3 Search strategies

Given the dataset D = {(Xi, Yi)}ni=1, we aim at finding the optimal class combination
that maximizes ITCA. A näıve strategy is the exhaustive search, i.e., computing the ITCA
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values of all allowed class combinations πK ’s for 2 ≤ K ≤ K0, whose set is denoted by
A; however, |A| can be huge even when K0, the number of original classes, is moderate
(Table 2). Specifically, if the class labels are nominal, the number of allowed combinations,
|A|, is known as the Bell number minus one (Bell, 1938). If the class labels are ordinal,
only adjacent classes should be combined; then, the number of allowed combinations is
2K0−1 − 1 (Feller, 2008). Since a classification algorithm C needs to be trained for every
πK to calculate the ITCA of πK , a large |A| would make the exhaustive search strategy
computationally infeasible.

Table 2: The number of allowed class combinations given K0

Label type
K0

2 4 6 8 12 16

|A| Nominal 1 14 202 4,139 4,213,596 ~1010

Ordinal 1 7 31 127 2,047 32,767

This combinatorial optimization problem resembles the multiway partition problem. A
typical multiway partition problem consists of a finite ground set V and a nonnegative sub-
modular set function f : 2V → IR+, which maps a subset of V to a nonnegative real value; f
is submodular if and only if f(A) +f(B) ≥ f(A∪B) +f(A∩B), ∀A,B ⊂ V . The multiway
partition problem aims to partition V into K disjoint sets A1, . . . , AK (with ∪Kk=1Ak = V )

to minimize
∑K

k=1 f(Ak). As a well-studied problem, the multiway partition is known as
NP-hard when K is not fixed (Queyranne, 1999). There are two types of approximation
algorithms for solving the multiway partition problem. The first type includes local search
strategies such as the greedy search strategy (Zhao et al., 2005; Lee et al., 2010). The second
type utilizes the submodularity of f to relax the combinatorial optimization problem as a
continuous optimization problem (Chekuri and Ene, 2011; Feldman, 2017).

In our setting, a class combination πK induces a partition of the K0 observed classes:
A1 := π−1K (1), . . . , AK := π−1K (K) such that ∪Kk=1Ak = V := [K0]. Note that Ak indicates
the composition of the k-th combined class. Hence, maximizing the ITCA defined in (3)
can be re-expressed in the form of a multiway partition problem if we define

f(Ak) = − resolution(Ak) · accuracy(Ak) + c ,

where resolution(Ak) := −pDv(Ak) · log pDv(Ak), with pDv(Ak) indicating the proportion
of Ak (the k-th combined class) in the validation dataset Dv; accuracy(Ak) means the
prediction accuracy of the trained classifier φC,DtπK for Ak on Dv (i.e., prediction accuracy
conditional on Ak); the constant c := −mink0∈[K0] log pDv({k0}), where pDv({k0}) is the
proportion of the k0-th observed class in Dv, ensuring that f is nonnegative. Hence, max-
imizing ITCA(πK ;Dt,Dv, C) in (3) is equivalent to minimizing

∑K
k=1 f(Ak). In the ITCA

maximization problem, since K is not fixed, the problem is NP-hard; also, since f is not
submodular, the relaxation strategies used in the second type of approximation algorithms
do not apply. Hence, from the first type of approximation algorithms, we adopt two heuris-
tic local search strategies—the greedy search and breadth-first search (BFS) strategies—to
maximize ITCA.
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For greedy search, we start from π∗K0
= πK0 , which does not combine any classes. In

the k-th round (1 ≤ k ≤ K0 − 2), we find the best combination that maximizes the ITCA
among the allowed combinations πK−k’s, which are defined based on the chosen π∗K−k+1.
Next, we start from the chosen π∗K−k and repeat this procedure until ITCA cannot be
improved or K0 − 2 rounds are finished. This greedy search strategy reduces the search
space significantly and is summarized in Algorithm 1.

Here we analyze the greedy search’s computational cost for computing the R-fold CV
ITCA. Given a size-n dataset D and a classification algorithm C, suppose that the com-
putational cost is θ(n, C) for training a classifier on every R − 1 folds of training data and
evaluating the classifier on the remaining fold of training data. Hence, the computational
cost for evaluating each class combination is Rθ(n, C). For ordinal class labels, in the 1-st
round, the greedy search begins with K0 classes and has K0−1 feasible combinations; hence,
the computational cost is (K0−1)Rθ(n, C). In the i-th round, there are K0−i+1 classes and
K0−i feasible combinations; hence, the computational cost is (K0−i)Rθ(n, C). In the worst
case, the greedy search terminates after K0−2 rounds, leaving 2 classes. Hence, the greedy
search’s worst-case complexity is

∑K0−2
i=1 (K0−i)Rθ(n, C) = (K0−2)(K0+1)Rθ(n, C)/2. For

nominal class labels, there are
(
K0

2

)
possible combinations in the 1-st round,

(
K0−1

2

)
possible

combinations in the 2-nd round, and
(
3
2

)
possible combinations in the (K0 − 2)-th round in

the worst case. Hence, the greedy search’s worst-case complexity is
∑K0

K=3

(
K
2

)
Rθ(n, C) =[(

K0+1
3

)
− 1
]
Rθ(n, C). We summarize the greedy search’s worst-case complexities for ordi-

nal and nominal class labels in Table 3.

Algorithm 1 Greedy search algorithm

1: Input data D = {(Xi, Yi)}ni=1 and a classification algorithm C.
2: Set K ← K0 and π∗K ← πK0 .
3: Compute ITCACV(π∗K ;D, C).
4: while K > 2 do
5: Determine the set of allowed class combinations AK−1 based on π∗K .
6: for each allowed class combination πK−1 ∈ AK−1 do
7: Compute ITCACV(πK−1;D, C).
8: end for
9: if there exists no πK−1 that achieves ITCACV(πK−1;D, C) > ITCACV(π∗K ;D, C)

then
10: Break.
11: else
12: K ← K − 1;
13: π∗K ← arg max

πK−1∈AK−1

ITCACV(πK−1;D, C).

14: end if
15: end while
16: Return π∗K .

It is well known that the greedy search strategy may not lead to the globally optimal
class combination. Besides the greedy search, another commonly used search strategy is the
breadth-first search (BFS) summarized in Algorithm 2, which uses a queue to store class
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combinations that may be further combined. Specifically, given πK (with K ≥ 3) removed
from the front of the queue, we use N (πK) to denote the set of allowed combinations πK−1’s
that combine any two class defined by πK . For πK−1 ∈ N (πK) that has not been visited
and improves the ITCA of πK , the BFS strategy adds πK−1 to the end of the queue and
considers πK−1 as a candidate optimal class combination. The BFS strategy stops when
the queue is empty.

Table 3: Worst-case complexity of greedy search and BFS

Label type Greedy search BFS

Ordinal (K0 − 2)(K0 + 1)Rθ(n, C)/2
(
2K0−1 − 1

)
Rθ(n, C)

Nominal
[(
K0+1

3

)
− 1
]
Rθ(n, C) (BK0 − 1)Rθ(n, C)*

*BK0
is the Bell number of K0.

The BFS has a search space much larger than the greedy search’s but usually smaller
than the exhaustive search’s. The BFS may enumerate all allowed class combinations
in the worst case and become the exhaustive search. Hence, the BFS’s worst-case com-
plexity is

(
2K0−1 − 1

)
Rθ(n, C) for ordinal labels and (BK0 − 1)Rθ(n, C) for nominal la-

bels, where BK0 is the Bell number of K0, i.e., BK0 :=
∑K0

K=0

{
K0

K

}
, where

{
K0

K

}
:=

1
K!

∑K
i=0(−1)i

(
K
i

)
(K − i)K0 is the Stirling number of the second kind. We summarize the

BFS’s worst-case complexities in Table 3.
Despite being heuristic strategies, the greedy search and BFS perform equally well as

the exhaustive search in our simulation results in Section 3. Moreover, our theoretical
analysis shows that BFS is equivalent to the exhaustive search with the oracle classification
algorithm (see Appendix B.3).

2.4 Some theoretical remarks

Of note, the ability of ITCA to find the true class combination depends on the classification
algorithm. Using the oracle algorithm (see Definition 4 in Appendix B.1) and the LDA
algorithm as examples, we analyze the properties of ITCA at a population level. As ex-
pected, when used with the oracle algorithm, ITCA has a much stronger ability to find the
true class combination than when it is used with the LDA algorithm (see Appendix B.1).
We also find that, when the LDA is used as a soft classification algorithm, ITCA is more
likely to find the true class combination. In a special case where data are drawn from two
well-separated Gaussian distributions, we can see that the soft LDA becomes the oracle
classification algorithm (see Appendix B.2).

Our theoretical analysis also reveals that ITCA is unsuitable for combining observed
classes, even if ambiguous, into a large class that dominates in proportion. The reason is
that ITCA automatically balances the trade-off between prediction accuracy and classifi-
cation resolution. As a result, if the combined class dominates in proportion, ITCA may
decrease since the decrease in classification resolution outweighs the increase in prediction
accuracy. In other words, ITCA refrains from outputting a combined class dominant in
proportion. This property ensures that ITCA would never combine all classes into one, and
it is reasonable for applications in which balanced classes are desired.
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Algorithm 2 Breadth-first search algorithm

1: Input data D = {(Xi, Yi)}ni=1 and a classification algorithm C.
2: Initialize an empty set of combinations A and an empty queue Q.
3: Compute ITCACV(πK0 ;D, C).
4: A ← A∪ {πK0}. . Add πK0

to A.

5: Q.enqueue(πK0). . Add πK0
to the back of Q.

6: while Q is not empty do
7: πK ← Q.dequeue(). . Remove the front element of Q as πK .

8: Determine the set of allowed class combinations N (πK) based on πK .
9: for each allowed class combination πK−1 ∈ N (πK) do

10: if πK−1 is not visited then
11: Compute ITCACV(πK−1;D, C).
12: if ITCACV(πK−1;D, C) > ITCACV(πK ;D, C) then
13: A ← A∪ {πK−1}. . Add πK−1 to A.

14: Q.enqueue(πK−1). . Add πK−1 to the back of Q.

15: end if
16: Mark πK−1 as visited.
17: end if
18: end for
19: end while
20: Return π∗K ← arg max

π∈A
ITCACV(π;D, C).

In Appendix B.3, we show that BFS is equivalent to the exhaustive search with the
oracle classification algorithm. Moreover, we show that for both greedy search and BFS,
the search space of possible class combinations can be further pruned if the classification
algorithm satisfies a non-stringent property (see Appendix C). Please refer to the Appendix
for the detailed results.

3. Simulation studies

3.1 ITCA outperforms alternative class combination criteria on simulated data

To verify the effectiveness of ITCA, we first compare ITCA with five alternative criteria—
accuracy (ACC), mutual information (MI), adjusted accuracy (AAC), combined Kullback-
Leibler divergence (CKL), and prediction entropy (PE)—in simulations. Among the five
alternative criteria, ACC is commonly used to evaluate classification algorithms, and MI is
often to evaluate clustering algorithms. The rest three alternative criteria, namely AAC,
CKL, and PE, are our newly proposed criteria to balance the trade-off between classifica-
tion accuracy and classification resolution from three other perspectives. Please refer to
Appendix A and Supplementary Material Section 2.4 for the definitions of the five alterna-
tive criteria.

Given the number of observed classes K0 and the true class combination π∗K∗ : [K0] →
[K∗], we first generate K∗ class centers by a random walk in IRd. The random walk starts
from the center of class 1: µ1 = 0 ∈ IRd. At time k = 2, . . . ,K∗, the walk chooses a
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direction at random and takes a step with a fixed length l; that is, the center of class k
is µk = µk−1 + lv, where v ∈ IRd is a random direction vector with the unit length, i.e.,
||v|| = 1. To make the true classes distinguishable, we ensure that the minimal pairwise
Euclidean distance among µ1, . . . ,µK∗ is greater than σ, i.e., the standard deviation of
every feature in each class. Given {µk}K

∗
k=1 and σ, we then define the distribution of (X, Y )

as follows.

1. The true class Y ∗ ∼ discrete uniform([K∗]), i.e., Y ∗ randomly picks a value in [K∗]
with probability 1/K∗.

2. The observed class Y ∼ discrete uniform(π∗−1K∗ (Y ∗)), i.e., Y randomly picks a value in
π∗−1K∗ (Y ∗) = {k0 ∈ [K0] : π∗K∗(k0) = Y ∗} ⊂ [K0]—the observed classes that belong to

the true class Y ∗—with probability 1/|π∗−1K∗ (Y ∗)| = 1/(
∑K0

k0=1 1I (π∗K∗(k0) = Y ∗)).

3. The observed feature vector X ∼ N (µY ∗ , σ
2Id), i.e., X follows a d-dimensional Gaus-

sian distribution with mean µY ∗ specified by the true class Y ∗.

Given a dataset {(Xi, Yi)}ni=1, which contains independently and identically distributed
(i.i.d.) observations from the above distribution, an ideal criterion of class combination is
expected to be maximized at π∗K∗ .

We generate a simulated dataset with K0 = 6, K∗ = 3, l = 3, σ = 1.5, n = 2000, and
d = 5. We assume the true class combination is π∗3 = {(1, 2), (3, 4), (5, 6)}, i.e., the 1-st and
2-nd observed classes belong to one true class, and so do the 3-rd and 4-th observed classes,
as well as the 5-th and 6-th observed classes. We also assume that the classes are ordinal;
that is, A contains 25 − 1 = 31 class combinations (Table 2). Because of the moderate size
of |A|, we use the exhaustive search to enumerate all allowed class combinations.

Regarding the classification algorithm, we consider the LDA and random forest (RF)
(Breiman, 2001). Figure 3 shows that ITCA using LDA successfully finds the true class
combination π∗3; that is, when evaluated on the 31 πK ’s, ITCA is maximized at π∗3. In
contrast, ACC is maximized when the K0 = 6 observed classes are combined into K = 2
classes; hence, it is not appropriate for guiding class combination. Although better than
ACC, MI and two alternative criteria we proposed (AAC and CKL) still fail to find π∗3.
Among the alternative criteria, only PE correctly identifies π∗3 because its definition is
similar to that of ITCA. The results using RF (Supplementary Material, Figure S1) are
consistent with Figure 3. We design another simulation with K∗ = 5 and the true class
combination π∗5 = {(1, 2), 3, 4, 5, 6}. The results in Figures S2 and S3 (Supplementary
Material) show that ITCA outperforms all five alternative criteria, including PE, by finding
π∗5 with the largest gap from other class combinations.

To further evaluate the performance of ITCA and the five alternative criteria, we escalate
this simulation design by setting K0 = 8; then the number of allowed class combinations
is 27 − 1 = 127 (Table 2). We repeat the simulation for 127 times, each time using one of
the 127 allowed class combinations as the true class combination π∗K∗ ; the other simulation
parameters are kept the same. We use the exhaustive search with LDA or RF to find
the best class combination guided by each criterion, denoted by πmK for criterion m ∈
{ITCA,ACC,MI,AAC,CKL,PE}. To evaluate the performance of criterion m, we define
the distance between πmK and π∗K∗ as follows. First, we encode each allowed class combination
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Figure 3: Comparison of ITCA and five alternative criteria using the LDA as the classifi-
cation algorithm. The dataset is generated with K0 = 6, K∗ = 3, l = 3, σ = 1.5,
n = 2000, and d = 5. The true class combination is π∗3 = {(1, 2), (3, 4), (5, 6)}.
For each criterion, the 31 blue points correspond to the 31 class combinations
πK ’s with K = 2, . . . , 6. The true class combination π∗K∗ is marked with the red
star, and the best value for each criterion is indicated by a horizontal dashed line.
The true class combination is only found by PE and ITCA without close ties.

πK : [K0]→ [K] for combining K0 ordinal classes as a (K0 − 1)-dimensional binary vector,
as in the “stars and bars” used in combinatorics (Feller, 2008). For example, the class
combination {(1, 2), 3, 4, 5, 6, 7, 8} can be represented by 12|3|4|5|6|7|8 and thus encoded as
the binary vector (0, 1, 1, 1, 1, 1, 1), where the 0 indicates that there is no bar between the
original classes 1 and 2, the first 1 indicates that there is a bar between the original classes
2 and 3, etc. Second, we define the distance between πmK and π∗K∗ as the Hamming distance
between their binary encodings; hence, the distance takes an integer value ranging from
0 to K0 − 1, with 0 indicating that πmK = π∗K∗ , i.e., the criterion m finds the true class
combination.

We evaluate the performance of each criterion using three metrics: (1) the number of
datasets (the larger the better) on which the criterion identifies the true class combination;
(2) the average and (3) the maximum Hamming distances (the smaller the better) between
the criterion’s best class combination and the true class combination across the 127 datasets.
Table 4 shows that, among the six criteria, ITCA has the best performance under all three
criteria; PE has the second best performance after ITCA; the other criteria fail to find
the true class combination on at least 80% of the datasets. ITCA only misses the true
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Table 4: The performance of six criteria on the 127 simulated datasets with K0 = 8. The
best result in each column is boldfaced.

Criterion
# successes Average Max # successes Average Max

# datasets Hamming Hamming # datasets Hamming Hamming

LDA RF

ACC 6/127 2.54 6 7/127 2.53 6
MI 7/127 2.51 6 11/127 2.33 6
AAC 15/127 2.02 6 15/127 1.98 6
CKL 3/127 3.68 6 5/127 2.87 5
PE 101/127 0.47 4 94/127 0.46 3
ITCA 120/127 0.12 3 120/127 0.08 2

class combination when K∗ = 2, which corresponds to
(
7
6

)
= 7 true class combinations

(see Supplementary Material Table S5). This result is confirmed in a similar analysis with
K0 = 6 (in Supplementary Material Tables S1 and S4), and it can be explained by the
theoretic analysis in Appendix B.1, which shows that ITCA would not combine two same-
distributed classes when the combined class’ proportion is too large (e.g., larger than 0.5).

Table 5: Performance of ITCA using five search strategies and LDA on the 127 simulated
datasets with K0 = 8.

Strategy
# successes Average Max Average # class

# datasets Hamming Hamming combinations examined

Exhaustive 120/127 0.13 3 127.00
Greedy search 120/127 0.12 3 22.52
BFS 120/127 0.10 2 53.61
Greedy (pruned) 120/127 0.09 2 11.91
BFS (pruned) 120/127 0.09 3 27.20

The above results verify the effectiveness of ITCA in finding the true class combination.
In the following, we compare the two proposed search strategies, the greedy search and BFS,
with the exhaustive search. Specifically, we use the aforementioned 127 simulated datasets
corresponding to K0 = 8, and we apply ITCA under the three search strategies, with LDA
as the classification algorithm. The top three rows of Table 5 show that the greedy search
and BFS are as effective as the exhaustive search in finding the true class combinations.
Supplementary Material Table S2 shows similar results for K0 = 6. Compared with the
exhaustive search, the greedy search and BFS examine fewer class combinations and thus
greatly reduce the computational time because each class combination, if examined, needs
a separate classifier training.
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We note that the search space of the greedy search and BFS can be further pruned if the
classification algorithm satisfies a non-stringent property, and we will discuss this pruning
procedure in Appendix C. As a preview, the bottom two rows of Table 5 show that pruning
reduces the search spaces of the greedy search and BFS while maintaining the performance.

When K0 is large, it is unrealistic to use the exhaustive search. Here we use K0 = 20
ordinal classes as an example. Out of the 219 − 1 ≈ 5.24 × 105 allowed class combinations
(Table 2), we randomly select 50 class combinations as the true class combination π∗K∗ ,
whose K∗ ranges from 7 to 16. From each π∗K∗ , we generate a dataset with n = 10,000
data points (the other parameters are the same as in the aforementioned simulations). The
results show that the greedy search works as well as the BFS (Supplementary Material Table
S3): both successfully find the π∗K∗ of each dataset. On average, the greedy search only
needs to evaluate ITCA on 150.08 class combinations (87.70 combinations with the pruned
search space) out of the ∼ 5.24 × 105 allowed class combinations. In contrast, the BFS
has a much larger search space (∼ 104 class combinations). Notably, ITCA has a higher
probability of success when K∗ is larger. We discuss this phenomenon in Appendix B.1.

Figure 4: Comparison of ITCA and five alternative criteria using LDA as the classification
algorithm on the Iris data. K0 = 4 and K∗ = 3 (with the true class combination
π∗K∗ marked by the arrow and the red vertical dashed line in every panel). For
every allowed class combination πK , each criterion has its value (calculated by
5-fold CV) marked by a red circle for K = 4, a blue square for K = 3, and a
green diamond for K = 2); each error bar has half its length corresponding to
the standard error of the criterion value (i.e., the standard deviation of the 5
criterion values in the 5-fold CV, divided by

√
5). The horizontal line marks each

criterion’s best value. Among the six criteria, only AAC, CKL, PE, and ITCA
are maximized at π∗K∗ , and only ITCA has a clear gap between π∗K∗ and all other
class combinations.
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3.2 ITCA outperforms alternative class combination criteria on the Iris data

We also compare ITCA with the five alternative class combination criteria on the famous
Iris dataset1, which contains K∗ = 3 classes (corresponding to three types of irises: setosa,
versicolor, and virginica) with 50 data points in each class. The setosa class is linearly
separable from the versicolor and virginica classes, while versicolor and virginica are not
linearly separable from each other. To prepare the dataset for class combination, we ran-
domly split the setosa class into two equal-sized classes, making the number of observed
classes K0 = 4. Since the four classes are nominal, there are 14 allowed class combinations
(Table 2).

For each allowed class combination, we compute the six class combination criteria with
LDA as the classification algorithm (Figure 4). Among the six criteria, AAC, CKL, PE,
and ITCA successfully find the true class combination π∗K∗ . However, only ITCA leads to
a clear gap between π∗K∗ and the other 13 allowed class combinations. Note that CKL has
large error bars because its computation involves the inverses and determinants of sample
covariance matrices, whose accurate estimation requires a large sample size. Particularly,
ACC has an undesirable result: its maximal value 1 is obtained at the class combination π2
where the versicolor and virginica classes are combined. Again, these results confirm the
unsuitability of ACC for guiding class combination, and they demonstrate the advantage
ITCA has over the five alternative criteria.

3.3 ITCA outperforms clustering-based class combination

While ITCA provides a powerful data-driven approach for combining ambiguous classes, one
may intuitively consider using a clustering algorithm to achieve the same goal. We consider
three clustering-based class combination approaches, which are summarized below, and we
compare them with ITCA on simulated data under four settings.

K-means-based class combination. For the k0-th class (k0 = 1, . . . ,K0), we first
compute the k0-th class center as (

∑n
i=1 1I(Yi = k0)Xi) /(

∑n
i=1 1I(Yi = k0)) . We then use

the K-means clustering to cluster the K0 class centers into K∗ clusters so that the K0

observed classes are correspondingly combined into K∗ classes.
Spectral-clustering-based class combination. We first compute the K∗-dimensional

spectral embeddings of X1, . . . ,Xn (Ng et al., 2001) . Then we apply the above K-means-
based class combination approach to the n spectral embeddings to combine the K0 observed
classes into K∗ combined classes.

Hierarchical-clustering-based class combination. We first compute the K0 class
centers as in the K-means-based class combination approach. Then we use the hierarchical
clustering with the single, complete, or average linkage to cluster the K0 class centers into
K∗ clusters so that the K0 observed classes are correspondingly combined into K∗ classes.

Note that all these clustering-based class combination approaches require that K∗ (the
true number of classes) is known or estimated by an external approach (e.g., an approach for
determining the number of clusters (Tibshirani et al., 2001; Sugar and James, 2003; Pham
et al., 2005)), which is by itself a difficult problem in real-world applications. In contrast,
ITCA does not require K∗ to be known beforehand; instead, its optimal class combination
determines K∗ in a data-driven way.

1http://archive.ics.uci.edu/ml/datasets/Iris/
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To benchmark ITCA against the clustering-based class combination approaches, we
generate four datasets with two-dimensional features (X1, . . . ,Xn ∈ IR2), which are shown
in the four rows of Figure 5. Then we apply the above five clustering-based class combination
approaches (three of which are hierarchical clustering with three linkages) and ITCA to the
synthetic data; for ITCA, we use the Gaussian kernel support vector machine (SVM) as the
classification algorithm.

Figure 5 shows the results of ITCA and the clustering-based class combination ap-
proaches with K∗ = 3 known: only ITCA successfully finds the true class combination
on every dataset. We conclude that ITCA is advantageous over the clustering-based ap-
proaches even with a known K∗. The major reason is that the clustering-based approaches
only use the K0 class centers (whose definition depends on a distance metric) and do not
fully use the information in individual data points, which play a central role in the definition
of ITCA.

Figure 5: Comparison of clustering-based class combination approaches and ITCA (using
Gaussian kernel SVM as the classification algorithm). Each row corresponds to
one simulated dataset. From top to bottom, the number of observed classes is
K0 = 4, 5, 5, and 4, and the number of true classes is K∗ = 3, 3, 3, and 3.
In the leftmost column, colors mark the observed classes; in the other columns,
the three colors indicate the three combined classes found by each combination
approach. Check marks indicate the cases where the true class combinations are
found. Only ITCA finds the true class combination on every dataset.
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4. Applications

4.1 Prognosis of rehabilitation outcomes of traumatic brain injury patients

According to the Centers for Disease Control and Prevention, traumatic brain injury (TBI)
affects an estimated 1.5 million Americans every year2. The inpatient TBI rehabilitation
care alone costs each patient tens of thousands of dollars per month. However, TBI reha-
bilitation is proven to be effective for only some but not all patients (Turner-Stokes, 2008).
Therefore, there is a great demand to have an automatic prognosis algorithm that can accu-
rately predict rehabilitation outcomes for individual patients and assist patients’ decisions
in seeking rehabilitation care. We have access to the Casa Colina dataset of n = 3078
TBI patients who received inpatient rehabilitation care. Patients’ disability severity was
evaluated and recorded by physical therapists in the form of the Functional Independence
Measure (FIM) of 17 activities at admission and discharge (Supplementary Material Ta-
ble S7). The FIM has seven scales ranging from 1 (patient requires total assistance to
perform an activity) to 7 (patient can perform the activity with complete independence)
(Linacre et al., 1994). In addition, patients’ characteristics are recorded, including demo-
graphics (gender and age) and admission status. This dataset allows the development of an
algorithm to predict the efficacy of rehabilitation care for individual patients.

We formulate the task of predicting patients’ rehabilitation outcomes as a multi-class
classification problem, where the discharge FIM of each activity is a seven-level (K0 = 7)
ordinal outcome, and the features are patients’ characteristics and admission FIM. We are
motivated to combine outcome levels because the RF algorithm, though being the best-
performing algorithm in our study, has low accuracy for predicting the K0 levels of many
activities. Hence, we consult the physical therapists who graded the activities and obtain
their suggested combination {1, (2, 3, 4), 5, 6, 7}, which has levels 2–4 combined. However,
this expert-suggested class combination is subjective and not activity-specific. Intuitively,
we reason that different activities may have different classification resolutions and thus
different outcome level combinations. Hence, we apply ITCA as a data-driven approach to
guide the combination of outcome levels for each activity.

Powered with ITCA, we can construct a multilayer prediction framework (Figure 6),
whose K0 layers (from top to bottom) correspond to the numbers of combined classes
K = 1, . . . ,K0, with the bottommost layer indicating no class combination. There are
two ways to construct a framework: greedy-search-based and exhaustive-search-based. In
a greedy-search-based framework, layers are constructed by the greedy search (Section 2.3)
in a sequential way from bottom up: classes in each layer except the bottommost layer
are combined by ITCA from the classes in the layer right below, so the layers would fol-
low a nested structure. In contrast, in an exhaustive-search-based framework, layers are
constructed separately from the bottommost layer: each layer has its optimal class combi-
nation defined by ITCA and found by the exhaustive search (Section 2.3) given its K; thus,
there is no nested constraint. Note that K0 is often not too large in medical diagnosis and
prognosis, making the exhaustive search computationally feasible.

Greedy-search-based and exhaustive-search-based frameworks have complementary ad-
vantages. On the one hand, the former outputs a data-driven hierarchy of class combinations
and is thus more interpretable if the prediction would be conducted for all layers. On the

2https://www.cdc.gov/traumaticbraininjury/get_the_facts.html
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Figure 6: Greedy-search-based and exhaustive-search-based multilayer frameworks for pre-
dicting the Toileting activity in the Casa Colina dataset. In either framework,
layer K has a class combination πK chosen by ITCA. In the greedy-search-based
framework, the layers have a tree structure. Layer 5 has the same class combina-
tion in both frameworks and is found optimal by ITCA.

other hand, the latter outputs the optimal class combination for each layer and allows
choosing the optimal layer (that maximizes ITCA); hence, it is more desirable if prediction
would only be conducted for the optimal layer. For example, if healthcare providers would
like to predict outcomes at a multilayer resolution, the greedy-search-based framework is
more suitable. In contrast, if the priority is to combine outcome levels into the optimal
classification resolution for prediction, the exhaustive-search-based framework would be a
better fit.

We use RF as the classification algorithm for its better accuracy than other popu-
lar algorithms’ on the Casa Colina dataset. Leveraging the RF algorithm, we apply the
greedy-search-based and exhaustive-search-based multilayer frameworks to predict the re-
habilitation outcome of each of the 17 activities. For example, Figure 6 shows the results
for predicting the Toileting activity: ITCA indicates the same optimal class combination in
both frameworks: {1, 2, (3, 4), 5, (6, 7)} in layer K = 5, where levels 3 and 4 are combined,
and so are levels 6 and 7.

To evaluate the results of ITCA for the 17 activities, we calculate the prediction accu-
racy by RF for our ITCA-guided combinations (using the exhaustive-search-based multi-
layer framework), the expert-suggested combination, and the hierarchical-clustering-based
combinations (defined in Section 3.3; the results are based on the average linkage). Note
that the prediction accuracy for different class combinations may differ even if the best
guess algorithm (i.e., the näıve algorithm that assigns data points to the largest class—a
baseline control) is used. Hence, for a fair comparison, we evaluate each class combination
by the 5-fold CV prediction accuracy improvement of the RF algorithm from the best guess
algorithm.

Figure 7 shows the comparison results for eight activities, for which ITCA selects class
combinations with K’s closest to 5 (i.e., the number of combined levels suggested by ex-
perts). We find that, compared with the expert-suggested combination and the hierarchical-
clustering-based combinations, the ITCA-guided combinations consistently lead to more
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balanced classes (which are more difficult to predict, as indicated by the lower prediction
accuracy of the best guess algorithm) and more significant improvement in prediction ac-
curacy. Figure S5 and Tables S8–S9 (in Supplementary Material) summarize for all 17
activities the ITCA-guided class combinations and their corresponding prediction accuracy
(i.e., the ACC criterion defined in Appendix A), as well as the ITCA values.

As a side note, we argue that it is inappropriate to use the prediction accuracy im-
provement (from the best guess) as a class combination criterion. The reason is that the
prediction accuracy of the best guess, though serving as a baseline accuracy, does not neces-
sarily reflect the classification resolution. For example, an outcome encoded as two classes
with equal probabilities has a lower classification resolution than another outcome encoded
as three classes with probabilities 0.5, 0.25, and 0.25; however, the best guess algorithm has
the same prediction accuracy 0.5 for the two outcomes.

Figure 7: Prediction accuracy for the optimal level combination indicated by ITCA (using
the exhaustive-search-based multilayer framework), the expert-suggested combi-
nation, and the hierarchical-clustering-based level combinations for the rehabil-
itation outcomes of eight activities in the Casa Colina dataset. The horizontal
axis shows the 5-fold CV prediction accuracy of the best guess algorithm, and the
vertical axis shows the accuracy of the RF algorithm. The accuracy improvement
of the RF from the best guess is marked on vertical dashed lines. Note that in
the “Comprehension” panel, ITCA finds the expert-suggested combination; the
two accuracy improvement values (0.298 and 0.291) should be equal in theory,
but they are different due to the randomness of data splitting in the 5-fold CV.

4.2 Prediction of glioblastoma cancer patients’ survival time

Glioblastoma cancer, also known as glioblastoma multiforme (GBM), is the most aggressive
type of cancer that begins within the brain. Hence, it is of critical importance to pre-
dict GBM patients’ survival time so that appropriate treatments can be provided. In this
prediction task, patients’ survival time would be predicted from their clinical measurements.
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We download the TCGA GBM dataset from the cBio cancer genomics portal (Cerami
et al., 2012)3. The dataset contains n = 541 patients’ demographics, gene expression
subtypes, therapy, and other clinical information. We remove nine features irrelevant to
survival prediction and keep d = 36 features (see Supplementary Material Section 3.2 for
the data processing details).

We formulate this survival prediction task as a classification problem instead of a re-
gression problem to demonstrate the use of ITCA, and we compare the performance of
the classifier guided by ITCA with that of the Cox regression model. Concretely, we first
discretize patients’ survival time into K0 = 12 intervals: [0, 3), [3, 6), [6, 9), [9, 12), [12, 15),
[15, 18), [18, 21), [21, 24), [24, 27), [27, 30), [30, 33), [33,+∞), where [0, 3) and [33,+∞)
indicate that the survival time is less than 3 months and at least 33 months, respectively.

We then use ITCA to optimize the survival time intervals for prediction. For the clas-
sification algorithm, we use a three-layer neural network (NN) with the ReLU activation
function and a modified cross entropy as the loss function for handling censored survival
time (see Supplementary Material Section 3.2 and Figure S6). Starting from the observed
K0 = 12 classes, we use ITCA with greedy search to select a class combination for each
K = 11, . . . , 2. For each K and its selected class combination, we train a NN classifier and
show the ITCA and ACC in Figure 8. As expected, as K decreases, ACC increases, con-
firming our motivation that ACC cannot be used to guide class combination. In contrast,
as K decreases, ITCA first increases until K = 7 and then decreases, confirming that ITCA
balances the trade-off between prediction accuracy and classification resolution.

Figure 8: Results of GBM survival prediction. Three criteria, ACC, ITCA and Kendall’s
tau coefficient, are shown for K from K0 (=12) to 2 (for each K, a class com-
bination is found by ITCA, and an NN classifier is trained). Each criterion is
calculated by the 5-fold CV, and its mean and standard error (i.e., standard de-
viation of the 5 criterion values in the 5-fold CV, divided by

√
5) are shown. The

best class combination π∗K found by ITCA is indicated by the red vertical dashed
line (K = 7), where Kendall’s tau is also maximized.

3The dataset is available at https://www.cbioportal.org/
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Following the tradition in survival analysis, we use Kendall’s tau coefficient (calculated
between the predicted outcome and the observed survival time, not the discretized survival
time interval, in 5-fold CV) to evaluate the prediction accuracy. Note that Kendall’s tau is
a reasonable accuracy measure for survival prediction because it is an ordinal association
measure that allows the predicted outcome to be either discrete (as in our classification
formulation) or continuous (as in a regression formulation). Figure 8 shows that the optimal
class combination found by ITCA leads to the best Kendall’s tau, verifying that ITCA
optimizes the survival time intervals for classifier construction.

We also compare the NN algorithm with two commonly used survival prediction algo-
rithms: the Cox regression (Cox, 1972), a regression algorithm that predicts patients’ risk
scores, and the logistic regression (LR), a multi-class classification algorithm that uses the
same modified cross entropy loss to predict survival time intervals as the NN algorithm
does. We use Kendall’s tau to evaluate five prediction models: NN and LR classifiers for
predicting the original K0 survival time intervals, NN and LR classifiers for predicting their
respective combined intervals guided by ITCA, and a Cox regression model for predicting
risk scores (Kendall’s tau is calculated between negative predicted risk scores and observed
survival time). Table 6 shows that the NN classifier trained for ITCA-guided combined
intervals has the best prediction accuracy in terms of Kendall’s tau; moreover, it has the
highest ITCA value among the four classifiers. This result again verifies that ITCA is a
meaningful accuracy measure.

Note that Kendall’s tau is not an appropriate measure to replace ITCA because it
requires the response to be a numerical or ordinal variable. Hence, Kendall’s tau cannot
guide the combination of nominal class labels.

Table 6: Performance of survival prediction algorithms on the GBM dataset.

Model ITCA Kendall’s tau Average p-value

NN (K0 survival time intervals) 0.8565± 0.0410 0.6547± 0.0181 2.11e-14
LR (K0 survival time intervals) 0.6354 ± 0.0620 0.6024± 0.0244 1.64e-11
NN (ITCA-guided combined intervals) 0.9623± 0.0464 0.6855± 0.0178 1.27e-15
LR (ITCA-guided combined intervals) 0.8196 ± 0.0222 0.6236± 0.0240 5.34e-10
Cox regression (risk scores) - 0.6303± 0.0542 2.04e-13

Each criterion is computed by 5-fold cross validation; its mean and standard error (i.e., standard
deviation of the 5 criterion values in the 5-fold CV, divided by

√
5) are listed; the average of the

5 p-values corresponding to Kendall’s tau coefficients in the 5-fold CV is also listed. The NN
algorithm trained with ITCA-guided K = 7 combined intervals achieves the best ITCA value,
the best Kendall’s tau, and the most significant average p-value.

4.3 Prediction of user demographics using mobile phone behavioral data

One of the essential tasks in personalized advertising is to predict users’ demographics
(gender and age) using behavioral data. A good predictive model is necessary for data-
driven marketing decisions. To simplify the prediction of user ages, data scientists often
first discretize ages into groups and then construct a multi-class classifier to predict age
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groups instead of exact ages (Kaggle, 2016). However, the discretization step is heuristic
and unjustified. Here we use ITCA to determine age groups in a principled, data-driven
way.

We apply ITCA to the TalkingData mobile user demographics4, a public dataset of
mobile phone users’ behavioral data in China. Specifically, the dataset contains users’ app
usage, mobile device properties, genders, and ages. Our goal is to predict a user’s gender
and age from mobile device and app usage. In detail, we discretize male users’ ages into 17
ordinal groups encoded as M20−, M20–21, . . . , M48–49, and M50+ (where M20−, M20–21,
and M50+ indicate male users whose ages are < 20, ≥ 20 & < 21, and ≥ 50, respectively).
Similarly, we divide female users into 17 ordinal age groups: F20−, F20–21, . . . , F48–49,
and F50+. Together, we have K0 = 34 classes to start with. We use one-hot encoding to
convert users’ mobile devices and app usage data into 818 features; after deleting the users
with zero values in all features, we retain n = 23,556 users. Then we use XGBoost (Chen
and Guestrin, 2016) as the classification algorithm for its successes on similar prediction
tasks in Kaggle competitions (see Supplementary Material Section 3.3 for details of data
processing and algorithm training procedures).

Figure 9: Results on TalkingData mobile user demographics dataset using XGBoost. Left:
ITCA and ACC versus the number of combined classes K, which ranges from
K0 = 34 to 2. The criteria are estimated by 5-fold CV, and their standard errors
(marked by the shades) are calculated by the standard deviations in the 5-fold
CV divided by

√
5. The best class combination π∗K (with K = 6) is indicated by

the vertical dashed line. Right upper panel: the histogram of the ages of male
users; π∗K suggests three age groups: M26−, M26–33, and M34+. Right lower
panel: the histogram of the ages of female users; π∗K suggests three age groups:
F24−, F24–49, and F50+.

4The dataset is available at https://www.kaggle.com/c/talkingdata-mobile-user-demographics
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Since 30 out of the 34 classes are exact ages, it is intuitively too challenging to accurately
predict the 34 classes simply from users’ phone devices and app usage. This is indeed
the case, reflected by the low accuracy (< 0.35) of XGBoost (Figure 9). Hence, we use
ITCA with the greedy search strategy to combine the 34 ordinal classes into coarser, more
meaningful age groups from the prediction perspective. Note that we add the constraint
for not combining a male class with a female class .

Interestingly, ITCA suggests three different age groups for the male and female users
(male: M26−, M26–33, and M34+; female: F24−, F24–49, and F50+) (Figure 9, right
panel). This result reveals a gender difference in the mobile phone behavioral data: female
users have a wider middle age group (24–49 vs. male users’ 26–33). A possible explanation
of this gender difference is the well-known gender disparity in career development in China:
more males undergo promotion into senior positions in their middle 30s compared with
females, who tend to slow down career development at young ages for reasons such as
marriage and childbirth (Wei, 2011). This explanation is reasonable in that users’ career
development and mobile phone use behaviors are likely correlated. Hence, if we interpret
the male and female age groups from the perspective of career development, we find a
possible explanation of why the age of 34 is a change point for males but not for females,
whose middle-to-senior change point is the age of 49, close to the retirement age of most
females in China. In summary, ITCA provides a data-driven approach to defining user
age groups based on mobile phone behaviors, making it a potentially useful tool for social
science research.

4.4 Detection of biologically similar cell types inferred from single-cell
RNA-seq data

Recent advances in single-cell sequencing technologies provide unprecedented opportunities
for scientists to decipher the mysteries of cell biology (Wang and Navin, 2015; Stuart and
Satija, 2019). An important topic is to discern cell types from single-cell RNA-seq data,
which profile transcriptome-wide gene expression levels in individual cells.

Concretely, a single-cell RNA-seq dataset is processed into a data matrix of n cells
and d0 genes, with the (i, j)-th entry as the expression level (i.e., log-transformed count
of reads or unique molecular identifiers) of the j-th gene in the i-th cell. Starting from
the matrix, a standard analysis pipeline involves the following steps (Stuart and Satija,
2019). First, principal component analysis is performed on the data matrix to reduce the
column dimension from d0 to d � d0, resulting in a principal component matrix of n cells
and d principal components. Second, a clustering algorithm (e.g., the graph-based Louvain
algorithm (Blondel et al., 2008)) is applied to the principal component matrix to cluster
the n cells. Finally, experts use knowledge to manually annotate the cell clusters with cell
type labels.

However, the annotated cell types might be ambiguous due to the subjectivity of setting
parameter values in the above pipeline (e.g., the number of principal components d and the
clustering algorithm’s parameters) and the uncertainty of the clustering step. As a result,
if cells are overclustered, some annotated cell types might be biologically similar.

This problem, the detection of biologically similar cell types, can be formulated as an
application of ITCA. Here, we use a single-cell RNA-seq dataset of hydra (Siebert et al.,
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Figure 10: Visualizations of the cells in the hydra single-cell RNA-seq dataset using t-SNE
under six perplexity values from 10 to 60. The cell types 19 and 30 are marked
by triangles and black circles.

Figure 11: Heatmaps of the first 40 principal components of the hydra single-cell RNA-seq
data. Row colors indicate the cell types: green for cell type 19 (458 cells; left
and right panels), purple for cell type 30 (134 cells; left panel), and pink for cell
type 16 (143 cells; right panel). Hierarchical clustering can hardly distinguish
cell types 19 and 30 (left panel) but can well separate cell types 16 and 19 (right
panel).
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2019) as an example5. The processed dataset contains n = 25,052 cells annotated into
K0 = 38 cells types (nominal class labels). Following the procedure in Siebert et al. (2019),
we use the first d = 40 principal components as features. We choose the LDA as the clas-
sification algorithm for two reasons. First, our goal is to discover ambiguous cell types
instead of achieving high prediction accuracy, so it is reasonable to choose a weak classi-
fication algorithm. Second, the features are the principal components obtained from the
log-transformed counts, and they are found to approximately follow a multivariate Gaussian
distribution. Given the large K0, we apply ITCA using the greedy search algorithm. The
result suggests the combination of cell type 19 (“enEp tentacle”: endodermal epithelial cells
in tentacles) and cell type 30 (“enEp tentnem(pd)”: endodermal epithelial cells in tentacle
nematocytes—suspected phagocytosis doublets), which indeed have similar cell type labels.

To evaluate this result, we examine cell types 19 and 30 using two-dimensional t-SNE
visualization across a wide range of perplexity values (perplexity is the key hyperparameter
of t-SNE). The t-SNE plots (Figure 10) show that the two cell types are always direct
neighbors of each other.

We confirm this result by hierarchical clustering: the two cell types share similar gene
expression patterns and are barely distinguishable in the first 40 principal components
(Figure 11, left panel). As a control, we apply hierarchical clustering to distinguishing cell
type 16 (“i neuron en3”: neuronal cells of the interstitial lineage), whose number of cells is
closest to that of cell type 19, from cell type 30. The result shows that, unlike cell types
19 and 30, cell types 16 and 30 are well separated (Figure 11, right panel). Together, these
evidences verify the similarity of cell types 19 and 30, suggesting that ITCA can serve as a
useful tool for identifying similar cell types and refining cell type annotations.

5. Conclusion

We introduce ITCA, an information-theoretic criterion for combining ambiguous outcome
labels in classification tasks; typical examples are in medical and social sciences where class
labels are often defined subjectively. ITCA automatically balances the trade-off between the
increase in classification accuracy and the loss of classification resolution, providing a data-
driven criterion to guide class combination. The simulation studies validate the effectiveness
of ITCA and the proposed search strategies. The four real-world applications demonstrate
the wide application potential of ITCA. The theoretical analysis in Appendix B–C char-
acterizes several properties of ITCA and the search strategies, and it introduces a way to
enhance the LDA algorithm for class combination.

One merit of ITCA is its universality: it can be applied with any classification algorithm
without modification. While ITCA has an implicit trade-off between classification accu-
racy and classification resolution, it is worth extending ITCA to incorporate user-specified
weights for classification accuracy and classification resolution. Another open question is
how to incorporate users’ predefined classes’ importance to the ITCA definition; that is,
users may prefer some important classes to stay as uncombined.

5The dataset is available at Broad Institute’s Single Cell Portal https://singlecell.broadinstitute.
org/single_cell/study/SCP260/.
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In addition to classification problems, ITCA may potentially serve as a model-free cri-
terion for determining the number of clusters in clustering problems. We will investigate
this direction in future work.
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Appendix

A. Population-level ITCA and alternative criteria that may guide class
combination

To investigate the theoretical properties of ITCA, we define it at the population level as

p-ITCA(πK ;Dt, C) :=
K∑
k=1

[−IP(πK(Y ) = k) log IP(πK(Y ) = k)] · IP(φC,Dt
πK

(X) = πK(Y )|πK(Y ) = k),

(A.1)

where φC,DtπK is the classifier trained by the algorithm C on a finite training dataset Dt. The
population is used to evaluate the entropy contributions of πK ’s K combined classes and
the class-conditional prediction accuracies of φC,DtπK . The population-level ITCA (p-ITCA)
provides the basis of our theoretical analysis in Appendix B.1.

p-ITCA is aligned with the principle of maximum entropy (Pal et al., 2003), an ap-
plication of the Occam’s razor. For a fixed K, if the classifier φC,DtπK has the same predic-
tion accuracy for each class, i.e., IP(φC,DtπK (X) = πK(Y )|πK(Y ) = k) is a constant for all
k ∈ [K], then p-ITCA in (A.1) is proportional to the entropy of πK(Y ) and is maximized
by the πK that results in the K combined classes with the most balanced class probabil-
ities. In the special case where the classifier performs perfect prediction for all K’s, i.e.,
IP(φC,DtπK (X) = πK(Y )|πK(Y ) = k) = 1 for all k ∈ [K] and all K ∈ [K0], p-ITCA becomes
monotonically increasing in K, i.e., the higher the classification resolution, the larger the
entropy.

In addition to ITCA, we consider five alternative criteria that may guide class com-
bination. The first two are commonly used criteria: classification accuracy and mutual
information. The last three are our newly proposed criteria to balance the trade-off be-
tween classification accuracy and classification resolution from three other perspectives.

Accuracy. It is the most commonly used criterion to evaluate the performance of a
classification algorithm. For a class combination πK , given a classification algorithm C and
a size-n dataset D, the R-fold CV accuracy (ACC) is

ACCCV(πK ;D, C) :=
1

R

R∑
r=1

1

|Drv|
∑

(Xi,Yi)∈Drv

1I
(
φ
C,Drt
πK (Xi) = πK(Yi)

)
,

where the dataset D is randomly split into R equal-sized folds, with the r-th fold Drv serving
as the validation data and the union of the remaining R−1 folds Drt serving as the training

data, and φ
C,Drt
πK is the classifier trained by the algorithm C on Drt . Typically, ACCCV is

used without class combination because it is maximized as 1 when all classes are combined
into one. Hence, intuitively, it is not an appropriate criterion for guiding class combination.
In the following text, we refer to ACCCV as the ACC criterion.

Mutual information. It measures the dependence between two random variables,
which, in the context of classification, can be the observed class label and the predicted
class label. In this sense, the mutual information can be used as a criterion of classification
accuracy. Following the definition of the mutual information of two jointly discrete random
variables (Cover, 1999), we define the R-fold CV mutual information (MI) of πK given C
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and D as

MICV(πK ;D, C) :=
1

R

R∑
r=1

K0∑
k0=1

K∑
k=1


∑

(Xi,Yi)∈Drv
1I
(
Yi = k0, φ

C,Drt
πK (Xi) = k

)
|Drv|

(A.2)

· log


|Drv|

∑
(Xi,Yi)∈Drv

1I
(
Yi = k0, φ

C,Drt
πK (Xi) = k

)
( ∑

(Xi,Yi)∈Drv
1I (Yi = k0)

)( ∑
(Xi,Yi)∈Drv

1I
(
φ
C,Drt
πK (Xi) = k

))

 ,

where in the r-th fold, the mutual information is calculated for
{(
φ
C,Drt
πK (Xi), Yi

)
: (Xi, Yi) ∈ Drv

}
,

i.e., between the predicted labels after class combination πK and the original labels. Note
that the mutual information does not require K0 = K in (A.2). The reason why we do not

use the mutual information of
{(
φ
C,Drt
πK (Xi), πK(Yi)

)
: (Xi, Yi) ∈ Drv

}
(i.e., between the

predicted labels and observed labels, both after class combination πK) is that it increases
as more classes are combined—an undesirable phenomenon. In the following text, we refer
to MICV as the MI criterion.

Adjusted accuracy. Neither the ACC criterion nor the MI criterion directly uses class
proportions. However, intuitively, it is easier to predict a data point from a larger class.
To address this issue, we propose the R-fold CV adjusted accuracy (AAC) to weigh each
correctly predicted data point by the inverse proportion of the combined class to which the
data point belongs:

AACCV(πK ;D, C) :=
1

R

R∑
r=1

1

|Drv|
∑

(Xi,Yi)∈Drv

1I
(
φ
C,Drt
πK (Xi) = πK(Yi)

)
p
Drv
πK (πK(Yi))

, (A.3)

where pDvπK (πK(Yi)) is the proportion of the combined class πK(Yi) in Drv, same as in (3) in
the main text. The idea is straightforward: assigning smaller weights to the classes that
take up larger proportions. In the following text, we refer to AACCV in (A.3) as the AAC
criterion. An alternative proposal of the adjusted accuracy is to assign smaller weights to
the classes that are combined from more original classes; however, this proposal does not
work as well as the AAC criterion (see Supplementary Material Section 2.4).

Combined Kullback–Leibler divergence. To balance the trade-off between the pre-
diction accuracy and classification resolution, we also propose a combined Kullback–Leibler
(CKL) divergence criterion that adds up (1) the divergence of the joint feature distribution
estimated using combined class labels on the validation data Dv (denoted by F̂πK ,Dv : X →
[0, 1]) from that estimated using original class labels (denoted by F̂πK0

,Dv : X → [0, 1]) and
(2) the divergence of the joint feature distribution estimated using predicted combined class
labels (denoted by F̂

φ
C,Dt
πK

,Dv
: X → [0, 1], where the classifier φC,DtπK is trained on training

data Dt) from that estimated using combined class labels, i.e., F̂πK ,Dv . Accordingly, the
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R-fold CV CKL is defined as

CKLCV(πK ;D, C) :=
1

R

R∑
r=1

[
DKL

(
F̂πK ,Drv || F̂πK0

,Drv

)
+DKL

(
F̂
φ
C,Drt
πK

,Drv
|| F̂πK ,Drv

)]
.

(A.4)
In the following text, we refer to CKLCV as the CKL criterion. A challenge in calcu-
lating CKL is the estimation of d-dimensional joint feature distributions. To circumvent
this challenge, we only calculate CKL when all class-conditional feature distributions are
approximately Gaussian; that is, F̂πK0

,Dv , F̂πK ,Dv , and F̂
φ
C,Dt
πK

,Dv
can all be approximated

by Gaussian mixture models (see Supplementary Material Section 1 for the computational
detail of the KL divergence of two Gaussian mixture models). While this is an overly restric-
tive assumption, we use CKL as an alternative criterion to benchmark ITCA in simulation
studies where this assumption holds (main text Section 3.1).

Prediction entropy. The p-ITCA definition in (A.1) does not equate to but reminds us

of the entropy of the distribution of
(
φC,DtπK (X), πK(Y )

)
conditional on φC,DtπK (X) = πK(Y ),

which we refer to as the population-level prediction entropy (p-PE):

p-PE(πK ;Dt, C) =
K∑
k=1

−IP
(
φC,Dt
πK

(X) = πK(Y ) = k
)
· log IP

(
φC,Dt
πK

(X) = πK(Y ) = k
)

=

K∑
k=1

[−IP(πK(Y ) = k) log IP(πK(Y ) = k)] · IP(φC,Dt
πK

(X) = πK(Y )|πK(Y ) = k)

+
K∑
k=1

[−IP(πK(Y ) = k) log IP(φC,Dt
πK

(X) = πK(Y )|πK(Y ) = k)] · IP(φC,Dt
πK

(X) = πK(Y )|πK(Y ) = k) ,

where the first term after the last equal sign is the p-ITCA. Accordingly, at the sample
level, the R-fold CV PE is

PECV(πK ;D, C) :=
1

R

R∑
r=1

K∑
k=1

−

∑
(Xi,Yi)∈Drv

1I
(
φ
C,Drt
πK (Xi) = πK(Yi) = k

)
|Drv|

· log


∑

(Xi,Yi)∈Drv
1I
(
φ
C,Drt
πK (Xi) = πK(Yi) = k

)
|Drv|

 .

In the following text, we refer to PECV as the PE criterion. We argue that the definition
of PE is not as intuitive as that of ITCA because PE only considers the data points that
have labels correctly predicted; hence, compared to ITCA, PE does not fully capture the
classification resolution information. To compute ITCA, ACC, MI, AAC, CKL, and PE,
we set the number of folds in CV to R = 5 in all numerical analyses.
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B. Some theoretical remarks

The simulation studies and applications have empirically verified the effectiveness of ITCA
and the two search strategies: greedy search and BFS. One crucial question remains: is
ITCA maximized at the true class combination when the sample size n→∞? To investigate
the asymptotic property of ITCA, we define the population-level ITCA (p-ITCA) in (A.1).
For clarity, in the following text, we refer to the sample-level definition of ITCA in (3)
and (4) in the main text as s-ITCA, and we refer to ITCACV in (5) in the main text as
s-ITCACV. We can easily see that s-ITCA converges to p-ITCA in probability.

In Appendix B.1, we will show that p-ITCA dose not always suggest to combine the
classes that have the same class-conditional feature distribution, i.e., the classes we will
refer to as “same-distributed classes” in the following. Although this result seems counter-
intuitive, it is aligned with the definition of p-ITCA, which not only considers prediction
accuracy but also classification resolution. If the same-distributed classes dominate in class
proportions, p-ITCA may prefer to keep them separate to maintain a not-so-degenerate
classification resolution (a degenerate classification resolution means that all classes are
combined as one). To investigate the class combination properties of p-ITCA, we define
and analyze the class-combination curves and regions of the oracle classification algorithm
and the LDA algorithm as examples. The results show that the oracle and LDA algorithms
have different class-combination curves and regions. They also guide us to enhance the
ability of the LDA algorithm for discovering the true class combination as described in
Appendix B.2. In Appendix B.3, we will analyze the properties of the search strategies
with the oracle classification algorithm and show that BFS is equivalent to the exhaustive
search.

B.1 Properties of p-ITCA with the oracle and LDA classification algorithms

Definition 1 (πK ’s induced partition) Given K0 observed classes, a class combination
πK ’s induced partition is defined as K subsets of [K0]: π−1K (1), . . . , π−1K (K). That is,
π−1K (k) ∩ π−1K (k′) = ∅ if 1 ≤ k 6= k′ ≤ K0, and ∪Kk=1π

−1
K (k) = [K0].

Definition 2 (true class combination π∗K∗) The true class combination π∗K∗ is defined
as the one whose induced partition π∗−1K∗ (1), . . . , π∗−1K∗ (K) satisfies that the observed classes
in each π∗−1K∗ (k) have the same class-conditional feature distribution, and that the observed
classes in π∗−1K∗ (k) and π∗−1K∗ (k′) have different class-conditional feature distributions if 1 ≤
k 6= k′ ≤ K∗.

Definition 3 (set of split true class combinations A∗) Suppose π∗K∗ is the true class
combination. We define A∗ := {πK : ∀k ∈ [K], ∃k′ ∈ [K∗] s.t. π−1K (k) ⊂ π∗−1K∗ (k′)} as
the set of split true class combinations such that, in A∗, each combination πK ’s induced
partition is nested under the true class combination π∗K∗ ’s induced partition; that is, each
combined class defined by πK is a subset of a combined class defined by π∗K∗ .

Definition 4 (oracle classification algorithm C∗) Suppose there are K0 observed classes,
and π∗K∗ is the true class combination. We define C∗ as the oracle classification algorithm if
its classifier for any class combination πK , denoted by φC

∗
πK

, satisfies the following property.
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• For any data point (X, Y ), given S∗(Y ) := π∗−1K∗ (π∗K∗(Y )) ⊂ [K0], i.e., the set of
observed classes that have the same class-conditional feature distribution as that of Y ,

φC
∗
πK

(X) = πK(k0) , where k0 ∼ Multinomial (n = 1, support = S∗(Y ),

probabilities =

{
pk0∑

k′0∈S∗(Y ) pk′0
: k0 ∈ S∗(Y )

})
,

where pk0 is the proportion of the k0-th observed class. That is, k0 is randomly picked
from S∗(Y ) with probability equal to the proportion of k0-th observed class in S∗(Y ).

Moreover, φC
∗
πK

(X) = πK

(
φC
∗
πK0

(X)
)

.

Then the combined-class-conditional prediction accuracy of φC
∗
πK

is

IP
(
φC
∗
πK

(X) = k | πK(Y ) = k
)

= IP
(
φC
∗
πK

(X) = k | Y ∈ π−1K (k)
)

=
∑

k0∈π−1
K (k)

IP
(
φC
∗
πK

(X) = k | Y = k0

)
· IP(Y = k0 | Y ∈ π−1K (k))

=
∑

k0∈π−1
K (k)

IP
(
φC
∗
πK0

(X) ∈ π−1K (k) | Y = k0

)
· IP(Y = k0 | Y ∈ π−1K (k))

=
∑

k0∈π−1
K (k)

IP(Y = k0 | Y ∈ π−1K (k))
∑

k′0∈π
−1
K (k)

IP
(
φC
∗
πK0

(X) = k′0 | Y = k0

)
=

∑
k0∈π−1

K (k)

IP(Y = k0 | Y ∈ π−1K (k))
∑

k′0∈π
−1
K (k)∩S∗(k0)

IP
(
φC
∗
πK0

(X) = k′0 | Y = k0

)
=

∑
k0∈π−1

K (k)

pk0
Pπ−1

K (k)

∑
k′0∈π

−1
K (k)∩S∗(k0)

pk′0
PS∗(k0)

, k = 1, . . . ,K ,

where PA :=
∑

k0∈A pk0 denotes the total proportion of the observed classses in A.

We give two examples to help readers understand the definition of the oracle classification
algorithm.

• Example 1. All K0 observed classes have distinct class-conditional feature distri-
butions, i.e, π∗K∗ = πK0 . For any data point (X, Y ), IP(φC

∗
πK0

(X) = k0 | Y = k0) =

1, ∀k0 ∈ [K0]. Hence, φC
∗
πK0

(X) = Y and φC
∗
πK

(X) = πK(Y ) with probability 1; i.e.,
the oracle classification algorithm predicts perfectly for any class combination.

• Example 2. Among the K0 observed classes, π∗−1K∗ (1) = {1, 2}, and the remaining
observed classes [K0] \ {1, 2} have distinct class-conditional feature distributions. For
any data point (X, Y ), IP(φC

∗
πK0

(X) = Y | Y = 1) = p1/(p1 + p2), IP(φC
∗
πK0

(X) = Y |
Y = 2) = p2/(p1 + p2), and IP(φC

∗
πK0

(X) = Y | Y /∈ {1, 2}) = 1.

Lemma 5 Following the notations in Definition 4, suppose that among K0 ≥ 2 observed
classes, the observed classes 1 and 2 have distinct class-conditional feature distributions.
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Let πK be a class combination that keeps the observed classes 1 and 2 uncombined, and
consider πK−1 ∈ N (πK) that combines the observed class 1 and 2 into one class. Then
we have p-ITCA(πK ; C∗) > p-ITCA(πK−1; C∗). In other words, p-ITCA with the oracle
classification algorithm would decrease if two distinct classes are combined into one.

Proof Following the notations and the combined-class-conditional prediction accuracy of
φC
∗
πK

in Definition 4, we have

p-ITCA(πK ; C∗) = − p21
PS∗(1)

log p1 −
p22

PS∗(2)
log p2 + REM ,

where REM denotes the remaining terms that correspond to the combined classes in πK
other than the observed classes 1 and 2, which stay as distinct classes in πK .

p-ITCA(πK−1; C∗) = −(p1 + p2) log(p1 + p2)

(
p1

p1 + p2
· p1
PS∗(1)

+
p2

p1 + p2
· p2
PS∗(2)

)
+ REM

= − log(p1 + p2)

(
p21

PS∗(1)
+

p22
PS∗(2)

)
+ REM

Since log p1 < log(p1 + p2) and log p2 < log(p1 + p2), we have

p-ITCA(πK ; C∗) > p-ITCA(πK−1; C∗) .

Lemma 5 characterizes an important p-ITCA property with the defined oracle classifica-
tion algorithm: p-ITCA does not combine two classes with distinct class-conditional feature
distributions.

Below we investigate how the proportions of two same-distributed classes, say p1 and
p2, affect the class combination decision of p-ITCA: whether p-ITCA would suggest the two
classes to be combined. In the space of (p1, p2), denoted by

Ω = {(p1, p2) : p1 > 0, p2 > 0, p1 + p2 < 1} ⊂ [0, 1]2 , (B.5)

we define the class-combination curve and region of a general classification algorithm C;
the curve and region are regarding whether the two same-distributed classes should be
combined.

Definition 6 (class-combination curve and region) Among K0 > 2 observed classes,
suppose there are two same-distributed classes S = {1, 2}, and the other classes all have
distinct class-conditional feature distributions. Denote by πK0−1 = {(1, 2), . . . ,K0} the class
combination that only combines the observed classes 1 and 2 into one class. We consider
data-generating populations with varying (p1, p2) ∈ Ω in (B.5), and for each population we
evaluate the performance of p-ITCA for combining the observed classes 1 and 2. Given a
training dataset Dt (needed for practical algorithms but not for the oracle algorithm) and a
classification algorithm C, we refer to the curve in Ω

CC(πK0−1||πK0 ;Dt, C) := {(p1, p2) ∈ Ω : p-ITCA(πK0 ;Dt, C, p1, p2) = p-ITCA(πK0−1;Dt, C, p1, p2)}
(B.6)
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as the class-combination curve (CC) of C. For notation clarity, p1 and p2 are added to
p-ITCA(πK0 ;Dt, C) and p-ITCA(πK0−1;Dt, C) to indicate that p-ITCA also depends on p1
and p2.

Next, we define the class-combination region (CR) of algorithm C as

CR(πK0−1||πK0 ;Dt, C) := {(p1, p2) ∈ Ω : p-ITCA(πK0−1;Dt, C, p1, p2)−p-ITCA(πK0 ;Dt, C, p1, p2) > 0} ,
(B.7)

where πK0−1 improves the p-ITCA of πK0 and thus the two same-distributed classes should
be combined.

By the above definition, the following proposition holds for the oracle classification algo-
rithm.

Proposition 7 (class-combination curve and region of the oracle classification algorithm)
The class-combination curve of the oracle classification algorithm C∗ has the closed form

CC(πK0−1||πK0 ; C∗) = {(p1, p2) ∈ Ω : p21 log p1 + p22 log p2 = (p1 + p2)
2 log(p1 + p2)} , (B.8)

and the class-combination region is

CR(πK0−1||πK0 ; C∗) = {(p1, p2) ∈ Ω : p21 log p1 + p22 log p2 − (p1 + p2)
2 log(p1 + p2) > 0} .

(B.9)

Proof Consider the p-ITCA before combining the observed classes 1 and 2,

p-ITCA(πK0 ; C∗, p1, p2) =

K0∑
k0=1

−pk0 log pk0 · IP(φC
∗
πK0

(X) = Y |Y = k0) .

Since φC
∗
πK0

is an oracle classifier, we have

IP(φC
∗
πK0

(X) = Y |Y = 1) =
p1

p1 + p2
,

IP(φC
∗
πK0

(X) = Y |Y = 2) =
p2

p1 + p2
,

IP(φC
∗
πK0

(X) = Y |Y = k0) = 1 , k0 = 3, . . . ,K0 .

Hence,

p-ITCA(πK0 ; C∗, p1, p2) = −p
2
1 log p1
p1 + p2

− p22 log p2
p1 + p2

−
K0∑
k0=3

pk0 log pk0 . (B.10)

Denote by πK0−1 the class combination that only combines the observed classes 1 and 2,
i.e, πK0−1(1) = πK0−1(2) = 1, πK0−1(k0) = k0 − 1, ∀k ∈ [K0]\{1, 2}. The p-ITCA of πK0−1
is

p-ITCA(πK0−1; C∗, p1, p2) = −IP(πK0−1(Y ) = 1) log IP(πK0−1(Y ) = 1) · IP(φC
∗

πK0−1
(X) = πK0−1(Y )|πK0−1(Y ) = 1)

−
K0−1∑
k=2

IP(πK0−1(Y ) = k) log IP(πK0−1(Y ) = k) · IP(φC
∗

πK0−1
(X) = πK0−1(Y )|πK0−1(Y ) = k) .
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Since φC
∗
πK0−1

is an oracle classifier, we have

IP(φC
∗
πK0−1

(X) = πK0−1(Y )|πK0−1(Y ) = k) = 1 , ∀k ∈ [K0 − 1] .

Hence,

p-ITCA(πK0−1; C∗, p1, p2) = −(p1 + p2) log(p1 + p2)−
K0∑
k0=3

pk0 log pk0 . (B.11)

Substituting (B.10) and (B.11) into the definitions of the class-combination curve (B.6) and
class-combination region (B.7) and simplifying the forms, we obtain the class-combination
curve (B.8) and class-combination region (B.9) of the oracle classification algorithm.

Proposition 7 shows that for the oracle classification algorithm, when one of p1 and p2 is

Figure B.1: Regarding the combination of two same-distributed classes (with propor-
tions p1 and p2), the improvement of p-ITCA, ∆p-ITCA(p1, p2;Dt, C) :=
p-ITCA(πK0−1;Dt, C, p1, p2) − p-ITCA(πK0 ;Dt, C, p1, p2), of the oracle classi-
fication algorithm (left; Dt not needed; C∗) and the LDA algorithm (right;
D∞; CLDA). The blue areas indicate the class-combination regions of the ora-
cle classification algorithm (B.9) and the LDA classification algorithm (B.15)
where ∆p-ITCA(p1, p2;Dt, C) > 0 and thus the two classes will be combined.
In each panel, the purple boundary (|∆p-ITCA| < 10−3) between the blue area
and the orange area indicates the class-combination curve of the correspond-
ing algorithm; (0.25, 0.25) is the point where ∆p-ITCA(p1, p2;Dt, C) = 0 for
both classification algorithms; the area of the class-combination region (the
proportion of the blue area) is shown in the upper right corner.

close to zero and the other is less than e−1/2 ≈ 0.6, by (B.9) p-ITCA would combine the two
classes (Supplementary Material Figure S8, left panel shows the function f(p) = p2 log p,
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which monotonically decreases for p ∈ (0, e−1/2)). Otherwise, if p1 and p2 have a not-
too-small minimum and a large maximum, p-ITCA would keep the two classes separate
to maintain a not-so-degenerate classification resolution (Figure B.1, left panel). Roughly
speaking, unless one of the two classes is extremely small, p-ITCA would not suggest the
two classes to be combined if their total proportion p1 + p2 dominates. This result suggests
that, even under the ideal scenario (i.e., with the oracle algorithm), p-ITCA would not
suggest a combination of two non-trivial classes that would result in a dominant class.

Next, we investigate the class-combination curve and region of the LDA algorithm. Dif-
ferent from the oracle classification algorithm, the LDA algorithm has its accuracy depend-
ing on the joint distribution of (X, Y ), on which we will make some additional assumptions.

Proposition 8 (class-combination curve and region of LDA) Suppose there are K0 =
3 observed classes, which contain two same-distributed classes. Without loss of general-
ity, we assume that classes 1 and 2 have the same class-conditional feature distribution
N (0, σ2Id), and that class 3 has the class-conditional feature distribution N (µ, σ2Id) with
µ 6= 0; hence, ||µ|| is the Euclidean distance between the mean vectors of the two Gaussian
distributions. Denote by D∞ the training dataset Dt with an infinite sample size, i.e., the
LDA model trained on D∞ has parameter estimates as the true parameters. Then, for de-
ciding whether π3 = {1, 2, 3} should be combined as π2 = {(1, 2), 3}, the class-combination
curve of the LDA algorithm CLDA has the following form

CC(π2||π3;D∞, CLDA)

=
{

(p1, p2) ∈ Ω : Φ

(
||µ||
2σ

+
σ

||µ||
log

p1∨2
p3

)
p1∨2 log p1∨2 + Φ

(
||µ||
2σ
− σ

||µ||
log

p1∨2
p3

)
p3 log p3 =

Φ

(
||µ||
2σ

+
σ

||µ||
log

p1+2

p3

)
p1+2 log p1+2 + Φ

(
||µ||
2σ
− σ

||µ||
log

p1+2

p3

)
p3 log p3

}
,

(B.12)

where p1∨2 := p1 ∨ p2 = max(p1, p2), p1+2 := p1 + p2, p3 = 1 − p1+2, and Φ is the cumu-
lative distribution function (CDF) of the univariate standard Gaussian distribution. The
corresponding class-combination region is

CR(π2||π3;D∞, CLDA)

=
{

(p1, p2) ∈ Ω : Φ

(
||µ||
2σ

+
σ

||µ||
log

p1∨2
p3

)
p1∨2 log p1∨2 + Φ

(
||µ||
2σ
− σ

||µ||
log

p1∨2
p3

)
p3 log p3

− Φ

(
||µ||
2σ

+
σ

||µ||
log

p1+2

p3

)
p1+2 log p1+2 − Φ

(
||µ||
2σ
− σ

||µ||
log

p1+2

p3

)
p3 log p3 > 0

}
.

(B.13)

When ||µ|| � σ, the class-combination curve (B.12) reduces to

CC(π2||π3 ;D∞, CLDA) =
{

(p1, p2) ∈ Ω : p1∨2 log p1∨2 = p1+2 log p1+2

}
. (B.14)

and the class-combination region (B.13) reduces to

CR(π2||π3 ;D∞, CLDA) =
{

(p1, p2) ∈ Ω : p1∨2 log p1∨2 − p1+2 log p1+2 > 0
}
. (B.15)
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Note that (B.14) and (B.15) hold in general for K0 ≥ 3 observed classes regarding whether
πK0 should be combined as πK0−1, which combines classes 1 and 2, when every classes k with
class-conditional feature distribution N (µk, σ

2Id) satisfies that ||µk|| � σ, k = 3, . . . ,K0.

Proof Without loss of generality, we assume that µ = (||µ||, 0, . . . , 0) because one can
always rotate µ to obtain (||µ||, 0, . . . , 0). With the sample size n → ∞, the parameter
estimates of the LDA model converge to the true parameters in probability. In our setting,
without class combination (i.e., π3), the LDA algorithm has the following three decision
functions for the three observed classes.

δπ31 (X) = log IP(Y = 1|X) up to a constant = log p1 ,

δπ32 (X) = log IP(Y = 2|X) up to a constant = log p2 ,

δπ33 (X) = log IP(Y = 3|X) up to a constant =
1

σ2
XTµ− ||µ||

2

2σ2
+ log p3 .

Given a new data pointX, the LDA classifier predicts its label as φC
LDA,D∞
π3 (X) = arg maxk0∈[3] δ

π3
k0

(X).
Consider the p-ITCA definition before combining the observed classes 1 and 2,

p-ITCA(π3;D∞, CLDA, p1, p2) =

3∑
k0=1

−pk0 log pk0IP(φC
LDA,D∞
π3 (X) = Y | Y = k0) .

Without loss of generality, when p1 > p2, we immediately have δπ31 (X) > δπ32 (X), ∀X ∈ IRd.
Hence, we have the following class-conditional prediction accuracies. Conditional on Y = 1,

IP(φC
LDA,D∞
π3 (X) = Y | Y = 1) = IP(δπ33 (X) < δπ31 (X) and δπ32 (X) < δπ31 (X) | Y = 1)

= IP(δπ33 (X) < δπ31 (X) | Y = 1)

= IP

(
1

σ2
XTµ− ||µ||

2

2σ2
+ log p3 < log p1

∣∣∣∣Y = 1

)
= IP

(
X1 <

||µ||
2

+
σ2

||µ||
log

p1
p3

∣∣∣∣Y = 1

)
= Φ

(
||µ||
2σ

+
σ

||µ||
log

p1
p3

)
,

where X1 is the first element of X, and X1 | Y = 1 ∼ N (0, σ2). The fourth equation is
based on XTµ = X1||µ|| because µ = (||µ||, 0, . . . , 0). Conditional on Y = 2,

IP(φC
LDA,D∞
π3 (X) = Y | Y = 2) = IP(δπ33 (X) < δπ32 (X) and δπ31 (X) < δπ32 (X) | Y = 2) = 0 .

Conditional on Y = 3,

IP(φC
LDA,D∞
π3 (X) = Y | Y = 3) = IP(δπ31 (X) < δπ33 (X) and δπ32 (X) < δπ33 (X) | Y = 3)

= IP(δπ31 (X) < δπ33 (X) | Y = 3)

= IP

(
log p1 <

1

σ2
XTµ− ||µ||

2

2σ2
+ log p3

∣∣∣∣Y = 3

)
= IP

(
X1 >

||µ||
2

+
σ2

||µ||
log

p1
p3

∣∣∣∣Y = 3

)
= Φ

(
||µ||
2σ
− σ

||µ||
log

p1
p3

)
,
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where the last equation holds because X1 | Y = 3 ∼ N (||µ||, σ2).
Hence, p-ITCA before combining classes 1 and 2 is

p-ITCA(π3;D∞, CLDA, p1, p2)

=

 −Φ
(
||µ||
2σ + σ

||µ|| log p1
p3

)
p1 log p1 − Φ

(
||µ||
2σ −

σ
||µ|| log p1

p3

)
p3 log p3 if p1 > p2

−Φ
(
||µ||
2σ + σ

||µ|| log p2
p3

)
p2 log p2 − Φ

(
||µ||
2σ −

σ
||µ|| log p2

p3

)
p3 log p3 otherwise

=− Φ

(
||µ||
2σ

+
σ

||µ||
log

p1∨2
p3

)
p1∨2 log p1∨2 − Φ

(
||µ||
2σ
− σ

||µ||
log

p1∨2
p3

)
p3 log p3 . (B.16)

After combining classes 1 and 2, the definition of p-ITCA becomes

p-ITCA(π2;D∞, CLDA, p1, p2) =− p1+2 log p1+2IP(φC
LDA,D∞
π2 (X) = π2(Y ) | π2(Y ) = 1)

− p3 log p3IP(φC
LDA,D∞
π2 (X) = π2(Y ) | π2(Y ) = 2) .

With π2, the decision functions of the LDA algorithm becomes

δπ21 (X) = log IP(π2(Y ) = 1|X) up to a constant = log p1+2 ,

δπ22 (X) = log IP(π2(Y ) = 2|X) up to a constant =
1

σ2
XTµ− ||µ||

2

2σ2
+ log p3 .

Hence, the LDA classifier φC
LDA,D∞
π2 has the following class-conditional prediction accuracies.

Conditional on π2(Y ) = 1,

IP(φC
LDA,D∞
π2 (X) = π2(Y ) | π2(Y ) = 1) = IP(δπ22 (X) < δπ21 (X) | π2(Y ) = 1)

= IP

(
1

σ2
XTµ− ||µ||

2

2σ2
+ log p3 < log p1+2

∣∣∣∣π2(Y ) = 1

)
= IP

(
X1 <

||µ||
2

+
σ2

||µ||
log

p1+2

p3

∣∣∣∣π2(Y ) = 1

)
= Φ

(
||µ||
2σ

+
σ

||µ||
log

p1+2

p3

)
,

where the last equation holds because X1 | π2(Y ) = 1 ∼ N (0, σ2).

Conditional on π2(Y ) = 2,

IP(φC
LDA,D∞
π2 (X) = π2(Y ) | π2(Y ) = 2) = IP(δπ22 (X) > δπ21 (X) | π2(Y ) = 2)

= IP

(
1

σ2
XTµ− ||µ||

2

2σ2
+ log p3 > log p1+2

∣∣∣∣π2(Y ) = 2

)
= IP

(
X1 >

||µ||
2

+
σ2

||µ||
log

p1+2

p3

∣∣∣∣π2(Y ) = 2

)
= Φ

(
||µ||
2σ
− σ

||µ||
log

p1+2

p3

)
,

where the last equation holds because X1 | π2(Y ) = 2 ∼ N (||µ||, σ2).
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Hence, p-ITCA after combining classes 1 and 2 becomes

p-ITCA(π2;D∞, CLDA, p1, p2) = −Φ

(
||µ||
2σ

+
σ

||µ||
log

p1+2

p3

)
p1+2 log p1+2−Φ

(
||µ||
2σ
− σ

||µ||
log

p1+2

p3

)
p3 log p3 .

(B.17)

By (B.16) and (B.17), we obtain the class-combination curve of LDA in (B.12) and the
class-combination region in (B.13). When ||µ|| � σ, it is straightforward to see that (B.12)
and (B.13) reduce to (B.14) and (B.15), respectively.

By similar derivations, we can show that (B.14) and (B.15) hold in general for K0 ≥ 3
if the classes 1 and 2 are distinct from the other classes.

Similar to Proposition 7, Proposition 8 shows that when one of p1 and p2 is close to zero
and the other is less than e−1 ≈ 0.37, by (B.15) p-ITCA would combine the two classes
(Figure S8, right panel shows the function f(p) = p log p, which monotonically decreases for
p ∈ (0, e−1)). If p1 and p2 have a not-too-small minimum and a large maximum, p-ITCA
would keep the two classes separate to maintain a not-so-degenerate classification resolution
(Figure B.1, right panel). The class-combiniation curve of LDA is quite different from that
of the oracle classification algorithm. Moreover, compared with the oracle classification
algorithm, LDA has a smaller chance of discovering the true class combination (shown by
the smaller blue area in Figure B.1 right than left).

B.2 Improvement of LDA as soft LDA for discovering class combination

Seeing that the LDA algorithm is less powerful than the oracle classification algorithm for
discovering the true combination, we consider modifying the LDA algorithm to improve its
power. We first review how LDA predicts the class label of a data point X. Without loss
of generality, we assume that two same-distributed classes k1, k2 ∈ [K0] are distinguishable
from the remaining (K0−2) classes. Suppose that classes k1 and k2 have a class-conditional

feature distribution N (µ, σ2I). Note the decision function δ
πK0
k (X) = 1

σ2X
Tµ − ||µ||

2

2σ2 +

log pk for k = k1 or k2. Hence, if pk1 > pk2 , then δ
πK0
k1

(X) > δ
πK0
k2

(X) holds for all

X ∈ IRd. Therefore, LDA would never predict that Y = k2. In contrast, the oracle
classification algorithm acts differently: if a data point (X , Y ) has Y ∈ {k1, k2}, then the
oracle classification algorithm would predict Y as k1 or k2 with probability p1 or p2.

We define soft LDA to mimic the oracle classification algorithm to enhance the ability of
LDA for discovering the true class combination. The only difference between soft LDA and
LDA is that the soft LDA predicts Y randomly. Specifically, given a data point X, soft LDA
computes the decision scores δ

πK0
k (X) for k ∈ [K0]. Then soft LDA predicts Y by drawing a

sample with size one from a multinomial distribution Multinomial(1, [K0], softmax(δπK0 (X))),
where δπK0 (X) := (δ

πK0
1 (X), . . . , δ

πK0
K0

(X)) is a K0-dimensional vector, and the softmax
function normalizes δπK0 (X) to a vector of probabilities that sum up to 1.

Interestingly, we show in Proposition 9 that when the data-generating distribution is
the LDA model with perfectly separated classes, the soft LDA algorithm trained with an
infinite sample size equates the oracle classification algorithm.

Proposition 9 Under the same setting in Proposition 8, when ||µ||/σ →∞, the soft LDA
classification algorithm is the same as the oracle classification algorithm in Definiton 4.
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Proof The decision score of the soft LDA classification algorithm is the same as that of
LDA:

δπ3(X) = (log p1, log p2, δ
π3
3 (X)) ,

where

δπ33 (X) =
1

σ2
XTµ− ||µ||

2

2σ2
+ log p3 =

||µ||
σ2

X1 −
||µ||2

2σ2
+ log p3 ,

and

softmax(δπ3(X)) =

(
p1

p1 + p2 + exp(δπ33 (X))
,

p2
p1 + p2 + exp(δπ33 (X))

,
exp(δπ33 (X))

p1 + p2 + exp(δπ33 (X))

)
.

Since

X1 | Y ∈ {1, 2} ∼ N (0, σ2) and X1 | Y = 3 ∼ N (||µ||, σ2) ,

we have

δπ33 (X) | Y ∈ {1, 2} ∼ N
(
−||µ||

2

2σ2
+ log p3,

||µ||2

σ2

)
and δπ33 (X) | Y = 3 ∼ N

(
||µ||2

2σ2
+ log p3,

||µ||2

σ2

)
.

Hence, when ||µ||/σ →∞, we have the following limits in probability.

softmax(δπ3(X))|Y ∈ {1, 2} →
(

p1
p1 + p2

,
p2

p1 + p2
, 0

)
and softmax(δπ3(X))|Y = 3→ (0, 0, 1) .

Recall that soft LDA predicts Y by drawing a sample with size one from Multinomial(1, [3], softmax(δπ3(X))).
Hence, we have

IP(φC
soft LDA,D∞
π3 (X) = 1 | Y ∈ {1, 2})→ p1

p1 + p2
,

IP(φC
soft LDA,D∞
π3 (X) = 2 | Y ∈ {1, 2})→ p2

p1 + p2
,

IP(φC
soft LDA,D∞
π3 (X) = 3 | Y = 3)→ 1 .

Similarly, we have

IP(φC
soft LDA,D∞
π2 (X) = 1 | π2(Y ) = 1)→ 1 ,

IP(φC
soft LDA,D∞
π2 (X) = 2 | π2(Y ) = 2)→ 1 .

Hence, the soft LDA algorithm approaches the oracle classification algorithm when ||µ||/σ →
∞.

To numerically verify this result, we generate an array of simulated datasets with K0 = 3,
K∗ = 2, l = 5, n = 5000, and varying (p1, p2), following the procedure described in Section 3
of the main text. Each dataset, one per (p1, p2) combination, contains 3 classes, with classes
1 and 2 as same-distributed. We set 0.1 ≤ p1, p2 ≤ 0.7 and p1 + p2 ≤ 0.8 for numerical
stability. Then we apply LDA and soft LDA to each simulated dataset and compute the
improvement of s-ITCACV by combining classes 1 and 2.
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Figure B.2: Regarding the combination of two same-distributed classes (with pro-
portions p1 and p2), the improvement of s-ITCACV by class combi-
nation, i.e., ∆s-ITCACV(p1, p2;Dt, C) := s-ITCACV(πK0−1;Dt, C, p1, p2) −
s-ITCACV(πK0 ;Dt, C, p1, p2) for 0.1 ≤ p1, p2 ≤ 0.7 and p1 + p2 ≤ 0.8, of
the LDA algorithm (bottom left; CLDA) and the soft LDA algorithm (bot-
tom right; Csoft LDA). The blue areas indicate the class-combination regions
where ∆s-ITCACV(p1, p2;Dt, C) > 0 and thus the two classes will be combined.
For comparison, ∆p-ITCA of the LDA and oracle classification algorithm are
shown in the same range of (p1, p2). In each panel, the yellow boundary be-
tween the blue area and the orange area indicates the class-combination curve
of the corresponding algorithm; the area of the class-combination region (the
proportion of the blue area) is shown in the upper right corner. In the sec-
ond row, the numerical results are the average of 5-fold CV, and the standard
deviations of the five folds are shown (divided by

√
5).
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Figure B.2 shows that the numerical results of s-ITCACV using LDA (lower left panel)
match well with the results of p-ITCA using LDA (upper left panel). It is obvious that soft
LDA (lower right panel) improves LDA (lower left panel) in terms class of combination power
(the proportion of blue area). This numerical result is also consistent with the theoretical
result in Proposition 9 about the agreement of soft LDA (lower right panel) with oracle
(upper right panel).

The improvement of soft LDA over LDA suggests that, for probabilistic classification
algorithms, soft prediction of class labels has better power for class combination.

We also used the simulated datasets to numerically approximate the class-combination
regions of three commonly used classification algorithms (see Supplementary Material Sec-
tion 4.2), including random forest (0.2228), gradient boosting trees (0.1961) and neural
networks (0.1972); the number in each parenthesis indicates the proportion of the blue
area. Among the five classification algorithms (LDA, soft LDA, random forest, gradient
boosting trees, and neural networks), random forest is second only to soft LDA in terms of
finding the true class combination, possibly due to its ensemble nature.

B.3 Properties of search strategies with the oracle classification algorithm

We investigate the properties of the two local search strategies—greedy search and BFS—
with the oracle classification algorithm.

Lemma 10 Consider f(x) := −x2 log x. For ∀p1, p2, p3 ∈ (0, 1), such that
∑3

i=1 pi < 1, if
f(p1) + f(p2) > f(p1 + p2), then f(p1) + f(p2 + p3) > f(p1 + p2 + p3).

Proof We formulate this problem as a nonlinear-constrained optimization problem and
solve it numerically. Consider the following optimization problem

min F (p1, p2, p3) = f(p1) + f(p2 + p3)− f(p1 + p2 + p3)

s.t. f(p1) + f(p2) > f(p1 + p2) ,

p1 + p2 + p3 < 1 ,

p1, p2, p3 ∈ (0, 1) .

We solve this nonlinear-constrained optimization problem numerically with the trust region
method and find that minF (p1, p2, p3) > 0. Hence, f(p1 + p2) > f(p1) + f(p2).

Theorem 11 Suppose there are K0 observed classes. Denote the class combinations found
by the exhaustive search, BFS and greedy search with the oracle classification algorithm
by πESKES

, πBFS
KBFS

and πGS
KGS

, which correspond to KES, KBFS and KGS combined classes,

respectively. Then πESKES
, πBFS

KBFS
, πGS

KGS
∈ A∗, the set of split true class combinations, and

πESKES
= πBFS

KBFS
.

Proof By Lemma 5, p-ITCA would decrease if two distinct classes are combined into one.
Hence, πESKES

, πBFS
KBFS

, πGS
KGS

∈ A∗. We will then show that πBFS
KBFS

= πESKES
by proving that

there exists a path from πK0 to πESKES
, denoted as P ∗ := {πK0−i}

K0−KES
i=0 ⊂ A∗, that satisfies
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πK0−i ∈ N (πK0−i+1) for i ∈ [K0 −KES], and

p-ITCA(πK0 ; C∗) < p-ITCA(πK0−1; C∗) < · · · < p-ITCA(πKES+1; C∗) < p-ITCA(πKES
; C∗) .

(B.18)
where πKES

:= πESKES
.

We will show the existence of P ∗ using a counterproof. Suppose that P ∗ does not exist.
Then for any path P from πK0 to πESKES

, there must exist two class combinations πK0−i+1,
πK0−i ∈ P such that πK0−i ∈ N (πK0−i+1), and

p-ITCA(πK0−i+1; C∗) ≥ p-ITCA(πK0−i; C∗) .

Without loss of generality, we assume that πK0−i combines πK0−i+1’s classes 1 and 2.
Following Definition 4 and its notations, we have

p-ITCA(πK0−i+1; C∗) = − p21
PS∗(1)

log p1 −
p22

PS∗(2)
log p2 + REM ,

where pi is the proportion of πK0−i+1’s class i, REM indicates the remaining terms based
on πK0−i+1’s other classes (except classes 1 and 2), and PS∗(i) is the total proportion of the
classes that have the same distribution as πK0−i+1’s class i, i = 1, 2.

Denote f(p) := −p2 log p, where 0 < p < 1. Since πK0−i ∈ A∗, πK−i+1’s classes 1 and 2
must follow the same class-conditional feature distribution, so PS∗(1) = PS∗(2). Then

p-ITCA(πK0−i+1; C∗) =
f(p1) + f(p2)

PS∗(1)
+ REM ,

p-ITCA(πK0−i; C∗) =
f(p1 + p2)

PS∗(1)
+ REM .

Hence
p-ITCA(πK0−i+1; C∗)− p-ITCA(πK0−i; C∗) ≥ 0

implies that

f(p1) + f(p2) ≥ f(p1 + p2) . (B.19)

Since πESKES
is in the same path P as πK0−i+1 and πK0−i, π

ES
KES

must have a class,

denoted by kES, that contains πK0−i+1’s classes 1 and 2, i.e., π−1K0−i+1(1) ⊂ (πESKES
)−1(kES)

and π−1K0−i+1(2) ⊂ (πESKES
)−1(kES). Since πESKES

∈ A∗, the observed classes contained in kES
must be in S∗(1), the set of observed classes that have the same class-conditional feature
distribution as that of πK−i+1’s class 1.

Now we consider a class combination π′KES+1 such that πESKES
∈ N (π′KES+1) and π′KES+1

separates πK0−i+1’s class 1 from πESKES
’s class kES. Denote the proportion of πESKES

’s class
kES as pkES

, and define p3 := pkES
− p1 − p2. Then

p-ITCA(π′KES+1; C∗) =
f(p1) + f(p2 + p3)

PS∗(1)
+ REM ,

p-ITCA(πESKES
; C∗) =

f(p1 + p2 + p3)

PS∗(1)
+ REM ,
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where REM indicates the remaining terms based on π′KES+1’s other classes. Then by (B.19)
and Lemma 10, we have

p-ITCA(π′KES+1; C∗)− p-ITCA(πESKES
; C∗) =

f(p1) + f(p2 + p3)− f(p1 + p2 + p3)

PS∗(1)
≥ 0 ,

contradicting the fact that πESKES
maximizes p-ITCA by definition. Hence, (B.18) holds, and

BFS can find πESKES
through the path P ∗. Therefore πBFS

KBFS
= πESKES

.

Theorem 11 shows that with the oracle classification algorithm, all three search strategies
would not combine two distinct classes, and BFS is equivalent to the exhaustive search. Our
simulation results also empirically show that the greedy search and BFS work well with the
LDA classification algorithm.

C. Search space pruning

Compared with the exhaustive search, the greedy search and BFS significantly reduce the
number of times needed to compute s-ITCA. We note that if the following assumption
holds for a classification algorithm, one can further prune the search space of possible class
combinations.

Assumption 1 (classification algorithm property) Consider a classification algorithm
C and a training dataset Dt. The property states that, for any K = 3, . . . ,K0 ≥ 3, the algo-

rithm C satisfies the following inequality for any i, j ∈ [K] and the π
(i,j)
K−1 that only combines

πK ’s (observed or combined) classes i and j into a new combined class 1.

K−1∑
k=2

[
−IP

(
π
(i,j)
K−1(Y ) = k

)
log IP

(
π
(i,j)
K−1(Y ) = k

)]
· IP
(
φC,Dt
π
(i,j)
K−1

(X) = π
(i,j)
K−1(Y )

∣∣∣∣π(i,j)K−1(Y ) = k

)
≥

∑
k∈[K]\{i,j}

[−IP(πK(Y ) = k) log IP(πK(Y ) = k)] · IP
(
φC,DtπK

(X) = πK(Y ) | πK(Y ) = k
)
.

In other words, the total contribution of πK ’s other classes (except classes i and j) to p-
ITCA does not decrease after πK ’s classes i and j are combined.

A sufficient condition for Assumption 1 is that a classification algorithm has the same
class-conditional prediction accuracies, before and after class combination, for the classes
that are not combined. We can easily verify that the oracle, LDA, and soft LDA algorithms
satisfy this sufficient condition and thus Assumption 1. In addition, Assumption 1 holds
for the classification algorithms that use the one-vs-the-rest scheme.

Under Assumption 1, we derive the following condition for class combination by p-ITCA.

45



Zhang, Chen, Zhang, and Li

Proposition 12 (class combination condition) If Assumption 1 holds, p-ITCA will
guide πK ’s classes i and j ∈ [K] to be combined if and only if:

IP

(
φC,Dt
π
(i,j)
K−1

(X) = π
(i,j)
k−1(Y )

∣∣∣∣πK(Y ) ∈ {i, j}
)

>
pi(log pi)IP

(
φC,DtπK (X) = πK(Y ) | πK(Y ) = i

)
+ pj(log pj)IP

(
φC,DtπK (X) = πK(Y ) | πK(Y ) = j

)
(pi + pj) log(pi + pj)

,

(C.20)

where pi and pj are the proportions of πK ’s classes i and j, respectively.

Proof The proof is straightforward. Classes i and j will be combined if and only if

p-ITCA
(
π
(i,j)
K−1;Dt, C

)
> p-ITCA(πK ;Dt, C) ,

which is equivalent to

K−1∑
k=1

[
−IP

(
π
(i,j)
K−1(Y ) = k

)
log IP

(
π
(i,j)
K−1(Y ) = k

)]
· IP
(
φC,Dt
π
(i,j)
K−1

(X) = π
(i,j)
K−1(Y )

∣∣∣∣πK−1(Y ) = k

)

>
K∑
k=1

[−IP(πK(Y ) = k) log IP(πK(Y ) = k)] · IP
(
φC,DtπK

(X) = πK(Y ) | πK(Y ) = k
)
. (C.21)

Under Assumption 1, it is straightforward to see that (C.20) is a sufficient condition for
(C.21), which completes the proof.

Proposition 12 provides a rule for pruning the search space. The left-hand side of
(C.20) must be no greater than 1. Hence, if the accuracies IP(φC,DtπK (X) = Y | Y = i) and
IP(φC,DtπK (X) = Y | Y = j) are high enough such that the right-hand side is greater than 1,

there is no way for (C.20) to hold, and we can remove π
(i,j)
K−1 from the search space.

Our simulation results show that this pruning strategy is effective and can reduce the
number of s-ITCA evaluations by about half (Tables 5 in the main text and Table S3 in
Supplementary Material).
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Supplementary Material

1. Approximate KL divergence between two Gaussian mixture models

The KL divergence from a Gaussian distribution N (µ2,Σ2) to another Gaussian distribu-
tion N (µ1,Σ1) has the following closed-form

DKL(N (µ1,Σ1) || N (µ2,Σ2)) =
1

2
log
|Σ2|
|Σ1|

+
1

2
tr(Σ−12 Σ1)+

1

2
(µ1−µ2)

TΣ−12 (µ1−µ2)−
d

2
.

However, there exists no closed-form KL divergence for Gaussian mixture models (GMMs).
Durrieu et al. gave the lower and upper bounds for approximating the KL divergence from
one GMM to another (Durrieu et al., 2012) . Let F :=

∑K
i=1 p

f
iN (µfi ,Σ

f
i ) be a Gaussian

mixture model; denote Fi := N (µfi ,Σ
f
i ) and fi as the probability density function (PDF)

of Fi. Accordingly, denote G :=
∑K′

j=1 p
g
jN (µgj ,Σ

g
j ), Gj := N (µgj ,Σ

g
j ), and gj as the PDF

of Gj . The lower bound of the KL divergence from G to F is

DKL(F||G) ≥
K∑
i=1

pfi log

∑K
l=1 p

f
l exp(−DKL(Fi||Fl))∑K′

j=1 p
g
j tij

−
K∑
i=1

pfiH(Fi)︸ ︷︷ ︸
Dlower(F||G)

,

where tij is the normalization constant:

tij :=

∫
X
fi(x)gj(x)dx ,

which is given by (Ahrendt, 2005):

log tij = −d
2

log 2π − 1

2
log |Σf

i + Σg
j | −

1

2
(µgj − µ

f
i )T (Σf

i + Σg
j )
−1(µgj − µ

f
i ) ,

and H(·) is the entropy of Gaussian distribution:

H(Fi) =
1

2
log(2πe)d|Σf

i |

Similarly, the upper bound of the KL divergence from G to F is:

DKL(F||G) ≤
K∑
i=1

pfi log

∑K
l=1 p

f
l til∑K′

j=1 p
g
j exp(−DKL(Fi||Gj))︸ ︷︷ ︸

Dupper(F||G)

.

Durrieu et al. (2012) proposed using the average of Dupper and Dlower to approximate DKL:

Dapprox(F||G) :=
Dupper(F||G) +Dlower(F||G)

2
. (S.1)

The experimental results in Durrieu et al. (2012) show that (S.1) works well. Hence, we use
Dapprox to approximate the two KL divergence functions in the definition of CKL (A.4) in
Appendix A.
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2. More simulation details

2.1 Additional results of the six criteria’s performance on simulated datasets

Here we present the performance of the six criteria on the simulated data. The datasets
are generated by the procedures described in the main text Section 3.1. Table S1 shows the
performance of the six criteria when the simulated datasets are generated with K0 = 6. The
results are consistent with those in the main text Table 4; ITCA outperforms alternative
class combination criteria and only fails when K∗ = 2. Table S2 shows the proposed search
strategies, namely greedy search and BFS, are almost as effective as the exhaustive search
in finding the true class combinations when K0 = 8. Table S3 shows that the two search
strategies work well even when the number of observed classes K0 is large.

Table S1: The performance of six criteria on the 31 simulated datasets with K0 = 6. The
best result in each column is boldfaced.

Criterion
# successes Average Max # successes Average Max

# datasets Hamming Hamming # datasets Hamming Hamming

LDA RF

ACC 1/31 2.03 4 1/31 2.03 4
MI 8/31 1.42 4 6/31 1.65 4
AAC 9/31 1.03 3 8/31 1.30 3
CKL 7/31 2.42 5 1/31 2.13 4
PE 22/31 0.55 3 22/31 0.42 3
ITCA 26/31 0.23 2 26/31 0.19 2

Table S2: Performance of ITCA using five search strategies and LDA on the 31 simulated
datasets with K0 = 6.

Strategy
# successes Average Max Average # class

# datasets Hamming Hamming combinations examined

Exhaustive 26/31 0.23 2 31.00
Greedy search 26/31 0.23 2 12.13
BFS 26/31 0.19 2 19.19
Greedy (pruned) 26/31 0.19 2 5.71
BFS (pruned) 26/31 0.19 2 8.84
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Table S3: Performance of ITCA using five search strategies and LDA on the 50 simulated
datasets with K0 = 20.

Strategy
# successes Average Max Average # class

# datasets Hamming Hamming combinations examined

Greedy 50/50 0.00 0 150.08
BFS 50/50 0.00 0 27226.84
Greedy (pruned) 50/50 0.00 0 87.70
BFS (pruned) 50/50 0.00 0 17155.82

2.2 Additional results where ITCA missed the true class combination

Table S1 and Table 4 in the main text have shown that ITCA is effective for finding
the true class combination; ITCA using the LDA classification algorithm missed the true
combination on 5 out of 31 datasets when K0 = 6 and on 7 out of 120 datasets when K0 = 8.

Tables S4 and S5 list the 5 and 7 true class combinations missed by ITCA using LDA for
K0 = 6 and 8, respectively. Notably, all these true class combinations belong to K∗ = 2, i.e.,
the scenario with only two combined classes, where obviously at least one combined class
must have a proportion no less than 0.5. Based on our theoretical analysis in Appendix B.1,
we know that ITCA would not combine two same-distributed classes when the combined
class’ proportion is large (see Appendix Figure B.1, right panel). Hence, it is expected
that ITCA is unlikely to find the true class combination when K∗ = 2. In other words,
ITCA is unsuitable for combining observed classes, even if ambiguous, into a large class
that dominates in proportion.

On the other hand, ITCA has successfully found the true class combinations when
K∗ ≥ 3 for both K0 = 6 and 8, demonstrating its effectiveness.

Table S4: True class combinations missed by ITCA in Table S1 (simulation study with
K0 = 6).

True combination ITCA-guided combination

{(1, 2, 3, 4, 5), 6} {1, 2, (3, 4), (5, 6)}
{(1, 2, 3, 4), (5, 6)} {1, 2, (3, 4), (5, 6)}
{(1, 2, 3), (4, 5, 6)} {1, 2, (3, 4), (5, 6)}
{(1, 2), (3, 4, 5, 6)} {1, 2, (3, 4), (5, 6)}
{1, (2, 3, 4, 5, 6)} {1, 2, (3, 4), (5, 6)}

2.3 Comparison of the six criteria

We also evaluate ITCA using random forest (RF) as the classification algorithm. For the
true class combination π∗3 = {(1, 2), (3, 4), (5, 6)}, the comparison results of ITCA versus the
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Table S5: True class combinations missed by ITCA with LDA in Table 4 (simulation study
with K0 = 8).

True combination ITCA-guided combination

{(1, 2, 3, 4, 5, 6, 7), 8} {1, 2, 3, 4, (5, 6), (7, 8)}
{(1, 2, 3, 4, 5, 6), (7, 8)} {1, 2, 3, 4, (5, 6), (7, 8)}
{(1, 2, 3, 4, 5), (6, 7, 8)} {1, 2, 3, 4, (5, 6), (7, 8)}
{(1, 2, 3, 4), (5, 6, 7, 8)} {1, 2, 3, 4, (5, 6), (7, 8)}
{(1, 2, 3), (4, 5, 6, 7, 8)} {1, 2, 3, 4, (5, 6), (7, 8)}
{(1, 2), (3, 4, 5, 6, 7, 8)} {1, 2, 3, 4, (5, 6), (7, 8)}
{1, (2, 3, 4, 5, 6, 7, 8)} {1, 2, 3, 4, (5, 6), (7, 8)}

five alternative criteria using RF (Figure S1) are consistent with those using LDA (Figure 3
in the main text).

For another true class combination π∗5 = {(1, 2), 3, 4, 5, 6}, the results of the six criteria
using LDA are shown in Figure S2. Among the six criteria, only AAC, PE, and ITCA
find the true class combination. ITCA outperforms the alternative criteria including PE by
having the largest gap between the true class combination and the other class combinations.
Specifically, the ITCA value of the true combination is 9% higher than the value of the
second-best class combination, while this improvement percentage is only 5.1% for PE.
When RF is used as the classification algorithm, the results stay consistent (Figure S3).

2.4 Alternative definition of the adjusted accuracy (AAC)

In Appendix A, we define the AAC by assigning each (observed or combined) class the
weight as the inverse of the class proportion. In other words, smaller classes receive larger
weights because they are intuitively more difficult to predict. Here we refer to this definition
as “AAC (proportion)” for clarity.

An alternative approach is to weigh each (observed or combined) class by the inverse
of the number of observed classes it corresponds to. For example, an observed class would
have a weight of 1, while a class combined from two observed classes would have a weight
of 1/2. The intuition is that a class is easier to predict if it is combined from more observed
classes. Hence, we refer to this alternative definition as “AAC (cardinality)”:

AAC (cardinality)CV(πK ;D, C) :=
1

R

R∑
r=1

1

|Drv|
∑

(Xi,Yi)∈Drv

1I
(
φ
C,Drt
πK (Xi) = πK(Yi)

)
∣∣π−1K (πK(Yi))

∣∣ ,

where the dataset D is randomly split into R equal-sized folds, with the r-th fold Drv serving
as the validation data and the union of the remaining R−1 folds Drt serving as the training
data, and the denominator

∣∣π−1K (πK(Yi))
∣∣ indicates the number of observed classes contained

in the combined class πK(Yi). In the following text, we refer to AAC (cardinality)CV as the
AAC (cardinality) criterion.
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Figure S1: Comparison of ITCA and five other criteria using RF as the classification algo-
rithm. The dataset is generated with K0 = 6, K∗ = 3, l = 3, σ = 1.5, n = 2000,
and d = 5. The true class combination is π∗3 = {(1, 2), (3, 4), (5, 6)}. For each
criterion (panel), the 31 blue points correspond to the 31 class combinations
πK ’s with K = 2, . . . , 6. The true class combination π∗K∗ is marked with the red
star, and the best value for each criterion is indicated by a horizontal dashed
line. The true class combination is only found by PE and ITCA without close
ties.

Table S6: Comparison of two definitions of AAC using LDA on simulated datasets

Criterion
# successes Average Max # successes Average Max

# datasets Hamming Hamming # datasets Hamming Hamming

K0 = 6 K0 = 8

AAC (cardinality) 1/31 1.90 3 5/127 2.56 6
AAC (proportion) 9/31 1.03 3 15/127 2.02 6
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Figure S2: Comparison of ITCA and five other criteria using LDA as the classification
algorithm. The dataset is generated with K0 = 6, K∗ = 5, l = 3, σ = 1.5,
n = 2000, and d = 5. The true class combination is π∗5 = {(1, 2), 3, 4, 5, 6}. For
each criterion (panel), the 31 blue points correspond to the 31 class combinations
πK ’s with K = 2, . . . , 6. The true class combination π∗K∗ is marked with the red
star, and the best value for each criterion is indicated by a horizontal dashed
line. The true class combination is found by AAC, PE, and ITCA without close
ties.
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Figure S3: Comparison of ITCA and five other criteria using RF as the classification algo-
rithm. The dataset is generated with K0 = 6, K∗ = 5, l = 3, σ = 1.5, n = 2000,
and d = 5. The true class combination is π∗5 = {(1, 2), 3, 4, 5, 6}. For each cri-
terion (panel), the 31 blue points correspond to the 31 class combinations πK ’s
with K = 2, . . . , 6. The true class combination π∗K∗ is marked with the red star,
and the best value for each criterion is indicated by a horizontal dashed line.
The true class combination is found by PE and ITCA without close ties.

Figure S4: Comparison of AAC (cardinality) and AAC (proportion) using LDA as the
classification algorithm. The dataset is generated with K0 = 6, K∗ = 5,
l = 3, σ = 1.5, n = 2000, and d = 5. The true class combination is
π∗5 = {(1, 2), 3, 4, 5, 6}. For each criterion (panel), the 31 blue points correspond
to the 31 class combinations πK ’s with K = 2, . . . , 6. The true class combina-
tion π∗K∗ is marked with the red star, and the best value for each criterion is
indicated by a horizontal dashed line.
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Figure S4 shows the comparison of AAC (cardinality) and AAC (proportion) for finding
π∗5 = {(1, 2), 3, 4, 5, 6}. Table S6 lists the overall comparison results of ACC (cardinality)
and ACC (proportion) in the simulation studies with K0 = 6 and 8 (Section 3.1 in the main
text). The results show that AAC (proportion) outperforms AAC (cardinality) by finding
more true class combinations. Hence, we use AAC (proportion) in the main text.

3. More application details

3.1 Prognosis of rehabilitation outcomes of traumatic brain injury patients

The Casa Colina dataset includes the Functional Independence Measure (FIM) of 17 activi-
ties at admission and discharge. For each activity, the discharge FIM is coded as an ordinal
outcome with K0 = 7 levels by physical therapists. Table S7 lists the 17 activities.

Table S7: 17 activities in the Casa Colina dataset

Category Activity

Eating
Grooming
Bathing
Dressing - upper body
Dressing - lower body
Toileting
Bladder control
Bower control
Transfer - bed
Transfer - toilet
Transfer - tub

Motor

Stairs

Cognition

Comprehension
Expression
Social interaction
Problem solving
Memory

We use RF with 1000 trees as the classification algorithm (with default hyperparameters
in the Python sklearn package (Pedregosa et al., 2011)), and we compute the ITCA for all
allowed class combinations. Since there are seven ordinal outcomes, the number of allowed
class combinations is 27−1 − 1 = 63.

Figure S5 shows the ITCA values of all allowed class combinations for each activity.
Interestingly, ITCA suggests that most activities should have their outcomes combined
into four or five classes, largely consistent with the experts’ suggestion (Table S8). ITCA-
guided class combination leads to larger-than-expected increases in the prediction accuracy
for many activities, e.g., DressingUpper (Table S9).
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Figure S5: ITCA values of the 63 allowed class combinations for the 17 activities in the
Casa Colina dataset. The violin plots show the distribution of ITCA values for
each combined class number K. The dashed horizontal lines indicate the ITCA
values of the identity class combination (i.e., π7 with no classes combined).
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Table S8: Class combinations suggested by ITCA for the 17 activities.

Activity π∗K K

Toileting {1, 2, (3, 4), 5, (6, 7)} 5
Eating {(1, 2, 3, 4), 5, 6, 7} 4
Grooming {1, (2, 3, 4), 5, 6, 7} 5
Bathing {1, (2, 3), 4, 5, (6, 7)} 5
DressingUpper {(1, 2), (3, 4), 5, (6, 7)} 4
DressingLower {1, (2, 3), 4, 5, (6, 7)} 5
BladderCtrl {1, (2, 3, 4), 5, 6, 7} 5
BowelCtrl {1, 2, (3, 4, 5), 6, 7} 5
BedTransfer {1, (2, 3), 4, 5, 6, 7} 6
ToiletTransfer {1, (2, 3), 4, 5, (6, 7)} 5
TubTransfer {1, (2, 3), 4, 5, (6, 7)} 5
Stairs {1, (2, 3, 4), (5, 6, 7)} 3
Comprehension {(1, 2), (3, 4), 5, 6, 7} 5
Expression {(1, 2, 3), (4, 5), 6, 7} 4
SocialInteraction {(1, 2, 3), (4, 5), 6, 7} 4
ProblemSolving {1, (2, 3), 4, 5, 6, 7} 6
Memory {(1, 2, 3), 4, 5, 6, 7} 5

Table S9: ACC and ITCA values of the original classes (identical class combination), expert-
suggested class combination (the same 5 combined classes for all activities), and
ITCA-guided class combinations (listed in Table S8; specific to each activity; the
number of combined classes K in the last column).

ACC (%) ITCA (%)

Activity Original Experts ITCA Original Experts ITCA K

Toileting 44.12(1.26) 55.33(1.13) 52.50(1.05) 72.70(3.29) 75.76(3.16) 79.39(0.87) 5
Eating 57.31(1.36) 57.08(1.18) 61.21(1.24) 70.14(3.94) 71.71(3.20) 75.35(0.54) 4
Grooming 46.36(2.44) 52.44(1.08) 49.94(0.49) 66.91(2.20) 70.97(2.19) 71.73(3.99) 5
Bathing 44.25(1.35) 62.18(1.16) 50.10(1.83) 71.15(1.76) 61.18(2.47) 74.21(2.35) 5
DressingUpper 42.20(1.98) 51.62(1.30) 57.28(1.11) 66.33(3.07) 70.89(1.86) 76.11(3.85) 4
DressingLower 39.76(3.69) 58.45(1.40) 49.74(1.05) 74.88(4.33) 65.23(2.96) 77.93(2.07) 5
BladderCtrl 58.19(0.92) 57.67(2.01) 58.32(2.08) 70.06(3.09) 71.54(2.51) 71.54(2.51) 5
BowelCtrl 65.14(1.43) 65.01(1.90) 64.81(0.79) 53.13(1.28) 53.56(1.27) 53.93(1.96) 5
BedTransfer 42.85(2.21) 55.04(0.95) 46.75(1.46) 74.91(1.30) 74.04(1.54) 79.57(2.86) 6
ToiletTransfer 45.87(1.53) 57.18(2.26) 51.27(0.72) 75.45(1.59) 73.19(2.99) 79.95(3.18) 5
TubTransfer 48.80(0.98) 58.61(1.48) 50.42(1.21) 75.07(2.42) 71.97(2.39) 78.56(2.09) 5
Stairs 52.79(1.26) 59.36(1.47) 65.72(1.02) 60.89(2.39) 65.79(0.87) 70.32(1.36) 3
Comprehension 50.78(1.98) 58.80(1.36) 56.43(2.09) 74.42(1.62) 80.98(3.32) 81.41(2.32) 5
Expression 48.21(1.72) 58.87(1.57) 62.48(1.18) 76.94(2.57) 79.60(2.92) 82.52(2.89) 4
SocialInteraction 51.07(1.07) 56.40(1.80) 60.17(2.35) 59.01(2.81) 65.86(1.30) 68.63(3.93) 4
ProblemSolving 45.03(2.17) 58.84(1.50) 50.03(1.62) 80.13(2.46) 79.98(3.70) 83.03(3.87) 6
Memory 43.34(2.15) 60.04(2.35) 55.33(1.93) 77.23(2.25) 78.83(2.37) 82.02(4.01) 5
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3.2 Prediction of glioblastoma cancer patients’ survival time

Description of the GBM survival dataset. The original data consists of 577 patients
and 23 features. The dataset contains diagnosis age, gender, gene expression subtypes,
therapy, and other clinical information.

Data processing. We first drop the features less relevant to survival prediction, including
“Study ID”, “Patient ID”, “Sample ID”, “Cancer Type Detailed”, “Number of Samples Per
Patient”, “Oncotree Code”, “Somatic Status”, “Sample Type” and “Cancer Type”. We
then impute the missing entries by the feature means and use one-hot coding to represent
the categorical features. Since some patients received multiple types of therapies (out of
10 types), we use 10-dimensional binary vectors to indicate patients’ therapy types. After
data processing, there are 36 features in total.

Censored cross entropy loss function. The neural network is configured to output K
values, and it uses a softmax function to normalize the outputs as K probabilities that sum
to one. The most commonly used loss function for classification is the cross entropy (CE)
defined as

CE = −
n∑
i=1

K∑
k=1

1I(πK(Yi) = k) log[φNN,Dt
πK

(Xi)]k ,

where {(Xi, Yi)}ni=1 is the validation dataset, Dt is the training dataset, [φNN,Dt
πK (Xi)]k is the

k-th entry of the output vector of the neural network trained for predicting the combined
classes indicated by πK . However, the survival data usually contain many right censored
data. The CE loss function is not compatible with such data. To make full use of the
censorship information, we introduce the censored cross entropy (CCE):

CCE = −
n∑
i=1

Oi K∑
k=1

I(πK(Yi) = k) log[φNN,Dt
πK

(Xi)]k + (1−Oi)
∑

k>πK(Yi)

p̂k
1−

∑
l≤πK(Yi)

p̂l
log[φNN,Dt

πK
(Xi)]k

 ,
where Oi is binary with Oi = 0 indicating that Xi is right censored, and p̂k is the proportion
of πK ’s k-th class in D. When Xi is not censored, its contribution to CCE is the same as to
CE; when Xi is censored, we compute its contribution to CCE as the cross entropy between
the output sub-vector (for the classes later than Yi) and the conditional distribution that
the disease occurs later than Yi. The empirical results show that the neural network trained
with the CCE loss outperforms that with the CE loss (Figure S6).

Experiment setting. We implement the neural network with PyTorch (Paszke et al.,
2017). Specifically, we use a three-layered neural network with 40 hidden units in each layer.
Experimental results show that the ReLU activation outperforms the sigmoid activation
function. We use the SGD optimizer with 0.001 learning rate, 0.9 momentum and 0.01
weight decay. The batch size is 64, and we stop the training after 150 epochs.

3.3 Prediction of user demographics using mobile phone behavioral data

Description of the TalkingData mobile user demographics dataset. This dataset
includes several comma separate values (CSV) files as shown in Figure S7. Our training
dataset contains 74645 unique device id. The task is to predict a user’s gender and age group
(gender age table in Figure S7) from their phone brand and the applications installed on
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Figure S6: Performance of neural networks trained with the CCE and CE losses. There are
K = 12 ordinal classes. The neural networks have three hidden layers with 40
hidden units and the ReLU activation function.

Figure S7: A view of the TalkingData mobile user demographics dataset. We use five CSV
files to construct the features and class labels. Here the five tables are excerpts
from the five files, and only the relevant fields are listed.

their phone. Readers may refer to the official website6 for a complete description of the
dataset.
Data processing. We first construct the device types by concatenating the mobile phone
brand and model strings, resulting in around 1600 different types. We denote the device
types that appear less than 50 times in the dataset as “others”. There are 440 device types
remaining.

We then construct the features of the user behavioral data. Specifically, we use event
logs to count which applications are installed on the device. Since there are too many
applications, we use the labels of applications instead (app label in Figure S7). We also
count the users’ earliest, latest, and most used time periods of phone usage every day (24

6https://www.kaggle.com/c/talkingdata-mobile-user-demographics/data
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hours) by the events log. The applications installed are represented by a binary vector, and
the device types are encoded with one-hot encoding. We note that the constructed feature
vectors are very sparse, and there are many users who do not have any activities. We filter
out the users whose features vectors have fewer than 5 nonzero values. In summary, there
are 23,556 users and 818 features after the data processing.
Experiment setting. We use the gradient boost decision tree model (GBT) in XGBoost
(Chen et al., 2016) as the classification algorithm. GBT has several critical hyperparame-
ters that may influence the prediction performance, including “subsample” corresponding
to the subsample ratio of the training instances, “colsample bytree” corresponding to the
subsample ratio of columns when constructing each tree, and “gamma” corresponding to
the partition on a leaf node. We adopt a greedy strategy to choose the best hyperparameters
by the estimated accuracy on the test dataset. Specifically, we first use grid search to find
the best value of “subsample” and then fix it to find the best value of “colsample bytree”.
We fix the three hyperparameters as 0.9, 1.0, and 0, respectively. The learning rate is 0.05
in all experiments.

4. More theoretical remarks

4.1 Class-combination regions of the oracle and LDA classification algorithms

Denote f1(p) := p2 log p. The class-combination region of the oracle classification algorithm
can be rewritten as

CR(πK0−1||πK0 ; C∗) = {(p1, p2) ∈ Ω : f1(p1) + f1(p2)− f1(p1+2) > 0} ,

where Ω = {(p1, p2) : p1 > 0, p2 > 0, p1 + p2 < 1} ⊂ [0, 1]2, and p1+2 = p1 + p2.
Denote f2(p) := p log p. The class-combination region (as ||µ||/σ2 → ∞) of the LDA

classification algorithm can be rewritten as

CR(πK0−1||πK0 ;D∞, CLDA) =
{

(p1, p2) ∈ Ω : f2(p1∨2)− f2(p1+2) > 0
}
.

where p1∨2 := p1 ∨ p2. Figure S8 shows the plots of f1(p), and f2(p) where p ∈ (0, 1]. f1(p)
monotonically decreases for p ∈ (0, e−1/2) (left panel) and f2(p) monotonically decreases for
p ∈ (0, e−1) (right panel).

4.2 Class-combination curves and regions of other classification algorithms

We also investigate the class-combination curves of three other commonly used classifica-
tion algorithms, including random forest (RF), gradient boosting trees (GBT), and neural
network (NN). Specifically, we use RF with 50 trees, GBT with 20 trees, and a two-layer
NN with 20 hidden units per layer and the ReLU activation function. We use the same
procedure to generate the simulated datasets as described in Figure B.2 in the Appendix.

The empirical results of the class-combination regions are shown in Figure S9. We can
see that the results of GBT and NN are similar to that of LDA. Compared with GBT and
NN, RF is more likely to find the true class combination (the proportion of the blue is the
largest). We note that the prediction of RF is based on the majority voting of decision
trees. Hence, intuitively, RF has a “soft” nature, putting it in the middle of the oracle
classification algorithm and LDA.
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Figure S8: Plots of f1(p) = p2 log p and f2(p) = p log p where p ∈ (0, 1].

Figure S9: Regarding the combination of two same-distributed classes (with propor-
tions p1 and p2), the improvement of ITCA , ∆ITCA(p1, p2;Dt, C) :=
ITCA(πK0−1;Dt, C, p1, p2)− ITCA(πK0 ;Dt, C, p1, p2), of the RF algorithm (bot-
tom left; CRF), the GBT algorithm (middle; CGBT) and the NN algorithm
(right; CNN). The blue areas indicate the class-combination regions where
∆ITCA(p1, p2;Dt, C) > 0 and thus the two classes will be combined. In each
panel, the yellow boundary between the orange area and the blue area is the
class-combination curve of the corresponding algorithm. The proportion of the
area of the class-combination region (the blue area) is shown in the upper right
corner.
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