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High-Resolution, Quantitative Signal Subspace Imaging for Synthetic Aperture
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Abstract. We consider synthetic aperture radar imaging of a region containing point-like targets. Measurements
are the set of frequency responses to scattering by the targets taken over a collection of individual
spatial locations along the flight path making up the synthetic aperture. Because signal subspace
imaging methods do not work on these measurements directly, we rearrange the frequency response
at each spatial location using the Prony method and obtain a matrix that is suitable for these
methods. We arrange the set of these Prony matrices as one block-diagonal matrix and introduce
a signal subspace imaging method for it. We show that this signal subspace method yields high-
resolution and quantitative images provided that the signal-to-noise ratio is sufficiently high. We give
a resolution analysis for this imaging method and validate this theory using numerical simulations.
Additionally, we show that this imaging method is stable to random perturbations to the travel
times and validate this theory with numerical simulations using the random travel time model for
random media.
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1. Introduction. Synthetic aperture imaging is used in many applications such as ultra-
sonic nondestructive testing, mine detection, surveillance, and radar imaging. The main idea
behind synthetic aperture imaging is that a single transmitter/receiver is used to probe an
unknown region by emitting known pulses into the medium and recording the time-dependent
responses as it moves along a given path. Fourier transforming these time-dependent mea-
surements yields their corresponding frequency responses. In this work we focus our attention
on the synthetic aperture radar (SAR) imaging problem. However, the methodology used
here can be directly applied to other related problems.

Several imaging methods have been proposed in the literature for imaging with SAR data.
The traditional SAR image is formed by evaluating the data at each measurement location
at the travel time that it takes for the waves to propagate from the platform location to a
point in the imaging region on the ground and back. The resolution of this image increases
with the synthetic aperture and the system bandwidth [7]. When the phases of the waves are
recorded with high accuracy, SAR imaging produces high-resolution images of the reflectivity
on the ground. It is well known, however, that SAR imaging is quite sensitive to noise in the
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phase. Such noise may result from uncertainty in the platform motion and/or scattering by
randomly inhomogeneous media. For SAR imaging with noise in the phase, we refer to [10]
for the application of coherent interferometry (CINT) to SAR imaging and to the more recent
work in [2] on a high-resolution interferometric method for imaging through scattering media.

Several approaches have been proposed in the literature to further improve the resolution
of SAR images. We refer to [1, 17] for sparsity-constrained \ell 1-minimization methods and to [4]
for imaging effectively direction and frequency dependent reflectivities using the multiple mea-
surement vector (MMV) framework [13]. As in other applications, using sparsity-constrained
optimization methods significantly increases the resolution of the SAR image. However, the
computational cost of optimization is significantly higher than that for sampling methods such
as SAR or CINT, which simply consist of evaluating an imaging functional at each grid point
on a mesh of the imaging region.

MUSIC (multiple signal classication) is another sampling method that has been widely
used in several imaging applications [8, 9, 12, 16]. To explain the main idea of MUSIC,
let us consider the single-frequency array imaging problem. For this problem the data is a
matrix, called the array response matrix. The (i, j)th element of the array response matrix
corresponds to the data received at the ith array element when the jth element is an emitter.
The singular value decomposition (SVD) of the array response matrix is used to determine
the signal and noise subspaces of the data. Next, a model for the illumination vector a(\bfity )
is introduced, with \bfity denoting a point in the imaging region. The illumination vector is the
vector of measurements received along the receiving array due to a source at \bfity . If a target
is located at \bfity , then a(\bfity ) is in the signal subspace of the array response matrix. Thus,
the projection of a(\bfity ) onto the noise subspace is zero or very small. In MUSIC, one forms
an image by evaluating the reciprocal of this norm of the projection of a(\bfity ) onto the noise
subspace. The peaks appearing in the MUSIC image give the locations of the targets with
high resolution. Although MUSIC effectively and efficiently produces high-resolution images,
it does not apply directly to SAR imaging data.

In this paper we introduce a modification and generalization of MUSIC for SAR imag-
ing. This imaging method modifies SAR data by using the Prony method [18] to rearrange
frequency-dependent data at one measurement location as a matrix. Then we form a block-
diagonal matrix with the set of Prony matrices from all spatial locations on the flight path. An
image of the reflectivity on the ground is then formed using a signal subspace method applied
to this block-diagonal matrix. This signal subspace method is a generalization of MUSIC that
projects the illuminating vector for each point \bfity in the imaging region on both the noise and
signal subspaces [11]. The noise subspace provides high spatial resolution and the signal sub-
space provides quantitative information about the targets. The result of combining these two
subspaces is a high-resolution quantitative imaging method. The relative balance between the
noise and signal subspaces depends on the noise level in the data which is controlled through
a user-defined regularization parameter, \epsilon .

There are two main results in this paper. The first main result is the resolution analysis
for this modified and generalized MUSIC method that shows an enhancement in resolution
compared to classical SAR imaging by a factor

\surd 
\epsilon . Namely, we obtain a cross-range resolution

of O(
\surd 
\epsilon (c/B)(L/a)) and a range resolution of O(

\surd 
\epsilon (c/B)(L/R)). Here c denotes the speed

of the waves, B denotes the bandwidth, a denotes the synthetic array aperture, L denotes the

D
ow

nl
oa

de
d 

05
/0

4/
23

 to
 1

69
.2

36
.2

36
.7

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

SIGNAL SUBSPACE IMAGING FOR SAR 1231

distance from the center of the flight path to the center of the imaging region, and R denotes
the range offset (see Figure 1). The second main result is the stability analysis of the method
to random perturbations of the travel times. This analysis shows that the method provides
stable reconstructions when \epsilon is chosen to satisfy \sigma 2 \ll \epsilon < 1 with \sigma 2 denoting the maximum
variance of the random perturbations of the travel times. Our numerical simulations are in
agreement with these theoretical findings. Moreover, they show that the proposed method
provides statistically stable results with signal-to-noise ratios comparable to CINT, but with
much better resolution.

The remainder of this paper is as follows. In section 2 we give a brief description of
synthetic aperture radar imaging and define the measurements. In section 3 we describe the
Prony method that we use to rearrange the frequency data and show why it is appropriate for
signal subspace imaging. We define the two imaging functionals that we use for quantitative
signal subspace imaging in section 4. In section 5 we give a resolution analysis for the imaging
method. We consider this imaging method when the travel times have random perturbations
in section 6 and give results for the expected value and statistical stability of the image formed
using this method. We show numerical results that support our theory in section 7. Section
8 contains our conclusions.

2. Synthetic aperture radar imaging. In SAR imaging, a single transmitter/receiver is
used to collect the scattered electromagnetic field over a synthetic aperture that is created by
a moving platform [6, 7, 14]. The moving platform is used to create a suite of experiments
in which pulses are emitted and resulting echoes are recorded by the transmitter/receiver at
several locations along the flight path. Let f(t) denote the broadband pulse emitted, and let
d(s, t) denote the data recorded. Here, the measurements depend on the slow time s that
parameterizes the flight path of the platform, \bfitr (s), and the fast time t in which the round-trip
travel time between the platform and the imaging scene on the ground is measured. In SAR
imaging, one seeks to recover the reflectivity of an imaging scene from these measurements.

Although SAR uses a single transmit/receive element, high-resolution images of the probed
scene can be obtained because the data are coherently processed over a large synthetic aperture
created by the moving platform. As illustrated in Figure 1, the platform is moving along a
trajectory probing the imaging scene by sending a pulse f(t) and collecting the corresponding
echoes. We call range the direction that is obtained by projecting on the imaging plane the
vector that connects the center of the imaging region to the central platform location. Cross-
range is the direction that is orthogonal to the range. Denoting the size of the synthetic
aperture by a and the available bandwidth by B, the typical resolution of the imaging system
is O((c/B)(L/R)) in range and O(\lambda L/a) in cross-range. Here c is the speed of light and \lambda the
wavelength corresponding to the central frequency while L denotes the distance between the
platform and the imaging region and R the offset in range.

We use the start-stop approximation, which is typically done in SAR imaging. This
approximation assumes that the change in displacement between the targets and the platform
is negligibly small compared to the travel time it takes for the pulse emitted to propagate to
the imaging scene and return as echoes. This approximation is valid in radar since the speed
of light is orders of magnitude larger than the speed of the targets and the platform.

Using this start-stop approximation, we then consider the measurements only at N dis-
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Figure 1. Setup for synthetic aperture radar imaging.

crete values of s, corresponding to d(sn, t) for n = 1, . . . , N . Next, we suppose that d(sn, t) is
digitally sampled at 2M - 1 values of t. Consequently, these data have a discrete Fourier trans-
form denoted by dn(\omega ) evaluated at 2M - 1 frequencies denoted by \omega m for m = 1, . . . , 2M - 1.
This choice of 2M  - 1 samples is to make the notation in section 3 simpler. With these
assumptions, we find that our measurement data is given by the 2M  - 1\times N matrix D whose
columns are

(2.1) dn =

\left[     
dn(\omega 1)
dn(\omega 2)

...
dn(\omega 2M - 1)

\right]     , n = 1, . . . , N.

3. Rearranging frequency data. The data matrix D is not suitable for direct application
of signal subspace methods. Therefore, we introduce a rearrangement of the data based on
the Prony method [18] which, for the nth column of D, yields the following M \times M matrix:

(3.1) Dn =

\left[     
dn(\omega 1) dn(\omega 2) \cdot \cdot \cdot dn(\omega M )
dn(\omega 2) dn(\omega 3) \cdot \cdot \cdot dn(\omega M+1)

...
...

. . .
...

dn(\omega M ) dn(\omega M+1) \cdot \cdot \cdot dn(\omega 2M - 1)

\right]     .
In this rearrangement, the first column is the truncation of dn to its first M entries. Subse-
quent columns are sequential upward shifts of dn truncated to its first M entries. Note that
this matrix is symmetric by construction.

To see why this rearrangement is suitable for signal subspace imaging, consider the Born
approximation for a single point target. Let \rho 0 denote the reflectivity of the point target,
and let \bfity 0 denote its position. According to the Born approximation, the scattered field at
frequency \omega m is the spherical wave,

(3.2) \psi s(\bfitx , \omega m) = \rho 0
e\mathrm{i}\omega m| \bfitx  - \bfity 0| /c

4\pi | \bfitx  - \bfity 0| 
\psi inc(\bfity 0, \omega m),
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with c denoting the wave speed and \psi inc(\bfity 0, \omega m) denoting the field incident on the point
target. Suppose that the signal emitted at position \bfitx n on the flight path at frequency \omega m is
a spherical wave with unit amplitude. For that case, the measurement dn(\omega m) corresponding
to the scattered field evaluated at \bfitx n is given by

(3.3) dn(\omega m) = \rho 0
e\mathrm{i}2\omega m| \bfitx n - \bfity 0| /c

(4\pi | \bfitx n  - \bfity 0| )2
.

It follows that

(3.4) dn =
\rho 0

(4\pi | \bfitx n  - \bfity 0| )2

\left[     
e\mathrm{i}2\omega 1| \bfitx n - \bfity 0| /c

e\mathrm{i}2\omega 2| \bfitx n - \bfity 0| /c

...

e\mathrm{i}2\omega 2M - 1| \bfitx n - \bfity 0| /c

\right]     ,
from which we find that

(3.5) Dn =
\rho 0

(4\pi | \bfitx n  - \bfity 0| )2

\left[     
e\mathrm{i}2\omega 1| \bfitx n - \bfity 0| /c e\mathrm{i}2\omega 2| \bfitx n - \bfity 0| /c \cdot \cdot \cdot e\mathrm{i}2\omega M | \bfitx n - \bfity 0| /c

e\mathrm{i}2\omega 2| \bfitx n - \bfity 0| /c e\mathrm{i}2\omega 3| \bfitx n - \bfity 0| /c \cdot \cdot \cdot e\mathrm{i}2\omega M+1| \bfitx n - \bfity 0| /c

...
...

. . .
...

e\mathrm{i}2\omega M | \bfitx n - \bfity 0| /c e\mathrm{i}2\omega M+1| \bfitx n - \bfity 0| /c \cdot \cdot \cdot e\mathrm{i}2\omega 2M - 1| \bfitx n - \bfity 0| /c

\right]     .
Next, suppose that the frequencies are sampled according to \omega m = \omega 1 + (m  - 1)\Delta \omega for
m = 1, . . . , 2M  - 1 with \Delta \omega a fixed constant. For that case, we can rewrite (3.5) as Dn =

\sigma 
(n)
0 u

(n)
0 (v

(n)
0 )\mathrm{H} with \sigma 

(n)
0 =M | \rho 0| /(4\pi | \bfitx n  - \bfity 0| )2,

(3.6) u
(n)
0 =

e\mathrm{i}\theta 0/2\surd 
M

\left[     
e\mathrm{i}2\omega 1| \bfitx n - \bfity 0| /c

e\mathrm{i}2\omega 2| \bfitx n - \bfity 0| /c

...

e\mathrm{i}2\omega M | \bfitx n - \bfity 0| /c

\right]     , and v
(n)
0 =

e - \mathrm{i}\theta 0/2

\surd 
M

\left[     
1

e - \mathrm{i}2\Delta \omega | \bfitx n - \bfity 0| /c

...

e - \mathrm{i}2(M - 1)\Delta \omega | \bfitx n - \bfity 0| /c

\right]     .

Here, we have written the reflectivity as \rho 0 = | \rho 0| e\mathrm{i}\theta 0 and included e\mathrm{i}\theta 0 in u
(n)
0 and v

(n)
0

arbitrarily in (3.6).
Suppose there are P noninteracting point targets in the region with reflectivities \rho p at

positions \bfity p for p = 1, . . . , P . It follows that

(3.7) Dn =
P\sum 

p=1

\sigma (n)p u(n)
p (v(n)

p )\mathrm{H}.

Here, \sigma 
(n)
p = M | \rho p| /(4\pi | \bfitx n  - \bfity p| )2, and u

(n)
p and v

(n)
p are defined just like u

(n)
0 and v

(n)
0 in

(3.6), but evaluated on | \bfitx n - \bfity p| instead. This expression for Dn is a sum of P outer products,
each of which corresponds to an individual point target. This outer product representation
for Dn indicates that signal subspace methods may be effectively used on these matrices for
imaging.
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4. Quantitative signal subspace method. To combine the matrices formed using the
Prony method, we consider the MN \times MN block diagonal matrix,

(4.1) D\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{y} =

\left[     
D1

D2

. . .

DN

\right]     .
Using the outer product structure identified in (3.7), we can extend a recently developed
quantitative signal subspace imaging method [11] to this block-diagonal Prony matrix as
follows.

Suppose we compute the SVD for each block: Dn = Un\Sigma nV
\mathrm{H}
n for n = 1, . . . , N . According

to (3.7), for P point targets, the rank of each block will be P . Assuming that the signal-to-
noise ratio (SNR) is sufficiently high, the first P singular values residing in the diagonal entries
of \Sigma n will be significantly larger than the others. Those first P singular values correspond to
the signal subspace. The remaining singular values correspond to the noise subspace. Since
we can separate the first P singular values, we are able to compute the pseudo-inverse,

(4.2) \Sigma +
n =

1

\sigma 1
diag

\biggl( 
1,
\sigma 1
\sigma 2
, . . . ,

\sigma 1
\sigma P

,
1

\epsilon 
, . . . ,

1

\epsilon 

\biggr) 
,

with \epsilon > 0 denoting a user-defined parameter. Here we replace the small singular values, i.e.,
the ones in the noise subspace, by \epsilon \sigma 1.

Following what was done previously for single-frequency array imaging [11], we introduce
two imaging functionals. For search point \bfity in the imaging region, we introduce the illumi-
nation block-vector

(4.3) a(\bfity ) =

\left[   a1(\bfity )...
aN (\bfity )

\right]   , an(\bfity ) =
1

4\pi | \bfitx n  - \bfity | 

\left[   e
\mathrm{i}2\omega 1| \bfitx n - \bfity | /c

...

e\mathrm{i}2\omega M | \bfitx n - \bfity | /c

\right]   .
Using (4.2) and (4.3), we introduce the first imaging functional,

(4.4) F\epsilon (\bfity ) =
1

N
a\mathrm{H}(\bfity )

\left[   U1\Sigma 
+
1 U

\mathrm{H}
1

. . .

UN\Sigma +
NU

\mathrm{H}
N

\right]   a(\bfity ) =
1

N

N\sum 
n=1

a\mathrm{H}n (\bfity )Un\Sigma 
+
nU

\mathrm{H}
n an(\bfity ).

The imaging functional (4.4) only uses the matrix left singular vectors, Un. The matrix
Un\Sigma 

+
nU

H
n is symmetric, positive definite and (4.4) is a quadratic form. For the second imaging

functional, we introduce the complementary illumination block-vector,

(4.5) b(\bfity ) =

\left[   b1(\bfity )
...

bN (\bfity )

\right]   , bn(\bfity ) =
1

4\pi | \bfitx n  - \bfity | 

\left[     
1

e - \mathrm{i}2\Delta \omega | \bfitx n - \bfity | /c

...

e - \mathrm{i}2(M - 1)\Delta \omega | \bfitx n - \bfity | /c

\right]     ,
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Figure 2. Sketch of the linear flight path over the planar imaging region used to study the resolution of the
imaging method.

and compute

(4.6) R\epsilon (\bfity ) =
1

N
b\mathrm{H}(\bfity )

\left[   V1\Sigma 
+
1 U

\mathrm{H}
1

. . .

VN\Sigma +
NU

\mathrm{H}
N

\right]   a(\bfity ) =
1

N

N\sum 
n=1

b\mathrm{H}
n (\bfity )Vn\Sigma 

+
nU

\mathrm{H}
n an(\bfity ).

In contrast to (4.4), this imaging functional uses the matrices of left and right singular vectors,
Un and Vn, respectively, and the matrix Vn\Sigma 

+
nU

H
n is not symmetric, positive definite. We

form images through evaluation of 1/F\epsilon (\bfity ) and 1/R\epsilon (\bfity ) over an imaging region. We show
below that the image formed using F\epsilon is useful for determining the location and magnitude
of reflectivities for point targets and the image formed using R\epsilon is useful for determining the
complex reflectivities for point targets.

5. Resolution analysis. To study the performance of imaging using (4.4) and (4.6), we
consider one point target located in a planar imaging region at position \bfity 0 with complex
reflectivity \rho 0. We use a coordinate system in which the origin lies at the center of the
planar imaging region. The flight path of the platform is linear and parallel to the x-axis.
It is offset from the origin along the y-axis by range R and along the z-axis by height H.
Thus, spatial positions of the measurements are \bfitx n = (xn, R,H) for n = 1, . . . , N with
xn =  - a/2 + a(n  - 1)/(N  - 1) and a denoting the aperture. Let L =

\surd 
R2 +H2 denote the

distance from the center of the flight path to the origin, and let \theta denote the so-called look
angle with sin \theta = R/L and cos \theta = H/L. We assume that L is the largest length scale in this
problem. A sketch of this linear flight path over a planar imaging region is shown in Figure 2.

To establish estimates for the resolution of image of one point target produced through
evaluation of 1/F\epsilon (\bfity ) over an imaging region, let \bfity 0 = (x0, y0, 0) denote the target location,
let \bfity = (x, y, 0) denote the search location, and let B denote the system bandwidth centered
at frequency \omega 0 > \pi B with corresponding wavenumber k0 = \omega 0/c. With these quantities
defined, we prove the following theorem.

Theorem 5.1 (resolution estimates for a linear flight path). Assuming that the SNR is
sufficiently high that we can distinguish the singular values corresponding to the signal subspace
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from those corresponding to the noise subspace, 1/F\epsilon (\bfity ) with F\epsilon (\bfity ) given in (4.4) attains a
maximum of | \rho 0| on \bfity = \bfity 0, and in the asymptotic limit, L \gg 1, x0/a \ll 1, y0/R \ll 1,
and \epsilon \ll 1, this image has a cross-range resolution of \Delta x\ast = O(

\surd 
\epsilon (c/B)(L/a)) and a range

resolution of \Delta y\ast = O(
\surd 
\epsilon (c/B)(L/R)).

Proof. For a single point target, we have Dn = \sigma 
(n)
0 u

(n)
0 v

(n)\mathrm{H}
0 for n = 1, . . . , N with

\sigma 
(n)
0 = M | \rho 0| /(4\pi | \bfitx n  - \bfity 0| )2 and u

(n)
0 and v

(n)
0 given in (3.6). Consequently, the column

space of Dn is \scrC (Dn) = span\{ u(n)
0 \} and P (n) = I  - u

(n)
0 u

(n)\mathrm{H}
0 is the projection onto subspace

orthogonal to \scrC (Dn). Using

\Sigma +
n =

1

\sigma 
(n)
0

diag

\biggl( 
1,

1

\epsilon 
, . . . ,

1

\epsilon 

\biggr) 
,

we find that

F\epsilon (\bfity ) =
1

N

N\sum 
n=1

\Biggl[ 
1

\epsilon \sigma 
(n)
0

a\mathrm{H}n (\bfity )(I  - u
(n)
0 u

(n)\mathrm{H}
0 )an(\bfity ) +

1

\sigma 
(n)
0

a\mathrm{H}n (\bfity )u
(n)
0 u

(n)\mathrm{H}
0 an(\bfity )

\Biggr] 

=
1

| \rho 0| 
1

N

N\sum 
n=1

\biggl[ \biggl( 
1

\epsilon 
 - 
\biggl( 
1

\epsilon 
 - 1

\biggr) 
| \Phi n| 2

\biggr) 
| \bfitx n  - \bfity 0| 2

| \bfitx n  - \bfity | 2

\biggr] 
,(5.1)

where we have introduced the quantity

(5.2) \Phi n =
1

M

M\sum 
m=1

e\mathrm{i}\omega m\Delta \tau n ,

with \Delta \tau n = 2(| \bfitx n  - \bfity |  - | \bfitx n  - \bfity 0| )/c denoting the difference in travel times for the search
and target locations.

Evaluating (5.1) on \bfity 0, we find that F\epsilon (\bfity 0) = 1/| \rho 0| , so 1/F\epsilon (\bfity 0) = | \rho 0| . Because | \Phi n| 2 \leq 1
and | \bfitx n  - \bfity 0| 2/| \bfitx n  - \bfity | 2 \leq 1 with both functions evaluating to 1 only at \bfity = \bfity 0, this result
corresponds to the maximum value that 1/F\epsilon (\bfity ) attains.

Let

\omega m = \omega 0

\biggl[ 
1 + \beta 

\biggl( 
m - 1

M  - 1
 - 1

2

\biggr) \biggr] 
, m = 1, . . . ,M,

with \beta = 2\pi B/\omega 0 denoting the fraction of the bandwidth about the central frequency. Sub-
stituting these frequencies into (5.2) and computing the sum, we find

\Phi n =
e\mathrm{i}\omega 0(1 - \beta /2)\Delta \tau n

M

1 - e\mathrm{i}\omega 0\beta M\Delta \tau n/(M - 1)

1 - e\mathrm{i}\omega 0\beta \Delta \tau n/(M - 1)
,

from which it follows that

| \Phi n| 2 =
1

M2

sin2
\Bigl( 
\pi MB\Delta \tau n

M - 1

\Bigr) 
sin2

\Bigl( 
\pi B\Delta \tau n
M - 1

\Bigr) .
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In the expression above, we have resubstituted \omega 0\beta = 2\pi B. Assuming we are in a small
neighborhood about the target location, we expand the expression above about \Delta \tau n = 0 and
obtain

| \Phi n| 2 = 1 - \pi 2B2

3

M + 1

M  - 1
\Delta \tau 2n +O(\Delta \tau 4n).

Additionally, we find that

| \bfitx n  - \bfity 0| 
| \bfitx n  - \bfity | 

=
(xn  - x0)

2 + (L sin \theta  - y0)
2 + (L cos \theta )2

(xn  - x)2 + (L sin \theta  - y)2 + (L cos \theta )2
= 1 +O(L - 1),

where sin \theta = R/L and cos \theta = H/L. Using these approximations for | \Phi n| 2 and | \bfitx n - \bfity 0| 
| \bfitx n - \bfity | , we

find that

(5.3) F\epsilon (\bfity ) =
1

| \rho 0| 

\Biggl[ 
1 +

\biggl( 
1

\epsilon 
 - 1

\biggr) 
\pi 2B2

3

M + 1

M  - 1

\Biggl( 
1

N

N\sum 
n=1

\Delta \tau 2n

\Biggr) \Biggr] 
+O(\Delta \tau 4n, L

 - 1).

Next, we use

(5.4) \Delta \tau n = (| \bfitx n  - \bfity |  - | \bfitx n  - \bfity 0| )/c = cos \theta 
(y  - y0)

c

+
(x - x0)

2  - 2(x - x0)(\xi n  - x0)

2cL
+ sin2 \theta 

(y  - y0)
2 + 2(y  - y0)y0
2cL

+O(L - 2).

For the cross-range resolution, we evaluate (5.4) on y = y0 and find that

\Delta \tau 2n
\bigm| \bigm| 
y=y0

\sim (x - x0)
2

c2L2
(xn  - x0)

2.

Using xn =  - a/2 + a(n - 1)/(N  - 1), we find that

1

N

N\sum 
n=1

(xn  - x0)
2 =

a2

12

N + 1

N  - 1
+ x20,

and so

F\epsilon (x, y0) \sim 
1

| \rho 0| 

\biggl[ 
1 +

\biggl( 
1

\epsilon 
 - 1

\biggr) 
\pi 2B2a2

3c2L2

M + 1

M  - 1

\biggl( 
1

12

N + 1

N  - 1
+
x20
a2

\biggr) 
(x - x0)

2

\biggr] 
.

The full-width/half-maximum (FWHM) in cross-range \Delta x\ast satisfies 1/F\epsilon (x0 + \Delta x\ast , y0) =
1/(2| \rho 0| ). Substituting the approximation above into this definition, solving for \Delta x\ast , and
expanding that result about \epsilon = 0, we find

\Delta x\ast = \pm 
\surd 
\epsilon 
c

B

L

a

6

\pi 

\sqrt{} 
M  - 1

M + 1

\sqrt{} 
N  - 1

(N + 1) + 12(N  - 1)(x20/a
2)

+O(\epsilon 3/2)

= \pm 
\surd 
\epsilon 
c

B

L

a

6

\pi 

\sqrt{} 
M  - 1

M + 1

\sqrt{} 
N  - 1

N + 1
+O

\biggl( 
\epsilon 3/2,

x20
a2

\biggr) 
= O

\biggl( \surd 
\epsilon 
c

B

L

a

\biggr) 
.
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For the range resolution, we evaluate (5.4) on x = x0 and find that

\Delta \tau 2n
\bigm| \bigm| 
x=x0

=
(y  - y0)

2

c2

\Bigl( 
cos \theta  - sin2 \theta 

y0
L

\Bigr) 2
.

It follows that

F\epsilon (x0, y) \sim 
1

| \rho 0| 

\biggl[ 
1 +

\biggl( 
1

\epsilon 
 - 1

\biggr) 
\pi 2B2

3c2
M + 1

M  - 1

\Bigl( 
cos \theta  - sin2 \theta 

y0
L

\Bigr) 2
(y  - y0)

2

\biggr] 
.

The FWHM in range \Delta y\ast satisfies 1/F\epsilon (x0, y0 +\Delta y\ast ) = 1/(2| \rho 0| ). Substituting the approxi-
mation above into this definition, resubstituting cos \theta = R/L, solving for \Delta y\ast , and expanding
that result about \epsilon = 0, we find

\Delta y\ast = \pm 
\surd 
\epsilon 
c

B

L

R

1

1 - sin2 \theta (y0/R)

\surd 
3

\pi 

\sqrt{} 
M  - 1

M + 1
+O(\epsilon 3/2)

= \pm 
\surd 
3

\pi 

\surd 
\epsilon 
c

B

L

R
+O

\Bigl( 
\epsilon 3/2,

y0
R

\Bigr) 
= O

\biggl( \surd 
\epsilon 
c

B

L

R

\biggr) 
.

This completes the proof.

Theorem 5.1 states that images of a point target formed through evaluation of 1/F\epsilon (\bfity )
with F\epsilon (\bfity ) given in (4.4) will form an image that is peaked at the location of the target with
magnitude equal to | \rho 0| . Because the user-defined parameter \epsilon can be made arbitrarily small,
this imaging method will yield high-resolution images provided that there is sufficient signal
that the nontrivial singular values provide accurate quantitative data.

In general, the reflectivity of a point target is complex. To recover the complex reflectivity,
we make use of the following theorem.

Theorem 5.2 (recovery of the complex reflectivity). For a point target located at \bfity 0 with
complex reflectivity \rho 0, when the SNR is sufficiently high that we can distinguish the signal
subspace from the noise subspace, 1/R\epsilon (\bfity 0) = \rho 0 with R\epsilon (\bfity ) given in (4.6).

Proof. Through direct evaluation of R\epsilon given in (4.6) on \bfity = \bfity 0, we find R\epsilon (\bfity 0) =
e - \mathrm{i}\theta 0/| \rho 0| . It follows that 1/R\epsilon (\bfity 0) = | \rho 0| e\mathrm{i}\theta 0 = \rho 0.

Although Theorem 5.2 states that evaluating 1/R\epsilon (\bfity ) yields the complex reflectivity, it is
not generally useful for determining the location of the target because this function does not
exhibit localized behavior that indicates the region about the target location. For this reason,
we propose the following two-stage imaging method.

(i) Evaluate 1/F\epsilon (\bfity ) with F\epsilon (\bfity ) given in (4.4) to determine the location of targets. The
value of \epsilon may be varied to adjust the resolution of this image.

(ii) Evaluate 1/R\epsilon (\bfity ) with R\epsilon (\bfity ) given in (4.6) using the locations determined in (i) to
determine the complex reflectivities of the targets.
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6. Travel time uncertainty. We now consider the effect of uncertainty in the travel times
on images formed through evaluation of 1/F\epsilon (\bfity ) with F\epsilon (\bfity ) given in (4.4). Uncertainty in
travel times can arise from sampling clock jitter, deviations from the assumed flight path, and
random fluctuations in the propagating medium among other practical issues. It is therefore
important to understand to what extent images formed using the method described above are
useful under uncertain conditions.

To model travel time uncertainty, we use

(6.1) \Delta \tau n = \Delta \tau 0n + \nu n, n = 1, . . . , N,

with \Delta \tau 0n denoting the difference in travel times for a homogeneous medium and the vector,
\bfitnu = (\nu 1, . . . , \nu N ) denoting a multivariate distribution with E[\nu n] = 0 and E[\nu 2n] = \sigma 2n for
n = 1, . . . , N . Let \sigma 2 = max\{ \sigma 21, . . . , \sigma 2N\} . Using this model for travel time uncertainty, we
prove the following theorem.

Theorem 6.1 (travel time uncertainty). Assuming that the SNR is sufficiently high that we
can distinguish the singular values corresponding to the signal subspace from those correspond-
ing to the noise subspace, the image formed through evaluation of 1/F\epsilon (\bfity ) in a neighborhood
about \bfity = \bfity 0 with F\epsilon (\bfity ) given in (4.4) and using (6.1) with \sigma 2/\epsilon \ll 1 has an expected value
whose leading behavior is the result for the homogeneous medium plus a term that is O(\sigma 2/\epsilon ),
and has a variance that is O(\sigma 2/\epsilon ).

Proof. Since we consider a neighborhood about \bfity = \bfity 0, we start with (5.3) and write

F\epsilon \sim 
1

| \rho 0| 

\Biggl[ 
1 + \alpha 

\biggl( 
1

\epsilon 
 - 1

\biggr) \Biggl( 
1

N

N\sum 
n=1

\Delta \tau 2n

\Biggr) \Biggr] 
,

with \alpha = \pi 2B2(M + 1)/(3(M  - 1)). Substituting (6.1) yields

F\epsilon \sim 
1

| \rho 0| 

\Biggl[ 
1 + \alpha 

\biggl( 
1

\epsilon 
 - 1

\biggr) \Biggl( 
1

N

N\sum 
n=1

\bigl( 
\Delta \tau 0n + \nu n

\bigr) 2\Biggr) \Biggr] 
.

Based on our resolution estimates, we introduce the stretched variables \Delta \tau n =
\surd 
\epsilon \Delta Tn for

n = 1, . . . , N , and obtain

F\epsilon \sim 
1

| \rho 0| 

\Biggl[ 
1 + \alpha (1 - \epsilon )

\Biggl( 
1

N

N\sum 
n=1

\bigl( 
\Delta Tn + \nu n/

\surd 
\epsilon 
\bigr) 2\Biggr) \Biggr] 

.

Let fY (y1, . . . , yN ) denote the probability density function for (\nu 1, . . . , \nu N ). The expected
value of the image is then

E
\biggl[ 
1

F\epsilon 

\biggr] 
\sim | \rho 0| 

\int 
\cdot \cdot \cdot 
\int 

fY (y1, . . . , yN )

1 + \alpha (1 - \epsilon )

\Biggl( 
1

N

N\sum 
n=1

\bigl( 
\Delta Tn + yn/

\surd 
\epsilon 
\bigr) 2\Biggr) dy1 \cdot \cdot \cdot dyN .
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Substituting yn = \sigma \eta n yields

E
\biggl[ 
1

F\epsilon 

\biggr] 
\sim | \rho 0| 

\int 
\cdot \cdot \cdot 
\int 

\sigma NfY (\sigma \eta 1, . . . , \sigma \eta N )

1 + \alpha (1 - \epsilon )

\Biggl( 
1

N

N\sum 
n=1

\bigl( 
\Delta Tn + \sigma \eta n/

\surd 
\epsilon 
\bigr) 2\Biggr) d\eta 1 \cdot \cdot \cdot d\eta N .

Assuming that \delta = \sigma /
\surd 
\epsilon \ll 1, we expand about \delta = 0 and find\Biggl[ 

1 + \alpha (1 - \epsilon )

\Biggl( 
1

N

N\sum 
n=1

(\Delta Tn + \delta \eta n)
2

\Biggr) \Biggr]  - 1

= I0  - 2\delta \alpha (1 - \epsilon )I20

\Biggl( 
1

N

N\sum 
n=1

\Delta Tn\eta n

\Biggr) 
+O(\delta 2),

with

I0 =

\Biggl[ 
1 + \alpha (1 - \epsilon )

1

N

N\sum 
n=1

(\Delta Tn)
2

\Biggr]  - 1

,

denoting the normalized image formed in the homogeneous medium. Substituting this ex-
pansion into the integral above for the expected value of the image and using E[\nu n] = 0 for
n = 1, . . . , N , we find that

E
\biggl[ 
1

F\epsilon 

\biggr] 
= | \rho 0| I0 +O(\delta 2).

Next, by using the expansion\Biggl[ 
1 + \alpha (1 - \epsilon )

\Biggl( 
1

N

N\sum 
n=1

(\Delta Tn + \delta \eta n)
2

\Biggr) \Biggr]  - 2

= I20  - \delta \alpha (1 - \epsilon )I30

\Biggl( 
N\sum 

n=1

\Delta Tn\eta n

\Biggr) 
+O(\delta 2),

we determine that

E

\Biggl[ \biggl( 
1

F\epsilon 

\biggr) 2
\Biggr] 
= | \rho 0| 2I20 +O(\delta 2).

Therefore,

Var

\biggl[ 
1

F\epsilon 

\biggr] 
= E

\Biggl[ \biggl( 
1

F\epsilon 

\biggr) 2
\Biggr] 
 - 
\biggl( 
E
\biggl[ 
1

F\epsilon 

\biggr] \biggr) 2

= O(\delta 2).

Theorem 6.1 states that when \sigma /
\surd 
\epsilon \ll 1, the leading behavior of the expectation of

the image with random perturbations to the travel time is exactly the same as the image in
the homogeneous medium. The recovery of the magnitude of the reflectivity | \rho 0| , and the
resolution estimates of Theorem 5.1 are different by a term that is O(\sigma 2/\epsilon ). Because the
variance of the image is O(\sigma 2/\epsilon ), we determine that this image formed is statistically stable.

An immediate consequence of Theorem 6.1 is given in the following corollary.

Corollary 6.2 (resolution with travel time uncertainty). When \sigma 2 is known or can be reliably
estimated, one can set the value of \epsilon so that \sigma 2 \ll \epsilon and Theorem 6.1 will hold.

Setting \epsilon in this way connects the resolution of the image with the variance of the random
perturbations to the travel time.
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Figure 3. Image formed through evaluation of 1/F\epsilon (\bfity ) with F\epsilon (\bfity ) given in (4.4) for a point target located
at x0 = y0 = 1m on the planar imaging region. Measurement noise was added so that SNR = 44.1339dB. For
this image, \epsilon = 10 - 8.

7. Numerical results. To validate the theoretical results from above, we use numerical
simulations to generate data for various scattering scenes. The following values for the pa-
rameters are based on the GOTCHA data set [5]. In particular, we have set R = 3.55 km
and H = 7.30 km, so that L =

\surd 
H2 +R2 = 8.12 km. The synthetic aperture created by the

linear flight path is a = 0.13 km. The central frequency is f0 = 9.6GHz and the bandwidth
is B = 622MHz. Using c = 3\times 108m/s, we find that the central wavelength is \lambda 0 = 3.12 cm.
The imaging region is at the ground level z = 0. We use 2M  - 1 = 39 frequencies so that
M = 20, and N = 32 spatial measurements.

7.1. Single point target. We first consider imaging a single point target located at x0 =
y0 = 1m with complex reflectivity \rho 0 = 3.4i on the planar imaging region. Figure 3 shows
the image formed through evaluation of 1/F\epsilon (\bfity ) with F\epsilon (\bfity ) given in (4.4) with \epsilon = 10 - 10.
Measurement noise was added so that the SNR is SNR = 44.1339 dB. The left plot of Figure
3 shows the color contour plot of the image in a region about the target location. The center
plot of Figure 3 shows the image on y = y0 as a function of x (cross-range), and the right plot
shows the image on x = x0 as a function of y (range). These results shown in Figure 3 show
that the image attains its maximum value of 3.4 corresponding to | \rho 0| at the correct target
location. The image attains a high resolution due to choice of \epsilon . Because L/R = 2.29 and
L/a = 62.46, we expect from the resolution estimates given in Theorem 5.1 that the range
resolution should be better than the cross-range resolution. This difference in resolution can
be observed by noting the values of k0(x  - x0) in the center plot compared to the values of
k0(y  - y0) in the right plot of Figure 3.

In Figure 4 we show numerically computed FWHM values of k0\Delta x (cross-range resolution)
and k0\Delta y (range resolution) for a single point target when varying \epsilon (left plot) and c/B (right
plot). The blue ``\circ "" symbols are the computed values of k0\Delta x and the red ``\times "" symbols are
the computed values of k0\Delta y both found by numerically determining the FWHM. The solid
blue and red curves are the least-squares linear fit through the \Delta x and \Delta y data, respectively.
For the results shown in the left plot of Figure 4, all parameters are set to the same values
used for Figure 3, except that SNR = \infty , so there is no noise. For the right plot of Figure 4,
we have varied the value of B, but all other parameter values are the same as those used for
Figure 3. In these results, we find that k0\Delta x > k0\Delta y for all values of \epsilon and c/B which is due
to the fact that L/R < L/a.
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Figure 4. Numerically computed image resolutions with respect to \epsilon (left) and c/B (right). The range
resolutions, k0\Delta x, are plotted as ``\circ "" symbols, and the cross-range resolution, k0\Delta y, are plotted as red ``\times ""
symbols. The blue and red curves are the least-squares fit to lines through the range and cross-range resolution
data, respectively.

The results for cross-range and range resolutions with respect to \epsilon given in the left plot of
Figure 4 clearly show an O(

\surd 
\epsilon ) behavior which is plotted as a dashed-black curve in the left

plot of Figure 4. The computed least-squares fits are log(\Delta x) \approx 3.9593 + 0.4991 log(\epsilon ) and
log(\Delta y) \approx  - 0.5565 + 0.4992 log(\epsilon ) which numerically validate this O(

\surd 
\epsilon ) behavior.

The results for cross-range and range resolutions with respect to c/B given in the right
plot of Figure 4 clearly show an O(c/B) behavior which is plotted as a dashed-black curve.
The least-squares fits are log(\Delta x) \approx  - 6.8067 + 0.9997 log(c/B) and log(\Delta y) \approx  - 11.3247 +
0.9999 log(c/B) which numerically validate the O(c/B) behavior.
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Figure 5. Numerical computed image resolutions with respect to L/a (left) and L/R (right). The cross-
range resolutions, k0\Delta x, are plotted as ``\circ "" symbols, and the range resolutions, k0\Delta y, are plotted as red ``\times ""
symbols. The blue and red curves are the least-squares fit to lines through the cross-range and range resolution
data, respectively.

The behaviors of computed image resolution with respect to L/a and L/R are shown in
Figure 5. For these results, all parameter values are the same as those used for Figure 3 except
that SNR = \infty , so there is no noise and a is varied in the left plot and R is varied in the right
plot. The computed range and cross-range FWHM values, k0\Delta x and k0\Delta y, respectively, are
plotted just as in Figure 4 including the corresponding least-squares fit to lines.
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The results for cross-range resolution with respect to L/a shown in the left plot of Figure
5 clearly show an O(L/a) behavior, which is plotted as a dashed-black curve. The computed
least-squares fit to a line is log(\Delta x) \approx  - 11.5748+0.9741 log(L/a) which numerically validates
the O(L/a) behavior. In contrast, the range resolution does not vary significantly with L/a.
The computed least-squares fit to a line is log(\Delta y) \approx  - 12.0007  - 0.0139 log(L/a) which
quantifies the weak dependence that range resolution has on aperture.

The results for range resolution with respect to L/R shown in the right plot of Figure 5
clearly show an O(L/R) behavior, which is plotted as a dashed-black curve. The computed
least-squares fit to a line is log(\Delta y) \approx  - 12.8645+0.9690 log(L/R) which numerically validates
this O(L/R) behavior. In contrast, the cross-range resolution shows a much weaker depen-
dence on L/R. The computed least-squares fit to a line is log(\Delta x) \approx  - 7.5134 - 0.0340 log(L/R)
which quantifies this weak dependence on L/R.
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Figure 6. Recovering the complex reflectivity through evaluation of 1/R\epsilon (\bfity ) with R\epsilon (\bfity ) given in (4.6) with
\epsilon = 10 - 10. Measurement noise was added so that SNR = 44.1339dB. The left plot shows 1/R\epsilon on y = y0 as a
function of x  - x0 and the right plot shows 1/R\epsilon on x = x0 as a function of y  - y0. The blue curves give the
real part of 1/R\epsilon (\bfity ) and the red curves give the imaginary part. The black ``\times "" symbol gives the exact value of
the complex reflectivity, \rho 0 = 3.4i.

We now show results from evaluating 1/R\epsilon (\bfity ) with R\epsilon (\bfity ) given in (4.6). These results use
the same parameter values as those used in Figure 3. When plotting 1/R\epsilon , there is no local
behavior to indicate the location of the target. For this reason these images do not provide
useful information about the location of targets. However, when we evaluate 1/R\epsilon (\bfity ) in a
region near the target location, we are able to recover the complex reflectivity. In Figure 6 we
show the real and imaginary parts of 1/R\epsilon (x - x0, y0) in the left plot and of 1/R\epsilon (x0, y  - y0)
in the right plot. In both plots the actual value \rho 0 = 3.4i is plotted as a black ``\times "" symbol.
These plots show that when the location of the point target is known, evaluating 1/R\epsilon (\bfity )
at the recovered target location provides a method for recovering the complex reflectivity.
At the target location, we find 1/R\epsilon (\bfity 0) =  - 1.3059 \times 10 - 3 + 3.3928i which demonstrates a
very high accuracy in recovering the complex reflectivity. Provided that the target location
is reasonably accurate, the user-defined parameter \epsilon can be used to regularize these results to
enable stable recovery of the complex reflectivity.

In Theorems 5.1 and 5.2, it is assumed that the SNR is sufficiently high that one can
separate the signal subspace from the noise subspace. To investigate the effect of SNR on
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Figure 7. Relative error in the recovery of the complex reflectivity through evaluation of 1/R\epsilon (\bfity 0) with
\epsilon = 10 - 6, 10 - 8, and 10 - 10 for a point target as a function of SNR (dB). All parameters are the same as those
used in Figure 3.

the recovery of the complex reflectivity, we evaluate 1/R\epsilon (\bfity 0) for different SNR values and
compute the relative error, E\mathrm{r}\mathrm{e}\mathrm{l} = | \rho 0  - 1/R\epsilon (\bfity 0)| /| \rho 0| . These relative error results are shown
with \epsilon = 10 - 6 as a solid blue curve, \epsilon = 10 - 8 as a dashed red curve, and \epsilon = 10 - 10 as a
dot-dashed yellow curve in Figure 7. The results in Figure 7 show that sufficiently high SNR
is needed to achieve a high accuracy. Additionally, we observe that larger \epsilon values achieve
higher accuracy for any fixed SNR. This higher accuracy occurs because \epsilon regularizes 1/R\epsilon (\bfity )
thereby stabilizing the recovery of the complex reflectivity. The role of SNR on the resolution
becomes more of an issue when imaging multiple targets which we discuss below.

7.2. Multiple point targets. We now consider multiple point targets in the imaging re-
gion. We set the origin of the coordinate system to lie at the center of a 5m\times 5m planar imag-
ing region on z = 0. The first target is located at (x1, y1, 0) = (0.01m, 0.1m, 0) with complex
reflectivity \rho 1 = 3.4i. The second target is located at (x2, y2, 0) = ( - 0.30m, - 0.50m, 0) with
complex reflectivity \rho 2 = 4.2i. The third target is located at (x3, y3, 0) = ( - 0.50m, 0.50m, 0)
with complex reflectivity \rho 3 = 3.1i.

In Figure 8 we show the image produced through evaluation of 1/F\epsilon (\bfity ) with F\epsilon (\bfity ) given
in (4.4) with \epsilon = 10 - 6 (left), \epsilon = 10 - 8 (center), and \epsilon = 10 - 10 (right). The imaging re-
gion is discretized using a 51 \times 51 equispaced mesh corresponding to approximately a 10 cm
meshwidth. Measurement noise was added so that SNR = 64.1695 dB. We see that the value
of \epsilon affects the overall resolution of the three targets, especially with respect to cross-range
since L/a < L/R. With \epsilon = 10 - 10, the image produced through evaluation of 1/F\epsilon (\bfity ) clearly
indicates the locations of the three targets. Even though we do not have direct interpretation
of the magnitude of the peaks in this plot, we do find that \| 1/F\epsilon (\bfity )\| \infty = 3.8641 for \epsilon = 10 - 10,
which is close to the values of | \rho 1| , | \rho 2| , and | \rho 3| .

Using Figure 8 to determine regions about each of the target locations, we then evaluate
1/F\epsilon (\bfity ) using the same measurements to obtain the location more precisely and 1/R\epsilon (\bfity ) to
recover the complex reflectivities. In particular, we plotted the evaluation of 1/F\epsilon (\bfity ) in a
window of size 10 k0 in cross-range (x) and 0.2 k0 in range (y) about each target using a
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Figure 8. Imaging through evaluation of 1/F\epsilon (\bfity ) with F\epsilon (\bfity ) given in (4.4) and \epsilon = 10 - 6 (left), \epsilon =
10 - 8 (center), and \epsilon = 10 - 10 (right) for three point targets with SNR = 64.1695 dB. The first target is
located at (x1, y1, 0) = (0.01m, 0.1m, 0) with complex reflectivity \rho 1 = 3.4i. The second target is located at
(x2, y2, 0) = ( - 0.3m, - 0.5m, 0) with complex reflectivity \rho 2 = 4.2i. The third target is located at (x3, y3, 0) =
( - 0.5m, 0.5m, 0) with complex reflectivity \rho 3 = 3.1i.

51 \times 51 mesh. The results of doing this are shown in Figure 9 for target 1, Figure 10 for
target 2, and Figure 11 for target 3. The left plots in Figures 9--11 show results of evaluating
1/F\epsilon (\bfity ) in regions about the respective targets. The center plots in Figures 9--11 show results
of evaluating 1/R\epsilon (\bfity ) on y = y1, y2, and y3, respectively, and the right plots in Figures 9--11
shows results of evaluating 1/R\epsilon (\bfity ) on x = x1, x2, and x3, respectively.

When plotting 1/F\epsilon (\bfity ) in a small region about each target location, we are readily able to
determine the target location corresponding to where this function attains its local maximum
thereby demonstrating the high resolution of this imaging method. With the location of each
target determined using these results, we then evaluate 1/R\epsilon (\bfity ) in these regions which allows
for recovery of the complex reflectivity of each target. For these results, these evaluations
yielded \rho 1 = 3.4i \approx 4.0096 \times 10 - 4 + 3.3990i, \rho 2 = 4.2i \approx 1.4427 \times 10 - 4 + 4.2000i, and
\rho 3 = 3.1i \approx 1.3969 \times 10 - 4 + 3.0998i thereby demonstrating the high quantitative accuracy
achieved using this method.

We showed the effect of SNR on the recovery of the complex reflectivity for a single point
target in Figure 7. To study the effect of SNR of imaging multiple point targets, we consider
images for the same scenario produced through evaluation of 1/F\epsilon (\bfity ) with F\epsilon (\bfity ) given in
(4.4) and \epsilon = 10 - 8 for SNR = 44.1695 dB (top row of Figure 12) and 24.1695 dB (bottom
row of Figure 12). Except for the SNR values, all parameter values are the same as those in
Figure 8(b). Included with each of those images are the corresponding singular value spectra
for D\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{y} given in (4.1) plotted as blue curves. The dashed red curves show the thresholded
singular values in which \sigma n is replaced with \epsilon \sigma 1 for all \sigma n < 0.01\sigma 1.

In Figure 12, the image for SNR = 44.1695 dB (top left) shows the three targets clearly,
but the image for SNR = 24.1695 dB (bottom left) has much poorer resolution, especially in
range. The singular value spectra in Figure 12 (top right and bottom left) provide valuable
insight into the difference between these two images. A signal subspace method is predicated
on the assumption that one can distinguish the signal and noise subspaces from one another.
With regard to the singular value spectrum, one would like to have a large ``gap"" between

D
ow

nl
oa

de
d 

05
/0

4/
23

 to
 1

69
.2

36
.2

36
.7

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

1246 ARNOLD D. KIM AND CHRYSOULA TSOGKA

-5 0 5

-0.05

0

0.05

0.5

1

1.5

2

-5 0 5

0

1

2

3

4

-0.1 -0.05 0 0.05 0.1

-1

0

1

2

3

4

Figure 9. Imaging using 1/F\epsilon (\bfity ) in a region about target 1 located at (x1, y1, 0) = (0.01m, 0.1m, 0) with
complex reflectivity \rho 1 = 3.4i (left). Recovering the complex reflectivity through evaluation of 1/R\epsilon (x  - x1, y1)
(center) and 1/R\epsilon (x1, y - y1) (right). The blue curves give the real part of 1/R\epsilon (\bfity ) and the red curves give the
imaginary part. The black ``\times "" symbol gives the exact value of the complex reflectivity, \rho 1 = 3.4i.
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Figure 10. The same as Figure 9, except for target 2 located at (x2, y2, 0) = ( - 0.30m, - 0.50m, 0) with
complex reflectivity \rho 2 = 4.2i.
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Figure 11. The same as Figure 9, except for target 3 located at (x3, y3, 0) = ( - 0.50m, 0.50m, 0) with
complex reflectivity \rho 3 = 3.1i.

the singular values corresponding to the signal subspace and those corresponding to the noise
subspace. We observe in Figure 12 that when the SNR decreases, so does the gap separating
the singular values for the signal subspace from those of the noise subspace. Even though
the thresholding criterion of replacing \sigma n with \epsilon \sigma 1 when \sigma n < 0.01\sigma 1 captures the location of
the gap correctly for both SNR values, a consequence of the narrowing of this gap is a loss of
image resolution. Because L/a < L/R, we see a more severe loss in resolution in range than in
cross-range. These results demonstrate that this imaging method requires a sufficiently high
SNR to be effective and accurate.
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Figure 12. Image produced through evaluation of 1/F\epsilon (\bfity ) with F\epsilon (\bfity ) given in (4.4) and \epsilon = 10 - 8 for
SNR = 44.1695 dB (top left), and the corresponding singular value spectrum (top right). The lower left and
right plots are for SNR = 24.1695 dB. All parameter values are the same as those used in Figure 8.

7.3. Imaging in random media. We consider perturbations in travel times resulting from
wave propagation in random media. Assuming an inhomogeneous velocity profile of the form

(7.1)
1

c2(\bfitx )
=

1

c20

\Bigl( 
1 + \sigma \mu 

\Bigl( \bfitx 
\ell 

\Bigr) \Bigr) 
,

we approximate the Green's function between points \bfitx and \bfity at frequency \omega by

(7.2) G(\bfitx ,\bfity ;\omega ) = G0(\bfitx ,\bfity ;\omega ) exp [i\omega \nu (\bfitx ,\bfity )],

with \nu (\bfitx ,\bfity ) denoting the random travel time function

(7.3) \nu (\bfitx ,\bfity ) =
\sigma | \bfitx  - \bfity | 

2c0

\int 1

0
\mu 
\Bigl( \bfity 
\ell 
+ (\bfitx  - \bfity )

s

\ell 

\Bigr) 
ds.

Here c0 denotes the average propagation speed, assumed constant, \ell is the correlation length,
and \sigma is the strength of the fluctuations. The stationary random process \mu (\cdot ) has mean zero
and normalized auto-correlation function R(| \bfitx  - \bfitx \prime | ) = E(\mu (\bfitx )\mu (\bfitx \prime )), so that R(0) = 1, and\int \infty 
0 R(r)r2dr < \infty . In (7.2), G0 denotes the Green's function in the homogeneous medium
with propagation speed c0.

The random travel time model provides an approximation of the Green's function in the
high-frequency regime in random media with weak fluctuations \sigma \ll 1 and large correlation
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Figure 13. Imaging through evaluation of 1/F\epsilon (\bfity ) with F\epsilon (\bfity ) given in (4.4) and \epsilon = 0.02 for a point target
located at range L = 100\ell in a random medium with \ell = 100\lambda . The strength of the fluctuations in the random
medium is such that (a) \~\sigma /

\surd 
\epsilon = 0, (b) \~\sigma /

\surd 
\epsilon = \epsilon , and (c) \~\sigma /

\surd 
\epsilon = 1.

lengths \ell compared to the wavelength \lambda . The propagation distance L is assumed to be large
with respect to the correlation length, L \gg \ell , so that the scattering induced by the random
medium perturbations has an order one effect on the phase of the Green's function. This is
true when [3]

(7.4)
\sigma 2L3

\ell 3
\ll \lambda 2

\sigma 2\ell L
\sim 1 .

Following [15] we introduce the dimensionless parameter

\sigma 0 = \lambda /
\surd 
\ell L,(7.5)

and scale the fluctuations of the random medium so that

\~\sigma =
\sigma 

\sigma 0
(7.6)

is order one according to (7.4).
In contrast to the previous results, we consider here a ``flat"" geometry for which H = 0.

The propagation distance is L = 100\ell , and the correlation length in the random medium is
\ell = 100\lambda . The synthetic array aperture is a = 24\ell , and the bandwidth parameter \beta = 0.5.

In Figure 13, we show images of a single point target formed through evaluation of 1/F\epsilon (\bfity )
for a single realization of the random medium with different values of \~\sigma . The magnitude of
the complex reflectivity of the target is | \rho 0| = 1.2584. For Figure 13(a), \~\sigma = 0 corresponding
to a homogeneous medium. For Figures 13(b) and (c), the values of of \~\sigma are set so that
\~\sigma /

\surd 
\epsilon = \epsilon and 1, respectively. As predicted by Theorem 6.1, the image with \~\sigma /

\surd 
\epsilon = \epsilon \ll 1 is

stable and qualitatively and quantitatively similar to the one obtained for the homogeneous
medium. For \~\sigma /

\surd 
\epsilon = 1 the image is not focused on the true target location, the resolution is

decreased, and the reconstructed absolute value of the reflectivity is less accurate.
Following [3], we compute the image's SNR defined as the mean of the image divided by

its standard deviation in a small area around the true target location to estimate the stability
of the imaging method. The sample mean and the sample standard deviation are computed
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Figure 14. Stability of the image as a function of the parameter \epsilon with \~\sigma = 0.4 (a) and as a function of \~\sigma 
with \epsilon = 0.2 (b). The CINT image is computed with Xd = a/6 and \Omega d = B/2.

using 100 realizations of the random medium with the same characteristics (correlation length
and strength of fluctuations). For comparison, we also compute this SNR for the classical SAR
image and the CINT image. The CINT method requires specifying two key parameters, the
decoherence length Xd and the decoherence frequency \Omega d. In the CINT results that follow,
we have set Xd = a/6 and \Omega d = B/2. The results of these comparisons are shown in Figure 14
where we compare SNR as a function of \epsilon with \~\sigma = 0.4 (Figure 14(a)) and as a function of \~\sigma 
with \epsilon = 0.2 (Figure 14(b)). Figure 14(a) and (b) illustrate the well-known result that classical
SAR imaging results are statistically unstable in random media [3] since this SNR is very low.
This is because in random media the SNR of typical SAR images formed using Kirchhoff
Migration decays exponentially with range, independently of how large the bandwidth or the
array aperture is. These results also suggest similar stability for CINT and 1/F\epsilon , both with
comparably large SNRs. In Figure 14(a), neither classical SAR nor CINT depends on \epsilon , so
we see no change in behavior. However, as \epsilon increases relative to \~\sigma such that \~\sigma /

\surd 
\epsilon becomes

small, we find that the SNR for 1/F\epsilon becomes larger than that for CINT. In Figure 14(b), all
images decrease in SNR as \~\sigma increases. However, the SNR for the CINT and 1/F\epsilon images is
three orders of magnitude higher than the one for classical SAR. It is important to note that
the control offered by \epsilon is limited because one cannot set the value of \epsilon to be larger than 1.
Otherwise, one cannot separate the signal from the noise subspace.

Although the images formed using CINT and 1/F\epsilon have similar stability behaviors, the
image of 1/F\epsilon has a much better resolution. In Figure 15 we compare images formed using
CINT and 1/F\epsilon with \epsilon and \~\sigma set so that \~\sigma /

\surd 
\epsilon =

\surd 
\epsilon . These results show that the image formed

by 1/F\epsilon is focused more tightly on the target location in comparison to the image formed by
CINT. Additionally, there is quantitative information available from the image formed by
1/F\epsilon . This tighter focus is especially true for range although resolution is also better with
cross-range. Indeed, the resolution for CINT is \lambda L/Xd in cross-range and c/\Omega d in range while
for 1/F\epsilon it is

\surd 
\epsilon (c/B)L/a and

\surd 
\epsilon (c/B), respectively (since for this setup L = R). Range

resolution is improved for any value of \epsilon < 1 since B/
\surd 
\epsilon \geq B \geq \Omega d. In cross-range \lambda /Xd is

to be compared with
\surd 
\epsilon (c/B)1/a. Given that Xd \leq a, 1/F\epsilon provides superior resolution as
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Figure 15. Comparison of images formed using CINT with Xd = a/6 and \Omega d = B/2 (a), and 1/F\epsilon with \epsilon 
and \~\sigma satisfying \~\sigma /

\surd 
\epsilon =

\surd 
\epsilon (b).

long as B/
\surd 
\epsilon is bigger than the central frequency.

To see the effect of this improved resolution, we compare images formed using CINT and
1/F\epsilon when the imaging region contains four point targets situated closely to one another in
Figure 16. For all of these images, \~\sigma = 0.2. Figures 16(b) and (c) are formed using 1/F\epsilon with
\epsilon = 0.01 and 0.001, respectively. Here, the resolution of the CINT image does not allow for
identification of the four targets. The 1/F\epsilon with \epsilon = 0.01 image has a sharper resolution, but
allows for identification of only three of the four targets. In contrast, the 1/F\epsilon image with
\epsilon = 0.001 shows four distinct peaks indicating the target locations. These results show the
potential importance of being able to tune the resolution of an image by varying the parameter
\epsilon , even with random perturbations to the travel times.

8. Conclusions. We have introduced and analyzed a quantitative signal subspace imaging
method for multifrequency SAR measurements. The key to this method involves a simple
rearrangement of the frequency data at each spatial location along the flight path where
measurements are taken using the Prony method. Using this rearranged frequency data, this
method involves two stages corresponding to two explicit imaging functionals, (4.4) and (4.6).

Images produced through evaluation of 1/F\epsilon (\bfity ) over an imaging region attain tunably
high-resolution images of target locations through a user-defined parameter \epsilon . Through a
resolution analysis for a linear flight path, we have determined that the cross-range resolution
of this imaging method is O(

\surd 
\epsilon (c/B)(L/a)) where c is the wave speed, B is the bandwidth,

L is the distance from the center of the flight path to the center of the imaging region, and
a is the length of the synthetic aperture. We have also determined that the resolution of this
imaging method in range is O(

\surd 
\epsilon (c/B)(L/R)) where R is the range distance from the center

of the flight path to the center of the imaging region. With these resolution estimates, we
see how the user-defined parameter \epsilon may be set to adjust the image resolution for different
settings.

Images produced through evaluation of 1/R\epsilon (\bfity ) over an imaging region do not reveal
target locations. However, if the target location is known, 1/R\epsilon (\bfity ) provides an accurate
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(b) 1/F\epsilon with \epsilon = 0.01.
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Figure 16. Comparison of images formed using CINT (a) and 1/F\epsilon with \epsilon = 0.01 (b) and \epsilon = 0.001 (c)
for four point targets. The CINT image is computed with Xd = a/6 and \Omega d = B/2. The strength of the
fluctuations is \~\sigma = 0.2.

method for recovering the complex reflectivity of a target. Again, the user-defined parameter
\epsilon can be set to regularize the function to enable stable recovery of the complex reflectivity. It
is for this reason that we have proposed a two-stage imaging method in which 1/F\epsilon (\bfity ) is used
to determine location of target(s), and 1/R\epsilon (\bfity ) is evaluated at those locations to recover the
complex reflectivities. Additionally, the value of \epsilon used for evaluating 1/F\epsilon need not be the
same used for evaluating 1/R\epsilon , so this parameter can be tuned independently for these two
different imaging functionals.

When there is uncertainty in the travel times, we have shown that images formed by
evaluating 1/F\epsilon (\bfity ) have an expected value that is the same as the image formed in a homoge-
neous medium provided that the variances of the random perturbations are sufficiently small.
Moreover, the variance of the image will be small for that case indicating that this imaging
method is statistically stable to random perturbations in the travel times.

Both F\epsilon (\bfity ) and R\epsilon (\bfity ) are computed using the SVD of the rearranged data. Consequently,
their effectiveness is understood to be related to how well the singular values corresponding
to signals scattered by the targets are separated from noise. Provided that there is sufficient
SNR for these singular values to be separated, the parameter \epsilon mitigates noise and allows
the user to control image resolution. When there is uncertainty in travel times, one can set
the value of \epsilon to ensure image accuracy and statistical stability which, in turn, will set the
achievable image resolution.

Because this imaging method involves only elementary computations on the data and
allows for user-control to produce high-resolution, quantitative images of targets, we believe
that it is useful for a broad variety of SAR imaging applications.
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