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Abstract

In this paper we consider stationary Markov chains with trivial two-sided tail sigma
field, and prove that additive functionals satisfy the central limit theorem provided
the variance of partial sums divided by n is bounded.
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1 Introduction

One of the most useful theorems for stationary sequences is the central limit theorem
for partial sums S,, with the normalization /n. For several classes of additive functionals
of stationary Markov chains, the size of the variance of partial sums determines the
limiting distribution. For instance for additive functionals of reversible, stationary
and ergodic Markov chains, with centered and square integrable variables, Kipnis and
Varadhan [10] proved that if £(S?)/n converges to a finite limit, then the CLT holds. On
the other hand, for additive functionals of Harris recurrent and aperiodic Markov chains
with centered and square integrable variables, Chen ([7], Theorem II. 3.1) proved that if
Sn/+/n is stochastically bounded, it satisfies the CLT.

These results suggest and motivate the study of limiting distribution for stationary
Markov chains with additive functionals satisfying sup,, F(S2)/n < oco. Recently, Peligrad
[12] introduced a new idea, which involves conditioning with respect to both the past
and the future of the process. By using this approach she proved that functions of a
Markov chain which is stationary and totally ergodic (in the ergodic theoretical sense),
and with sup,, F(S2)/n < oo, satisfy the CLT, provided that a random centering is used.
In this paper we show that the random centering is not needed if the two-sided tail sigma
field of the Markov chain is trivial.

Our result simply states that if a stationary Markov chain has two-sided tail sigma field
trivial, then any additive functional with finite second moment, centered at expectation
and with sup,, E(S2)/n < oo satisfies the central limit theorem (CLT). The interest of
such a result consists in the fact that does not require fine computations of the rate of
convergence of mixing coefficients.

Examples of stationary processes with trivial two-sided tail sigma field include abso-
lutely regular Markov chains and interlaced mixing Markov chains. The definitions will
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CLT for Markov chains

be given in this paper. We also refer to Subsection 2.5 in Bradley [3] for a survey and
Bradley [4] for the proofs of the results in that survey.

It should be noted that, for a stationary Markov chain, the condition sup,, E(S2)/n <
oo alone is not enough for the CLT (see for instance Bradley [2] or Cuny and Lin [8],
Prop. 9.5(ii), among other examples). On the other hand, if the stationary sequence
is not Markov, the condition sup,, E(S2)/n < oo together with the two-sided tail sigma
field is trivial, are not enough for the CLT. Indeed, Bradley [5] constructed a stationary
sequence, such that any 5 variables are independent, sup,, F(52)/n < oo, the two-sided
tail sigma field is trivial, but the CLT does not hold.

2 Results

We assume that (£,)ncz is a strictly stationary Markov chain, defined on a complete
probability space (2, F, P) with values in a Polish space (S,.4). Denote by F,, = o (&, k <
n) and by 7" = o(&, k > n), completed with the sets of measure 0 with respect to P.
The invariant distribution on A is denoted by 7(A) = P(§y € A). We shall construct the
Markov chain in a cannonical way on = S from a kernel P(z, A) and the marginal
distribution 7 (see the section “A standard nice probability space”, pages 17-18 in Ch. 1,
Bradley [4]).

We define the two-sided tail sigma field by

Tq = ﬁnzl(}ln \/f"n).

We say that 7; is trivial if for any A € 7; we have P(A) = 0 or 1. Note that this sigma
field might by larger than the sigma algebra generated by the union of one-sided tail
sigma fields defined as 7; = N,>1(F-,) and 7, = Np>1(F"). For simplicity, when we
refer to the tail sigma field we shall always understand the two-sided one, 7.

Let I3(7) be the set of measurable functions on S such that [ f2dr < coand [ fdr = 0.
For a function f €L.3(r) let

Xi=[f(&), Sn= Z;Xi. (2.1)

We denote by || X|| the norm in I.?(2, 7, P) and = denotes convergence in distribution.
The goal of this note is to establish the following two results.

Theorem 2.1. Let (X,,)nez and (S,),>1 be as defined in (2.1) with

2
sup% < 0. (2.2)

n

Assume (&,,) has trivial tail sigma field T;. Then, for some ¢ > 0, the following limit exists

. E(|Sh]) c
lim ——= = >0,
n— 00 \/ﬁ V2T
and g
\/% = N(0,c¢%) asn — oo.

As a consequence of this result we obtain a necessary and sufficient condition for the
CLT for additive functionals of Markov chains with trivial tail sigma field.
Theorem 2.2. Let (X,,)nez and (S,)n>1 be as defined in (2.1) and assume (&,,) has trivial
tail sigma field 7;. Then the following are equivalent:

(i) (S2/n), ., is uniformly integrable.

(ii) There is ¢ > 0 such that

2
lim E(S,) _ ¢* and S = N(0,c¢%) asn — oo.
n

n— o0 n \f
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2.1 Two classes of stationary Markov Chains with trivial 7.

We shall give here two examples of Markov chains with 7 trivial.

Absolutely regular Markov chains

For a stationary Markov chain ¢ = (&;)rcz with values in a separable Banach space
endowed with the Borel sigma algebra B, the coefficient of absolutely regularity is
defined by (see Proposition 3.22 in Bradley, [4])

B = Bo(€) =B(€0, &) = (;g P&, € Algo) — (& € A>|) ,

where B denotes the Borel sigma filed.
Equivalently, (see Corollary 3.30 in Bradley [4])

ﬁn = Bn(g) 26(507§n) :gggz |P((£07£n)ec) - P((£O7f;)60)|,

where (£,¢) are independent and identically distributed. This coefficient was intro-
duced by Volkonskii and Rozanov [15] and was attributed there to Kolmogorov.

If B8, — 0, the Markov chain is called absolutely regular and the tail sigma field
T4 is trivial (see Subsection 2.5 in Bradley [3]). It follows that both Theorem 2.1 and
Theorem 2.2 hold.

Let us mention that there are numerous examples of stationary absolutely regular
Markov chains. We know that a strictly stationary, countable state Markov chain is
absolutely regular if and only if the chain is irreducible and aperiodic. Also, any strictly
stationary Harris recurrent and aperiodic Markov chain is absolutely regular. For easy
reference we refer to Section 3 in Bradley [3] survey paper and to the references
mentioned there.

In general, the CLT for this class requires the knowledge of the rates of convergence
to 0 of the (3,,) coefficients (see for instance Doukhan et al. [9] and Peligrad [12] for a
discussion on the CLT under 3, — 0).

Interlaced mixing Markov chains

Another example where our results apply is the class of interlaced mixing Markov
chains. Let A, B be two sub o-algebras of 7. Define the maximal coefficient of correlation

E
p(A,B) = sup [E(f9)]
rerz(a), gerzs) |1f11 - 1lg

’

where L2(A) (L%(B)) is the space of random variables that are .A—measurable (respec-
tively B—measurable), zero mean and square integrable. For a sequence of random
variables, (£x)kecz, we define

pn =supp(o(&i,i € 5),0(§;,5 € T)),

where the supremum is taken over all pairs of disjoint sets, 7" and S of R such that
min{|t — s| : ¢ € T, s € S} > n. We call the sequence p*-mixing if p} — 0 as n — oco.

The p*-mixing condition goes back to Stein [14] and to Rosenblatt [13]. It is well-
known that p*-mixing implies that the tail sigma field 7; is trivial (see Subsection 2.5 in
Bradley [3]). It follows that both Theorem 2.1 and Theorem 2.2 hold. Although these
theorems are not new for this class, the results in this paper provide an unified approach
for different classes of Markov chains and make possible the treatment of other classes
of Markov chains. For further reaching results concerning p*-mixing sequences see for
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instance Theorem 11.18 in Bradley [4] and Corollary 9.16 in Merlevede, Peligrad and
Utev [11].

These two classes, absolutely regular and interlaced mixing Markov chains, are of
independent interest. There are known examples (see Example 7.16 in Bradley, [4]) of p*-
mixing sequences which are not absolutely regular. On the other hand there are known
examples of absolutely regular Markov chains which are not p*-mixing. An example of
reversible, absolutely regular Markov chain, which is not p*-mixing was constructed
by Bradley [6]. Furthermore, if we consider, for instance, (£,)nez, and (9,)nez, two
independent Markov chains, each with trivial two-sided tail sigma field, then the Markov
chain (&, . )nez is again stationary with trivial two-sided tail sigma field (see Theorem
A072 page 456, Vol. 1, in [4]).

3 Proofs

The proofs of both theorems are based on the following result, which is Theorem 1 in
Peligrad [12], combined with Lemma 3.2 below.

For reader’s convenience, let us state first the main result in Peligrad [12]. It uses
the notion of totally ergodic Markov chain. To explain it, let us consider the operator
P induced by the kernel P(z, A) on bounded measurable functions on (S5,.4) defined by

=[5 f(y)P(z,dy). We call ({,)nez totally ergodic if and only if the powers P are
ergodlc with respect to m, for allm € N (i.e. P™f = f for f bounded on (S, .A) implies f
is constant m-a.s.).

Theorem 3.1. Let (X,,)necz and (S,)n>1 be as defined in (2.1), (&,) is totally ergodic and
(2.2) is satisfied. Then, the following limit exists

lim fHS — E(Sn|0,&)||* = ¢ (3.1)

n—,oo N,

and
Sn - E(Sn|£07 gn)

NG

Next lemma deals with the random centering in Theorem 3.1.

= N(0,c*) as n — oc.

Lemma 3.2. Let (¢,),cz be a stationary sequence not necessarily Markov with trivial
tail sigma field T,. Let (X,,), and (S,), as defined in (2.1). Then
f”)

E‘ ( —0asn— oo. (3.2)

Sy

If in addition we assume that (S2 / n) L 1s uniformly integrable then

E( (\F\]-" \/]-'"))—>Oasn—>oo. (3.3)

Proof of Lemma 3.2. To prove (3.2) it is clear that it is enough to prove that from any
subsequence of indexes (n') convergent to infinity, we can extract one (n”), also conver-
gent to infinity, and such that (3.2) holds along (n”). Obviously, condition (2.2) implies
that (S, /v/n) is tight. Denote by £ = (£,)necz. Consider the vector W,, = (S,/v/n,€)
defined in a canonical way on R x SZ with values in R x SZ. Note that W,, is tight because
(S,/+/n) is tight and ¢ does not depend on n. Therefore, from any subsequence (n') we
can extract one (n”) such that W,» is convergent in distribution, say W,,» = W = (L,¢’),
where ¢’ is distributed as ¢ and S, //n = L. Because R x SZ is separable, by the
Skorohod representation theorem, (see Theorem 6.7 in Billingsley [1]), we can expand
the probability space to (Q,f' , P) and construct on this expanded probability space,
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vectors W,» = (S,,£"") and W = (L, ¢’) such that for each n” an is distributed as
W, W is distributed as W, and W,» — W a.s. Note that for each n” we have f" = 5’
a.s. and so (S5,7,€"") = (5,»,€) a.s. Denote F,, = o(&},,k < n) and F" = o(&,, k > n),
completed with the sets of measure 0 and 7:1 = ngl(]:——n \Y, ]:'”). Note that the Skorohod
representation (see page 71 in Billingsley [1]) starts with the construction of (i, 5’ ) in
a canonical way on R x SZ, such that the marginals are distributed as L and &. But
because £ was also constructed in a canonical way, we have that the tail sigma field 7 of
¢ is also trivial.

To simplify the notation let us re-denote the index n” by n. Clearly,

Sn -
— — L a.s. asn — oo.

vn

Now (2.2) implies that (S, /y/n) is uniformly integrable, so we also have

Sn g

E 7 — 0asn— oo, (3.4)

and because E(X;) = 0, by the convergence of moments in the weak laws (see Theorem
3.5 in Billingsley [1]), we have that

E(L) = 0. (3.5)

By the Fatou lemma, we also have that F(L?) < oc.
By stationarity and the triangle inequality, note that for every m € N, m <n,

E|\E|— VF'"||<E|E| ——— v F" 3.6
’(\/HIOFN‘(\/H'RJT)‘JF G0

Sy — S n Sh, n
Ble (% 2mmv ) < (Gimv )|

S . E|S,|
<E|E LV Fm .
- ‘ (\/EU: v )‘+ Vn

Because W,,, and an have the same distribution,

Sh | (S, -
E|E FomVF'"™ )| =E|E Fom VF™ | 3.7)
o (S )| -l (S )

Now we use the following inequality:

- gn—m = Zn—m
E( NG \Fom VF >‘ (3.8)

(S == .
E _ L - n—1m
( NG |Fom VF >

E

<FE + E|E(L|F_pm vV F"™)].

We treat now the first term in the right hand side of (3.8). By the properties of the
conditional expectation

~ | ~ Sn—m = ad - Sn—m T
E\E — LI F_p VF*" ™) <FE — L. 3.9
(wl Fm <B|= (3.9)
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Overall, starting from (3.6) combined to (3.7), (3.8) and (3.9), we obtain for n,m €
N,m <n,

S
- n <
E’E<\/ﬁ|fowr>‘

~L

Snfm
n

E|S|

vn o
Therefore, for m € N fixed, by letting n — oo, and by taking into account (3.4) and the
fact that F_,, V F"~™ is decreasing in n

E

+ B|B(LIF v )

+

lim sup E ‘E <j%|fo \/]-‘")‘ <E ’E(i\mnzl(ﬁ,m vﬁ”))) : (3.10)

Now, by letting m — oo, and using the fact that N,,>1(F_,, V F") is decreasing in m, we
obtain by (3.5) that

lim sup E ‘E (j%pfo \/]—'")‘ <E ‘E(i\mmzmnzl(im vﬁ”))‘ (3.11)
< E\mm)\ - ’m)\ —0. O

Proof of Theorem 2.1. First of all we mention that, by Proposition 2.12 in the Vol. 1
of Bradley [4], the sequence (&;)rcz is totally ergodic. Since we assumed (2.2), by

Theorem 3.1
Sn - E(Sn|507§n)
Vn

By Lemma 3.2, and by the Markov property

= N(0,c*) as n — oo.

Sn
E‘E(\/ﬁ|§o,§n)

Sn

Therefore g
\/—% = N(0,c¢%) as n — oo.
Now, because E(S2/n) < oo, it follows that (see Theorem 3.5 in Billingsley [1])
. |Sn| 2 c
lim E— = E|N(0,c%)| = .
So, c can be identified as
c= V2w lim E@ O

n—o0o \/ﬁ

Proof of Theorem 2.2. Assume (i). Since (SZ /n)n>1 is uniformly integrable, it follows
that Theorem 2.1 holds. In addition, (see Theorem 3.5 in Billingsley [1])
E(S?
lim 7( n) = 2.
n—o00 n

Because by Theorem 3.1

.1 o1 1
lim —[|Sn = B(Sulé0, &)II> = ¢ = lim —[|S,|]> = lim —||E(S,|¢0, &),
n—oo N n—oo N n—oo N
we also have .
lim —||E(S,|&,&0)|12 = 0.
n—oo N

and so (i) implies (ii). On the other hand, if (ii) holds, by the convergence of moments in
the CLT (Theorem 3.6 in Billingsley [1]), we have that (S,QL / n)n>1 is uniformly integrable.
B O
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