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Abstract—We consider the probabilistic planning
problem for a defender (P1) who can jointly query the
sensors and take control actions to reach a set of goal
states while being aware of possible sensor attacks by an
adversary (P2) who has perfect observations. To synthesize
a provably-correct, attack-aware joint control and active
sensing strategy for P1, we construct a stochastic game
on graph with augmented states that include the actual
game state (known only to the attacker), the belief of the
defender about the game state (constructed by the attacker
based on his knowledge of the defender’s observations).
We present an algorithm to compute a belief-based,
randomized strategy for P1 to satisfy the reachability
objective with probability one, under the worst-case sensor
attacks carried out by an informed P2. We prove the
correctness of the algorithm and illustrate it using an
example.

Index Terms—Discrete event systems, sensor attacks,
cyber-physical system, stochastic games on graphs.

I. INTRODUCTION

IN THIS letter, we develop a formal methods based
approach to synthesize provably correct attack-aware cyber-

physical systems (CPSs), featured by strategic interactions
between a controller/defender and an attacker who carries
out sensor attacks on the system. We address the follow-
ing question: Given the objective of reaching a subset of
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Fig. 1. The strategic interaction between a controller and an adversary.

states in the system, how does one plan the defender’s control
actions and active information acquisition to satisfy the objec-
tive with probability one, under the worst-case sensor attack
strategy?

As a motivating example, consider Fig. 1, where a UAV
must reach the flag before its battery is depleted. When
the UAV encounters a cloud, it stops moving forward until
the cloud moves away. The cloud moves randomly. To
complete the task, the UAV deploys a network of sen-
sors to detect the cloud’s location. An adversary may
attack the sensors to prevent the UAV from accomplish-
ing its mission. Such adversarial interactions include secu-
rity patrolling robots or search and rescue in a contested
environment.

We model the interaction between the defender and the
attacker as a partially observable stochastic system where the
defender’s observation is partially controlled by the attacker:
At each time step, the defender can choose what sensors to
query and control actions to take, and the attacker can choose
what sensors to attack. The defender receives observations
from the uncompromised sensors and aims to reach a set of
goal states. In our previous work [1], we analyzed the cost
of attack-unaware control where the defender mistakes the
compromised sensors as probabilistic sensor failures. This let-
ter investigates the synthesis of attack-aware controllers with
active perception and control. The key insight is that by know-
ing which sensors are susceptible to attacks, the defender
can selectively choose which sensors to query in anticipa-
tion of the attacker’s best response. Our solution assumes the
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worst-case scenario of asymmetric information: The attacker
observes the state and the defender’s action before deciding
which sensors to attack. Under such a worst-case attacker’s
information, the attack-aware controller, if it exists, can pro-
vide a strong guarantee of the correctness of the closed-loop
system.

Our Approach and Contributions: First, we model the
adversarial sensor attacks with a new class of turn-based,
one-sided, partially observable stochastic games (POSGs),
in which the observation function is dynamically changing
and jointly determined by the defender and the attacker.
Second, we construct an augmented game in which a state
includes the actual game state (known by the attacker) and,
the belief of the defender about the game state (constructed
by the attacker who knows the defender’s observation and
the actual state). We develop an algorithm to solve a belief-
based Almost-Sure Winning (ASW) strategy for the defender
in the augmented game and prove that this strategy ensures
that the control objective in the original system can be sat-
isfied with probability one, regardless of any sensor attack
strategy. The problem is EXPTIME-complete, which matches
the lower-bound complexity for one-sided POSG with a fixed
observation function [2] (see also the survey on stochastic
games on graphs [3]).

Related Work: Our work closely relates to the supervisory
control of discrete event systems under sensor/actuator attacks.
In the literature on supervisory control, the authors [4] stud-
ied various sensor and actuator attacks, including replacement,
injection, deletion, and replay of observable and controllable
events to a discrete event system (DES) and investigated
the controllability of the system and the design of attack-
resilient supervisory controllers. Sensor deception attacks have
been studied in [5], [6] from the attacker’s perspective. The
goal is to synthesize a sensor deception attack strategy that
misleads the system to reach unsafe states. Given that the
system is modeled as a probabilistic automaton, the authors
in [5] proposed to construct a 1 1

2 stochastic graph game, also
known as a Markov decision process (MDP), and employ
a linear program solution of MDPs to design the optimal
strategy that maximizes the attack success probability. Covert
attacks are investigated in [7] for DES and [8] for net-
worked DES, where the attacker’s goal is to remain hidden
while compromising the system via stealthy sensor/actuator
attacks.

Our game model is different from both deterministic and
stochastic DES models. First, deterministic DESs capture the
adversarial interactions by a deterministic transition system
with controllable and uncontrollable events and observable
and unobservable events. In our model, the system dynam-
ics are stochastic, and the observation is partially controlled
due to sensor attacks. In works on stochastic DESs [5], [9],
the system is modeled as a probabilistic automaton that spec-
ifies, for each state, the probability distribution over possible
events. This model also differs from our game in which the
defender decides an action, and the outcome of that action is
determined by a probability distribution. Our model can reduce
to a stochastic DES if the defender’s policy is fixed. However,
we aim to synthesize an attack-aware control strategy for
the defender and thereby use the two-player stochastic game
formulation.

II. PRELIMINARIES AND PROBLEM FORMULATION

Given a set X, D(X) is the set of all probability distributions
over X, and for a distribution d ∈ D(X), Supp(d) = {x ∈ X |
d(x) > 0} denotes the support of d.

We introduce a new class of partially observable stochastic
games played under asymmetric information. In this game,
an autonomous agent (Player 1, P1) actively queries sensors
to obtain task-relevant information. Meanwhile, an attacker
(Player 2, P2) seeks to compromise P1’s mission by reactively
blocking the sensor information requested by P1.

Definition 1 (Zero-Sum Stochastic Reachability Game With
Partially Controllable Observation Function): A two-player
stochastic game with a partially controllable observation func-
tion in which P1 has a reachability objective is a tuple

G = 〈S, A, P, s0, �,� × B,O, Obs, o0, F〉,
where 1) 〈S, A, P, s0〉 is an MDP where S is a finite set
of states; A is a finite set of actions; s0 is an initial state;
P : S×A→ D(S) is a probabilistic transition function such that
P(s, a, s′) is the probability of reaching state s′ given action
a taken at state s. 2) � = {0, 1, . . . , N} is a set of indexed
sensors. 3) � ⊆ 2� is a set of sensor query actions of P1,
each of which acquires sensing information from a subset of
sensors from �; 4) B ⊆ 2� is a set of sensor attack actions
of P2, each of which blocks sensing information of a sub-
set of sensors from �, similar to jamming attacks [10], [11].
5) O ⊆ 2S is a set of observations. 6) Obs : S×�×B→ O
is a deterministic observation function of P1, which maps a
state s ∈ S, a sensor query action σ , and a sensor attack action
β into an observation o = Obs(s, σ, β) ∈ O. 7) o0 ∈ O is
an initial observation and s0 ∈ o0. 8) F ⊆ S is a set of final
states. P1 must enforce a visit to F to satisfy the reachability
objective.

In contrast to the standard POSG models [12] where the
observation functions are fixed, in our game, the observa-
tion function of P1 is determined dynamically by P1’s active
sensing and P2’s reactive sensor attacks. In particular, the
observation generated due to P1’s sensor query and P2’s sen-
sor attack is understood as follows: Each sensor i ∈ � covers a
subset Si of states S. Assuming s to be the current state, sensor
i returns a Boolean value vi : vi = True if s ∈ Si, otherwise
vi = False. Given a state s ∈ S, a sensing action σ ∈ � and
a sensor attack action β ∈ B, the observation Obs(s, σ, β) of
state s is given by

Obs(s, σ, β) = S−
⎛
⎝ ⋃

i∈σ\β,vi=True

S \ Si ∪
⋃

i∈σ\β,vi=False

Si

⎞
⎠.

Two states s, s′ ∈ S are said to be observation equiva-
lent given the sensing action and sensor attack action σ, β

if Obs(s, σ, β) = Obs(s′, σ, β).
Information structure: In this game, we assume that 1)

P2 has perfect observation of states and actions, i.e., P2 can
directly observe the current state and P1’s control and sensing
actions. 2) P1 knows which sensors are attacked by P2—this
assumption holds for jamming attacks.

Game Play: The game play in G is constructed as follows.
From the initial state s0, P1 obtains the initial observation o0.
Based on the observation, P1 selects a control action a0 ∈ A
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and a sensor query action σ0 ∈ �. The system moves to state
s1 with probability P(s0, a0, s1). At state s1, P2 selects an
attack action β0 ∈ B. The system generates a new observation
o1 = Obs(s1, σ0, β0) determined by the state, P1’s sensing
action and P2’s sensor attack action. We denote the result-
ing play as ρ = s0(a0, σ0)s1β0(a1, σ1)s2β1 . . . Note that P2’s
attack action is taken after P2 observes the current state. The
set of plays in G is denoted by Plays(G) and the set of finite
prefixes of plays is denoted by Prefs(G).

Observation Equivalent Plays to P1: Given a play
ρ = s0(a0, σ0)s1β0(a1, σ1)s2β1 . . . , P1’s observation of
ρ is ρo = o0(a0, σ0, β0)o1(a1, σ1, β1) . . . where oi+1 =
Obs(si+1, σi, βi) for all i ≥ 0 and o0 is the initial observa-
tion. For notation convenience, we denote the observation of
play ρ as Obs(ρ). Two plays (or play prefixes) ρ, ρ′ are said
to be observation-equivalent to P1, denoted by ρ ∼ ρ′, if and
only if Obs(ρ) = Obs(ρ′).

P1’s Reachability Objective and Strategy: A play ρ =
s0(a0, σ0)s1β0(a1, σ1)s2β1 . . . is winning for P1 if sk ∈ F
for some k ≥ 0. Otherwise, it is winning for P2. During
interaction, P1 must determine, simultaneously, a control
action a ∈ A, and a sensor query action σ ∈ �. We denote
P1’s set of actions by A1 = A×�, and that of P2 by A2 = B.
A finite-memory, randomized (resp., deterministic) strategy for
player j ∈ {1, 2} is a function πj : Prefs(G)→ D(Aj) (resp.,
πj : Prefs(G)→ Aj). A player j is said to follow strategy πj
if for any prefix ρ ∈ Prefs(G) at which πj is defined, player
j takes the action πj(ρ) if πj is deterministic, or an action
a ∈ Supp(πj(ρ)) with probability πj(ρ, a) if πj is randomized.
A strategy is said to be observation-based if πj(ρ) = πj(ρ

′)
whenever ρ ∼ ρ′.

Problem 1: Given a game G in Def. 1, determine if there
exists an observation-based strategy using which P1 can satisfy
the reachability objective with probability one, for any sensor
attack strategy played by P2 with perfect observations.

III. SYNTHESIZING ATTACK-AWARE STRATEGIES WITH

ACTIVE PERCEPTION

Given P2’s perfect observation, P2 can construct P1’s belief
given his information and higher-order information (what P2
knows P1 observes). To solve Problem 1, we reduce the orig-
inal game in Def. 1 into a two-player stochastic game whose
states include P2’s belief of P1’s belief.

To ease the construction, we introduce a function
PostG : 2S × A → 2S that maps a given set of states
B ⊆ S and an action a ∈ A to the possible reachable states
PostG(B, a) = {s′ ∈ S | ∃s ∈ B : P(s, a, s′) > 0}. We then
denote PostG({s}, a) as PostG(s, a).

Definition 2: Given the zero-sum stochastic game with par-
tially controllable observations G (Def. 1), the stochastic
two-player reachability game augmented with P2’s belief and
P2’s belief of P1’s belief is a tuple

G = 〈Q ∪ {qF},A1 ∪A2, δ, q0, qF〉,
where
• Q = Q1 ∪ QN ∪ Q2 is the state set consisting of P1, P2

and nature states (c.f. [3]). Q1 = {(s, B) | s ∈ S, B ⊆ S} is
the set of states where P1 selects a (control and sensing)
action (a, σ ). QN = {(s, B, a, σ ) | s ∈ S, B ∈ 2S, (a, σ ) ∈

A1} is the set of nature’s states. Q2 = {(s, B, σ ) | s ∈
S, B ∈ 2S, σ ∈ �} is a set of states where P2 selects a
sensor attack action. For any q ∈ Q, the first component
s is the state in the original game G and the second com-
ponent B is the belief state that P1 constructs given P1’s
partial observations.

• qF is a single final state. It is also a sink state.
• A1 = A×� is a set of P1’s actions and A2 = B is a set

of P2’s actions.
• q0 = (s0, o0) is the initial state.
• δ : (Q1 × A1) ∪ QN ∪ (Q2 × A2) → D(Q ∪ {qF})

is the probabilistic transition function defined as fol-
lows: For a P1’s state (s, B) ∈ Q1 and action (a, σ ) ∈
A1, δ((s, B), (a, σ ), (s, B′, a, σ )) = 1, where B′ =
PostG(B, a). That is, with probability one, a nature’s state
(s, B′, a, σ ) is reached. For a nature’s state (s, B′, a, σ ) ∈
QN , we distinguish three cases: 1) If PostG(s, a) ⊆ F
then δ((s, B′, a, σ ), qF) = 1. 2) If PostG(s, a) ∩ F =
∅, then δ((s, B′, a, σ ), (s′, B′, σ )) = P(s, a, s′). 3) If
PostG(s, a) ∩ F �= ∅ and PostG(s, a) \ F �= ∅, then,
for some ε ∈ (0, 1), δ((s, B′, a, σ ), qF) = ε and
δ((s, B′, a, σ ), (s′, B′, σ )) = (1 − ε) · P(s, a, s′). That is,
with some positive probability ε, the final, sink state qF
is reached. For a P2’s state (s′, B′, σ ) ∈ Q2, and an
attack action β ∈ A2, δ((s′, B′, σ ), β, (s′, B′′)) = 1 where
B′′ = B′ ∩Obs(s′, σ, β).

A sequence of transitions (s, B)
(a,σ )−−−→ (s, B′, a, σ ) ���

(s′, B′, σ )
β−→ (s′, B′′) is understood as follows: At the state

(s, B), the true state is s and P1 believes any state in B
is possibly the true state. P1 selects a pair of control and
sensing actions (a, σ ) and updates B to B′, which includes
a set of states that may be reached if action a is taken at
some state in B. Then, the nature player makes a probabilis-
tic transition (represented by the dash arrow) to a new state
s′ according to the stochastic system dynamics. P2 observes
the true state s′ and, then, chooses a sensor attack action β.
With this sensor attack, P1 observes Obs(s′, σ, β) and updates
P1’s belief to eliminate states that are not consistent with the
observation.

Definition 2 makes it explicit that while P2 cannot directly
control the true state of the game, P2 can affect the augmented
state of game G by influencing the belief of P1. Our belief
structure is inspired by stochastic games with signals [13],
where a player constructs a belief of his own and the belief
of his opponent’s belief. However, our modeling and solutions
are different from [13].

Next, we describe how to use the game G augmented with
beliefs to solve an attack-aware strategy in the original game
G. First, we show that when P2 is limited to blocking sensor
readings, regardless of P2’s attack, P1 is sure that one of the
state in P1’s belief is the true state.

Lemma 1: If a state (s, B) is reachable from the initial state
q0, then s ∈ B.

Proof: By induction. The initial state q0 = (s0, o0)

satisfies the condition (See Def. 1). Consider a play in
the game G such that q1

k is the k-th state reached by a
sequence of players’ actions (P1, P2’s actions and the nature’s
stochastic choices). Suppose q1

k = (sk, Bk) that satisfies
sk ∈ Bk. For any action (a, σ ) ∈ A1 of P1, the next
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state reached is (sk, PostG(Bk, a), a, σ ). From that state, the
nature’s probabilistic action will determine the next state
(sk+1, PostG(Bk, a), σ ). Note that because sk ∈ Bk, then
sk+1 ∈ PostG(Bk, a) by construction.

Then, the attacker P2 takes an action β to generate an obser-
vation for P1, o = Obs(sk+1, σ, β), which is the set of obser-
vation equivalent states. As the attacker can only hide sensor
readings, it holds that Obs(sk+1, σ, λ) ⊆ Obs(sk+1, σ, β)

where λ means no attack. And sk+1 ∈ Obs(sk+1, σ, λ) implies
sk+1 ∈ Obs(sk+1, σ, β). The new belief for P1 is Bk+1 =
o∩PostG(Bk, a) and since sk+1 ∈ o and sk+1 ∈ PostG(Bk, a),
it holds that sk+1 ∈ Bk+1.

This property is critical to construct P1’s observation-based
strategy to reach F, even if P1 may not know when F is
reached. Consider a transition (s, B′, a, σ ) ��� qF where
PostG(s, a) ∩ F �= ∅. Since PostG(s, a) ⊆ B′ implies
B′ ∩ F �= ∅, P1 knows, without observing, the probability that
F is reached is greater than 0.

Definition 3 (Belief-Based Almost-Sure Winning
Strategy/Region): Given the two-player game G, a strat-
egy π1 is almost-sure winning for P1 if by following π1,
regardless of P2’s strategy, P1 ensures to reach qF with
probability one. A strategy π1 is belief-based provided
that for two states (s, B), (s′, B′) ∈ Q1, if B = B′ then
π1((s, B)) = π1((s′, B′)). A set of states from which P1 has
a belief-based, almost-sure winning strategy is called P1’s
almost-sure winning region with partial observation, denoted
Win=1

1 .
Note that any belief-based strategy is observation-based

because the belief is constructed from P1’s observations. Next,
we prove that by solving the game G in Def. 2, we can obtain a
joint control and active sensing strategy to satisfy the objective
against sensor attacks in the game G.

Theorem 1: A belief-based almost-sure winning strategy to
reach {qF} in P1’s belief-based game G is also almost-surely
winning for P1 to visit F in the game with partially control-
lable observation function, G, regardless of the sensor attack
strategy carried out by P2.

Proof: By the construction of the game G, the event of
reaching qF is conditioned on the event that a nature state
(s, B, a, σ ) ∈ QN where PostG(s, a)∩F �= ∅ or PostG(s, a) ⊆
F is visited. Let Y ⊆ QN be all nature states that can be
reached prior to visiting qF given the almost-sure winning
strategy π . If qF is visited with probability one from any
state in the almost-sure winning region, then the set Y must
be visited with probability one from any state in Win=1

1 . Let
p = min(s,B,a,σ )∈Y Pr(F | s, a) be the minimal probability of
reaching F from a state in Y . The probability of not reach-
ing F in k visits to Y is smaller than (1− p)k. In addition, if
F is not reached, the almost-sure winning strategy will reach
some state q′ ∈ Win=1

1 from which Y is revisited with prob-
ability one. Hence, the probability of eventually reaching F
is limk→∞ 1 − (1 − p)k = 1. That is, π is also almost-surely
winning to visit F in game G.

Next, we introduce Alg. 1 to compute a belief-based, ASW
randomized strategy for P1. The algorithm includes the follow-
ing steps: In the first step, we use the solution of two-player
stochastic games with two-sided perfect observations [14], to
solve the positive winning region for P2, denoted Win>0

2 � Q,
which includes a set of states from which P2 can ensure a

winning play with a positive probability, when both players
have perfect observations. Starting from any state q ∈Win>0

2 ,
if P1 cannot reach qF with probability one even if P1 has per-
fect observation, then P1 cannot reach qF with probability one
given partial observations.

In the second step, we initialize a set Y0 = Q \ Win>0
2

and iteratively refine the set Yi to obtain Yi+1, for i ≥ 0. At
iteration i, Alg. 1 computes a set of states, from which P1
can ensure to stay within Yi with probability one, and with a
positive probability, to reach qF in finite steps. The following
functions are defined: For each P1’s state q ∈ Q1, Y ⊆ Q, let

Allow(q, Y) = {(a, σ ) ∈ A1 | PostG(q, (a, σ )) ⊆ Y},
where PostG(q, (a, σ )) = {q′ | δ(q, (a, σ ), q′) > 0} is the set
of states that can be reached given P1 applies (a, σ ) at state
q. By definition, P1 ensures that the next state stays within Y
by taking an allowed action in Allow(q, Y).

Given q = (s, B) ∈ Q1, let [q]∼ = [(s, B)]∼ = {(s′, B)} |
B′ = B} be the set of states in which P1 has the same belief
as q. We define

Allow([q]∼, Y) =
⋂

q′∈[q]∼
Allow(q′, Y),

That is, an action is allowed at q if and only if it is allowed
at any other state q′ that shares the same belief as q,

Given a set Y and a set R ⊆ Y , we define three functions:

Prog1(R, Y) = {q | ∃(a, σ ) ∈ Allow([q]∼, Y),

PostG(q, (a, σ )) ⊆ R},
which outputs a set of states from which P1 has an allowed
action to reach R in one step.

Prog2(R, Y) = {q | ∀β ∈ B, PostG(q, β) ⊆ R},
which outputs a set of states from which P2 cannot prevent
reaching R in the next step.

ProgN(R, Y) = {q | Supp(δ(q)) ∩ R �= ∅ ∧ Supp(δ(q)) ⊆ Y},
which outputs a set of states from which the nature player can
ensure to reach R with a positive probability, while staying
within Y with probability one.

In the inner loop of Alg. 1, given a set Y , after initializing
R0 = {qF}, Alg. 1 iteratively computes Rk+1 given Rk for all
k > 0 until a fixed point is reached. At iteration k + 1, Rk+1
is obtained as the union of Rk, Prog1(Rk, Y), Prog2(Rk, Y)

and ProgN(Rk, Y). By definition, from any state in Rk+1 \Rk,
P1 can ensure to reach Rk with a positive probability. The
iteration terminates when Rk+1 = Rk. Then, this new fixed
point is the new set Y as the outer fixed point computation.
Alg. 1 terminates when Yj+1 = Yj and the fixed point is P1’s
ASW region Win=1

1 .
We establish the correctness and completeness of Alg. 1 by

showing that Win=1
1 is indeed the ASW region of P1. And, at

any state in Win=1
1 , P1 has an ASW strategy to visit F.

Lemma 2: The set Win=1
1 obtained from Alg. 1 is the

almost-sure winning region for P1.
Proof: Let N be the index where YN = YN+1. To prove that

YN =Win=1
1 , we prove the following: 1) Win=1

1 ⊆ Yj, for all
0 ≤ j ≤ N. By induction, first, given that Y0 = Q \Win>0

2 , it
holds that Win=1

1 ⊆ Y0. Assume that Win=1
1 ⊆ Yi for some
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Algorithm 1 Belief-Based Almost-Sure Winning Region
Inputs: Two-player reachability game with augmented states

G and P2’s positive winning region Win>0
2 in G.

Outputs: P1’s ASW region Win=1
1 .

1: j← 0; Yj ← Q \Win>0
2

2: repeat
3: k← 0; Rk ← {qF}
4: repeat
5: Rk+1 ← Rk ∪ Prog1(Rk, Yj) ∪ Prog2(Rk, Yj) ∪

ProgN(Rk, Yj)

6: k← k + 1
7: until Rk+1 = Rk
8: Yj+1 ← Rk; j← j+ 1
9: until Yj+1 = Yj

10: return Win=1
1 ← Yj.

i > 0, we show that Win=1
1 ⊆ Yi+1 as follows: Note that

Yi+1 = Rk ∪ Prog1(Rk, Yi) ∪ Prog2(Rk, Yi) ∪ ProgN(Rk, Yi).
By construction, Yi+1 includes any state from which P1 has a
strategy to reach qF with a positive probability, while staying
in Yi. Thus, for any state q ∈ Yi \ Yi+1, either 1) P1 cannot
ensure to stay within Yi with probability one, or 2) P2 has
a strategy to ensure qF is not reached with probability 1. For
case 1), if from a state, P1 cannot ensure to stay in Yi, then that
state is not in Win=1

1 . This is because for any state in Win=1
1 ,

P1 has a strategy to ensure staying within Win=1
1 and thereby

Yi given Win=1
1 ⊆ Yi. A state satisfying the condition in case

2) is P2’s ASW region and thus not in Win=1
1 . Therefore, Yi+1

only removes states that are not in Win=1
1 from Yi and thus

Win=1
1 ⊆ Yi+1.

2) YN \Win=1
1 = ∅, By contradiction, assume there exists

a state q ∈ YN \Win=1
1 . By construction, for any q ∈ Rk ∪

Prog1(Rk, YN) ∪ Prog2(Rk, YN) ∪ ProgN(Rk, YN), P1 has a
strategy to reach qF with a positive probability in finitely many
steps, regardless of the strategy of P2. Let ET be the event that
“starting from a state in YN , a run reaches the final state qF
in T steps.” and let γ > 0 be the minimal probability for the
event ET to occur for any state q ∈ YN . Then, the probability of
not reaching qF in infinitely many steps can be upper bounded
by lim

k→∞(1 − γ )k = 0. Therefore, for any q ∈ YN , P1 has a

strategy to ensure qF is reached with probability one and thus
ensures F is reached with probability one (Theorem 1). This
contradicts with the assumption that q /∈ Win=1

1 . Combining
1) and 2), we show that Win=1

1 = YN .
Given Win=1

1 , P1’s belief-based, ASW strategy is defined
by a set-based function π∗1 : Win=1

1 → 2A1 such that

π∗1 (q) = {(a, σ ) | (a, σ ) ∈ Allow([q]∼, Win=1
1 )}. (1)

At each state q ∈ Win=1
1 , P1 must take any action in π∗1 (q)

with a nonzero probability. By definition, π1(q) = π1(q′) if
q, q′ share the same belief.

Theorem 2: By following π∗1 defined in Eq. 1, P1 ensures
that the game eventually reaches the state qF .

Proof: Let R0, R1, . . . , RK be the set of level sets con-
structed using Alg. 1 given input Win=1

1 . For level 0 <

j ≤ K and a state q ∈ Rj, let (a, σ ) ∈ π∗1 (q) such that
PostG(q, (a, σ )) ∈ Rj−1. Because taking the action (a, σ )

Fig. 2. An example for attack-aware planning. We omit exact transition
probabilities and indicate the possible outcomes for each state-action
pair.

Fig. 3. A fragment of the augmented game G. P1’s states are ellipses,
P2’s states are rectangles, and the nature player’s states are diamonds.

has a nonzero probability, then the level will strictly decrease
with a positive probability. In addition, with probability one,
the game stays within Win=1

1 for any action in π∗1 (q) and
its probabilistic outcomes. Then, let En be the event that
“Reaching Rj−1 from a state in Rj in n steps.” It holds that
limn→∞ P(En) = 1. Thus, by repeating the same argument
for j = K, K − 1, . . . , 1, R0 = {qF} will be reached with
probability one.

Remark 1: Note that in computation, P2’s strategy is not
restricted to be belief-based. Therefore, for any state q ∈
Win=1

1 , P1 can ensure almost-sure winning regardless of P2’s
strategy given P2’s perfect observation.

Complexity analysis: The time complexity for solving P1’s
ASW belief-based strategy in G is O(|Q|(|Q1| · (|A| · |�|) +
|Q2| · |B|+ |QN |)). In terms of the original game, we have the
complexity to be O(2|S| · |A| · (|�| + |B|)) due to the subset
construction for beliefs. The complexity matches the lower
bound for one-sided partial information games [2].

IV. AN ILLUSTRATIVE EXAMPLE

In this section, we present an example to illustrate the
proposed algorithm. Consider the MDP shown in Fig. 2, P1
has 5 sensors, A, B, C, D, and E covering the states {s0, s1},
{s1, s2}, {s0, s2, s3}, {s4, s5}, and {s2, s6, s7} respectively and
four control actions {a0, a1, a2, a3} with probabilistic out-
comes. P1 has four sensor query actions σ0, σ1, σ2, and
σ3 which query the sensors {A, B}, {A, C}, {B}, and {B, E}
respectively. P1’s goal is to reach s4.

Fig. 3 is a fragment of game G augmented with beliefs.
Starting with P1’s state (s6, {s6}), P1 takes action a0 and
queries sensor {A, C} with action σ1. The next state is a nature
state (s6, {s0, s1, s2, s7}, a0, σ1) where the belief is updated
to PostG({s6}, a0) = {s0, s1, s2, s7} which are possible next
states given the action a0 taken at s6. Then, the nature player
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TABLE I
SUMMARY OF THREE CASES

randomly selects one of the states, say s1, and arrives at
(s1, {s0, s1, s2, s7}, σ1). If there is no sensor attack, P1 should
obtain True for sensor A and False for sensor C and deduce
the current state is s1. However, P2 attacks sensor C so that
P1 only receives reading from A and deduces the current state
can either be s0 or s1—resulting in P1’s state (s1, {s0, s1}).

We use three variations of the example to highlight the
system performance given attackers with different capabili-
ties: Case 1: No attack: P2 has no sensor attack actions. In
this case, P1 planning with joint control and sensing actions;
Case 2: Restricted Attack: each time P2 can attack one of the
sensors from {B, E}. Case 3: Unrestricted Attack: each time
P2 can attack any one of the sensors. Assuming P1 knows the
initial state, under three cases, the sets of initial states from
which P1 has an ASW strategy are shown in Table I. The
strategies for three cases were computed in 4.3 s, 6.5 s and
14.1 s on a laptop with AMD RYZEN 9 processor and 16 GB
of RAM.

Note that starting from s6, P1 has ASW strategies for reach-
ing {s4} in Cases 1 and 2, but not in Case 3. Consider Case 1
(no attack), from state s6, P1 only has action a0 and thus, can
reach one of s0, s1, s2 or s7 with some positive probability. P1’s
ASW strategy assigns the following actions with nonzero prob-
abilities: {(a0, σ0), (a0, σ1), (a0, σ3)}. Action (a0, σ2) is not
allowed because, with some positive probability the next state
is s1 and P1 refines her belief given the sensor information
to {s1, s7} where P1 has no actions to ensure reaching s4: In
the state s1, a0 reaches s4 and a1 reaches a sink state s5.
However, at s7, a0 leads to the sink state s5. Similar state-
ment holds if the state s7 is reached. As P1 must choose
between a0 and a1 at (s1, {s1, s7}) and (s7, {s1, s7}) and there
is no belief-based ASW strategy to reach s4 from these two
states.

Though the set of winning initial states are the same for
Case 1 and 2. The winning strategies for P1 are different.
In Case 2, P1’s winning actions at (s6, {s6}) are (a0, σ0) and
(a0, σ1), excluding action (a0, σ3) which was a winning action
in case 1. The reason is as follows: Suppose (s0, σ3) is taken,
with a positive probability, the game reaches a P2’s state
(s2, {s0, s1, s2, s7}, σ3). P2 attacks sensor E and results in P1’s
state (s2, {s1, s2}). Given P1’s belief {s1, s2}, the action a0 is
winning for state s1 but losing for state s2. Thus, P1 does
not have an action at (s2, {s1, s2}) and (s1, {s1, s2}) to ensure
reaching s4 with probability one. Thus, action (a0, σ3) is not
an action from P1’s almost-sure winning strategy under P2’s
restricted attack.

Finally, in Case 3, state s6 is no longer in Win=1
1 . Consider

the two actions (a0, σ0) and (a0, σ1) allowed by the win-
ning strategy at (s6, {s6}) for Case 2. With the action (a0, σ0),
the game transitions, with a positive probability, to P2 state
(s1, {s0, s1, s2, s7}, σ0), which is not in Win=1

1 as P2 can drive
the game into the P1 state (s1, {s1, s2}) by attacking sensor A.
Consider the action (a0, σ1), with a positive probability, the

game reaches P2 state (s7, {s0, s1, s2, s7}, σ1), which is not in
Win=1

1 as P2 can drive the game to reach (s7, {s1, s7}) by
attacking sensor A. Starting from s6, P1 has no strategy to
reach s4 if P2 can attack any sensor.

V. CONCLUSION AND FUTURE WORK

In this letter, we studied qualitative planning of control and
active information acquisition given adversarial sensor attacks
and presented a method to synthesize an observation-based
strategy, for the attack-aware defender, to satisfy a reachabil-
ity objective with probability one, under the worst case sensor
attacks on its observations. With the formal-method based
modeling framework and solution approach, several future
directions are considered: 1) Strategic sensor placement can
be studied to ensure the existence of an attack-aware almost-
sure winning strategy. 2) The synthesis of P1’s strategies can
be analyzed given other asymmetric information structures
between P1 and P2, including concurrent game interactions,
and two-sided partial observations. 3) Symbolic approaches
(c.f. [2]) for solving POSGs may be investigated to avoid
explicit exponential subset construction.
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