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Abstract—In this paper, we present a novel maximum
entropy formulation of the Differential Dynamic Program-
ming algorithm and derive two variants using unimodal and
multimodal value functions parameterizations. By combining
the maximum entropy Bellman equations with a particular
approximation of the cost function, we are able to obtain a
new formulation of Differential Dynamic Programming which
is able to escape from local minima via exploration with a
multimodal policy. To demonstrate the efficacy of the proposed
algorithm, we provide experimental results using four systems
on tasks that are represented by cost functions with multiple
local minima and compare them against vanilla Differential
Dynamic Programming. Furthermore, we discuss connections
with previous work on the linearly solvable stochastic control
framework and its extensions in relation to compositionality.
Link to Video.

I. INTRODUCTION

Existing methods for trajectory-optimization solve the opti-
mization problem by iteratively relying on local information
via derivatives [1, 2]. Differential Dynamic Programming
(DDP) [3, 4] is a popular trajectory optimization method
for nonlinear systems used in model-based Reinforcement
Learning (RL) and Optimal Control problems, where the
problem is iteratively solved via second order approximations
of the cost and dynamics. With stage-wise positive Hessian
matrices, DDP enjoys quadratic convergence [5]. However,
these methods usually only guarantee convergence to a local
minimum and are unable to reach better local minima once
converged. In cases where there are dynamic obstacles, the
cost landscape can be highly nonconvex with suboptimal local
minima that are unsatisfactory. Methods that try to address
this problem include random restarts [6] or via topological
approaches that explicitly consider the homotopy classes of
trajectories [7, 8].

Maximum entropy is a technique widely used in RL and
Stochastic Optimal Control (SOC) to improve the robustness
of stochastic policies. Performance robustness is achieved
through an additional entropy regularization term in the cost
function that improves exploration by discouraging policies
from converging to a delta distribution over the current opti-
mal control [9, 10]. In RL, Soft Actor Critic uses a maximum
entropy objective and is considered to be state of the art for
off-policy methods [11]. In SOC, the Information Theoretic
Model Predictive Path Integral (IT-MPPI) algorithm [12, 13]
is a generalization of this technique which uses the forward
Kullback-Leibler (KL) divergence between the controlled
distribution and a prior distribution for regularization. The
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form of maximum entropy is recovered when the uniform
distribution is used as the prior distribution. In [14, 15], the
Tsallis divergence, a generalization of the KL divergence,
is used as a regularization term in the objective, leading to
further robustness improvements.

In this paper, we consider discrete time deterministic
optimal control problems and take a relaxed control approach
with entropy regularization similar to [16]. We propose two
novel variations of DDP under the Maximum Entropy Optimal
Control (MEOC) formulation using unimodal and multimodal
Gaussian policies. Finally, we compare the performance of
both proposed algorithms against vanilla DDP on 2D Point
Mass, 2D Car, Quadcopter and Manipulator in simulation.

The main contributions of this work are threefold:

e We derive the Bellman equation for the discrete time
MEOC problem.

« We propose Maximum Entropy DDP (ME-DDP) and
Multimodal Maximum Entropy DDP (MME-DDP) to
improve exploration over vanilla DDP.

« We showcase the benefit of the improved exploration
of ME-DDP and MME-DDP over vanilla DDP in
converging to better local minima on four different
systems in simulation.

II. MAXIMUM ENTROPY BELLMAN EQUATION

Standard discrete-time deterministic optimal control prob-
lems minimize the cost over time horizon (0,1,--- ,T)

T-1
J(u) = ®(xr) + > L, w), (1)
t=0
where [; and @ are the running and terminal costs respectively.
The state and control trajectories, (z¢)¢=o,... 7,2 € R™ and
(wt)t=0,... 7—1,us € R™, satisfy deterministic dynamics

Tep1 = f(@e, us). 2

In this work, we take a relaxed control approach and
consider a stochastic control policy 7 (u¢|z;) with the same
deterministic dynamics as in (2). In addition, we introduce
an entropy term to the original objective (1)

Jr = E,

O(ar) + Tz_l (lt(xt,ut) —aH [wt])] G
t=0

where o > 0 is an inverse temperature term, the expectation
is taken with respect to u ~ 7(+|x), and H x| is the Shannon
entropy of 7 defined as

H[r] = —Ex[ln7] = — /71’(11,) In 7 (u) du. 4)
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For this problem formulation and the standard value function
definition of V(x) = min, J(z, ), the Bellman equation
takes the form

V(z) = igf {Eﬂ [l(z,u) + V' (f(z,u)] — aH[r] }, ®)

In (5) and below we omit the time index ¢ for nonterminal
times for simplicity and use V'(f(x,u)) to denote the value
function at the next timestep.

Solving (5) results in a Gibbs distribution for 7* [14, 16].
The form of 7* and V are presented in the following lemma.

Lemma 1. The optimal policy ™ solving the infimum in (5)
is the Gibbs distribution

7 (ula) = Z " exp (-i V() + Z(x,u)}) , (6

where Z denotes the partition function

Z(z) = /eXp (—; {V’(f(x,u)) + l(m,u)D du. (7)
Consequently, the value function V takes the form
V(z) =—alnZ(x). 8)

We refer the readers to Appendix A in [17] for a proof of
Lemma 1.

III. MAXIMUM ENTROPY DDP

We will now use DDP to solve the MEOC problem and
derive the ME-DDP algorithm. For notational simplicity, we
will drop the second-order approximation of the dynamics
as in iterative Linear Quadratic Regulator (iLQR) in our
description of DDP. The dropped second-order dynamics
terms can easily be added back in the derivations below. We
refer readers to [3, 18] for a detailed overview of the vanilla
DDP and iLQR algorithms.

The DDP algorithm consists of a forward pass and a
backward pass. The forward pass simulates the dynamics
forward in time obtaining a set of nominal state and control
trajectories (Zo.r, Uo.r—1), while the backward pass solves
the Bellman equation with a 2nd order approximation of the

costs and dynamics equations around the nominal trajectories.

The boundary conditions for the value function V' are obtained
by performing a 2nd order Taylor expansion of the terminal
cost ®:

V:L’:v,T = cbm:va Vm,T = q)xa VT == . (9)

To derive the backward pass, we first perform a quadratic
approximation of the cost function around (T, @)

5 ~ I lu ou 2 Ju lua: luu Sul’
where 6z = x — I, du = u — 4. We also perform a linear

approximation of the dynamics f:

flz,u) = f(z,0) + f 6z + f, du.

Define @ = V'(f(x,u)) + I(x, u), with subscripts denoting
partial derivatives. The next lemma describes the optimal
policy and value function.

Lemma 2. The optimal policy for the approximated problem
is Gaussian with mean du* and covariance aQ;}

T (duldz) = N (u; 0u*, aQy)) (10)

where the mean $u* has the same form as in vanilla DDP

out = —Q:L (Qwéx n Qu) = Kéx+k (1)

Consequently, the value function has the form

Viz) = V(x)+VH(§3)+Vx(£)T(5$+%5ajTVw(a’s)6x, (12)

where
V(z)=V'(@)+1(z,0) - %QEQWQW (13)
1
Vu(z) = 5(1n|Quu| — Ny ln(27‘ra)), (14)
Vi(@) = Qu + KT Quuk + KTQ, + QL K, (15)
Ve (%) = Quz + KT QuuK + KT Quz + QY K. (16)

Remark. Note that the update rules for V,V, and Vy, are
exactly the same as in vanilla DDP. The only difference here
is the addition of the Vi term due to the additional entropy
regularization. Consequently, this term can be ignored if the
V(z) is not needed. This term disappears as oo — 0 when
the problem reverts to the vanilla case.

We refer the readers to Appendix B in [17] for a proof of
Lemma 2.

IV. MULTIMODAL MAXIMUM ENTROPY DDP

While a unimodal Gaussian policy is able to achieve better
exploration compared to the deterministic policy, it is often the
case that multiple modes need to be explored simultaneously
to converge to the global minimum [10]. In this section, we
derive a multimodal extension to the ME-DDP introduced.

Let {z(™, a(™}N_ denote N different nominal state and
control trajectories, and let (™) corresponds to the respective
quadratic approximation of ® around Z(™) and @(™). Instead of
using a single quadratic approximation of ® for the terminal
cost as in (9), we use the combined approximation d

N
Vr(z) = ®(z) = —a anexp (—;@“0 (m)) V)]
n=1

The log-sum-exp is a smoothed combination of the local
quadratic approximation and approaches min,, {®(™} as a —
0 as shown in Fig. 1.

The above equation becomes easier to work with when
considering the exponential transform of the problem. Define
&, to be the following function

1
Ealy) =exp (= ~y). (18)
We now define the reward r, Rt and desirability z as
e =Eq(l), 17 :=E(P), z:=EL(V(x)). (19)
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With this transformation, note that the desirability function z
is exactly the partition function Z from (8) and is linear in
both 2z’ and r (denoting z’ for the next timestep):

2(z) = Z(z) = /z’(f(m,u)) r(z,u)du,  (20a)

zZT (ZL'T) = TT(LET). (20b)

With this transformation, the optimal policy in (6) has the
following elegant form

m(ulz) = z(2) "' (f(z,u)) r(z,w). (21)

Additionally, using the desirability function z to write (17),
we see that z has an additive structure:

N
zr(xr) = Z zéf") (z7), z(Tn)(xT) =™ (zp). (22)
n=1

The following lemma now shows that this structure holds for
all time.

Lemma 3. Suppose that the terminal cost has the form (17).
Then, for allt =0, ...,T, the desirability function z has the
following additive structure

N
z(z) = Z M (z), 2= /z'(")(f(x,u)) r(z,u) du,

Proof. This holds at the terminal time from (22). Suppose
that 2/(x) = Zf:/:l /(") (). Substituting this in (20a), we
get

N
+(a) / (Z_;Z'W(f(x,m)) r(z,u) du,

N
= Z/z'(”)(f(x,u))r(x,u) du, (23)
n=1
N
= Z 2 (z).
n=1
By induction, this holds for all time. O

Remark. Note that the form of z") is identical to the
Bellman equation (20a). In other words, each z™ and V(™)
is computed in exactly the same way as z and V in the
unimodal case but with a different terminal condition ®™),

Substituting V' back for z in (23) yields

V(z) = —aln i exp (—;VW(;U)) . (24)

n=1

This result makes sense intuitively—the combined value
function should be related to the minimum of the individual
approximated value functions resulting from the different
nominal states.

Cost @ Approx. Point — logsumexpo 2
Quad Approx. logsumexpo.1 logsumexpo.3
1. \
0 5 ,
\ 7
= \ \ / /
X /
=05 \\ \\>/ ,// O
\‘_ /- S—m~ (|
1.0
<
=05
-4 -2 0 2 4
X

Fig. 1: Comparison of the individual quadratic approximation
(top) and the log-sum-exp approximation (bottom) of the cost
function I(z) with varying choices of inverse temperature c.
Higher « leads to smoother approximation.

Using the linearity of the desirability function (23), the
optimal policy (21) has the form

N
m(ulz) = z(2) ™" (Z Z’“”(f(%@)) r(z, u),

2" (z)

< 2(z)

2 (@) (f (2, w)) (2, ),

I
™=

n

w0 ()7 ™ (ul),

I
M=

(25)

n=1

where

7 (ulz) = 20 (@) 710 (f (2, 0)) r(e, w),
N

S w1,

n=1

w™ () = z(x) "2 (z),

This is exactly the policy obtained in the normal case, except
that we consider z(") instead of z. Since V(") is quadratic
in the state, each 7(™ will be Gaussian as before:

70 (6ut 62 = N (5u; 5u", (@) ) (26)

where 6z(") = z — (™ and du™ = u — @ are now
evaluated relative to the nominal trajectories for corresponding
to the nth approximation, with su(™” defined analogous
to (11) but using the approximations around (z(™,a (™).
Importantly, from the form of (25), we see that 7 is a mixture
of Gaussians with component weights w(™ computed using
the quadratic approximation of the value function (12) and are
adaptive to disturbances. We refer the readers to Appendix C
in [17] for more details.

Since both z and 7 are weighted sums of z(™ and 7("),
computing the solution to the backward pass of MME-DDP
is equivalent to solving for ME-DDP around the N different
nominal trajectories and then composing the value functions
and policies using (24) and (25).
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Algorithm 1: Backward Pass

Algorithm 2: (Unimodal) Maximum Entropy DDP

1 Compute V(T'), V,(T') and V,(T) using &

2fort=T—1to 0 do

3 Compute [, @ and their derivatives for timesteps ¢

4 Regularize @, to be PD

5 Compute ky, Ky, Vo (t — 1), Vo (t —
Vanilla DDP

6 Et — C%Q;,[}

7 VH < VH + %(ln|Quu| — Ny ln(27‘ra))

1) as in

V. CONNECTIONS TO EXISTING WORKS

A. Compositionality and Linear Solvable Optimal Control

A key component of our work is the compositionality
of policies—solving for the full policy 7 by solving for the
individual policies 7(™) then combining them via (25). In
[19], the KL Divergence regularized control is considered
and the compositionality of controllers is introduced by
exploiting the linearity of the exponential value function
and the optimal policy. Unlike [19], we allows the running
cost I(z,u) to be an arbitrary function of the controls u.
Furthermore, we provide practical algorithms in the form
of ME-DDP and MME-DDP. Similarly, in the field of RL
[20], compositionality has been used on maximum entropy
optimal policies to solve a conjunction of tasks by combining
maximum entropy policies which solve each of the tasks
individually.

Unlike the above works, the approach our work takes
focuses on the topic of exploration rather than composition-
ality. Our work is most similar to [10], which shows that the
multimodal exploration is able to outperform similar methods
which only consider unimodal exploration policies. However,
we make use of compositionality and solve for the value
function explicitly using DDP which allows for the policy to
be recomputed online in realtime.

B. Exploration and Control-as-Inference

Our work is related to the Control-as-Inference framework
[14, 21, 22, 23], where finding the optimal policy is posed
as an inference problem by minimizing the KL divergence,
with maximum entropy emerging as a special case of this
when the prior is uniform. This framework provides a natural
exploration strategy based on entropy maximization. Since the
optimal policy is usually intractable, approaches in this area
approximate the optimal policy distribution using either neural
networks or by using tractable surrogates such as Gaussian
distributions. Our work can be viewed as an extension to the
latter approach by considering mixtures of Gaussians instead
of unimodal Gaussians.

Our work has similar flavors to SaDDP in [24] as both
methods rely on DDP and incorporate sampling. In their case,
sampling is leveraged to address the problem of discontinuity
and bypass the use of analytical derivatives, whereas this
work relies on analytical derivatives but uses sampling to
explore multiple modes simultaneously.

Input: Number of iterations I/, Resample frequency m
1 Initialize (12 (12 g(1:2) »(1:2)
2 fori=1to I do
3 if i % m = 0 then
W M KO 51+ Jowest code mode
2@ 4@ K@ ~ 7D

L7 I N

for n =1 to 2 in parallel do

(") < Rollout dynamics

kM) KM ) VI({n) + Backward Pass
(™ () J(") « Line Search

o e 9

Algorithm 3: Multimodal Maximum Entropy DDP
Input: Number of GMM components N, Number of
iterations I, Resample frequency m

Initialize z(1N) o (1N) | KN) S (1N) 7

fori=1to I do

if 7 % m = 0 then

W uM KM + lowest code mode

&N 4 (2N) K@EN) L GMM 7 with
weights w1V

(7 SR S R

for n =1 to N in parallel do

z(") < Rollout dynamics

k) K M) ) V]g”) < Backward Pass
(™ u(™ J(") « Line Search

10 Compute w(™ using J™ and Vlgn)

e e 9

VI. ALGORITHMS

There are three main algorithmic issues that need to be
addressed when implementing ME-DDP and MME-DDP.

Forward Pass: The derivation in earlier sections only
describes how to perform the backward pass of DDP to
compute the optimal Gaussian mixture policy (25), leaving
the question of how to apply the new stochastic policy for
the forward pass unanswered.

For ME-DDP, we perform multiple realizations of the
stochastic policy at each timestep. Taking N realizations for
each of the T timesteps will result in polynomial growth
O(TN) of required samples. Instead, we sample the entire
feedforward controls from the stochastic policy at ¢ = 0 and
then apply the deterministic feedback policy for times ¢t = 1
to T'— 1. To handle the added multi-modality of the optimal
MME-DDP policy, we sample from a categorical distribution
to determine which of the N modes will be used for the
control of a particular sample trajectory, and then sample the
feedforward controls as in the ME-DDP case.

Convergence: With a stochastic policy, the cost of the
trajectory after sampling may be higher in cost than the
original trajectory or even unbounded. To guarantee the
convergence of the algorithms, we draw inspirations from
[25] and apply the mean deterministic controls from the
mode with the smallest cost to at least one sampled trajectory.
This guarantees that the minimum cost over all N samples
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TABLE I: Comparison of the mean and standard deviations of the cost for vanilla DDP, ME-DDP and MME-DDP, computed
on 16 different DDP runs. The best mean cost for each system is boldfaced. Positive values of mean reduction correspond to
a reduction. Significant reduction in mean and standard deviation can be observed from MME over both ME and vanilla DDP.

Vanilla ME MME MME vs Vanilla ~MME vs ME
System Mean Std Mean Std Mean Std AMean% AMean%
2D Point Mass 32.25 0.00 10.76 9.55 1.76 0.00 94.55 83.69
Car 5.31 0.00 4.99 0.64 3.76 0.87 29.16 24.63
Quadcopter 0.98 0.00 0.90 0.18 0.54 0.02 45.08 40.25
Manipulator 22.84 0.00 20.28 4.68 12.56 3.68 45.00 38.06
Algorithm Mean (ms)  Std (ms)
DDP 1.537 0.016
MMEDDP 2.826 0.118

Fig. 2: Task setup for the manipulator. The goal is to reach
the red block past the obstacles while avoiding collisions.

is monotonically decreasing, preserving the convergence
properties of DDP:

Lemma 4. Each iterate of ME-DDP and MME-DDP results
in a cost that is no worse than vanilla DDP given the current
best nominal control is identical.

We refer the readers to Appendix D in [17] for the proof.

Frequency of Sampling: Since the weights w() for
each mode for MME-DDP are proportional to the value
function Z(™, modes which have high cost are unlikely
to be resampled in the next iteration of the forward pass
even if they will converge to a more optimal local minimum
given enough DDP iterations. To alleviate this issue, we only
resample the controls for each mode after every m iterations,
increasing the probability of jumping out of suboptimal local
minima.

The full ME-DDP and MME-DDP algorithms are pre-
sented in Algorithm 2 and Algorithm 3, along with their
backward pass in Algorithm 1, where variables without
indices denote the entire trajectory, (z(™) denotes :vén%) In
short, both algorithms consist of keeping the lowest cost
sample and sampling the rest from the stochastic policy m
every m iterations for the forward pass, then running the
backward pass for each sample. Both passes can be executed
in parallel for each sample.

VII. SIMULATIONS

In this section, we compare the performance of the
proposed MME-DDP algorithm against the ME-DDP and
vanilla DDP algorithms on four systems: 2D Point Mass,

2D Car, Quadcopter and Manipulator. Obstacle avoidance is
2

implemented as a soft-constraint with [y, = exp (— er"gs ),
obs

where d,s and rqps are the distance and radius of the obstacle

respectively. The controls are zero-initialized for all systems.

For the resampling frequency, we set m = 8. Table II

TABLE II: Comparison of computation times for 16 iterations
averaged over 16 different runs.

compares the mean and standard deviation of the solver
times on the 2D Car problem for DDP and MME-DDP with
8 modes on a Ryzen 9 3950X processor. A video comparison
of the Quadcopter and Manipulator systems is available at
this url.

A. 2D Point Mass

We first test the algorithms on an illustrative 2D point-mass
double integrator reaching task while while avoiding obstacles
in a maze-like environment. Both the top and middle paths
are suboptimal local minima as they are blocked by obstacles,
with the top path having an obstacle near the end of the path.
The results are shown in the first row of Fig. 3.

B. 2D Car

We next test on a 2D Car with dynamics of Dubin’s vehicle
under jerk control. The task here is again a reaching task
while avoiding two circular obstacles. A suboptimal local
minimum exists in the middle which goes in between both
obstacles. The results are shown in the second row of Fig. 3.

C. Quadcopter

We test on a 3D quadcopter with states = =
[Das Dy D2y U, 0, 6,02, vy, 02,0, ¢,7]T € R12 and controls
u = [ft,Tz,Ty,TZ]T € R*. We refer readers to [26] for a
full description of the dynamics. The task is to reach a target
on the other side of four spherical obstacles set up in a
square pattern. A suboptimal local minima is present in the
intersection of all four obstacles in the center which only
MME-DDP is able to consistently escape from, as shown in
the third row of Fig. 3.

D. Manipulator

Finally, we test on a torque-controlled 7-DOF manipulator
based off a simplified version of the Franka EMIKA Panda
arm. The task here is for the end effector to reach the
goal position without colliding with obstacles (see Fig. 2).
Cylindrical obstacles are placed between the starting position
and the end effector, creating multiple suboptimal local
minima in the cost landscape. Again, only MME-DDP is
able to consistently reach the target without intersecting any
of the obstacles, as shown in the bottom row of Fig. 3.
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Fig. 3: (a)—(c) Position trajectories for the 2D point mass, car, quadcopter and manipulator systems from 16 different DDP
runs. For the manipulator, the projections of the end effector trajectories on the XY-plane are plotted. (d) Convergence plots
for all three algorithms. The solid line denotes the mean, the dark shaded region represents the 2o relative uncertainty, while
the dotted lines denote the minimum and maxmimum costs. In all examples, MME-DDP is able converge to a better global

minimum due to having better exploration.

Performance Comparison: Comparing the three algo-
rithms, we observe that vanilla DDP consistently gets stuck
in local minima and unimodal ME-DDP explores several
minima but cannot explore each consistently. In contrast,
the additional exploration capability helps MME-DDP find
the best minimum. As obstacles are implemented as soft
constraints, the shaded region around obstacles in Fig. 3 only
provides a visualization and is not the obstacle boundary. We
also present a comparison of convergence for each algorithm
in Table I and Fig. 3d. Across all tasks, it is clear that
both ME-DDP and MME-DDP are able to achieve a lower
mean cost than vanilla DDP due to converging to a more
optimal local minimum. Furthermore, MME-DDP is able to
consistently achieve a significantly lower cost, highlighting
the advantages of multimodal exploration.

VIII. CONCLUSION

In this paper, we derived ME-DDP and MME-DDP, two
algorithms based off the maximum entropy formulation
of DDP which provide improved exploration capabilities
over the vanilla algorithm. Our results suggest that the
added stochasticity and multimodal exploration improves
the ability of DDP to escape from suboptimal local minima
in environments with multiple local minima.

Future work include hardware implementation to verify
the exploration benefits of the proposed algorithms. On the
theoretical side we will investigate the conditions and rate
of convergence, as well as generalizations that include the
stochastic, risk sensitive and model predictive control cases.
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