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Structural Attacks and Defenses for Flow-Based
Microfluidic Biochips

Navajit Singh Baban
Ramesh Karri

Abstract—Flow-based microfluidic biochips (FMBs) have seen
rapid commercialization and deployment in recent years for point-
of-care and clinical diagnostics. However, the outsourcing of FMB
design and manufacturing makes them susceptible to susceptible
to malicious physical level and intellectual property (IP)-theft at-
tacks. This work demonstrates the first structure-based (SB) attack
on representative commercial FMBs. The SB attacks maliciously
decrease the heights of the FMB reaction chambers to produce
false-negative results. We validate this attack experimentally using
fluorescence microscopy, which showed a high correlation (R? =
0.987) between chamber height and related fluorescence intensity
of the DNA amplified by polymerase chain reaction. To detect SB
attacks, we adopt two existing deep learning-based anomaly detec-
tion algorithms with ~96 % validation accuracy in recognizing such
deliberately introduced microstructural anomalies. To safeguard
FMBs against intellectual property (IP)-theft, we propose a novel
device-level watermarking scheme for FMBs using intensity-height
correlation. The countermeasures can be used to proactively safe-
guard FMBs against SB and IP-theft attacks in the era of global
pandemics and personalized medicine.

Index Terms—Deep learning, Microfluidic biochips, structural
attacks, watermarking.

I. INTRODUCTION

ICROFLUIDICS refers to the interdisciplinary study of
fluid manipulation at nanoliter/microliter volumes. A
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microfluidics-based biochip (a.k.a lab-on-a-chip) miniaturizes
and integrates different macroscopic biochemical functionali-
ties (e.g., mixing, filtration, and detection) to a sub-millimeter
scale [1]. These lab-on-a-chip microsystems offer various ad-
vantages over conventional biochemical analysis techniques.
These include reduced sample volume, faster biochemical reac-
tions, higher system throughput, and ultra-sensitive detection.
They are revolutionizing biomedical applications such as point-
of-care (POC) medical diagnostics [2], deoxyribonucleic acid
(DNA) amplification platforms [3], and cancer research [4].
According to the 2021 Lancet commission report on diag-
nostics, 47 percent of the global population has little or no
access to diagnostics [5]. At the end of 2019, the first reports
of coronavirus disease 19 (COVID-19) appeared in China [5].
The COVID-19 pandemic spotlighted diagnostics, highlighting
years of under-investment and neglect leading to gross inequity
concerning access to diagnostics. However, the pandemic has
accelerated the development of new technologies, solutions, and
partnerships that can reduce the diagnostic gap [5]. Today, we are
seeing extraordinary momentum for innovation in diagnostics
technology and access. The molecular diagnostics market is
projected to be worth 31.8 billion United States Dollars (USD)
by 2026, up from 17.8 billion USD in 2021, a 79% increase [6].
The polymerase chain reaction (PCR) tests are forecast to expe-
rience extremely high growth in the future [6]. In May 2020, the
European Investment Bank invested 6 billion Euros in health
systems for COVID-19, including 1.5 billion Euros for com-
panies that include diagnostics [5]. The Access to COVID-19
Tools (ACT) Accelerator, launched in April 2020, is a global
effort to expedite the end of the COVID-19 pandemic [7]. The
ACT-Accelerator strategic budget for 2021 reported a funding
gap of 22.1 billion USD, out of which 8.7 billion USD is
attributed to diagnostics [7]. There is a strong case for investment
to improve access to diagnostics, which is likely to lead to the
widespread use of microfluidic-based biochips. The products
and services related to molecular diagnostics include reagents,
microfluidic-based biochips, POC devices, and tabletop in-
struments (sensors and networked computers) [8]. Our work
presents a structure-based (SB) cyber-physical vulnerability of
flow-based microfluidic biochips (FMBs) that an attacker can
use to tamper with the results, leading to low-quality diagnostics.
The repercussions of such attacks are severe, with the potential
to harm patients, cause resource waste, and generate negative
economic consequences. Health practitioners can lose trust and
discontinue using these products if they perceive them to be
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of low value in clinical care. These repercussions can motivate
adversaries to maliciously target the vulnerabilities associated
with FMBs for their own gains. Thus, it is essential to proactively
safeguard diagnostics-related products such as FMBs against
such attacks. In this work, we experimentally study potential
SB attacks on FMBs and propose effective countermeasures
using deep learning (DL) methods to secure FMBs against such
attacks. Further, to protect FMBs against intellectual property
(IP)-theft threats such as counterfeiting and overbuilding, we
provide a device-level watermarking scheme by exploiting the
height-dependency of the microchambers and microchannels on
fluorescence intensity. The rest of the paper is organized as
follows: Section II describes the background and motivation.
Section III presents the adversarial model. Section IV shows
the experimental results on the SB attacks. Section V presents
the DL-based defense to detect the SB attacks. Section VI
presents a novel device-level watermarking scheme to protect
FMBs against IP-theft threats. Section VII gives a discussion on
the obtained results. Finally, Section VIII concludes the paper.
Materials and Methods are given in Section I of the separate
Supplementary Materials file.

II. BACKGROUND AND MOTIVATION

A flow-based microfluidic biochip (FMB) uses microchannels
and pressure-driven elastomeric micro-valves to manipulate the
continuous flow of fluid for performing various bioassays (Sup-
plementary Materials, Section II). The rapid spread and impact
of COVID-19 has placed a significant burden on public health
systems, highlighting the critical need for high-throughput and
innovative testing approaches to combat future pandemics. The
widespread use of the SARS-CoV-2 reverse transcription (RT)—
PCR test has led to a significant gap in the availability of test kits,
emphasizing the need for ultra-high-throughput screening. High
cost and scarcity of reagents [9] hampered the global scale-up
of PCR testing, creating a void in adequately monitoring com-
munities for COVID-19.

Significant false-negaive rates (10-30%) from PCR have been
widely reported [10], [11] posing a major challenge in curb-
ing the spread of infection. Poor sample quality (with low
viral loads) that evades standard PCR methods [12] further
exacerbates the situation. An additional challenge concerning
COVID-19 spread is the role of asymptomatic transmission [12],
[13]. Reports suggested that 40-80% of infected individuals are
either pre-symptomatic, asymptomatic, or only mildly symp-
tomatic [9]. Thus, early detection of infection in these asymp-
tomatic individuals is critical for disease control. However,
asymptomatic carriers sometimes carry low viral loads (1 to
40 viral copies/uL) [9] that a standard RT-PCR test may miss.
Therefore, it is critical to have more sensitive detection methods
that can detect low viral loads.

The above concerns related to throughput can be addressed by
miniaturizing the testing volume to the nanoscale regime [14].
This can significantly increase the diagnostic space for indepen-
dentreaction chambers [ 14]. In addition, such a strategy provides
a cost-effective microfluidic active cyber-physical system [8]
with several advantages: a nanoliter volume per reaction (lower
reagent consumption per assay), a parallelized assay system
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(high throughput), automation compatibility (increased preci-
sion), capable of running a large number of replicates per sample
(higher confidence in test results) and the ability to test for mul-
tiple pathogens (broader diagnostic capability) simultaneously.
This strategy has the potential for assay multiplexing to identify
additional pathogens and sample pooling to increase throughput,
leading to a further reduction in per-test costs. This principle is
the basis of Fluidigm’s proprietary Integrated Fluidic Circuitry
that has been deployed in several of their FMBs for genotyping,
gene expression, and single-cell and DNA analysis [15].

Concerning low viral load detection, Xie et al. [14] demon-
strated ultra-sensitive detection of low SARS-CoV-2 viral loads
(1 to 40 viral copies/uL) using quantitative (qQ)RT-PCR via
a commercial microfluidics platform with 4608 independent
microscale reaction chambers containing fluids in nanoliter vol-
umes. Their approach of using nanoscale qRT-PCR enhanced
the limit of detection by 1000-fold compared to conventional
RT-PCR techniques, enabling detection below one copy/uL.
They used 182 swab samples, 91 positive samples, and 91
negative samples each, including samples previously diagnosed
as negative by an accredited diagnostic laboratory. Out of the
91 negatively diagnosed samples, 17 were found to be positive
using the nano-miniaturized biochip, indicating a 18.7% false-
negative rate of the conventional RT-PCR technique.

A recent study by Sharkawy et al. [16] reported similar results
where they tested paired COVID-19 samples to compare the
conventional RT-PCR diagnosis versus saliva-based diagnosis,
which they performed using a commercial FMB. In particular,
they compared specimens (nasopharyngeal (NP) versus saliva
samples) from hospitalized patients with symptomatic COVID-
19 and found 15 discordant samples.

Out of the 15 discordant samples, 3 were positive in NP
(conventional RT-PCR) but negative in saliva (FMB-based RT-
PCR) technique. In comparison, 8 out of 15 discordant samples
tested negative in NP (conventional) but were diagnosed positive
with the saliva-based technique. The remaining 4 samples gave
inconclusive results. The reason for discordance behind the three
NP-positive (but saliva-negative) samples given was the high
dilution of saliva. However, the 8 samples that were declared
negative by the conventional NP technique tested positive with
the saliva-based technique, and that too after 8-10 days post
symptom onset. Here, the reason for discordance given was low
viral loads (1 — 40 viral copies/uL), which the conventional
technique was not able to detect.

Thus, samples with low viral loads (1-40 copies/uL) either
due to poor sample quality resulting from wrong handling,
extraction, and storage of the samples or through asymptomatic
carriers with low viral loads might go undetected with con-
ventional RT-PCR techniques. In comparison, FMBs can detect
these low viral load samples.

Currently, FMBs are not widely used in clinical diagnostic
of SARS-Cov-2; rather, they mainly serve biomedical research
purposes. However, they have tremendous potential for diag-
nostics, given the limits of standard PCR techniques [10], [11],
[15] and the dire need to narrow the diagnostic gap world-
wide [5]. The manufacturing of integrated fluidic circuits on
a biochip has many steps and requires multiple entities, some
of which might be untrusted. The manufacturing steps include
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the creating design files (ideally either by a trusted third-party
designer or an in-house manufacturing unit) and executing the
design files in a foundry to fabricate the final product (again
ideally either by a trusted third-party designer or an in-house
manufacturing unit). These stages of design and manufacturing
highlight structure-based (SB) attacks, where an attacker can
introduce structure-based positional and dimensional variation
in the biochip’s embedded components to critically affect the
diagnostic outcomes, producing incorrect results.

With the advent of manufacturing-as-a-service [17], biochips
can become more vulnerable to SB attacks. The goal of such an
attacker is to produce false or misleading test results, compro-
mising the integrity of molecular diagnostics research, jeopar-
dizing the healthcare industry, and making health practitioners
lose trust and discontinue using the biochips. The adversary’s
economic interests will then be satisfied as the customers would
switch to other biochip companies in the marketplace.

Physical reverse-engineering [18], [19] to steal intellectual
property (IP) can be a second line of attack. These attacks in-
volve stealing the biochip architectural layout, component-level
netlist, and information about the bio-protocol without incur-
ring development costs [19]. IP theft using physical reverse-
engineering provides an attacker with knowledge about the
biochip’s structural components and associated functionality to
perform the bioassay. While fabricating the reverse-engineered
biochips, the attacker can then intentionally alter the structure of
components, producing discordant results to defame the original
biochip manufacturer. Furthermore, using the stolen informa-
tion, adversaries can carry out piracy of IP and test protocols,
counterfeiting, and overbuilding of biochips for illegal monetary
gain.

We categorize attacks in two main threat categories: (1) mali-
cious physical level threats, which incorporate the SB attack,
and (2) IP-theft threats, which incorporate physical reverse-
engineering, counterfeiting, and overbuilding attacks. For the
first threat category, we investigate SB attacks using a com-
mercial FMB as an exemplar. We employ two existing deep
learning (DL) models to catch microstructural anomalies on
FMBs. For the second category of threats, we propose a novel
structure-based device-level watermarking solution to validate
the authenticity of the biochip. The watermarking scheme in-
creases the height of the reaction chambers or microfluidic
channels at specific locations to obtain fluorescent markers that
can be detected using fluorescence microscopy. The pirated
or counterfeited FMBs would most likely be identified and
discarded by the authentic end-user or the entity that received
the fabricated FMB from a third-party manufacturer by checking
for these watermarks in the FMBs.

III. ADVERSARIAL MODEL

Fig. 1 illustrates the adversarial model and highlights the
vulnerable points corresponding to an SB attack. The model
has five parties: the customer, the FMB company, the designer,
the manufacturer, and the quality control unit.

Biochip designers integrate reaction chambers, microfluidic
lines, and valves to create a functional microfluidic platform in
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Fig. 1. Process flow of a biochip service and attack points. A customer places a
biochip order received by the FMB company (route 1). The FMB company sends
the order to the design unit (route 2). Now, there are two possible routes. First, an
attacker in the design unit sends the altered design files to the manufacturing unit
(route 3 A). Second, the authentic designer sends the design files (G-Codes) to
the manufacturing unit. However, an attacker in the manufacturing unit alters the
G-codes in the fabricating machine to carry out the SB attack (route 3). In either
case, the attacked biochip reaches the quality control unit (route 4) and escapes
detection owing to the stealthy nature of the attack. Finally, the compromised
biochip is delivered to the customer (route 5).

the form of design files. After the design files are generated,
they are sent to the manufacturing unit, where fabrication and
assembly of the biochip take place.

We make a distinction between the technical and operational
abilities of an attacker. Technical abilities refer to the knowledge
an attacker has on the working of the microfluidic platform and
the capabilities to extract information and resolve the ambigui-
ties that arise from experimentations. For instance, the attacker,
who is part of the design team (also known as design-level
threat model), can target reaction chambers or microfluidic lines
connecting the chambers and use the knowledge of the system to
alter the structural design codes (geometry (G)-codes) to hamper
the associated physical processes. Operational abilities refer to
the mode of operation employed by an attacker in the manufac-
turing unit to launch the attack. For instance, the attacker in the
manufacturing unit can target critical structural components and
alter relevant parameters to perform an SB attack.

The process flow of a typical biochip service [20] is shown
in Fig. 1. A typical service starts with a customer submitting
a service request for a biochip (route 1). After the service
request is generated, it is sent to the design unit (route 2). The
design unit is either in-house or third-party. In either case, the
designer generates design files to create structural design codes
(G-codes). The design unit sends the generated codes to the
manufacturing unit. There are two potential attack possibilities;
in the first case (route 3 A), an attacker in the design team can
target the crucial microstructures of the biochip and secretly
change the design codes to alter the structures producing false
outcomes after the bioassay execution. The maliciously modified
design codes go to the manufacturing unit. In the second case
(route 3), an authentic designer sends the right design codes to
the manufacturing unit (route 3). However, an attacker in the
manufacturing unit alters relevant machine parameters before
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manufacturing the biochip to perform the attack. In both cases,
the attacked biochip reaches the quality control team (route 4)
and evades fault detection owing to the stealthy nature of the
attack. Finally, the compromised biochip is delivered to the
customer (route 5).

Prior methods on securing FMBs against malicious attacks
presented a high-level overview of attacks and defense meth-
ods [8]. Chen et al. proposed a systematic framework for the
insertion and detection of hardware Trojans in FMBs [21]. For
Trojan insertion in FMBs, Shayan et al. [22] presented a mi-
crofluidic valve-based Trojan design. Here, an attacker increases
the thickness of the valve membrane, requiring higher pressure
to operate than the normal membrane. Such a valve response
can cause a malfunctioning of biochips and can be used to
launch attacks such as contamination, denial of service, and
parameter tampering. So far, no work has been reported that
explores malicious structural modification of FMB components
to produce false-negative results.

With respect to IP-theft-attacks and associated countermea-
sures for FMBs, Chen et al. [19] demonstrated a layout-
level reverse-engineering attack using image analysis. A re-
cent work presents a design obfuscation technique to thwart
reverse-engineering of bioprotocol by obscuring the actua-
tion sequence by carefully inserting dummy valves in the
FMB [1], [23].

Previous research has demonstrated malicious attacks such
as actuation tampering; however, the attacks were shown only
on digital microfluidic biochips (DMFBs) [24], [25], [26],
[27]. While the previous studies showed tampering attacks on
DMPFBs, such attacks have not been thoroughly explored for
FMBs. Similarly, regarding watermarking solutions, a previous
study demonstrated a watermarking technique to protect bio-
protocols (bio-protocol level watermarking) by hierarchically
embedding secret signatures in DMFBs [28]. The same bio-
protocol level watermarking scheme can be applied to FMBs.
However, no device-level watermarking schemes have been pro-
posed for FMBs where the watermark is inherently embedded
in the physical FMB.

In this work, we present a device-level watermarking scheme
for FMBs by increasing the height of the microchambers or
microchannels at specific locations to obtain fluorescent mark-
ers that can be detected and quantified using fluorescence mi-
croscopy. In this work, we present security solutions against
malicious cyber-physical and IP-theft threats. For the malicious
threats, we study SB-based result tampering by conducting
experiments on our laboratory-made FMB, whose design was
adapted from a commercial biochip. For countermeasures, we
present a DL-based defense to secure FMBs against malicious
SB attacks. For IP-theft threats, we provide a device-level wa-
termarking scheme for FMBs by using the dependency of the
height of the microchambers and microchannels on fluorescence
intensity.

IV. RESULTS ON SB ATTACKS

To steal IP and reverse-engineer the PCR regions of the
biochip containing integrated microfluidic lines, valves, and

IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 16, NO. 6, DECEMBER 2022

the reaction chambers, we obtained the architectural layout and
components netlist of a commercial chip using light and electron
microscopy techniques (Supplementary Materials, Section III).

By delayering the biochip, crucial PCR micro-components
were imaged, and the related bio-protocol information was
obtained based on the information provided on the biochip’s
website and operation manuals. Among the microfluidic com-
ponents identified during the microscopy investigations, we
focused on the reaction chamber to experimentally investigate
the SB attacks. A reaction chamber is a key component in which
sample and reagent mix before undergoing PCR heating and
(de)heating cycle for DNA amplification and fluorescence-based
quantification. In the SB attack, the attacker can decrease the
volume of the reaction chamber by reducing the height of the
cuboidal reaction chamber while preserving the top face of the
original reaction chamber. The malicious volume decrement
can decrease the fluorescence response producing misleading
or false-negative results. As a proof of concept, we quantified
the fluorescence intensity of different microscale volumes of
amplified synthetic SARS-Cov-2 DNA and found the effect of
intensity reduction when the volume was decreased (Supple-
mentary Materials, Section IV). The results show a 60% decrease
in the maximum intensity when the volume decreased from
1.5 pL to 0.8 pL. When the volume was decreased to 0.1 uL,
we saw a 90% reduction in the intensity compared to 1.5 uL
intensity.

The commercial biochip chosen as a reference for this study
uses nanoscale fluid volumes in its chambers. To evaluate the
effect of nanoscale volume decrement on representative com-
mercially available biochips, we fabricated relevant reaction
chambers connected with the microfluidic lines using 3D print-
ing techniques. The dimensions of the reaction chambers and the
microfluidic lines were adapted from the commercial biochip.
To mimic attacks, we decreased the reaction chambers’ heights
in the design files. Using the design files, we 3D printed the
FMB mold. After replication using PDMS, we obtained the
FMB. Bright-field images were taken to determine if the reduced
height chambers are detected during quality control checking.
The results showed that it is hard to detect the reduced height
chambers because the light-microscopy only uses top-view two
dimensional (2D) views for the identification (Supplementary
Materials, Section V).

Following light-microscopy investigations, we separately
pipetted a fluorescent dye (Alexa Fluor 488), and PCR amplified
mice DNA into the reaction chambers. We recorded the relative
intensity decrease using a fluorescent microscope. Fig. 2(a)
shows the bright-field image of the fabricated reaction chambers
with two of the chambers having 50% less height than the
original. Fig. 2(b) shows the fluorescence image of the same
reaction chambers shown in Fig. 2(a). Fig. 2(c) shows the asso-
ciated intensity versus distance response along the horizontally
scanned line shown in Fig. 2(b). The response indicated about
50% less intensity for the deviant (i.e., 50% reduced) height
chamber. Similarly, Fig. 2(d) shows the vertical scan intensity
versus distance response as we move from the bottom reaction
chamber (50% less height) to the top one (regular) via the
microfluidic channel. The height of the microfluidic channel
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Fig.2. Experimental demonstration of an SB attack. (a), A bright-field image

of the reaction chambers where the heights of the two chambers were reduced by
50% of the original height (270 pm). The scale bar is 280 pm. (b) A fluorescence
image of the reaction chambers as shown in Fig. 2(a). (c) Intensity versus distance
plot along the horizontally scanned line shown in Fig. 2(b). The scale bar is 280
pm. (d) Intensity versus distance plot along the vertically scanned line as shown
in Fig. 2(b).

was 90% less than the height of the original reaction chamber.
The response illustrated a high degree of correlation between the
intensity and the height of the microfluidic components where
a continuous transition of intensity, along the order: 50%, 90%,
no channel, and 100% height, was recorded, as seen in Fig. 2(d).

To quantify correlation, we developed a linear regression
model to relate the normalized heights of the reaction chambers
to the corresponding normalized intensities of the fluorescence
measurements. Normalization with respect to the maximum
height and intensity was done to make the parameters dimen-
sionless. Fig. 3(a) shows an example of the height change carried
out to obtain data points for the regression model. The first
row in Fig. 3(a) contains the regular reaction chambers with
100% height, i.e., 270 pm. All the other reaction chambers
are less in height than the regular ones, seen schematically in
Fig. 3(a). The effect of the height difference on intensity can
qualitatively be seen in the corresponding fluorescence image.
A linear fit was obtained using 18 height-dependent data points
with a high R-square value of 0.984, seen in Fig. 3(b). This
implies that the model explained 98.4% of the change in the
intensity actuated by the change in the reaction chamber’s height.
A similar linear regression model, having a R-square value of
0.987, was obtained with 21 data points but with PCR amplified
mice DNA, as seen in Fig. 3(c)-(d).

An attacker can use linear regression models of the type
presented here to perform an attack to deliberately create false-
negative results. It is important to note that one chamber cor-
responds to one patient’s sample. In the context of a disease
that can cause a pandemic such as Covid-19, even one false-
positive can increase the transmission rate, leading to serious
consequences. The results shown in Fig. 3 considered only
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the intensity decrement based on the height decrement as we
pipetted already amplified DNA into the reaction chambers.
However DNA amplification usually takes place in the reaction
chamber using heating and (de)heating cycles. The decreased
height inserts a layer of PDMS (an insulator) in between the
reaction chamber and heating source, hampering the process
of heating and (de)heating. Using finite-element simulation, we
show that the SB-attack can not only decrease final fluorescence
intensity but can affect PCR heating/de(heating) (Supplemen-
tary Materials, Section VI), which can further tamper the PCR
results.

In a  resource-constrained system, randomized-
checkpointing-based  quality checks can offer better
security [22]. To quantitatively evaluate the stealthy nature
of the SB attack, we propose a security metric to compute the
evasion probability during randomized-checkpointing-based
checks. With microscale reaction chambers, the quality control
checks would most likely be done by a microscope, either
manually or by using a charge-coupled device (CCD) camera
connected to the microscope. However, checking a large number
of reaction chambers will require several rounds of checking
sessions using the camera. This is because there has to be a
sufficient zoom or magnification to view the reaction chambers
for detecting structural faults. For example, the reference FMB
used here has 2304 reaction chambers; however, based on our
microscopy sessions using a 10X objective, only 12 of these
could be seen clearly to identify structural irregularities in the
reaction chambers, as shown in Fig. 4(a).

For comparison, Fig. 4(b) shows the microscopic view of 12
reaction chambers of the FMB microfabricated in our laboratory.
Fig. 4(c) shows the randomized checkpointing schematic where
the microscope scans specific regions on the FMB at an instance.
Here, we divided the FMB into 192 regions (12 rows and 16
columns), where each region contained 12 reaction chambers. In
general, suppose R views are needed to scan the whole FMB. For
example, Fig. 4(c) shows 192 regions needed to scan the chip.
Therefore, R = 192. Assume 7 of the views contain anomalous
or deviant-height reaction chambers. For example, in Fig. 4(c),
one view has deviant chambers. Therefore, » = 1. Let n be the
number of random trials to detect the structural anomaly. For
n = 1, the probability that an anomaly is detected is 5. The
probability that an anomaly is missed or evasion probability
(P.), is given by (1).

Po=1-— (1)

v

For n random trials, the probability of evasion P, is given by

o= (1-5) (1_Ri1> (1_37;2)

(i) o

The criteria for detecting an SB attack could be some identifi-
able physical anomaly compared to the surrounding chambers.
For example, we found less reflected light from the walls of the
deviant-height chambers compared to the original chambers.
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For the reference FMB, R = 192, while r and n remain as
variables. An attacker is likely to increase r as much as possible
to make the attack more lethal. However, increasing r decreases
the P.. To quantify this, we plot a graph between P, and n by
varying r. Fig. 4(d) shows that P, exponentially decreases as r
increases from 1 to 20. When n = 20 and r = 5, P, decreases
by 36% compared to the r = 1 case. In comparison, for the same
r =5, when n = 50, P, decreased by 71%, indicating a strong
dependence of P. on n. To record the effect of r on P, we fixed
n = 50 and plotted P, for r ranging from 1 to 20 (Fig. 4(e)).
When r was increased from 1 to 2, a 26% reduction in P, was
recorded, and for » = 5, a 71% reduction in P. was recorded.
The P, reduced 99% for r = 20 compared to the r = 1 case.
Thus, a drastic decrease in P. was recorded with an increase
in r for the given n = 50. An attacker would aim to increase
r as much as possible; they are aware that increasing r would

be easily detected by randomized checkpointing. There is an
inherent tradeoff between r and n.

An attacker can use such metrics to decide on r given an n.
For example, let us consider the case of » = 5 and record the
decrease in P, with respect to r = 1. If n = 20, the attacker
would likely choose 7 to be 5 that shows a 36% of decrease
in P, compared to the case where n = 50, which shows 71%
of decrease in P,. This selective tactic based on the proposed
metric will give them a 35% higher chance of evasion, shown
in Fig. 4(c). The FMB companies could use such randomized
checkpointing to proactively secure their biochips.

We propose another security metric based on independent
Bernoulli trials, where the quality control checks are done on all
the chambers (using all 192 views) rather than the randomized
checks described above; thus, » = R here. After applying this
relation in (3), P, becomes zero. This ensures that a detecting
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system would surely detect the anomaly if all the chambers are
viewed, assuming that the detecting system is an ideal one. How-
ever, P, would not be zero if the detecting system is notideal. The
ideality of the detection system can be quantitatively evaluated
using the associated sensitivity and specificity parameters.

For structural anomaly detection in the reaction chambers
via optical microscopes, we define sensitivity (.S,,) to be the
conditional probability of detecting the structural anomaly when
the anomaly is actually present. On the other hand, specificity
(Sp) is the conditional probability of not detecting the structural
anomaly when the anomaly is not present. Here, we focus
our attention only on the region where the structural anomaly
can be seen and evaluate the detection probability (Pp) of the
microscope for varying values of S, and S,. For example,
consider the case shown in Fig. 4(f), where the red outlined inset
depicts the region containing one deviant height chamber out of
12 reaction chambers. Based on the Bernoulli trial scheme, Pp
can be evaluated using the following (3), where cis the number of
deviant chambers in a microscopy view showing 12 chambers.
Note that S, and S, denote sensitivity and specificity of the
microscope, respectively.

Pp = (Sn)c ) (Sp)lgic ©)

A manufactured FMB is rejected if at least one of the checking
sessions identifies SB-attacked deviant-height reaction cham-
bers. If the quality control checker is aware of the anomaly
detection method, such as shadow/reflection-based anomaly
detection, at least one anomalous view will lead to the lot’s rejec-
tion. Otherwise, the SB attack will go undetected. Assuming that
the checker or detector knows the anomaly detection policy, we
define a metric that quantifies the probability (.5) of rejecting a
FMB if an anomaly is detected during the scanning of the whole
biochip. As per the commercial reference FMB, 12 reaction
chambers can be observed for anomaly detection, as shown in
Fig. 4(f). Therefore, 12 independent trials are needed to detect
the number of deviant-height chambers. Let ¢ be the number
of deviant-height chambers found during the 12 independent
trials. The inset in Fig. 4(f) shows the situation where ¢ = 1 out
of the 12 chambers. Let Pp be the detection probability during
the 12 independent trials. Then the probability of successfully
rejecting the biochip (rejection probability, S) is the probability
of detecting an anomaly for at least one trial out of 12 trials,
which is equal to 1 minus probability of not detecting any
anomaly at all. Equations (4)—(6) below relate S with Pp where
k denotes number of anomaly detection events out of 12 trials.

S=Pk>1)=1-P(k=0) (4)
P(k=0)= (102> (Pp)’ (1= Pp)**™° ()
S=1-(1-Pp)*? (6)

We apply (3) to evaluate Pp for different S,, = S, ranging
from 0.5 to 0.99, seen in Fig. 4(f). Pp increased when .S,, and
S, were increased. For example, when S,, = S}, increased from
0.8 to 0.9 and 0.95, Pp increased by 2.9-fold and 7.4-fold,
respectively. When S,, and S, increased from 0.95 to 0.99,
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Pp increased by 64%. Using the Pp values, we evaluated the
rejection probabilities (S) using (6), plotted in Fig. 4(g). The
plot indicates S increases considerably with an increase in Pp.
A 41% increase in S was recorded when Pp increased from
0.07 (corresponding to S,, = S}, = 0.8) to 0.28 (corresponding
to S, = Sp=10.9). For Pp equal to 0.54 and 0.88 (corresponding
to S, = S, = 0.8 and 0.99, respectively), S converged to unity.
Thus, sensitivity and specificity of the detecting microscopes
can affect rejection probabilities to discard SB-attacked FMBs.
The Bernoulli trial-based security evaluation shows that even if
the whole FMB is scanned for anomaly detection, an attacker
can evade detection due to the limits of the detecting system.
Using these metrics, attackers can pick an attack scheme that
maximizes their chances of escaping detection. Defenders can
proactively compute these metrics to safeguard FMBs against
SB attacks.

V. DEFENSE AGAINST SB ATTACKS

To protect against the attack described in Section IV, we
have to inspect all the reaction chambers present on the biochip.
However, an inspection of all the reaction chambers, which could
be in thousands, is not practical in realistic scenarios for low-cost
biochips. Therefore, we have employed two DL-based anomaly
detection algorithms for detecting deviant chambers. We next
present these DL-based anomaly detection techniques to counter
SB attacks.

Anomaly detection or outlier detection is a technique that
helps to identify data instances which deviate significantly from
majority of data instances. Outlier detection [29], [30], [31], [32]
can be key to detecting malicious behavior, and thereby prevent
compromised biochips from being sold commercially. In recent
years, machine learning (ML) methods, especially DL, have
been increasingly adopted for predictive analysis. Automated
feature extraction in DL helps us to define the boundary between
normal and anomalous behaviour in the dataset. The dataset in
our application is composed of a microscopic view of reaction
chambers in the biochip.

Our approach is presented in Fig. 5(a). We consider true im-
ages to be those where each of the reaction chambers has 100%
height, thatis, 270 pm, as shown in the top row in Fig. 5(b). If any
reaction chamber has a height that is not equal to 270 pm, then
the image is deemed to be an outlier. The deviant-height reaction
chambers can be seen in all the other rows in Fig. 5(b). Our goal
is to detect the outliers and prevent the attack from succeeding. In
order to perform outlier detection, the DL. model must be trained
on a large dataset (Supplementary Materials, Sections VII and
VIII). The image dataset is comprised of two different classes of
data which indicate true and anomalous images each amounting
to 400 images. We further split the dataset into a training dataset
with 80% of the images and validation dataset with the remaining
20% of the images.

Many ML techniques have been considered for anomaly
detection; these include fuzzy logic [33], [34], Bayesian ap-
proach [35], [36] genetic algorithm [37], [38], and neural net-
work [39], [40]. However, DL has been shown to be more
effective than traditional ML methods [41], [42], [43]. The
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9 out of 12 chambers have deviant heights. These deviant height chambers are
marked as red boxes. The scale bar is 270 pm. (c) Training and validation losses
for the ResNet-34 model. (d) Generator and discriminator Losses for the GAN
model. (e) Training and validation accuracy for ResNet-34 model.

most frequently used DL methods are based on generative
adversarial networks (GANs) [33], autoencoders [44], convo-
lutional neural networks (CNNs) [45], and Long Short-Term
Memory (LSTM) [46]. Deeper convolutional neural networks
can extract image representations by stacking layers in the
network architecture and can classify the images with higher
accuracy. However, stacking more layers gives rise to a problem
of vanishing/exploding gradients, which adversely impacts con-
vergence. This problem, however, can be solved by performing
normalization of the initial and intermediate layers, but when
these deeper neural networks start converging, a problem of
degradation occurs whereby the accuracy saturates and then
degrades rapidly.

In order to address this problem, deep residual networks
have been proposed. Residual neural networks or ResNets [47]
perform image recognition, image segmentation, and visual
object detection, and they have been used in healthcare-related
applications [48], [49], [50], [51], [52]. These networks stack
residual blocks on top of each other to form a network; e.g.,
ResNet-50 comprises fifty layers using these blocks. There are
residual connections connecting the pre-activation from one
layer with the input of a previous layer in an additive fashion
skipping several layers in between, and the non-linear activation
is applied to the sum to compute the input for the next layer.

A generative adversarial network (GAN) is a type of deep
neural network that generates new data from the training dataset.
GAN:Ss consist of two key components, known as the generator
(@) and the discriminator (D), which are trained against each
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other in an adversarial manner. The Generator model generates
images that are then evaluated by the discriminator model. The
GAN model maximizes the probability pdata(x)) that any real
input image, z, is classified as belonging to the true dataset
while any fake image generated by G has minimum probability
(pz(z)) of being classified as belonging to the real dataset. If
G(z) represents that the generator function maps a latent space
vector z to the input data-space, the loss function used by GAN
maximizes the function D(z) while minimizing D(G(z)). Thus,
D and G can be considered to be two agents playing a minimax
game with loss/error function given by V (D, G) given by (7),
where F represents expectation in terms of probability.

ngn{mgx{V(D, G)}} = Epepdatax)[log D(z)]

+ Eepz(o [log(1 — D(G(2)))]
@)

Among GAN architectures, deep convolutional generative
adversarial networks (DCGAN) are especially effective for data
augmentation with limited dataset size [53]. The DCGAN ar-
chitecture was proposed to expand on the complexity of the
generator and discriminator networks. It uses CNNs for the
generator and discriminator networks.

We used two approaches to detect anomalies: a 34-layer deep
residual neural network ResNet-34 and a GAN-based network
DCGAN. The ResNet-34 model is preferred to the other deeper
neural networks because it solves the problem of vanishing
gradients by using residual networks, which enables it to skip
connections backward from later layers to initial layers, thereby
allowing gradients to flow. This helped ResNet-34 in convolving
the images, extracting features, and finally performing quality
control checks on products.

We trained the ResNet-34 model with the Adam optimization
algorithm and the cross-entropy loss function for 25 epochs,
with a batch-size of 32 image samples and a learning rate
of 1 x 10~%. The Adam algorithm is a one-step optimization
algorithm for random objective function. The hyper-parameters
for the Adam algorithm can be easily adjusted to support back
propagation with faster convergence speed and effective learn-
ing. The cross-entropy loss function used for training helped
in updating the weights and bias at a reasonable speed. The
loss curves for the training and validation datasets can be seen
in Fig. 5(c). DCGAN-based anomaly detection appeared to be
useful since there is a shortage of ground-truth anomalies; it
helped us to capture the real data distribution alongside the
generation of simulated data. The DCGAN model was trained
with a mini-batch size of 32 images for 30 epochs using the
Binary Cross Entropy loss (BCE Loss) function. The BCE
Loss function helped in linear back-propagation with a finite
loss value. The training for the G and D networks was done
using separate Adam optimizers. The optimizer for D used
a learning rate of 1 x 10~* while that for G used a learning
rate of 2 x 1074, The loss curves for the DCGAN model are
shown in Fig. 5(d). As training progresses, the loss values for D
keeps on decreasing while that for G keep on increasing which
clearly indicates that D has learned to discriminate between the
ground truth and anomalous data while G has failed in fooling D.
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Fig. 5(e) shows the classification accuracies for the ResNet-34
model for the training and validation data sets, respectively. The
best recognition accuracy was found to be about 96% indicating
that the model was effective in identifying the images having
deviant height reaction chambers.

Further, to evaluate performance measurements of our DL
models, we have used precision score, recall score, F1 score,
false positive rate (FPR), and false negative rate (FNR) as
evaluation metrics (see Supplementary Materials, Section VIII).
Our results indicate 0.0476 FPR and 0 FNR for ResNet-34, and
0 FPR and 0.0454 FNR for DCGAN, showing that are models
are able to achieve high performance.

VI. WATERMARKING

We propose a device-level watermarking scheme for FMBs
using the reaction chamber’s height-intensity correlation. We
leverage this inherent dependence of fluorescence intensity on
the reaction chamber height to embed fluorescent markers into
FMBs. We increased the height of certain reaction chambers
and of the microfluidic channels at specific locations. When a
fluorescent dye was pipetted to these increased height portions,
fluorescent markers were obtained that were quantifiable using
fluorescence microscopy. Thus, these fluorescent markers, when
seen using a fluorescence microscope, acted as a watermark.
In the event of an SB attack suspicion or suspicion regarding
piracy, forgery, and counterfeiting, this secret watermark from
the biochip can be undeniable authorship proof, safeguarding
the biochip against these attacks.

In Section IV, we showed that reducing the height of a
reaction chamber can decrease fluorescence intensity. However,
reducing the height of a reaction chamber compromised the PCR
amplification outcomes resulting in false-negative readings. As
an alternative, increasing the chamber height stealthily as an
embedded signature is a viable watermarking policy and this
would not compromise amplification results. Furthermore, these
increased-height chambers can remain effectively hidden and
can only be quantitatively extracted using the distance-intensity
graph, as shown in Fig. 6.

Fig. 6(a) shows a schematic where the reaction chambers
heights were increased to quantify the increase in fluorescence
intensity. The height of the first-row chambers was kept the same
while the others were changed with a step size of 1 um. The
corresponding bright-field image was taken from a light mi-
croscope. All chambers are qualitatively indistinguishable from
each other due to the minimal height increment. However, the
change becomes evident when we used fluorescence microscopy
to quantitatively characterize the intensity-height relationship.
Fig. 6(b) and (c) show the blue lines, which indicate the hori-
zontally and vertically scanned paths of intensity-distance plots.
Fig. 6(d) and (e) show the intensity-distance plots corresponding
to Fig. 6(b) and (c), respectively.

The response in Fig. 6(d) shows a minimal change in intensity
due to the same height (270 pm) across all the three top-row
chambers. We attributed this change to be noise and defined a pa-
rameter named standard deviation (o) to quantify the noise. We
calculated the o by subtracting the maximum (48488 A.U) value
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Fig. 6. Watermarking using reaction chambers’ height increment. (a) A
schematic showing increased height chambers to evaluate the intensity-distance
relationship. The bright-field image taken from a light microscope shows the
reaction chambers. The original and watermarked chambers are qualitatively
indistinguishable. The scale bar is 250 pm. (b) The fluorescent image shows the
Alexa Fluor 488 dye-filled chambers. A horizontal scan was done on the top
row of the fabricated chambers. The scale bar is 250 pum. (c) The fluorescent
image shows the Alexa Fluor 488 dye-filled chambers. A vertical scan was done
on the leftmost column chambers. The scale bar is 250 pm. (d), The intensity
versus distance plot corresponding to the horizontal scan in Fig. 6(b). (e) The
intensity versus distance plot corresponding to the vertical scan in Fig. 6(c). A
corresponds to the mean difference in the intensity for 1 pm height difference,
which was recorded to be 733 A.U.

from the minimum (48121 A.U.), which resulted in the 0 = 367
A.U. In comparison, the response in Fig. 6(f) shows increased
intensities corresponding to the increased heights across the
left-most first-column chambers shown in Fig. 6(d). The results
demonstrated the highly sensitive nature of detection, where the
response changed for even 1 ym of height increase. For the limit
of detection (LOD), we defined a parameter A that corresponds
to the difference in the intensity for 1 um height difference,
which we recorded to be 733 A.U. Using ¢ and A, we defined
the limit of detection in (I1,op) as in (8) [54]. By inserting the
relevant values, we obtained I;,op = 1834 A.U., which dictated
the minimal step size to be followed for varying heights of the
reaction chambers to insert the watermarks. Considering the
obtained I;,op, we propose the step size to be 3 pum, which
can effectively give detection readings without getting interfered
with noise signals. Thus, increasing the height of the chambers,
leading to an increase in the fluorescence intensity post PCR
amplification, offers an effective scheme for watermarking. By
choosing certain reaction chambers (with increased heights),
a watermark can be embedded that can be quantified using
fluorescence intensity measurement. For a sensitive fluorescence
microscope, which can quantify even 3 pm of height increment,
as shown in this work, a FMB designer has several height
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Fig.7. Watermarking using microfluidic lines and watermark read rates. (a) Inserted structural and fluorescent watermarks and associated fluorescence intensity-

distance response. The bright-field image shows the structural markers in the microfluidic lines. The zoomed image shows the fluorescent markers embedded in
the microfluidic lines. The dimensions of the square marker are: height (200 xm), 50 pm x 50 pm, and the rectangular marker are: height (67.5 pm), 100 pm
x 50 pm. The scale bar is 250 pm. (b) The schematic shows a labeled reference FMB to identify the location of the reaction chambers. The zoomed schematic
shows the watermark where the number of markers is three, shown in red color. The sensitivity (Sn) is 0.95, and the specificity (Sp) is 0.98. The plot shows the
associated watermark read rate (W) with respect to the number of sub grids (|g|) to detect the watermark. The number of markers is three, sensitivity (Sy,) is 0.95
and specificity (Sp) is 0.98. (c) Watermark read rate versus |g| for different S,, = S,. (d) Watermark read rate versus number of markers (m) for S, = 0.95 and

S, = 0.98.

options, which they can use to watermark or fingerprint the
FMBs.

Irop =A+30 (8)

We considered signatures embedded only in the microfluidic
lines, excluding the reaction chambers. By increasing the height
of microfluidic channels at specific locations in the channels,
structural (detected only by light microscopes) and fluorescent
markers (detected only by fluorescence microscopes) can be
obtained. These markers can act as a secret watermark, which
can be used as a piece of evidence by the authentic party to claim
ownership of the biochip. Fig. 7(a) shows light (for structural
markers) and fluorescence microscopy (for fluorescent markers)
images of the embedded markers in the microfluidic lines.
The results (Supplemnetary Materials, Section IX) highlight
the variability (location- and dimension-wise), which can be
used to insert unique signatures for either watermarking or
fingerprinting FMBs. This watermarking scheme provides two
layers of protection where even though an attacker copies the
structural watermark, copying the fluorescent markers, which
involves matching the exact intensity-distance response based
on the increased height of the channel portion, is difficult to
achieve.

We quantitatively evaluated the efficacy of such a water-
marking scheme, in terms of accuracy and stealth, by defining
a metric, W, which is the probability of successful readout

rate of the embedded watermarks. Although inserting water-
marks was 3D in nature, the microscopy-based detection is
2D, where a set of markers needed to be detected on a set
of the 2D grid for authenticity verification. The set of all
grids (G) corresponded to the maximum possible number of
markers that could be inserted on the grid. For the exam-
ple shown in Fig. 7(b), G = { A1, A2, A3,...,VV 48} contain
2304 elements. Let g be the subset of G whose elements con-
tain sub grids to narrow down the search region for detect-
ing the watermark markers. For the example in Fig. 7(b), the
set g={AA21, AA22, AA23, BB21, BB22, BB23,CC21,
CC22,CC23,DD21,DD22, DD23} contains 12 elements.
Let m be the set of markers chosen for the watermark. For
the example in Fig. 7(b), the set m = {AA21, BB22,CC33}
contains 3 elements. Let |m| markers (cardinality of the set m be
chosen out of |g|, where |m| < |g|. The set m serves as the water-
mark. The watermark can be codified by vectorizing the grid. For
example, a 3 x 3 grid embedded with markers on the diagonal is
coded by vectorizing the grid as {1,0,0,0,1,0,0,0,1}, where
each entry is a grid location.

Let D be the event of detecting the markers when they are
present (denoted by the event M). Similarly, let D’ be the event
of not detecting the markers when they are not present (denoted
by the event M"). (9) relates W to the conditional probabilities
of successfully detecting the markers (P(D|M)) when they are
present and not detecting the markers (P(D/|M/)) when they
are not present. These conditional probabilities are raised to
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the power |m/| and |g| — |m|, respectively, to account for the
probability of a successful watermark readout rate [17]. Note
that P(D|M) and P(D'|M’) can also be regarded as sensitivity
(Sy) and specificity (Sp) [17], respectively, as shown in (10).

W =P (D'| M) P(D | ) ©
Which implies that

W = (Sp)/7t7m!- ()™ (10)

Note that S,, and S, depend on the detection abilities of the
system, such as the microscope and the CCD camera attached
to it. Based on [17], we chose S,, = 0.95 and S, = 0.98. After
choosing the value of S,, and S, we fixed |m| as to be 3 as
per Fig. 7(b). We then varied |g| from 3 to 2304 (jm| < |g|,
therefore |g| starts from 3) and recorded the variation in V. We
varied |g| up to 2304 (|G|) because the commercial biochip has
a maximum of 2304 reaction chambers, schematically shown
in Fig. 7(b). Using (10), we plotted W against |g| for S, =
0.95, S, = 0.98, and |m| = 3, seen in Fig. 7(b). As |g| denotes
maximum number of sub grids in which the markers must be
detected, we labeled the X -axis of Fig. 7(b) to be “Number of
sub grids to detect the watermark (| g|).” The response in Fig. 7(b)
suggests an exponential decrease in W with an increase in |g|.
To interpret the results, we considered the following conditions.

Let us assume that an authentic end-user knows the water-
marking scheme and the value |g|. After accessing the biochip,
the user can simply zoom on to the pre-known |g| under a
microscope, to check the watermarks. We consider that a view
from the microscope can successfully fit 12 reaction chambers
at the given magnification. The user can detect three embedded
markers out of 12 chambers using the microscopic view. Thus,
for the authentic end-user, |g| = 12 and |m| = 3, and as per (10),
W = 0.7, seenin Fig. 7(b). In contrast, an attacker who is willing
to search and steal any watermarks has to search all the chambers
using the microscopes (light or fluorescence). Therefore, for an
attacker, |g| = 2304 and |m| = 3. As shown in Fig. 7(b) plot,
the signature read rate W is 6 x 10~2', which is close to zero
given S,, = 0.95, and S, = 0.98 for the microscope. Note that
W approaches zero near |g| = 250. Thus, the attacker is most
likely to miss the watermark.

We evaluated the effect of different S,, = S, values (ranging
from 0.5 t0 0.99) on W given |g| = 12 and |m| = 3. The results,
plotted in Fig. 7(c), show a 39% and 68% decrease in W when
Sp =S, decreased from 0.99 to 0.95 and 0.9, respectively.
When S,, = S}, was decreased from 0.99 to 0.7, W decreased to
99%. Further, when S;, = .S, was decreased below 0.7, that is
0.6 and 0.5, the decrement in W showed 99% saturation. Thus,
the evaluation highlighted a notable effect of S, and S, on W.
Next, we increased the number of markers and evaluated W
versus [m/| given S,, = 0.95 and S, = 0.98. When the number
of markers was increased from 3 to 6, we recorded a 8.8%
decrease in W, as seen in Fig. 7(d). For 9 and 12 markers,
we recorded a 17% and 24% decrease in W, respectively, with
respect to the |m| = 3 case. For more specific detecting systems,
increasing the number of markers decreases W owing to the
|m| variable that is present in the exponent of S, as seen in
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(10). Similar findings were reported by Tiwari et al. [17], where
increasing the number of markers decreased the watermark read
rate. Using such watermarking metrics, a quality control team
can gain insights into the counterintuitive events, where even
increasing the number of markers can decrease the read rate.
Including such metrics in quality-control checks will help in the
design of effective watermarks.

To tackle the reduction in W in Fig. 7(d), redundancy of
grids can be useful [17]. (11) or (12) gives the signature read
rate with redundancy (Wg), where R denotes replication of the
grids used for the watermark. For R = 1, (12) reduces to (10).
For |g| = 12,|m|=6and R = 1, W = W = 0.65, presented
in Fig. 7(d). However, for |g| = 12, |m| = 6,and R = 2, W =
0.78, thereby increasing the read rate by 20% (Supplementary
Materials, Section X). Thus, redundancy improves the read rate
of the embedded watermarks if the detecting system is more
specific than sensitive. However, the benefits do not always
increase with increasing redundancy. This is because, while
the sensitivity of the markers increases with redundancy, their
specificity also increases with redundancy. Thus, the designer
must select redundancy such thatlog Wr > log W [17]. Solving
this inequality, yields a cutoff factor, ciyyofr (see (13)) to compute
|g| and |m| so that W increases when using redundancy. qceyyofr
can be obtained using (14).

For example, for R = 2, .S, = 0.95,and S;, = 0.98, acuriort =
0.33. After inserting ceuorr = 0.33 in (13) with |g| = 12, we get
|m| = 4, which serves as a cutoff value for the number of mark-
ers. We evaluated two cases where |m| = 3 and 4, and we evalu-
ated W with and without redundancy. For |g| = 12, |m| = 3 and
R =1, Wr =W =0.71. However, when |g| = 12, |m| =3
and R =2, Wr =0.68, a 4.2% decrease in the read rate.
However, for |[g| =12, jm| =4and R =1, W = W = 0.69.
Moreover, when |g| =12, |m| =3 and R =2, Wi = 0.72,
indicating a 3.3% increase in the read rate, validating the cutoff
effect (Supplementary Materials, Section X).

WR — (P (D/ | M/)R(‘Q|*‘m‘)> .

Im|

(1-(1-PD| M) (11)

Wi = (SE06m) (1 -1 -s)m™ a2
m
gl < ML (13)
Qcuttoff
R—1)log, S
Qlcuttoff = ( 5? .S%?fl . (14)
tog, (25%5w)

VII. DISCUSSION

Flow-based microfluidic technologies are being commercial-
ized for point-of-care, clinical, and molecular diagnostics. The
complex manufacturing steps involved in fabricating FMBs
result in a horizontal supply chain, making them vulnerable
to cyber-physical threats. Considering the biomedical uses of
FMBs, it is important to secure them against such threats.

We have focused on the security and trustworthiness of FMBs
against two major threats: first, malicious cyber-physical threats,
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which include the SB attack, and second, IP-theft threats, which
include counterfeiting and overbuilding.

The SB attack deliberately decreases the heights of the FMB
reaction chambers to produce false-negative results. These at-
tacks can be deployed during the design and manufacturing
of a FMB. An attacker in the design unit alters design codes
to introduce structural faults and the compromised FMB is
manufactured. In another scenario, an attacker in the manufac-
turing unit modifies the machine parameters to launch an SB
attack. In either case, the compromised FMB evades detection
by the quality control team and a faulty FMB is delivered to
the customer. Microscope-based quality checks typically use
2D top views of FMBs to detect structural faults introduced
during manufacturing. Since the reduced height of the reaction
chambers cannot be easily detected from the 2D view using light
microscopes, the SB attack is stealthy.

We experimentally demonstrated an SB attack on a FMB
fabricated in our laboratory, whose fluidic lines and reaction
chambers were adapted from a commercial biochip. Using
a fluorescence microscope, we recorded the relative intensity
decrease to quantify the effect of an SB attack. The attack
reduced the fluorescence intensities with reduced-height reac-
tion chambers with a high degree of correlation. To quantify
the correlation, we developed regression models between the
chambers’ normalized height and intensity using a fluorescent
dye (Alexa Fluor 488) and PCR-amplified DNA. The linear
regression models showed 98.4% and 98.7% R-square values
for the Alexa dye and amplified DNA, respectively. Using
such a model, an attacker can decrease the chamber height to
match fluorescence intensity of negative controls, generating
false-negatives.

To circumvent such attacks, randomized checkpointing is a
viable option in a resource-constrained system. We evaluated the
stealth of SB attacks using a security metric based on randomized
checkpoints. Assuming that the anomaly detection strategy, such
as shadow-based or reflection-based anomaly detection on the
chambers, is known a priori, a quality control checker can
perform random trials (n) to detect the structural anomalies
on the FMB. If the structural anomalies are not detected, the
SB-attacked FMBs will evade the quality checks. We found an
exponential decrease in the probability of evasion (P, ) with the
number of views containing anomalous chambers (7). For ex-
ample, a 71% decrease in P, was recorded when r was increased
from 1 to 5 given n = 50. A 36% decrease in P, was recorded
when r was increased from 1 to 5 for n = 20. Hence, by knowing
n, an attacker can pick an optimum value of r to maximize
P.. On the other hand, FMB companies could proactively use
randomized checkpointing metrics to secure their biochips.

Another security metric that we proposed uses independent
Bernoulli trials, where the quality control checks are done on all
the chambers rather than on a random subset described above.
When checking all the chambers in a FMB using microscopes
with different sensitivity (S,,) and specificity (S},), we note a
considerable increase in P, for microscopes with low S, and
S, values. We evaluated this using the Bernoulli trial-based
metric by recording detection probabilities (Pp) for different
Sy and S}, values. A manufactured FMB is rejected if at least
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one check identifies an SB-attack chamber. If the checker knows
the anomaly detection policy, we defined the probability (.5)
of successfully rejecting a FMB for different Pp values. We
evaluated Pp for different S,, = .S}, ranging from 0.5 to 0.99
and found that Pp increases when S,, = S, increases.

For example, when S,, = .S}, increased from 0.8 to 0.9 and
0.95, the Pp increased 2.9-fold and 7.4-fold, respectively. Using
these Pp values, we evaluated the rejection probabilities (.5).
There is a considerable increase in S with the increase in Pp. For
instance, a 41% increase in S was recorded when Pp increased
from 0.07 (corresponding to S, =S, = 0.8) to 0.28 (corre-
sponding to S, =S, = 0.9). In comparison, for Pp values
equal to 0.54 and 0.88, corresponding to S,, = .5, = 0.8 and
0.99, respectively, S converged to unity. Thus, sensitivity and
specificity of the microscopes can affect rejection probabilities
to discard the SB-attacked FMBs. The Bernoulli trial-based
security metric shows that even when the whole FMB is scanned
for anomaly detection, there are opportunities for evasion de-
pending on the capabilities of the detecting system. These two
security metrics (randomized checkpoints and Bernoulli trials)
can thus be used to safeguard FMBs against SB attacks.

To perform anomaly detection, we focused on DL algorithms
to detect the structural anomalies in the image dataset. The
image dataset was composed of microscopic images of the
reaction chambers on the biochip. We consolidated our captured
images and manually labeled them to represent ground truth and
anomalies. The ground truth images were the ones where all
reaction chambers are at 100% height. The presence of at least
one reaction chamber with a different height was considered
anomalous data. Our goal was to detect these anomalies and
thwart the attack. We implemented two DL algorithms for
anomaly detection: a 34-layer deep residual neural network
ResNet-34 and a GAN (generative adversarial network)-based
network-DCGAN. ResNet-34 was preferred compared to other
deep neural networks since it solved the vanishing gradient
problem by using residual network blocks. GAN-based anomaly
detection, on the other hand, solved the problem of limited
dataset size by generating synthetic data. The two approaches are
promising in detecting the structural changes (with a recognition
accuracy of 96%) in the FMB and hence, could be used for
automatic quality control checks.

We proposed a device-level watermarking scheme for FMBs
to secure them against IP-theft-based threats, such as physical
reverse-engineering, counterfeiting, piracy, and overbuilding.
The watermarking scheme increases the heights of specific re-
action chambers and microfluidic channels at specific locations
on the biochip. We showed that the height increments yield
secret fluorescent watermarks, which could not be detected by
light microscopes but would only be detected by fluorescence
microscopes. We experimentally demonstrated this watermark-
ing approach where even a 1 pm height change was detected
by fluorescence microscopy. However, based on the standard
deviation (noise) and mean value of the recorded measurements,
we propose a minimum step size of 3 ym for height increment.
We utilized this scheme of height increments at specific locations
on the microfluidic channels that yielded structural markers
(detected by light microscopes only) and fluorescent markers
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(detected by fluorescence microscopes only) that jointly act as a
watermark. These watermarks provide two layers of protection.
Even if an attacker manages to find and copy the structural water-
mark, finding and copying the fluorescence-distance responses
based on the channel height is exceedingly difficult.

To evaluate the efficacy of the watermarking schemes, we
developed a watermark read rate (W) metric. We placed three
markers (|m| = 3) on the reference biochip and calculated W
for varying number of sub grids (|g|). These sub grids were the
ones meant to detect the watermarking markers given S,, = 0.95
and S, = 0.98. The |g| varies based on the watermark location.
For instance, an authentic end-user who knows the watermark
location would directly go to the location for identification using
a microscope. However, an attacker who does not know about
the watermark location has to scan the whole biochip to steal the
watermark details. We showed that W exponentially decreases
with the increase in |g|, which is good for an authentic user but
bad for the attackers, as they must search many more grids to
identify the watermark. We compared W, given |g| = 12 for
microscopes having S, and S, values ranging from 0.5 to 0.99.
The read rate drastically reduced by reducing S,, and S}, values.

For example, we recorded a 99% decrease in W when
Sp = S), values were decreased from 0.99 to 0.7. For detecting
microscopes, which are more specific than sensitive, like in the
case where S5, = 0.95 and S, = 0.98, we observed that W
decreased when a greater number of markers were used for a
given watermarking region. To tackle this decrement, we pro-
posed adding redundancy (R) by replicating the markers, which
can subsequently increase W. However, the benefits are not
indefinite with increasing redundancy, and there is a cutoff factor
(cveuttof) that needs to be accounted for, ensuring the increase in
W with redundancy. This is because, while the S,, of the markers
increases with redundancy, the associated S), also increases.
Thus, the designer must carefully select redundancy by deciding
on the aeyofr to satisfy log W > log W. A statistical metric
like the ones proposed in this work can help designers embed
watermarks in FMBs, which can be identified by an authentic
user but not by an attacker, thus safeguarding FMBs against
[P-theft-based attacks.

The device-level watermarking scheme increases the height
of microfluidic components and channels. This can influence
the manufacturing of biochips depending on the watermarking
designs chosen by the biochip company. On the watermarking
of designs, we present two scenarios here: watermarking and
fingerprinting. On the other hand, in watermarking, the same
watermark design is repeated in every biochip. In fingerprinting,
a unique watermark design is embedded in each biochip, which
is different from the others.

Watermarking: Since the mass manufacturing of FMBs is
generally based on molding-based methods such as injection
molding or hot embossing, there will be no significant influence
of watermarking on the manufacturing of biochips. This is
because the master molds need to be fabricated once, which
can either be made by 3D printing or lithography techniques.
Once the master molds are ready, the biochips can be mass
manufactured using them along with the watermarks. For mass
manufacturing, injection molding and hot embossing are the
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techniques largely employed in industries for easy and cost-
effective manufacturing.

For 3D printing, the increased-height components will be
directly incorporated into the associated design files for manu-
facturing. For lithography, however, the manufacturing process
would include an extra fabrication step to take care of the
increased height components. Once the master molds are ready,
the biochips can be mass manufactured using them along with
the watermarks.

Fingerprinting: Since fingerprinting here implies that each
watermark is unique from sample to sample, design codes or
process parameters must be changed every time the master mold
is made. This is because the watermark design needs to be altered
either location-wise on the biochip or height-wise (as the change
in height induces a change in fluorescence intensity) to induce
design variability with regard to the fingerprinted watermarks.

Fabricating a new master mold for each biochip to ensure the
fingerprints would be extensive, instead, opting for batch-wise
alteration of watermarks (where each batch contains a certain
number of biochips) could be a feasible option.

This paper focused on device-level watermarking for FMBs,
not fingerprinting.

VIII. CONCLUSION

This work focused on ensuring the security and trustworthi-
ness of FMBs against two major threats: malicious physical level
threats (including SB attacks) and IP-theft-based threats, which
include counterfeiting and overbuilding.

SB attacks deal with deliberately decreasing the heights of the
reaction chambers of FMBs to produce false-negative results.
We experimentally demonstrated an SB attack on an FMB
and showed that the attack can effectively reduce fluorescence
intensity by lowering the height of the reaction chambers.

We quantified the correlation between the parameters using
linear regression models, which showed 98.4% and 98.7% R-
square values for the Alexa Fluor dye and PCR amplified DNA
samples, respectively. To circumvent SB attacks, we adopted
two existing DL models, which showed up to 96% validation
accuracy in detecting microstructural faults.

To safeguard FMBs against IP-theft threats, we propose a
device-level watermarking scheme by increasing the height of
the microfluidic components and channels. We recorded sensi-
tive stimulus-response pairs and demonstrated that even changes
in height as small as 3 um could be detected by fluorescence
microscopy.
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