SCIENCE ADVANCES | RESEARCH ARTICLE

MATERIALS SCIENCE

Anomalous transport in high-mobility superconducting

SrTiOs thin films
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The study of subtle effects on transport in semiconductors requires high-quality epitaxial structures with low de-
fect density. Using hybrid molecular beam epitaxy (MBE), SrTiOs films with a low-temperature mobility exceeding
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42,000 cm? V™" 57" at a low carrier density of 3x 10" cm™ were achieved. A sudden and sharp decrease in residual
resistivity accompanied by an enhancement in the superconducting transition temperature were observed across
the second Lifshitz transition where the third band becomes occupied, revealing dominant intraband scattering.
These films further revealed an anomalous behavior in the Hall carrier density as a consequence of the antiferro-
distortive (AFD) transition and the temperature dependence of the Hall scattering factor. Using hybrid MBE growth,
phenomenological modeling, temperature-dependent transport measurements, and scanning superconducting
quantum interference device imaging, we provide critical insights into the important role of inter- versus intra-
band scattering and of AFD domain walls on normal-state and superconducting properties of SrTiOs.

INTRODUCTION
Despite over 60 years of research, SrTiO; (STO) has continued to
surprise researchers with new emerging behaviors (1-4). This is in
large part due to the continuous improvement in the materials quality
and the ability to make strain-engineered structures with controlled
defect densities. Most recent examples include strain-enhanced super-
conductivity (5, 6) because of an interplay between ferroelectricity
and superconductivity (7-9), and phonon thermal Hall effect (10).
Bulk cubic STO transforms to a tetragonal structure upon cooling
below ~110 K (11). This is accompanied by an out-of-phase rotation
of oxygen octahedra referred to as the antiferrodistortive (AFD)
transition. Without an external stress/strain field, the rotational axes
of these octahedra align themselves along any Cartesian axes, leading
to three distinct domains. The boundaries between these domains
have been shown to be charged and even ferroelectric based on several
characterizations including resonant ultrasonic spectroscopy (12),
scanning superconducting quantum interference device (SQUID)
imaging (13, 14), piezoelectric spectroscopy measurements (2), scan-
ning single-electron transistor (SET) microscopy (15), scanning
transmission electron microscopy (7), and low-temperature scan-
ning electron microscopy imaging (16). Domain boundaries have
further been reported to modify the metal-insulator transition (17)
and cause electrical anisotropy (18-20), anomalous piezoelectricity
(15), spatial inhomogeneity in superconductivity (21, 22), and the
softening of phonons (23, 24). Verma et al. (25) reported that a ~6-meV
transverse optical phonon deformation potential related to the AFD
transition is critical for the transport behavior between 10 and 200 K
(25), while Zhou et al. (26) argued that the AFD soft mode has
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negligible contribution to transport because of the lack of scattering
phase space.

Recent experimental and theoretical studies have further renewed
interest in STO because of the interplay between ferroelectricity and
superconductivity. There is a substantial ongoing discussion on the
presence of a quantum ferroelectric phase transition in the vicinity

of the superconducting dome in STO (3, 4, 9, 27-29). This aspect of

the behavior of STO has raised several exciting questions includ-
ing the possibility of enhanced transition temperature for super-
conductivity at domain boundaries, which are known to be ferroelectric
as discussed above. In addition, it also begs the question which role
will local defects, such as dislocations, play in superconductivity.
Dislocations have local stress fields around them that can potentially
induce local ferroelectricity and locally enhance superconductivity
(30). Clearly, progress on these problems requires cleaner samples
with improved defect density and controlled extrinsic defects.

Using hybrid molecular beam epitaxy (MBE) (31-33) and through
systematic control of doping, we investigate the role of AFD domain
boundaries and multiband electronic structure on normal and
superconducting properties in STO films. We use phenomenological
modeling, temperature-dependent transport measurements, and
SQUID imaging to examine their influences on the carrier density
and on the superconducting transition temperature. Our results re-
veal that, at the vicinity of the second Lifshitz transition, intraband
scattering processes dominate over interband processes, which we
correlate with the observed increase in the superconducting transi-
tion temperature. Our analysis also reveals an unusual manifestation
of the AFD transition on the temperature-dependent Hall scattering
factor, indicating that the charge carriers display a different behavior
at AFD domain walls as compared to the bulk of the sample.

RESULTS AND DISCUSSION

We begin by discussing the structural properties of STO films, which
are critical to establishing a credible case for the electronic struc-
ture. Figure 1A shows representative time-dependent reflection
high-energy electron diffraction (RHEED) intensity oscillations at

10f6

€707 ‘40 ABJAl UO SONI) UIM [, BIOSOUUIIA JO AJISIOATU( J& SI0°00USI0S MM //:sd)Y WOl papeo[umo(]


mailto:yuexx129@umn.edu
mailto:bjalan@umn.edu

SCIENCE ADVANCES | RESEARCH ARTICLE

the onset of growth, indicating a layer-by-layer growth mode. Insets
show Kikuchi bands along with surface reconstructions in post-
growth RHEED images, and an atomic force microscopy (AFM)
image of the same 60-nm Nd-doped STO/20-nm undoped STO film
on the STO (001) substrate. These results attest to the atomically smooth
film surfaces. An excellent overlap between the film and substrate
peaks was observed in the wide-angle x-ray diffraction scan (Fig. 1B),
yielding an out-of-plane lattice parameter (aop) of 3.905 + 0.002 A,
identical to that of the bulk single crystal. Films with ~2% doping
yielded the same aop = 3.905 + 0.002 A with a perfect overlap be-
tween film and substrate reflections. This observation suggests that
the lattice parameter, although commonly used as an indicator for
stoichiometric growth window for complex oxides (32, 34-37),
should not be taken as a standalone sensitive measure of point de-
fects in STO. To further emphasize this point, we show in Fig. 1C the
temperature-dependent electron mobility of a Nd-doped STO film
with a carrier density of 3 x 10'” cm ™. For comparison, we also mark
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Fig. 1. Structural characterizations of Nd-doped STO films. (A) Time-dependent
RHEED oscillation of a representative 60-nm Nd-doped STO/20-nm undoped STO
film on the STO (001) substrate. The insets show the AFM image and the after-growth
RHEED patterns along [100] and [110] azimuths. (B) High-resolution x-ray 26-o coupled
scan of the sample showing an epitaxial, phase pure film. (C) Mobility (1) versus
temperature plot for a thicker 1060-nm Nd-doped STO/20-nm undoped STO film
on the STO (001) substrate with carrier density ~3x 10'7 cm™ at 1.8 K with a mobility
0f 42,120 cm®~'s™". For comparison, the highest low-temperature mobility value
from the single crystal (38) and pulsed-laser deposition—grown film (39) is also de-
picted. a.u., arbitrary units.
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on the same plot the highest low-temperature mobility values ex-
hibited by bulk single crystalline STO (38) and pulsed-laser deposi-
tion (PLD)-grown homoepitaxial STO films (39). It can be seen
that despite sharing an identical lattice parameter, our films yielded
significantly higher mobility, suggesting improved defect density
and lower impurity concentration.

Having established an optimum growth condition, we synthe-
sized a series of 60-nm Nd-doped STO film/20-nm undoped STO/
STO (001) by varying the doping density between 10" and 10*° cm >,
a range of carrier density where superconductivity is observed in
STO. All samples showed metallic behavior between 1.8 K < T'< 300 K
with no evidence of localization behavior. At T < 100 K, p was
found to vary as T* in all samples (Fig. 2A); the fitting allows us to
extract the intercept (po, the residual resistivity) and the coefficient
(A). The value of p as a function of room-temperature carrier den-
sity (n300x) is plotted in Fig. 2A, whereas the corresponding value of
A is shown in fig. S1. While the physical origin of T behavior s still
debated (fig. S1) (40-42), an intriguing dependence of py on n390 x
was observed in Fig. 2B manifested by a sudden and sharp decrease
at a critical density, ~ 3 to 4 x 10" cm™>. This value corresponds to
the critical density for the second Lifshitz transition (43) in STO where
the chemical potential (uc) crosses the third of the three electron-
like bands of STO. It therefore raises an important question of whether
the Lifshitz transition plays any role on the normal state transport.

To investigate this question, we calculated the residual resistivity
as a function of band filling (n/n) for a toy two-band model shown
in Fig. 2C (see Supplementary Materials for details). Here, n. is the
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Fig. 2. Electronic transport and the calculated band structure of Nd-doped
STO films. (A) Plot of p versus T2 plots of 60-nm Nd-doped STO/20-nm undoped
STO/STO (001) as a function of carrier density for T< 100 K. (B) Residual resistivity,
po (left axis), and the superconducting transition temperature, T (right axis), as a
function of Hall carrier density, n3oo, illustrating a sudden and sharp decrease in pg
around ~3x 10" em™ (marked by the pink shaded region). Black and red dashed
lines are guides to the eye. (C) Parabolic electronic dispersions of the toy two-band
system &y =1 = K2m - pand&xg=2= K/2m + Uc — w with the radical momentum,
k. (D) Calculated normalized residual resistivity p/p. versus normalized carrier den-
sity n/n. for various interband-to-intraband scattering strength ratios Vinter/Vintra-
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critical density for the second Lifshitz transition. Because the band-
splitting by tetragonality is small (~2 to 5 meV) compared to that
caused by spin-orbit (SO) interactions (~12 to 30 meV) (44), we
treated the lower two bands as a single one (marked by o = 1). The
third band is labeled by o = 2 in Fig. 2C. Assuming isotropic intra-
band and interband scattering, we express the scattering matrix with
an intraband scattering potential Viyy, and an interband potential
Vinter. Figure 2D shows the calculated normalized resistivity (p/p.)
as a function of n/n, for different values of interband-to-intraband
scattering potential ratio, Vinter/ Vintra- Here, p refers to the residual
resistivity at the critical density, n, corresponding to the Lifshitz
transition. A remarkably similar behavior to our experimental data
was observed for Vipter/ Vintra = 0 revealing a dominant role of intra-
band scattering on normal-state transport across the second Lifshitz
transition. To shed further light into this finding, we measured the
superconducting transition temperature (T¢) in these films (fig. S2),
which revealed a continuous increase in T, across the Lifshitz tran-
sition (Fig. 2B). This result is again consistent with the prior theo-
retical prediction that in the absence of strong interband scattering,
T. should increase across Lifshitz transition (45). Note that this be-
havior is the opposite of what was seen previously at the first Lifshitz
transition for much lower densities in bulk crystals, in which case T
was found to be suppressed (43). It is perhaps worth emphasizing
that unlike prior work on STO films, this is the first systematic re-
port of a superconductivity dome in the uniformly doped STO films
as thin as 60 nm, which is attributable to the lower disorder/defects
in these films.

We now turn to the discussion of Hall measurements. Figure 3A
shows the Hall carrier density obtained from van der Pauw (vdP)
measurements (1. = —1/eRy, where Ry is the Hall coefficient) as a
function of temperature for 60-nm Nd-doped STO films/20-nm
undoped STO/STO (001) with different doping densities. The inset
shows a linear Hall slope between 9 T < B < + 9 T at 300 and
2.5 K. Regardless of doping density, all samples exhibited an anomalous
behavior around 100 K; i.e., with increasing temperature, ny, first
remains unchanged, then increases followed by a decrease, and, lastly,
increases until room temperature. We also show in Fig. 3B np,n
at 1.8 K as a function of ny,y at 300 K for all the samples to investi-
gate a potential correlation between carrier densities at room tem-
perature and low temperature. Irrespective of doping density, this
plot showed a linear relationship passing through origin while re-
vealing ~12% of the room-temperature carriers seemingly disap-
pear upon cooling to 1.8 K. This raises several questions. Why do
the carriers seem to disappear upon cooling? Why is there an anom-
alous behavior around 100 K? Also, the linear relationship is un-
expected. What role, if any, is played by the AFD, which occurs at
around 100 K?

We first discuss the origin of the anomalous behavior. Conceivably,
one may argue that the anomalous behavior is related to the multi-
band electronic conduction in STO, which makes the extraction of
the carrier density from the Hall data more subtle (46). We con-
firmed this is not the case. Even films with single-band occupancy
(a1 = 6.5 X 1017 cm™) yielded a similar anomalous behavior (fig.
S3). Now, we consider the effect of an often overlooked, yet critical
parameter—the Hall scattering factor, ry—on the measured carrier
density. ry is defined as the ratio between the true three-dimensional
(3D) carrier density (n3p) and the experimentally measured Hall
carrier density, nipyy, i.e., rg = 0 and is directly related to the re-

Nyal’®
laxation time t through the equation, ry = % (47, 48). The value
T,
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Fig. 3. Effect of AFD transition on electronic transport in doped Nd-STO films.
(A) The Hall carrier density nya (—1/€Ry) as a function of temperature for 60-nm
Nd-doped STO/20-nm undoped STO/STO (001) samples for different doping den-
sities. Inset shows linear Hall slopes at 2.5 and 300K for a representative sample
with n3gok=1.05 % 10% cm3. (B) nyan at 1.8 K as a function of ny, at 300 K. A black
dashed line shows a linear fit to the data yielding a slope of 0.88. (C) A schematic of
the scanning SQUID measurement setup. (D) Scanning SQUID image of the sample
with n3g0k = 4.8 X 10'° cm™ showing the magnetic flux (¢o/A) generated by the cur-
rent flow at 4.5 K.

of ry is usually close to 1, and this is perhaps why it has been
assumed to be 1 in all the experimental transport studies in STO. In
reality, however, the exact value of ryy depends on the band struc-
ture and scattering mechanisms. Unfortunately, there is no system-
atic study of ry as a function of carrier density and temperature in
STO and the only available data in literature are from ab initio
calculations, as shown in fig. S4 (49). We used a polynomial inter-
polation to extract 1/ry as a function of temperature. Because the
calculated ry is not a strong function of carrier density (49) for nsp
between 2 x 10" and 2 x 10%° cm ™, we used rg corresponding to a
fixed n3p = 2 x 10'° cm™ to extract temperature-dependent n;p in
all our samples. These results are shown in fig. S5. The anomalous
behavior is not present after accounting for the temperature depen-
dence of ry, implying that the temperature dependence of ry plays a
major role not only in the origin of the anomalous behavior but also
in determining the true carrier density. Given that the anomalous
behavior of both ny, and rg occurs near the AFD transition tem-
perature of ~100 K, a likely mechanism for both is an AFD-driven
change in the relaxation time, for instance due to the appearance of
domain walls or changes in the phonon spectrum.
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Although the temperature dependence of ry accounts for the
anomalous peak-and-valley pattern exhibited by #y,y, a drop in car-
rier density as a function of decreasing temperature remains present
even after correcting for this effect. One possible explanation for
this effect is the emergence of AFD-induced charged/polar domain
walls, which could localize some of the carriers. To investigate this
hypothesis, we performed SQUID measurements. An AC current is
applied through the adjacent corners of the vdP geometry as shown
in Fig. 3C, and the generated magnetic flux is measured by a 0.75-um
sensing loop (pick-up loop) via a lock-in technique. By mapping the
flux near the surface of the sample, a 2D map describing the local
current flow distribution is generated. The scanning SQUID result
of the sample with n3g0 x = 4.8 x 10" ecm™ (the magenta color in
Fig. 3A) at 4.5 K is shown in Fig. 3D. Some stripes and scattered
dots were observed, which indicate a modulated current flow. The
stripe-like modulations could be attributed to tetragonal domain
patterns. These stripes did not change after a temperature cycle to
300 K, and these stripe modulations persisted to temperatures above
40 K. The low contrast could be due to the high carrier densities in
our samples, which provide a high level of screening of potential
steps, therefore leading to smaller current-density contrast (17, 50).
As a result, it becomes very likely that not only the anomalous be-
havior of nyay (T) but also the drop in true density upon cooling is
related to the AFD transition. However, why the dependence is lin-
ear in Fig. 3B is still unclear and may be related to an interplay be-
tween AFD and Hall scattering factor as a function of carrier density.

To further discuss the impact of AFD on the anomalous nyy,)
behavior, we measured ny,j of a representative 60-nm Nd-doped
STO film/20-nm undoped STO/STO (001) sample as a function of
temperature during warming and cooling. As shown in Fig. 4A, a
clear difference between warming and cooling cycles was observed
accompanied by the anomalous behavior. For comparison, we also
performed the same measurement with the same warming/cooling
rate (5 K/min) on a thicker 160-nm Nd-doped STO sample with
similar ny,y. In contrast, the thicker sample shows the same anoma-
lous behavior but with no measurable differences between the cool-
ing and warming cycles (Fig. 4B). Given the 3D carrier density is the
same in both films, these results suggest that the hysteretic behavior
between warming and cooling cycles are not a result of electronic
transition but likely associated with the dynamic process(es) per-
taining to the AFD transition resulting in carrier trapping/detrapping
at domain boundaries (fig. S6). To probe the dynamic nature of the
temperature-dependent ny,y, we performed Hall scans at finer tem-
perature steps on the same sample for different warming/cooling
rates. Because the Hall slope is linear between +9 T at all tempera-
tures, a continuous temperature—dependent measurement of 7.y
was performed by keeping the field fixed at +9 T. Figure 4C shows
i as a function of temperature during warming (labeled as 1 and
3) and cooling (labeled as 2 and 4) cycles performed at two different
rates, 1 and 5 K/min. Similar to Fig. 4A, a small difference in ny,y
was observed as a function of warming/cooling cycle. Above a critical
temperature, T%, the temperature-dependent Hall carrier density
upon cooling, i.e., [#Ha1 (T)]cooling: Was identical to that upon warming
([an (T)]warming)~ However, at T < T*, [nan (T)]cooling remained
consistently higher than [#pan (T)]warming. The difference (Angan)
between [nHall (T)]cooling and [”Hall (T)]warming is PIOtted in Flg 4D
for two different warming/cooling rates. Figure 4D reveals that ny,)
strongly depends on the thermal history of the sample. A smaller T*
of ~150 K was obtained for slower warming/cooling cycle as opposed
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Fig. 4. Dynamic behavior across the AFD transition in Nd-doped STO films.
Temperature dependence of the Hall carrier density nya) of the (A) 60-nm
and (B) 160-nm Nd-doped STO sample with a similar ny, during warming and
cooling cycles. (C) nyay and (D) difference of nyay between cooling and warming
cycles as a function of temperature of the same 60-nm Nd-doped STO sample mea-
sured at different warming/cooling rates. T* indicates the onset of difference in
npai between warming and cooling cycles.

to a higher T* = ~175 K for the faster warming/cooling cycle. While
the peak in Any,y occurs at identical temperature ~120 K (the ex-
pected AFD transition in doped STO) (44), the onset depends on
the cooling rate, suggesting that the onset of AFD correlations be-
gins at considerably higher temperatures. One possible explanation
can be trapping/detrapping of residual oxygen vacancies, which are
known to accumulate at the domain walls (51, 52). Future studies
should focus on examining the normal-state transport and super-
conductivity at domain boundaries that may be substantially differ-
ent from the global measurements.

In summary, we have investigated the electrical transport proper-
ties in hybrid MBE-grown Nd-doped STO films exhibiting low-
temperature mobility exceeding 42,000 cm®V ™" s~ in the low-doped
regime where not all bands are occupied. By systematically varying
carrier density across the second Lifshitz transition, we found that
intraband scattering dominates over interband scattering. In the
normal state, this is manifested by a suppression of the residual re-
sistivity across the second Lifshitz transition, whereas in the super-
conducting state, it is related to an enhancement of T. This behavior
contrasts with that previously observed across the first Lifshitz tran-
sition, where T. is suppressed and dominant interband scatter-
ing was proposed (45). Moreover, we showed a superconducting
dome in uniformly doped STO films as thin as 60 nm. This study also
provides an important connection between the AFD transition,
structural dynamics, and the Hall scattering factor. In particular, it
suggests that charge carriers can become more localized and expe-
rience different relaxation rates at AFD domain walls. Future ex-
perimental work should focus on a systematic study of local versus
global transport.
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MATERIALS AND METHODS

Film growth and characterization

All samples were grown with a hybrid MBE approach. The details of
the growth method is described elsewhere (31-33), but a brief de-
scription is provided here. The 5 mm by 5 mm SrTiO;3 (001) sub-
strates (CrysTec GmbH, Germany) were heated to 900°C (thermocouple
temperature) in the hybrid MBE system (Scienta Omicron, Germany).
Growth was preceded by 20 min of oxygen cleaning via 250 W RF
oxygen plasma that achieves a background oxygen pressure of
5 x 107° torr (Mantis, UK). Strontium and neodymium were pro-
vided via thermal sublimation from an effusion cell. Strontium was
supplied at 472°C to achieve a beam equivalent pressure of 4 x 10”° torr,
whereas the neodymium effusion cell temperature was varied be-
tween 780° and 980°C to control the dopant concentration. During
growth, oxygen was supplied using the same oxygen plasma param-
eters that were used for oxygen cleaning.

RHEED was used to characterize the sample growth in situ, and
AFM was used to characterize the sample surface ex situ. High-
resolution XRD data were collected with a PANalytical X’Pert Pro
thin film diffractometer with a Cu parabolic mirror and germanium
4-bounce monochromator. All transport data (>1.8 K) were collected
in the vdP geometry in the temperature- and magnetic field—controlled
environment provided by a DynaCool physical property measure-
ment system (Quantum Design, USA). Magnetic field was swept
between +9 T. Millikelvin measurements were performed in an
Oxford Triton dry dilution refrigerator equipped with homemade
RC and Pi thermalizing filters mounted on the mixing chamber plate.

A buffer layer of insulating 20-nm STO was grown on each sub-
strate before growing a doped layer to minimize the substrate
surface effect. Films grown without doping were insulating with no
measurable conductivity, indicating the absence of contribution of
oxygen vacancies to the electrical transport. For scanning SQUID,
an AC current was applied through the adjacent corners in the vdP
geometry. The generated magnetic flux was measured using a 0.75-pm
sensing loop (pick-up loop) via a lock-in mechanism. By mapping
the flux near the surface of the sample, a 2D map describing the local
current flow distribution was generated.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abl5668
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