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Abstract—The binary (or Ising) perceptron is a toy model
of a single-layer neural network and can be viewed as a
random constraint satisfaction problem with a high degree
of connectivity. The model and its symmetric variant, the
symmetric binary perceptron (SBP), have been studied widely
in statistical physics, mathematics, and machine learning.

The SBP exhibits a dramatic statistical-to-computational
gap: the densities at which known efficient algorithms find
solutions are far below the threshold for the existence of
solutions. Furthermore, the SBP exhibits a striking structural
property: at all positive constraint densities almost all of its
solutions are ‘totally frozen’ singletons separated by large
Hamming distance [1], [2]. This suggests that finding a
solution to the SBP may be computationally intractable. At
the same time, however, the SBP does admit polynomial-
time search algorithms at low enough densities. A conjectural
explanation for this conundrum was put forth in [3]: efficient
algorithms succeed in the face of freezing by finding exponen-
tially rare clusters of large size. However, it was discovered
recently that such rare large clusters exist at all subcritical
densities, even at those well above the limits of known
efficient algorithms [4]. Thus the driver of the statistical-to-
computational gap exhibited by this model remains a mystery.

In this paper, we conduct a different landscape analysis
to explain the statistical-to-computational gap exhibited by
this problem. We show that at high enough densities the
SBP exhibits the multi Overlap Gap Property (m—OGP), an
intricate geometrical property known to be a rigorous barrier
for large classes of algorithms. Qur analysis shows that the
m—OGP threshold (a) is well below the satisfiability thresh-
old; and (b) matches the best known algorithmic threshold
up to logarithmic factors as m — co. We then prove that the
m—OGP rules out the class of stable algorithms for the SBP
above this threshold. We conjecture that the m — oo limit of
the m-OGP threshold marks the algorithmic threshold for the
problem. Furthermore, we investigate the stability of known
efficient algorithms for perceptron models and show that the
Kim-Roche algorithm [5], devised for the asymmetric binary
perceptron, is stable in the sense we consider.

Index Terms—Binary perceptron, overlap gap property,
statistical-to-computational gap, random CSP, average-case
complexity, neural networks.

I. INTRODUCTION

In this paper, we study the perceptron model. Proposed
initially in the 1960’s [6]]-[9], this is a toy model of one-
layer neural network storing random patterns as well as
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a very natural model in high-dimensional probability. Let
X, e R", 1 < i < M, be i.id. random patterns to be
stored. Storage of these patterns is achieved if one finds
a vector of synaptic weights ¢ € R™ consistent with all
X;: that is, (X;,0) > 0 for 1 < ¢ < M. There are two
main variants of the perceptron: when the vector o lies on
on sphere in R™ (the spherical perceptron) and when o €
B, £ {—1,1}" (the binary or Ising perceptron). For more
on the spherical perceptron see [[10]-[14]; in this paper we
will focus only on the binary perceptron.

A key quantity associated to the perceptron is the storage
capacity: the maximum number M* of such patterns for
which there exists a vector of weights o € B,, that is con-
sistent with all X;, 1 < ¢ < M™. Investigations beginning
with Gardner [10], [15] and Gardner-Derrida [16] in the
statistical physics literature provided a detailed, yet non-
rigorous, picture for the storage capacity in the case of
patterns distributed as n-dimensional Gaussian vectors.

More general perceptron models are defined by an acti-
vation function U : R — {0, 1} (for an even more general
setting see [17]). We say a pattern X; is stored by o with
respect to U if U((X;, o)) = 1. Much recent work on these
models have focused on two classes of activity functions:
U(r) = 1,5, m and U(z) = 1|, <,/n- The first defines
the asymmetric binary perceptron, the second the symmetric
binary perceptron. We now detail some of the previous
work on these models.

A. Perceptron models

1) Asymmetric Binary Perceptron: We now define the
classic binary perceptron, which we call the asymmetric
binary perceptron (ABP) throughout. Fix k € R, a > 0;
and set M = |na| € N. Let X; A N(0,1,), 1 <i <
M, be i.i.d.random vectors, where N(0,1,) denotes the
n—dimensional multivariate normal distribution with zero
mean and identity covariance. Consider the (random) set

SA(k) £ ﬂ {0 € B, : {0, X;) > /ﬁ\/ﬁ} (1)

1<i<M



The vectors X; € R", 1 <1¢ < M, are collectively referred
to as the disorder. We will slightly abuse the terminology
and use “disorder” to refer to both the vectors X;, 1 <7 <
M; as well as the matrix M € RM*" whose rows are Xj.
The set S2(k) is the solution space, a random subset of
B,.

The computer science take on the perceptron model is to
view it as an instance of a random constraint satisfaction
problem. Indeed, observe that S2 (k) is an intersection of
M random halfspaces, each defined by the constraint vector
X; (and threshold k). Each constraint rules out certain
solutions in the space B,, of all possible solutions; and the
parameter o plays a role akin to the constraint density in
the literature on random k—SAT, see e.g. [1f], [2[], [18] for
more discussion. For these reasons, we refer to « as the
constraint density in the sequel.

Perhaps the most important structural question is
whether S2 (k) is empty/non-empty (w.h.p., as n — 00).
Krauth and Mézard conjectured in [19] that the event,
{S2(r) # @}, exhibits what is known as a sharp thresh-
old: there is an explicit threshold akn (k) such that

if & > akm(k)

lim P[S2(x) # 2] = {0’ @)

n—o0 1, if a <axm(k)
Using non-rigorous calculations based on the so-called
replica method, Krauth and Mézard [19] conjecture a
precise value of axn(0) around 0.833. It is worth noting
that this value deviates significantly from the first moment
threshold: note that for k = 0, E[|Sa(k)|] = expy(n —
na), which is exponentially small (in n) only for o > 1.

The structure of S’ (k) and the aforementioned phase
transition still (largely) remain as open problems. Even
the very existence of such a sharp phase transition point
remains open, though Xu [20], Nakajima-Sun [21] has
shown sharpness of the threshold around a possibly n-
dependent value al™ (k), as in [22] in the setting of random
CSP’s. With that in mind, we can define

* ; BRE A — —
o (k) = inf {a : nh_)HéOP[Sa (0)=2] = 1} .
The work by Ding and Sun [23]] establishes, using an ele-
gant second-moment argument, that for every o < axn(0),

.. A
lzrg{)réfP[Sa (0) # @] > 0.

Hence, o*(0) > axwm(0). However, a matching upper
bound is still missing: the best known bound is due to
Kim and Roche [5, Theorem 1.2], which show a(0) <
0.9963. More precisely, they show for any ¢ < 0.0037,
P {Sf‘%(O) # @} = o(1). For a similar negative result with
a stronger convergence guarantee; that is a guarantee of
form P Sf‘_é(O) #* @] < exp(—dn) for some small § > 0
(though potentially worse than 0.0037), see Talagrand [24].

When S2(k) # @ (wh.p.), a follow-up algorithmic
question is whether such a satisfying ¢ € B, can be
found algorithmically (in polynomial time). Regarding such

positive results, the best known guarantee is again due to
Kim and Roche. They devise in [5] an (multi-stage ma-
jority) algorithm that w.h.p. returns a solution o € S%(0)
as long as a < 0.005. (In particular, their algorithm is a
constructive proof that S2(0) # @ w.h.p.for a < 0.005.)
Later in Section [[II-D} we state our main result which shows
that their algorithm is stable in an appropriate sense.

2) Symmetric Binary Perceptron: Proposed initially by
Aubin, Perkins, and Zdeborova in [18]]; the symmetric
binary perceptron (SBP) model is our main focus in the
present paper. Similar to the asymmetric case, fix a K > 0,
a > 0; and set M = [nal. Let X; < N(0,I,).
1 <1< M, be ii.d.random vectors, and consider

So(k) 2 ﬂ {O’ € By : (0. Xi)| < n\/ﬁ}
1<i<M
— {0 e B [|Mo||, < rvi}, 3)

where M € RM*" with rows X1, ..., X,. This model is
called symmetric since o € Sy (k) iff —o € S, (k). It turns
out that the symmetry makes the SBP more amenable to
analysis compared to its asymmetric counterpart, while re-
taining the relevant conjectural structural properties nearly
intact, see [3]. Though not our focus here, it is worth
mentioning that this is analogous to the random k—SAT
model. Its symmetric variant, NAE k—SAT, is mathemati-
cally more tractable, yet at the same time exhibits similar
structural properties.

As its asymmetric counterpart, it was conjectured that
the SBP also undergoes a sharp phase transition. More
concretely, it was conjectured that there exists a a.(x) such
that the event, {S,(x) # @}, undergoes a sharp phase
transition as « crosses . (). Notably, a..(k) matches with
the first moment prediction:

N 1

where

It was established in [18] that (a) lim, o P|{Sa(k) #
| = 0 for @ > a.(k); and (b) liminf, P[[Sa(ﬁ) #*
@| > 0 for @ < ac(x). The latter guarantee uses the
so-called second moment method, though falling short of
establishing the high probability guarantee. Subsequent
works by Perkins and Xu [1]]; and Abbe, Li, and Sly [2]
establish that P[S, (k) # @] = 1—o0(1) for all & < (k).
Namely, (k) is indeed a sharp threshold for the SBP.
Having established the existence and the location of such
a sharp phase transition; the next question, once again, is
whether such a o € S, (k) can be found efficiently; that is,
by means of polynomial-time algorithms. This is our main
focus in the present paper.

The SBP is closely related to combinatorial discrepancy
theory [25], [26]. Given a matrix M € RM*X" a central
problem in discrepancy theory is to compute, approxi-
mate, or bound its discrepancy D(M), where D(M) =
mingep, ||/\/la|| " Several different settings are considered




in the discrepancy literature: worst-case M and average-
case M (where the entries of M either i.i.d. Rademacher or
i.i.d. Gaussian); and both existential and algorithmic results
are sought. In the proportional regime, the discrepancy
perspective is to fix the aspect ratio « = M /n and find
a solution o with small ||Mo| . This is the inverse of
the perceptron perspective: fixing £ > 0 and finding the
largest o for which a solution o exists. In particular, the
sharp threshold result for the SBP described above settles
the question of discrepancy in the random proportional
regime: for M € RM*" with iid. N(0,1) entries,
D(M) = (1+0(1)) f(«)v/n w.h.p. where f(-) is the inverse
function of . The first and second moment methods can
also be employed to establish the value of discrepancy
in the random setting in other regimes, e.g. [27]-[29].
Moreover, as we describe below, discrepancy algorithms
(e.g. [30]—[34]) can be employed for the SBP.

B. Main Results

From an algorithmic point of view, the most striking
fact about the SBP is the existence of a large statistical-to-
computational gap. Explanations for both the algorithmic
hardness of the model and for the success of efficient
algorithms at low densities have been put forth recently.

a) A Statistical-to-Computational Gap: A random
constraint satisfaction problem like the SBP is said to
exhibit a statistical-to-computational gap if the density
below which solutions are known to exist w.h.p.is higher
than the densities at which known efficient algorithms can
find a solution. As we now demonstrate, the SBP exhibits
a statistical-to-computational gap for all x > 0, but this
gap is most pronounced in the regime of small . In this
regime, the best known algorithmic guarantee for finding a
solution in the SBP is due to Bansal and Spencer [33] from
the literature on combinatorial discrepancy. As we detail
in Section [[II-C| and show in Corollary [2] their algorithm
works for & = O(k?) as & — 0. This stands in stark
contrast to the threshold for the existence of solutions.
From @), a. () behaves like 17
1 1+ 0,(1)

710g2 (\/gn(l +OH(1))) ~ logy(1/k)

Namely, «.(k) is asymptotically much larger than the al-
gorithmic 2 threshold. The main motivation of the present
paper is to inquire into the origins of this gap in the SBP by
leveraging insights from statistical physics. In particular, we
will establish the presence of a geometric property known
as the Overlap Gap Property (OGP), and use it to rule out
classes of stable algorithms, appropriately defined.

b) Freezing, rare clusters, and algorithms: The SBP
exhibits striking structural properties which are thought to
contribute to both the success of polynomial-time algo-
rithms at low densities and the failure of efficient algorithms
at higher densities.

ac(k) =

On one hand, the model exhibits the “frozen one-step
Replica Symmetry Breaking (1-RSB)” scenario at all pos-
itive densities @ < a.. This states that whp over the
instance, almost every solution ¢ is totally frozen and
isolated: the nearest other solution is at linear Hamming
distance to o. This extreme form of clustering was conjec-
tured to hold for the ABP and SBP in [3]], [[18], [19], [35],
and subsequently established for the SBP in [1]], [2]]. In light
of the earlier works by Mézard, Mora, and Zecchina [36]
and Achlioptas and Ricci-Tersenghi [37]] positing a link
between clustering, freezing, and algorithmic hardness, it is
tempting to postulate that finding a solution ¢ for the SBP
is hard for every o € (0, a.(k)), but this is contradicted by
the existence of efficient algorithms at low densities such as
that of [33]], [38]]-[41] including the algorithm by Bansal
and Spencer discussed above. Combining these facts, we
arrive at the conclusion that the SBP exhibits an intriguing
phenomenon: polynomial-time algorithms can coexist with
the frozen 1-RSB phenomenon. This conundrum challenges
the view that clustering and freezing necessarily lead to
algorithmic hardness.

In an attempt to explain this apparent conundrum, it was
conjectured in [42] that while a 1 — o(1) fraction of all
solutions are totally frozen, an exponentially small fraction
of solutions appear in clusters of exponential (in n) size;
and the efficient learning algorithms that manage to find
solutions find solutions belonging to such rare clusters,
see [[1]] for further discussion. In this direction, Abbe, Li,
and Sly [4] established very recently that whp a connected
cluster of solutions of linear diameter does indeed exist
at all densities o < «,. Furthermore, they show that
an efficient multi-stage majority algorithm (based on that
of [5]) can find such a large cluster at densities o = O(x!?)
in the  — 0 regimd[l]

These results and conjectures prompt several questions
regarding the statistical-to-computational gap exhibited by
the SBP. If large connected clusters exist at all subcritical
densities, what is the reason for the apparent algorith-
mic hardness? Do the efficient algorithms for densities
a = O(k?) also find solutions lying in one of these
large connected clusters? At what densities are these large
clusters algorithmically accessible? In particular, while we
now know detailed structural information about the SBP,
its statistical-to-computational gap remains a mystery.

c) Our results on the Overlap Gap Property and
failure of stable algorithms: We investigate the statistical-
to-computational gap in the SBP via the Overlap Gap
Property (OGP), an intricate geometrical property of the so-
lution space that has been used to rigorously rule out large
classes of search algorithms for many important random
computational problems including random k—SAT [43]-
[45] and independent sets in sparse random graphs [46]—
[48], see also the survey paper by Gamarnik [49]]. We will
describe the OGP in more detail below. At a high level, it

ISee in particular g appearing in [4, Page 6].



asserts the non-existence of tuples of solutions at prescribed
distances in the solution space.

Our first main result establishes the OGP for m—tuples
of solutions (dubbed as m—OGP) at densities (x? log, %)

Theorem 1 (Informal, see Theorem . For densities
o = Q(k?logy L), the SBP exhibits the m—OGP for
appropriately chosen parameters.

We also establish the presence of 2—OGP and the
3—OGP for the SBP in the high « regime, i.e. when k = 1,
respectively in Theorem [5] and Theorem [6] Moreover, our
OGP results enjoy universality: they remain valid under
milder distributional assumptions on the entries of M. We
show this in the full version of our paper [50, Theorem 5.2]
via the multi-dimensional Berry-Esseen Theorem.

Our next main result shows that the m—OGP rules out
the class of stable algorithms formalized in Definition[2] At
a high level, an algorithm is stable if a small perturbation
of its input results in a small perturbation of the solution o
it outputs. In the literature on other random computational
problems, it has been shown that the class of stable algo-
rithms captures powerful classes of algorithms including
Approximate Message Passing algorithms [51]], low-degree
polynomials [45], [52], and low-depth circuits [S3].

Theorem 2 (Informal, see Theorem . The m—OGP
implies the failure of stable algorithms for the SBP.

Thus, we obtain the following corollary:

Corollary 1 (Informal, see Theorem [). Stable algorithms
(with appropriate parameters) fail to find a solution for the
SBP for densities oo = Q(r*log, ).

In particular, this hardness result matches the algorithmic
k2 threshold up to a logarithmic factor. Hence, while the
view that freezing implies algorithmic hardness for the
SBP breaks down, the rigorous link between the OGP and
algorithmic hardness remains intact.

In addition to stable algorithms; we also consider the
class of online algorithms which includes the Bansal-
Spencer algorithm [33]]. Informally, an algorithm A is
online if the ¢ coordinate of the solution it outputs
depends only on the first ¢ columns of M.

Theorem 3 (Informal, see Theorem E]) Online algorithms
fail to find a solution for the SBP for sufficiently high
densities.

Having established the hardness of stable algorithms
for the SBP at the m—OGP threshold; a natural follow-
up question is whether the known efficient algorithms for
perceptron models are stable and whether the ABP also
exhibits the m—OGP. To that end, we investigate the
stability property of Kim-Roche algorithm [5] for the ABRP.

Theorem 4 (Informal, see Theorem [T1). Kim-Roche algo-
rithm [5)|] for the ABP is stable in the sense of Definition

Investigating the stability of the Bansal-Spencer algo-
rithm [33]] and whether the ABP also exhibits the OGP are
among several open questions we discuss in Section [[-D

C. Background and Related Work

a) Statistical-to-Computational Gaps: As we noted,
the SBP model exhibits a statistical-to-computational gap
(SCG): a gap between what the existential results guarantee
(and thus what can be found with unbounded computational
power), and what algorithms with bounded computational
power (such as polynomial-time algorithms) can promise.
Such SCGs are a ubiquitous feature in many algorith-
mic problems (with random inputs) appearing in high-
dimensional statistical inference tasks and in the study of
random combinatorial structures. A partial list of prob-
lems with an SCG includes constraint satisfaction prob-
lems [36], [37]], [54]], optimization problems over random
graphs [46], [55], [56] and spin glass models [51]-[53]],
[57], number partitioning problem [58]], principal compo-
nent analysis [59]-[61]], and the “infamous” planted clique
problem [62]-[64]; see also the introduction of [58]], [|65]],
the recent survey [49]; and the references therein.

Unfortunately, due to the so-called average-case nature
of these problems, the standard NP-completeness theory
often fails to establish hardness for those problems even
under the assumption P # N P. (It is worth noting though
that a notable exception to this is when the problem exhibits
random self-reducibility, see e.g. [60] for such a hardness
result regarding a spin glass model, conditional on a
weaker assumption P # #P.) Nevertheless, a very fruitful
(and still active) line of research proposed certain forms
of rigorous evidences of algorithmic hardness for such
average-case problems. These approaches include the fail-
ure of Monte Carlo Markov Chain methods [62], [[67], low-
degree methods and failure of low-degree polynomials [45]],
[48]l, [52], [68], [69], Sum-of-Squares [64]], [70]-[72] and
Statistical Query [73]-[76] lower bounds, failure of the
approximate message passing algorithm (an algorithm that
is information-theoretically optimal for certain important
problems, see e.g. [77], [78]]) [79], [80]; and the reductions
from the planted clique problem [59], [81], [82]], just to
name a few. Yet another very promising such approach is
through the intricate geometry of the problem, via the so-
called Overlap Gap Property (OGP).

b) Overlap Gap Property (OGP): Implicitly discov-
ered by Mézard, Mora, and Zecchina [36] and Achlioptas
and Ricci-Tersenghi [37]] (though coined later in [83]),
the OGP approach leverages insights from the statistical
physics to form a rigorous link between the intricate geom-
etry of the solution space and formal algorithmic hardness.
Informally, the OGP is a topological disconnectivity prop-
erty, and states (in the context of a random combinatorial
optimization problem, say over B3,) that (w.h.p.over the
randomness) any two near-optimal 01,09 € B, are either
“close” or “far” from each other: there exists 0 < v; <
vy < 1 such that n=! (oq,02) € [0,11] U [v2,1]. That



is, their (normalized) overlaps do not admit intermediate
values; and no two near-optimal solutions of intermediate
distance can be found. It has been shown (see below) that
the OGP is a rigorous barrier for large classes of algorithms.
See [49] for a survey on OGP.

c) Algorithmic Implications of OGP: The line of
research relating the OGP to algorithmic hardness was
initiated by Gamarnik and Sudan [46], [56]. They consider
the problem of finding a large independent set in the
sparse random graphs with average degree d. It is known,
see e.g. [84]-[86], that in the double limit (first sending
n — oo, then letting d — o0), the largest independent
set of this graph is of size Q%n. On the other hand,
the best known polynomial-time algorithm [87] (a very
simple greedy protocol) returns an independent set that is
half optimal, namely of size k’sdn. In order to reconcile
this apparent SCG, Gamarnik and Sudan study the space
of all large independent sets. They establish that any two
independent sets of size greater than (1 + 1//2) logdn
exhibit OGP. By leveraging this, they show, through a
contradiction argument, that local algorithms (known as
the factors of i.i.d.) fail to find an independent set of
size greater than (1 + 1/ ﬁ)%n. Subsequent research
(again via the lens of OGP) extended this hardness result
to the class of low-degree polynomials [52]]. The extra
“oversampling” factor, 1/ V2, was removed by inspecting
instead the the overlap pattern of many large independent
sets (rather than the pairs), therefore establishing hardness
all the way down to the algorithmic threshold. This was
done by Rahman and Virdg [47] for local algorithms,
and by Wein [48]] for low-degree polynomials; and is also
our focus here (see below). A list of problems where the
OGP is leveraged to rule out certain classes of algorithms
includes optimization over random graphs and spin glass
models [S1]-[53]], [88], number partitioning problem [58]],
random constraint satisfaction problems [43], [45].

d) Multi OGP (m—OGP): As we just mentioned, it
was previously observed that by considering more intricate
overlap patterns, one can potentially lower the (algorithmic)
phase transition points further. This idea was employed for
the first time by Rahman and Virag [47] in the context of the
aforementioned independent set problem. They managed to
“shave off” the extra 1/ /2 factor present in the earlier
result by Gamarnik and Sudan [46], [56], and reached
all the way down to the algorithmic threshold, %n.
In a similar vein, Gamarnik and Sudan [43] studied the
overlap structure of m—tuples o) e B, 1 <i<m
of satisfying assignments in the context of the Not-All-
Equal (NAE) k—SAT problem. By showing the presence
of OGP for m—tuples of nearly equidistant points (in
B,.), they established nearly tight hardness for sequential
local algorithms: their results match the computational
threshold modulo factors that are polylogarithmic (in k). A
similar overlap pattern (for m—tuples consisting of nearly
equidistant points) was also considered by Gamarnik and
Kizildag [58] in the context of random number partitioning

problem (NPP), where they established hardness well below
the existential threshold. (It is worth noting that [58]] consid-
ers m—tuples where m itself also grows in n, m = w,(1).)

More recently, m—OGP for more intricate forbidden pat-
terns were considered to establish formal hardness in other
settings. In particular, by leveraging m—OGP, Wein [48§]
showed that low-degree polynomials fail to return a large
independent set (in sparse random graphs) of size greater
than losdn, thereby strengthening the earlier result by
Gamarnik, Jagannath, and Wein [52]. Wein’s work es-
tablishes the ensemble variant of OGP (an idea emerged
originally in [57]): he considers m—tuples of independent
sets where each set do not necessarily come from the same
random graph, but rather from correlated random graphs.
The ensemble variant of OGP was also considered in [58|]
for the NPP. While technically more involved to establish,
it appears that the ensemble m—OGP can be leveraged
to rule out virtually any stable algorithm (appropriately
defined); and will also be our focus here. More recently, by
leveraging the ensemble m—OGP; Bresler and Huang [45]
established nearly tight low-degree hardness results for
the random k£—SAT problem: they show that low-degree
polynomials fail to return a satisfying assignment when
the clause density is only a constant factor off by the
computational threshold. In yet another work, Huang and
Sellke [88|] construct a very intricate forbidden structure
consisting of an ultrametric tree of solutions, which they
refer to as the branching OGP. By leveraging this branching
OGP, they rule out overlap concentrated algorithmf] at the
algorithmic threshold for the problem of optimizing mixed,
even p—spin model Hamiltonian.

D. Open Problems

a) Location of the Algorithmic Threshold: We es-
tablish in Theorem [7] that the SBP exhibits m—OGP if
o = Q(k?logy ). On the other hand, we have per
Corollary 2] that the Bansal-Spencer algorithm [33]] works
when a = O(k?2). In light of these, we make the following
conjecture:

Conjecture 1. As k — 0, the algorithmic threshold for the
SBP is at O(k?).

In particular, we conjecture that up to factors that are
polylogarithmic in %, the Bansal-Spencer algorithm is
the best possible within the class of efficient algorithms.
That is, up to polylogarithmic factors no polynomial-time
algorithm succeeds above the m—OGP threshold. An inter-
esting question is whether the log, % factor is necessary or
it can be ‘shaved off’. We believe it might be possible to
remove this factor by considering a more intricate overlap
pattern, e.g. similar to those considered in [45]], [48]], [88].

We now make Conjecture [T more precise. Given an
m € Nand £ > 0, let o, (k) be the smallest subcritical

2A class that captures O(1) iterations of gradient descent, approximate
message passing; and Langevin Dynamics run for O(1) time.



density such that the SBP exhibits m—OGP with appro-
priate parameters when a > aj.,. We conjecture that the
m — oo limit of the m—OGP threshold marks the true
algorithmic threshold: for every ¢ > 0 and ~ small enough,
there do not exist polynomial-time algorithms for the SBP
when a > (1 + ¢€)lim,,— 00 (k). See Conjecture
for details. This conjecture is backed up by the evidence
that for many random computational problems including
random k£—SAT [45], independent sets in sparse random
graphs [47]], [48], and mixed even p—spin model [88],
the m—OGP matches or nearly matches the best known
algorithmic threshold.

Abbe, Li and Sly ask in [4, Question 1] whether the algo-
rithmic threshold for the SBP coincides with the threshold
for the existence of a ‘wide web’: a cluster of solutions with
maximum possible diameter n. One one hand, the existence
of a wide web rules out the 2-OGP: pairs of solutions of
every possible overlap exist. It would be very interesting to
determine whether the threshold for existence of the wide
web coincides with the conjectured algorithmic threshold of
(:)(/@'2) above, or even more precisely the limiting m-OGP
threshold lim,, ,~ o, (at least asymptotically as x — 0).

b) The Asymmetric Model: As we noted earlier, the
ABP is more challenging from a mathematical perspective,
and some of its basic properties are still far from being
rigorously understood. In particular, even the very existence
of a sharp phase transition and the frozen 1-RSB picture—
both rigorously known to hold for the SBP—remain open.

The ABP also exhibits a statistical-to-computational gap.
On one hand, Kim-Roche algorithm [5] finds solutions at
low enough densities, specifically when o < 0.005. On
the other hand, the result of Ding-Sun [23|] shows that
solutions do exist (with probability bounded away from 0)
when a < axm(0) ~ 0.83. It would be interesting to show
that the ABP exhibits m—OGP for some a < akm(0).
To understand the statistical-to-computational gap of ABP
further, it would be interesting to explore the model in
the regime x — oo and investigate the m—OGP threshold
and threshold for the existence of efficient algorithms. Fur-
ther, there are other perceptron models one could explore,
e.g.the U—function binary perceptron introduced in [18]].

c) Stability of Other Algorithms: We established in
Theorem [T1] that the Kim-Roche algorithm for ABP is
stable. In light of this, we make the following conjecture
regarding SBP:

Conjecture 2. There exists a stable algorithm that finds a
solution for the SBP w.h.p. when o = O(k2).

In particular, proving stability of the Bansal-Spencer
algorithm would resolve Conjecture [2] but this seems
challenging: the presence of a certain non-linear potential
function (see [33, Equation 2.5]) renders the stability anal-
ysis difficult.

The algorithm of [4]] is a variant of the Kim-Roche
algorithm that works for the SBP for @ = O(x!'?). Proving

the stability of this algorithm would be an interesting first
step towards resolving Conjecture [2]

d) Broader Research Agendas on the OGP: As men-
tioned above, the OGP is a provable barrier for a broad class
of algorithms for many random computational problems.
A list of such algorithms includes local/sequential local
algorithms, Monte Carlo Markov Chain (MCMC) methods,
low-degree polynomials, Langevin dynamics, approximate
message passing type algorithms, low-depth circuits, and
stable algorithms in general. In many random computa-
tional problems (like £-SAT and independent sets) the OGP
coincides with the threshold for the existence of known ef-
ficient search algorithms. One might then conjecture (as we
do here) that the OGP marks the true algorithmic threshold.
It would thus be very surprising and very interesting to
find a case where efficient algorithms succeed in the face
of the OG While random k-SAT, independent sets in
random graphs, and other random CSP’s have been studied
for decades without finding such algorithms, algorithms for
perceptron models have not been studied as extensively,
especially not in the limiting regime « — 0 we focus on
here, and thus this might be fruitful direction to pursue.

E. Organization and Notation

a) Paper Organization: The rest of the paper is orga-
nized as follows. We state our OGP results in Section[[[} We
state our main algorithmic hardness result in Section [[II-A]
and formulate a conjecture pertaining the true algorithmic
threshold in Section Finally, we show that the Kim-
Roche algorithm is stable in Section We defer com-
plete proofs and detailed discussions to the full version [50].

b) Notation: For any n € N, [n] & {1,2,...,n}
and B, = {-1,1}". For any r > 0 and z € R;
exp,.(xz) and log, (z) denote respectively the exponential
and logarithm functions base r. For any v,v’ € R",
[vleo = maxicicn vil. (v,0) £ 3icic, vivi and
O (v,v") & n~1(v,v"). For any 0,0’ € B,, dy(o,0")
denotes their Hamming distance. We denote the standard
normal distribution by A(0, 1) and the multivariate normal
distribution with mean g € R™ and covariance 3 € R™"*"
by N (u, ). Throughout the paper, we employ the standard
asymptotic notation, e.g. ©(-),O(-),o(+), Q(-) and O(-). If
there is no subscript, the asymptotic is with respect to
n — o0o. In the case where we consider asymptotics other
than n — oo, we reflect this by a subscript: for instance, if
f is such that f(k) — oo as k — 0, we write f = wy(1).

II. OGP IN THE SYMMETRIC BINARY PERCEPTRON

Next we establish landscape results, dubbed as ensem-
ble m—OGP, concerning overlap structures of m—tuples
(¢ e B, :1<i<m), that satisfy “box constraints”
with respect to correlated instances of Gaussian disorder.

3Beyond those cases with a “rigid global structure” such as solving
linear equations and independent sets in random bipartite graphs. For
instance, algebraic techniques like Gaussian elimination and lattice based
methods can find solutions to ‘noiseless’ problems such as solving random
linear equations or noiseless clustering [89].



A. Technical Preliminaries

We next formalize the notion of correlated instances
through an appropriate interpolation scheme.

Definition 1. Fix a xk > 0, and recall a.(r) from @). Let
O<a<alk), meNO<n<pf <1l andZ C[0,7/2].
Set M = |na| and suppose that M; € RM*" (0 < i <
m, is a sequence of ii.d.random matrices, each having
i.i.d. N(0,1) coordinates. Denote by S.(8,n,m,a,T) the
set of all m—tuples (O'(i) 1 <4< m), @ e B,
satisfying the following conditions.

(a) (Pairwise Overlap Condition) For 1 <i < j <m,

f-n<0O(e,0) <.

(b) (Rectangular Constraints) There exists 7, € Z, 1 <
1 < m, such that

[Miro®@|| . <my, 1<ism,
where M;(1;) = cos(1;) Mg + sin(7;) M.

The interpretations of the parameters appearing in Defi-
nition [T] are as follows. The parameter m is the size of the
tuples we inspect; « is the constraint threshold; and « is the
constraint density. That is, we consider M = |n«| random
constraints. Parameters [ and 7 control the (forbidden)
region of pairwise overlaps. Finally, the index set, Z, is used
for generating correlated instances of random constraints
via interpolation M;(7;), 7; € Z, defined earlier. This is
necessary to study the ensemble OGP, see below.

As a concrete example to Definition [I] consider the
toy setting m = 2 and Z = {0}. In this case,
S« (B,m,2,,{0}) is simply the set of all pairs (c1,02) €
B,, x By, such that (a) 3 —n < n~!(o1,02) < /3 and (b)
HMUiHoo < ky/n for i = 1,2; where M € Rlanlxn i 4
random matrix with i.i.d. standard normal entries.

B. Landscape Results: High k Regime

Our first focus is on the regime where « is large. While
we set kK = 1 (thus «a.(k) is approximately 1.8159) for
simplicity; our results easily extend to any fixed x > 0.
In this case, we also drop the subscript x appearing in
Definition (I} and simply use the notation S(3,7n,m, «,Z)
to denote S1(8,n,m,a,T).

Our first result establishes 2—OGP above « > 1.71.

Theorem 5. Let 1.71 < o < a.(1) =~ 1.8159. Then, there
exists 0 < n5 < B35 < 1 and a constant c5 > 0 such
that the following holds. Fix any T C [0,7/2] with |Z| <
€xPy (cgn) Then,

P[S(ﬁ;,n;,la,f) + @} < expz(—@(n)).

By considering the overlap structure of triples, one can
further reduce the threshold (on «) to approximately 1.667
above which the overlap gap property takes place.

Theorem 6. Ler 1.667 < a < a.(1) ~ 1.8159. Then,
there exists 0 < n3 < 5 < 1 and a constant c§ > 0

such that the following holds. Fix any T C [0,7/2] with
|Z| < exp,(cin). Then,

P[S(ﬁ;,ng‘,?),a,I) % @] < epr(—@(n)).

The proof is deferred to the full version [50].

Theorem 6]implies that 3—OGP (with appropriate param-
eters) takes place for o > 1.667, which is indeed strictly
smaller than the corresponding threshold of o > 1.71 for
2—OGP per Theorem 5| An inspection of the proof reveals
that our choice of n* satisfies n* < [*. That is, the
structure that Theorem [6] rules out corresponds essentially
to (nearly) equilateral triangles in Hamming space.

Theorem [6] is established using the first moment method.
More specifically, let the random variable N count the
number of such triples. We show that E[N] = exp(—©(n))
under an appropriate choice of parameters and conclude by
Markov’s inequality since P[N > 1] < E[N] = o(1). It is
worth noting though that unlike [5§]], our counting bound
is exact (up to lower-order terms). This appears necessary
to improve upon Theorem [5] see [50] for more details.

As noted earlier, we do not pursue the m—OGP im-
provement for m > 4 in the high x regime since the first
moment method actually fails as m gets larger. This, of
course, is only a failure of the first moment method; it
does not necessarily imply that the m—OGP itself yields
a worse threshold. In fact, given the prior work as well as
the fact that m—OGP deals with a more nested structure,
it indeed makes sense that m—OGP (for m > 4) should
hold for a much broader range of O‘EI For this reason, it is
plausible to conjecture that considering m—OGP beyond
m € {2, 3} lowers the threshold on o.. We leave the formal
verification of this for future investigation.

Finally, we remark that Baldassi et al. established in [3]
similar OGP results for the high « case, see [50] for details.

C. Landscape Results: The Regime Kk — Q.

We now turn to our results in the regime x — 0. Observe
that for any fixed x > 0, the volume of the “rectangular
box” [—k, k]™ (which eventually controls the probabilistic
term) appearing in Definition |1| is (2x)™. When k — 0,
this term actually shrinks further by increasing m. Thus,
one can hope to pursue the m—OGP improvement. Our
main result to that end is as follows.

Theorem 7. Let
1
aogp (k) £ 10x%log -~ 5)

Then, for every sufficiently small k > 0 and o > aogp (k)
there exist 0 <n < B <1, ¢>0, and an m € N such
that the following holds. Fix any T C [0,7/2] with |Z| <
€xXPy (cn) Then,

P[Sm(ﬁ,n,m,oz,f) #* @} < eXpQ(—G(n)).

4Such a strict monotonicity in m has also been conjectured by Ben
Arous and Jagannath in the context of spherical spin glass models [90].



The proof is deferred to the full version [50].

Recall from our earlier discussion (also see Section [l1I-C
and Corollary [2] therein) that the algorithm by Bansal
and Spencer [33] works for & = O(k?). On the other
hand, no (efficient) algorithm is known for a = Q(k?).
Namely, the current known algorithmic threshold for the
symmetric binary perceptron model is ©(x?). In light of
these facts, Theorem [/| shows that the OGP threshold
aogp (k) is nearly matching: the onset of OGP coincides
up to logarithmic (in x) factors with the threshold above
which no polynomial-time algorithms are known to work.

We now comment on the “extra” log, % factor appearing
in (). As we detail in [50, Section 4], the exponent of the
first moment of the cardinality term, |S, (8,7, m,a,I)|,
appears to be strictly positive (for every 5,7, m) if a =
O(r?logy(1/k)). That is, Theorem [7|is in a sense the best
possible using our techniques. However, it is plausible that
by considering a more delicate forbidden structure (akin to
those studied in [45]], [48]], [[88]]), one may be able to remove
this logarithmic factor. This suggests two conjectures: (a)
in the regime ~ — 0, the algorithm by Bansal and
Spencer [33] is best possible (up to constant factors); and
that (b) the OGP marks the onset of algorithmic hardness.

III. ALGORITHMIC BARRIERS FOR THE PERCEPTRON
MODEL

A. m—Overlap Gap Property Implies Failure of Stable
Algorithms

We commence this section by recalling our setup. Fix
ak >0, and an o < «a.(k) so that w.h.p.as n — oo,
there exists a o € S, (k), where S, () is the (random) set
in (3). Having ensured that S, (k) is (w.h.p.) non-empty;
our focus in this section is on the problem of finding such
a o by using stable algorithms, formalized below.

a) Algorithmic Setting: We interpret an algorithm A
as a mapping from RM*" to B,,. We allow A to be po-
tentially randomized: we assume there exists an underlying
probability space (€2, P,,) such that A : RM*" x Q — B,.
That is, for any w € €) and disorder matrix M € RMxn.
A(,w) returns a oarc = A(M,w) € B,; and we want
oaLc to satisfy ||MUALG||oo < Ka/M.

We now formalize the class of stable algorithms that we
investigate in the present paper.

Definition 2. Fix a k > 0, an a < «.(k); and set
M = |nal. An algorithm A : RM*" x QO — B, is called
(p,ps,Dst, f, L)—stable for the SBP model, if it satisfies
the following for all sufficiently large n.

o (Success) Let M € RMX™ pe g disorder matrix with
i.i.d N(0,1) entriess. Then,

Piae | [MAM, @), < 5V 21 py.

o (Stability) Let M, M € RM>*" have i.id. N(0,1)
coordinates such that E[MijMij:l =pforl1 <i<
M and 1 < 5 < n. Then,

P(M,H,w) |:dH (‘A(M7 w), A(m, UJ))
< f+ LM _MHF} >1—ps.

Definition [2] is similar to the notion of stability consid-
ered in [58} Definition 3.1]. Moreover, Definition |2 applies
also to deterministic algorithms where the probabilities are
taken w.r.t. M and M only. In the remainder of the paper,
we often abuse the notation by dropping w and simply
referring to A : RM*" — B, as a randomized algorithm.

We next highlight the operational parameters appearing
in Definition 2} « is the “width” of the “rectangles” defined
by the constraints. « is the constraint density (also known
as the aspect ratio). That is, M = |[n«] is the number of
constraints. The parameter p; controls the success guar-
antee. The parameters p, pst, f and L collectively control
the stability guarantee. The parameter p essentially controls
the amount of correlation. Stability parameters pg, f and
L describe the amount of sensitivity of the algorithm’s
output to the correlation values. Our stability guarantee is
probabilistic, where the probability is taken with respect to
the joint randomness in M, M as well as to the coin flips
w of A. The “extra room” of f bits makes our negative
result only stronger: even when M and M are very close,
the algorithm is still allowed to make roughly f flips.

We now state our next main result.

Theorem 8. Fix any sufficiently small x > 0, o >
aocp(k) = 10k%logy L, and L > 0. Let m € N and
0 <n < B <1 bethe m—OGP parameters prescribed by
Theorem [] Set
_r
1600

0 A 48002L7T Ja, T = eXPy (24mQ log, Q).
Ui

(6)

Then, there exists an ng € N such that the following holds.

For every n > ny, there exists no randomized algorithm

A :RM*n 5 B that is

s 1 1
(COS (2Q> 9O+ DT 90T + 1),Cn,L) — stable

for the SBP, in the sense of Definition

We defer the proof to full version [50]. Several brief
remarks are now in order, see [50, Page 17] for more details.

Firstly, observe that there is no restriction on the running
time of .A: as long as it is stable in the sense of Definition [2]
with appropriate parameters, Theorem [8| applies. Secondly,
as a, L,m and 7 are all O(1), p; and py are of constant
order: the algorithms that we rule out have a constant
probability of success/stability and need not have a high
probability guarantee. Thirdly, A is still allowed to make
©(n) flips even when M and M are “nearly identical”.
Lastly, while we establish Theorem §|for the case L = O(1)

for simplicity; our arguments extend to L = O(log’ign).




B. Failure of Online Algorithms for SBP

Our next focus is on the class of online algorithms,
formalized below.

Definition 3. Fix a k > 0, an « < a.(k); and set M =
|na| € N. Let M € RM*" with columns Cy,Ca, . ..,Cp €
RM and A:RM>" 5 B be an algorithm where

A(M) =0 = (0'1,0'2,...,

We call A pg—online if the following hold.
e (Success) For M consisting of i.i.d. N'(0,1) entries,

P[[[MAM)], < 5v] 2 1-py.

on) € B,.

e (Online) There exists deterministic functions f;, 1 <
t < n such that

or=fi(Ci:1<i<t)e{-1,1} for 1<t<n.

Several remarks are now in order. The parameter py is
the failure probability of A: A(M) € S, (k) w.p.at least
1 —py. The second condition states that for all 1 <¢ < n,
oy is a function of Cq, . . ., C; only. More precisely, the signs
o; € {-1,1}, 1 < i <t —1, have been assigned at the
end of round ¢t — 1. A new column C; € R™ arrives in
the beginning of round ¢, and A assigns a o, € {—1,1}
depending only on the previous decisions. This highlights
the online nature of A.

Definition [3]is an abstraction that captures, in particular,
the algorithm by Bansal and Spencer [33]]. Our next result
establishes that online algorithms fail to return a o € S, (k)
for densities « close to the critical threshold a.(k). As in
Section [[I-B] we stick to the case x = 1 for simplicity, even
though our argument easily extends to arbitrary x > 0.

Theorem 9. Let 1.77 < « < a.(1) = 1.8159. Then, there
exists a constant cy > 0 such that the following holds. For
any py <1 fexp(fcfn), there exists no A for SBP which
is py—online in the sense of Definition

The proof is based on a contradiction argument (slightly
different than 2—OGP) and is deferred to full version [50].

Note that the lower bound o > 1.77 appearing in
Theorem [J]is strictly larger than the corresponding 2—OGP
threshold, i.e. « > 1.71, for the same setting (x = 1)
per Theorem [5] Moreover, we rule out online algorithms
that succeed even with an exponentially small probability.
This is based on a clever application of Jensen’s inequality,
originally due to Gamarnik and Sudan [43, Lemma 5.3].

C. Algorithmic Threshold in SBP

a) Algorithmic Lower Bound in SBP: Heretofore,
we used @(ﬁ2) as our baseline for the current com-
putational threshold for the SBP. Namely, against this
threshold; we (a) formulated the aforementioned statistical-
to-computational gap and (b) compared our hardness result,
Theorem (8] for the stable algorithms established through
the m—OGP. In this section, we justify this choice for the
algorithmic threshold, from the lower bound perspective.

As we mentioned in the introduction, the SBP is closely
related to the well-known problem of minimizing the
discrepancy of a matrix (or set system). The discrepancy
minimization problem received much attention in the field
of combinatorics and theoretical computer science; several
efficient algorithms have been devised for it, see e.g. [33]],
[91]-[93]. In what follows, we use the algorithm of [33] as
our baseline for postulating a computational threshold on
« as one varies k; though several of the algorithms cited
above essentially yield the same @(HQ) guarantee modulo
different absolute constants. Before we proceed with the
result of [33]]; it is worth noting that there is yet another
complementary line of research focusing on the so-called
online guarantees, see e.g. [94]-[97]]. However, all of these
algorithms suffer from extra polylogarithmic factors: their
implied guarantees on « are poorer. That is they provably
work only for a asymptotically much smaller than 2.

The work by Bansal and Spencer (see in particular [33}
Section 3.3]) establishes the following.

Theorem 10. [33| Theorem 3.4] Let T' € N be an arbitrary
time horizon, and v; ~ Unif(By), 1 < ¢ < T, be
i.i.d. random vectors. Then there exists a value K > 0 and
an algorithm that returns signs $1,...,s7 € {—1,1} in
Poly(M,T) time such that

PWZigT Sivz‘Hoo < K\/M] >1 —QXp(—cM).

Here, ¢, K > 0 are absolute constants independent of

M,T.

Corollary 2. There exists an absolute constant K > 0 such
that the following holds. Fix any r > 0, a < (k/K)?;
and consider the matrix M € R*™ ™ with ii.d. entries
M,j, i € [an] and j € [n], where P[M;; = +1] = 1 =
]P’[Mij = —1]. Then, there exists an algorithm A, running
in poly(n) time, such that w.h.p. HM L A(M) HOO < Ky/n.

Corollary [2| is a direct consequence of Theorem
Indeed, consider M € {£1}°T*T with o = n/T, whose
columns are v;, 1 < ¢ < 7T. Then one can find, in
polynomial (in n, T') time, a ¢ € By such that HMO’HOO <
Ky/n = K+vaT. Since a < (1/K)?, the claim follows.

Admittedly, their result is established for the case
of i.i.d.Rademacher disorder. Nevertheless, due to the
aforementioned universality guarantees encountered in
perceptron-like models, it is expected that the exact same
guarantee (perhaps with a modified constant K) remains
true for the case of i.i.d. standard normal disorder.

b) A Conjecture on the Algorithmic Threshold: Recall
from above that for many random computational prob-
lems, the m—OGP threshold coincides (or nearly coin-
cides) with conjectured algorithmic threshold. Examples
include finding the largest independent set in random sparse
graphs [47]], [48], NAE-k-SAT [43]], random k—SAT [45],
mixed even p—spin model [88]], and so on. In light of
the preceding discussion, this is also the case for the SBP
model: the limit of known algorithms is at ©(x?), whereas,



as we establish in Theorem [7] the ensemble m—OGP holds
for densities Q(/{z log, %) in the regime x — 0.

On the other hand, unlike models such as the independent
set problem, k—SAT, or the planted clique; prior to this
work no conjectures were proposed regarding the threshold
for algorithmic hardness in SBP model in the Kk — 0
regime. Here, we do put forward such a conjecture. To
that end, let

*

(k) & inf{oz € [0,ac(r)] : 31> B>n>0,

aﬂ’L
ligr_ljng[SR(ﬁ,n,m,a, {O}) = @} = 1} )

That is, o, (k) is the threshold for the m—OGP (with
appropriate (3, 1). Let

(k)

where the limit is well-defined since (am)m>1 is a non-
increasing sequence of non-negative real numbers. Then we
conjecture o (k) marks the true algorithmic threshold for
this problem.

*
o0

«

Jim a0

Conjecture 3. For any € > 0, there exists a k*(€) > 0
such that the following hold for every k < k*(e):
o There exists no polynomial-time search algorithms for
the SBP if o > (1 + €)al, (k).
o There exists a polynomial-time search algorithm for
the SBP if o < (1 — €)al, (k).

Recall that per Theorem [7} o, (k) = O(k*log, L) as
k — 0. Notice that the «,(x) (hence the o (k)) are
defined for the non-ensemble variant of m—OGP, Z = {0}.
That is, (9, 1 < ¢ < m, satisfy constraints dictated by the
rows of the same disorder matrix M € RM*" with i.i.d.
N(0,1) (or Rademacher) entries, where M = |an|. This
is merely for simplicity: the ensemble m—OGP and the
non-ensemble m—OGP often take place at the exact same
threshold. The former, on the other hand, is just technically
more involved; and is necessary to rule out certain classes
of algorithms via an interpolation/contradiction argument as
we do in this paper. The structural property implied by the
non-ensemble OGP already suffices to predict the desired
algorithmic threshold.

D. Stability of the Kim-Roche Algorithm

Having established that the m—OGP is a provable barrier
for the class of stable algorithms, it is then natural to
inquire whether the class of stable algorithms captures
the implementations of known algorithms for perceptron
models. Here we investigate this question for a certain
algorithm devised for the asymmetric model, which we
recall from (T).

Kim and Roche devised in [5]] an algorithm which takes
an M € RFX" with i.i.d.entries as its input and returns
a o € B, such that Mo > 0 entry-wise as long as
k < 0.005n. (We use k in place of M so as to be consistent
with their notation.) In particular, S2(0) # @ w.h.p.if a <

10

0.005. We denote their algorithm by Agg : RF*" — B,,.
It is worth noting that while their results are established
for the case where M consists of i.i.d. Rademacher entries,
they easily extend to the case of Gaussian N'(0, 1) entries,
which will be our focus here. Axgr takes O(loglogn)
steps, each requiring poly(n) time. Namely, Akg is an
efficient algorithm that provably works in the so-called
linear regime, k = O(n). Admittedly, Axg is tailored
for the ABP. Nevertheless, there are only a few known
algorithms with rigorous guarantees for perceptron models;
thus it is indeed natural to explore the stability of Akg.

We defer an informal description of Akg and its opera-
tional parameters to the full version [50, Section 3.4]. Our
next main result establishes that Akg is indeed stable in
the sense of Definition 2l

Theorem 11. Let M, M’ € R¥X™ be i.i.d. random matri-
ces, each with i.i.d. N'(0,1) entries. For 7 = n=%02 Jet

M(7) £ cos(T)M + sin(7) M. (7

Let 0 = Akr(M) € By, @ £ Akr(M(7)) € By,. Then,
Pldu (0,7) = o(n)} >1-0(n" ).

The proof is deferred to the full version [50].
As a result, the Kim-Roche algorithm is

(cos (n_0'02) , 0(1/n) , O(n_1/41) ,Cn, L) — stable

in the sense of Definition [2| for any C' > 0 and L > 0
(see [50, Page 21] for further details). Note though that this
parameter scaling is not comparable with Theorem [/| since
Theorem [/| pertains to the symmetric model, see below
for more details. Recalling O(0,5) = n~! (0,5) = 1 —
2dp (0,7) /n, it follows that in the setting of Theorem
O(0,0) = 1 — o(1). That is, o and & agree on all
but a vanishing fraction of coordinates. Informally, this
suggests that Aggr cannot overcome the overlap barrier
of 1 appearing in Theorems [3 [] and [7] as n = O(1).
However, we established the OGP results for the symmetric
case as opposed to the asymmetric model for which Axgr
is devised. Thus Theorem [T1]is not exactly compatible with
the hardness result, Theorem[§] A more compelling picture
would be to show that the OGP takes place also for the
asymmetric model, with an 7 that is of order O(1); and
then couple such result with Theorem We leave this as
a very interesting direction for future work.

Lastly, it would also be very interesting to prove that the
algorithm by Abbe, Li and Sly [4] devised for the SBP
is also stable in the relevant sense. While an inspection
of [4] reveals that several of the key steps are indeed similar
to that of [3]], there are a few differences which prevent
immediate verification of stability, see [50, Page 23] for a
detailed discussion. We leave the formal investigation of
this as a very interesting direction for future research.
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