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ABSTRACT

Foliar biochemical traits are important indicators of ecosystem functioning and health that are impractical to
characterize at large spatial and temporal scales using traditional measurements. However, comprehensive in-
ventories of foliar traits are important for understanding ecosystem responses to anthropogenic and natural
disturbances, as inputs into ecosystem process models, and for quantifying spatial variation in functional di-
versity. Imaging spectroscopy has been demonstrated as a valuable tool for developing maps of ecologically
important foliar traits at large scales, but its application to mapping foliar traits over the course of the growing
season has been limited. We collected high-resolution imaging spectroscopy data over Blackhawk Island, Wis-
consin, USA at eight time points during the 2018 growing season (May — October). Using partial least squares
regression (PLSR) we developed predictive models applicable to all dates to produce canopy-level maps of eight
traits related to ecophysiological function: chlorophyll content, leaf mass per area and concentrations of calcium,
nitrogen, phosphorus, potassium, phenolics and lignin. The accuracy of our models varied across traits (R%
0.25-0.86); traits with well-defined absorption features were retrieved with high accuracy including chlorophyll
(RZ: 0.86; %RMSE: 11.0) and total phenolics (Rz: 0.86; %RMSE: 11.0). We also assessed how well our models
estimated biochemistry on novel species and new dates using a cross-validation analysis. Chlorophyll and total
phenolics were well estimated across withheld dates and species, whereas calcium was estimated poorly on both
withheld species (RZ: 0.08) and dates (RZ: 0.07). Our canopy-level maps of macronutrients (N, P and K) showed
general trends of decreasing concentration over the course of the year, reflecting dilution by carbon-rich com-
pounds during the growing season and resorption during senescence. Conversely, recalcitrant compounds
including lignin and calcium increased until late summer, after which they stabilized. These results demonstrate
the potential of current and proposed spaceborne imaging spectroscopy missions for mapping seasonal patterns
in foliar biochemistry at a global scale.

1. Introduction

patterns in community composition and ecological function make use of
mean trait values for species (Albert et al., 2011). However, variability

Foliar biochemical traits are dynamic properties of plants that vary
through space and time and are linked to multiple ecosystem processes,
including primary productivity and nutrient cycling (de Bello et al.,
2010). Foliar traits include biochemical properties related to photo-
synthesis, such as chlorophyll and nitrogen, structure and decomposi-
tion, including fiber and lignin, and defense, like condensed tannins and
other phenolic compounds. Understanding how functional traits vary
through space and time is important for developing accurate ecosystem
process models, for predicting ecosystem response to change and un-
derstanding patterns in community assembly ([to et al., 2006; Reichstein
et al,, 2014). In general, studies that use functional traits to assess

in functional traits is known to be scale dependent and driven by both
taxonomic and environmental factors (Albert et al., 2010; Messier et al.,
2010, 2017). Moreover, ecosystems with strong seasonal patterns, like
temperate deciduous forests, display significant variation in foliar traits
as leaves develop and senesce; this variation in turn drives intra-annual
patterns in ecosystem processes (Reich et al., 1991; Salminen et al.,
2004; Noda et al., 2015).

Studies dating to the early 20th century reported the seasonal vari-
ation in foliar biochemical traits and demonstrated that interannual
patterns vary between species, within species, and across locations
(McHargue and Roy, 1932; Alway et al., 1934; Sampson and Samisch,
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1935; Chandler, 1939). In a review of more than 20 studies, Turner et al.
(1977) found that the direction of intra-annual trends (increasing,
decreasing or stable) in foliar nutrient concentrations was not universal.
In general, with elemental concentrations, calcium and manganese in-
crease during the growing season, while nitrogen, phosphorus and po-
tassium decrease, and boron, copper and magnesium are stable
throughout the year. Other studies have reported on seasonal patterns in
more complex compounds including pigments (Schertz, 1929; Sanger,
1971), phenolics (Schultz et al., 1982; Salminen et al., 2004; Zehnder
et al.,, 2009), nonstructural carbohydrates (McLaughlin et al., 1980;
Flower, 2007) and lignin (Martin and Aber, 1997; Zehnder et al., 2009).
In general, inter- and intra-species seasonal patterns of trait variation
represent trade-offs in allocation of resources, with overall trends driven
by a combination of resource availability, environmental cues, species
identity, phylogeny and genetics.

Trait-based ecology has emerged due the relative ease with which
functional traits can be measured compared to their underlying physi-
ological processes. This has led to the development of trait databases
such as TRY (Kattge et al., 2020), which have enabled global-scale an-
alyses of the variation in and drivers of ecosystem function (Diaz et al.,
2015; Dong et al., 2020). Despite their relative ease of measurement,
there are limits to the density of measurements, spatial extent and
temporal richness at which functional traits can be quantified using in-
situ sampling and laboratory analysis before efforts become prohibi-
tively costly. Leaf-level spectroscopy represents a viable alternative for
rapidly and nondestructively measuring foliar functional traits (Asner
and Martin, 2011; Serbin et al., 2014, 2019; Couture et al., 2016), which
in turn has vastly increased the amount of data available to characterize
evolutionary, taxonomic and environmental sources of trait variation
(Asner et al., 2014; Nunes et al., 2017; Meireles et al., 2020). Imaging
spectroscopy has now also emerged as a valuable technology for further
expanding the scale at which foliar functional traits can be measured. By
developing relationships between canopy spectra and field measured
leaf traits, maps of these traits can be generated at large spatial scales.
These maps have been used to characterize relationships between can-
opy traits and precipitation (Asner et al., 2005), geomorphology
(Chadwick and Asner, 2016a), soil chemistry (Chadwick and Asner,
2018), and land use (Swinfield et al., 2019). However, most studies
using imaging spectroscopy to map foliar traits have largely focused on a
single point in time, namely the peak of the growing season (Martin and
Aber, 1997; Asner et al., 2015; Singh et al., 2015; Wang et al., 2020),
whereas foliar traits are known to vary throughout the course of the
growing season and are most dynamic during shoulder seasons
following leaf out and over the course of senescence (Reich et al., 1991;
Yang et al., 2016).

Remote sensing of phenology has historically been studied within the
context of greenness using the normalized difference vegetation index
(NDVI), or similar indices like the enhanced vegetation index (EVI), as
metrics of vegetative vigor (Duchemin et al., 1999). Greenness indices
are valuable for representing large-scale phenological patterns due their
ease of computation and compatibility with a wide variety of remote
sensing platforms (e.g., Landsat, MODIS, Sentinel). However, these
indices are largely capturing variation in pigment content and leaf/
canopy structure, whereas other ecologically relevant foliar traits may
not exhibit the same temporal patterns (Wu et al., 2009). With its high
spectral resolution, full-range (400-2500 nm) imaging spectroscopy
provides the ability to resolve narrowband absorption features associ-
ated with biochemical traits not discernible from broadband sensors
(Curran, 1989). Few studies have used imaging spectroscopy to study
phenological patterns of foliar biochemistry of natural ecosystems
(Matson et al., 1994), mostly due to lack of data. At the leaf and plant
level, trait-spectra relationships vary across the course of the growing
season, and predictive models developed using data from one time point
may introduce biases in prediction on a different point in the growing
season (Sanches et al., 2013; Yang et al., 2016). This is expected to
transfer to the canopy level, but the magnitude of the effect remains
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untested.

Here we demonstrate for the first time the application of imaging
spectroscopy to track changes in foliar biochemistry across a growing
season in a temperate deciduous forest and demonstrate the ability to
capture interspecific variation in biochemical phenology. Using data
from eight airborne imaging spectroscopy acquisitions over Blackhawk
Island, Wisconsin, USA in 2018 combined with field data, we map
variation in eight canopy traits related to growth (chlorophyll, nitro-
gen), structure (LMA, lignin), defense (total phenolics) and mineral
acquisition (calcium, phosphorus and potassium). We also assessed the
capacity to estimate intraspecific variation in foliar traits and tested how
well models transfer to new dates and novel species. Finally, we apply
our models to the entire time series of imagery and characterize the
spatiotemporal patterns in canopy biochemistry across the course of the
growing season.

2. Methods
2.1. Study area

Blackhawk Island is a 73-ha island located in the Wisconsin River
near Wisconsin Dells, WL, USA (43.65° N, 89.79° W) (Fig. 1). Blackhawk
Island has a long history of ecological research, including some of the
earliest studies linking decomposition processes, species composition
and primary productivity (Pastor et al., 1984). The island has variable
topography, with steep slopes along the river edge and relatively flat
terrain in the center of the island, at its highest point it rises 33 m above
the river. Five soil orders are present on the island, including Alfisols,
Entisols, Incepticols, Histosols and Spodosols (Pastor et al., 1984). Forest
community composition on Blackhawk Island is closely related to soil
properties (Pastor et al., 1982). Canopy dominant species are primarily
oaks (Quercus alba and Quercus rubra), pines (Pinus resinosa and Pinus
strobus), and maples (Acer rubrum and Acer saccharum). Aboveground
production is driven by soil texture and N mineralization, with miner-
alization rates a function of N and P return to the soil in leaf litter and
litter quality variation due to species identity (Pastor et al., 1982, 1984).
As a consequence of these and other studies, Blackhawk Island has also
been the site of numerous studies that have used imaging spectroscopy
to map canopy biochemistry (Martin and Aber, 1997; Singh et al., 2015)
and is the site where Wessman and colleagues first demonstrated the
potential for hyperspectral imagery to map ecosystem-relevant foliar
traits (Wessman et al., 1988), especially as drivers of decomposition
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Fig. 1. Locations of sampled trees on Blackhawk Island. The western end of the
island is dominated by coniferous tree species which were not included in
this study.
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processes.

2.2. Remote sensing data

Imaging spectroscopy data was collected using a HySpex airborne
imaging system (Norsk Elektro Optikk As, Skedsmokorset, Norway). The
system consists of two cameras, a VNIR-1800 camera, which measures
radiation between 400 and 997 nm across 186 channels with a spectral
sampling interval of 3.26 nm, and a SWIR-384 camera, which covers
975-2500 nm and measures radiation at 288 channels with a spectral
sampling interval of 5.45 nm. The cameras were mounted on a
vibration-dampening platform with an iTraceRT F400-E GPS/IMU
(iMAR Navigation GmbH, St. Ingbert, Germany). The imaging system
was flown aboard a Cessna 180 at a nominal altitude of 700 m above
ground level, resulting in a spatial resolution of 0.5 m for the VNIR
camera and 1.0 m for the SWIR camera. Each overflight consisted of nine
flightlines with 60% sidelap. A total of eight overflights were flown
between 16 May and 17 October 2018, and all flights were conducted
+/— 2 h of solar noon (Table 1).

Raw image data were converted to radiance using manufacturer-
provided calibration coefficients. Wavelength centers were estimated
following Guanter et al. (2009). Camera alignment and geometric
registration were performed using PARGE 6.0 orthorectification soft-
ware (RESE, Wil SG, Switzerland). A secondary geometric adjustment
was performed using a correlation-based image matching algorithm
(Gao et al., 2009), using a 2015 National Agriculture Imagery Program
aerial image as a reference image. Calculation of apparent surface
reflectance from at-sensor radiance was performed using an inverse
algebraic atmospheric correction algorithm with the ‘libRadtran’ radi-
ative transfer code (Emde et al., 2016) based on the method of Adler--
Golden et al. (1999). Total column water vapor was estimated using the
depth of the water vapor feature at 940 nm (Carrere and Conel, 1993).
Visibility, which was high during all overflights, was set to a constant of
50 km. Next, a bidirectional reflectance distribution function (BRDF)
correction was applied to remove brightness gradients resulting from
varying sun and sensor geometry using the approach described in Chlus
et al. (2020). Briefly, using sensor and sun geometry, we modeled the
volumetric, geometric and isometric scattering components using the
Ross and Li scattering kernels (Schléapfer et al., 2014). For each date we
pooled data across all flightlines and generated a single set of BRDF
correction coefficients by regressing the resulting kernels against the
uncorrected reflectance data for each wavelength. The VNIR imagery
was aggregated and averaged to 1 m to match the spatial resolution of
the SWIR camera. Image data from both cameras were combined at 980
nm to create a single full range (400-2500 nm) image for each flightline.
The SWIR spectrum tail (>2400 nm) and water absorption bands were
excluded from analysis due to low signal-to-noise ratio (SNR). Individual
flightlines were merged to create a mosaic of the island for each date; in
overlapping regions the pixel with the smallest viewing zenith angle (i.
e., closest to nadir) was used (Fig. 2). To improve SNR we averaged
bands pairwise, resulting in a total of 187 bands with nominal spectral

Table 1
Airborne HySpex imagery used in the study.

Overflight date Mean local acquisition Local solar Mean solar zenith
time noon angle

May 16, 2018 12:22 12:55 25°

June 04, 2018 11:19 12:57 29°

June 29, 2018 12:18 13:02 22°

July 25, 2018 13:38 13:05 25°

August 13, 2018 14:26 13:04 34°

September 10, 12:18 12:56 39°
2018

September 26, 12:40 12:50 45°
2018

October 17, 2018 12:22 12:44 53°
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sampling intervals of 7 nm and 10 nm in the VNIR and SWIR, respec-
tively. Finally, to suppress residuals in the reflectance spectra we
calculated per-date multiplicative correction factors, using a sand bar as
a smooth reference surface (Thompson et al., 2015).

2.3. Foliar sampling

Within eight days of each overflight, we collected foliage from 9 to
11 trees. To ensure that our field-derived foliar measurements were from
trees identifiable in the imagery we sampled trees that had crowns
greater than 5 m in diameter. From each tree we sampled 1-3 branches
from the sun exposed top of the canopy. Branches were sampled using
either extendable pole pruners or a custom-built cutting device (Chlus
et al., 2020). From each branch we measured the reflectance of 20 leaves
with a PSR 3500+ spectrometer equipped with a leaf clip (Spectral
Evolution, Boston, MA, USA) to estimate leaf-level foliar traits using
spectroscopic models. Of those 20 leaves, we measured the one-sided
area of three leaves using a flatbed scanner to calculate leaf mass per
area (LMA) and retained a single leaf for pigment analysis to validate the
spectral models. We combined the remaining 16 leaves with an addi-
tional 20-30 leaves from each branch for bulk chemical analyses. All
foliar samples were stored in plastic bags with a damp paper towel in
coolers with ice until the end of each day when they were frozen in
liquid nitrogen and stored in a — 20 °C freezer until further processing.
In addition to foliar sampling, we also recorded the species, diameter at
breast height (DBH), crown shape of each tree sampled and made a
general site characterization. We recorded tree locations with a differ-
entially corrected GeoXM or Geo7x GPS receiver (Trimble Inc., Sunny-
vale, CA, USA). Over the course of the study period a total of 80 trees
were sampled representing 11 broadleaf species (Table S1).

2.4. Sample processing

Bulk foliar samples were dried in a lyophilizer (> 120 h) and ground
using a Wiley Mill (Thomas Scientific, Swedesboro, NJ, USA) equipped
with a #20 mesh (0.841 mm). A subset of ground samples was analyzed
for concentrations of elements (N, P, K, Ca) (n = 27), total phenolics (n
= 49) and acid-digested lignin (n = 28). Elemental concentration was
determined using combustion analysis (N) and inductively coupled
plasma emission spectroscopy (Ca, K, P) (Gavlak et al., 2003). Total
phenolics concentration was determined using the Folin-Ciocalteu
method (Ainsworth and Gillespie, 2007), while lignin concentration
was determined using a hot-acid detergent extraction (Couture et al.,
2012). Leaves measured for leaf area were dried for >72 h in a 68 °C
oven and weighed on a precision balance (0.0001 g) to determine dry
mass. LMA was calculated by dividing measured dry mass by leaf area.
Chlorophyll A content was measured on a subset of samples (n = 63)
using high performance liquid chromatography (HPLC) following
Schweiger et al. (2018).

Spectral measurements were made on all dried and ground samples
with an ASD Fieldspec 3 spectrometer (Analytical Spectral Devices,
Boulder, CO, USA) following Serbin et al. (2014). Prior to spectral
measurements ground samples were stored in a 68° oven overnight to
remove any residual moisture absorbed during storage. Spectroscopic
models were then used to estimate foliar biochemistry for all samples.
Estimation of foliar traits from reflectance spectra is a well-established
method for rapidly and accurately estimating foliar biochemical prop-
erties (Asner and Martin, 2008; Serbin et al., 2014; Yang et al., 2016).
Fresh leaf-level reflectance spectra were used to estimate LMA and
chlorophyll A content, while spectra of dried and ground samples were
used for the estimation of all other traits. Models were built using partial
least squares regression (PLSR) using ‘scikit-learn’ in Python (Pedregosa
et al., 2011). PLSR models were calibrated with data from three inde-
pendent datasets: Serbin et al. (2014), Wang et al. (2020) and Chlus
et al. (In prep.) and validated against the subset of samples from Black-
hawk Island that were measured using laboratory techniques. Models for
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Fig. 2. True color RGB mosaics of HySpex imagery for each overflight date.

all traits were built using the SWIR region of the spectrum (1200-2500
nm), with the exception of chlorophyll A models that used the VNIR
(400-750 nm). Prior to model building, each spectrum was normalized
to its mean to remove brightness differences, similar to normalization
used in other studies (Feilhauer et al., 2010; Kim et al., 2013). The
optimal number of model components was determined using the cross-
validated predicted residual sum of squares (PRESS) calculated on the
calibration dataset. A series of 500 calibration models was generated,
each built using a random 70% of the calibration data. These models
were then applied to the independent (fully withheld) validation dataset
and the mean trait value across the 500 models was calculated for each
sample and compared against the observed trait value. Model perfor-
mance was assessed using the coefficient of determination (R2), root
mean squared error (RMSE) and normalized RMSE (%RMSE) (Table S2).
Following the accuracy assessment, 500 new permuted models were
built using the entire dataset and were applied to all fresh and ground
spectra. Any negative trait predictions were truncated to zero.

2.5. Canopy trait mapping

Trait maps were generated using PLSR, predicting canopy-level traits
as a function of HySpex imaging spectroscopy. We chose PLSR over
other modeling methods due to its computational efficiency, ease of
interpretation and track record for accurately estimating foliar
biochemistry from imaging spectroscopy (Chadwick and Asner, 2016a,
2016b; Martin et al., 2018; Wang et al., 2020). In-situ top-of-canopy
traits were derived by simple averaging of all leaf-level trait estimates
from sampled branches from each tree. Canopy spectra of sampled trees
were extracted from the imagery using manually digitized crown poly-
gons and averaged, resulting in a single spectrum per tree. We used all
pixels from a crown, including both sunlit and shaded components, as
this is more representative of canopy spectra than using sun-facing
pixels exclusively, and also better facilitates comparison with coarser-

resolution data expected from forthcoming satellite missions. Similar
to the leaf-level models we mean-normalized the canopy spectra prior to
analysis.

For each trait we began by randomly dividing the data 70:30 for
calibration and validation. The optimal number of model components
was determined by minimizing the cross-validated PRESS statistic
calculated on the calibration dataset, up to 20 components. Next, we
built a series of 500 permuted models, each using a random 70% subset
of calibration dataset. These models were applied to the original vali-
dation subset and averaged by validation sample across all permuta-
tions. To evaluate the predictive ability of the model we calculated the
Rz, RMSE and %RMSE for both calibration and validation datasets. We
found that due to the sample size of 80 the optimal model and model
performances varied widely as a function of the original random split,
leading to both under- or over-optimistic results among all of the per-
mutations (Fig. S1). To get a better representation of model performance
we repeated the model building process 500 times, each with a new
random 70:30 split of the data for calibration and validation (See Fig. S2
for details). This resulted in 25,000 sets of model coefficients (500 splits
x 500 permutations), to reduce the number of coefficients used for
prediction each set of permuted model coefficients was averaged,
resulting in a total of 500 models. The resulting 500 models were applied
to all images in the time series and the mean trait estimates were
calculated for each pixel. We also calculated per-pixel trait standard
deviation as a measure of predictive uncertainty. For analysis, we
masked pixels whose values were outside +15% of the range of field
measured traits or had negative values.

To test the sensitivity of our models to both novel species and new
dates we performed a leave-one-group-out cross-validation, where we
withheld for validation either species or image collection dates. For each
withheld group, we developed a permuted PLSR model using data from
the remaining groups and applied this model to the withheld group data.
Due to the small number of individual trees sampled for Betula species (n
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= 2 for Betula alleghaniensis and n = 3 for B. nigra) data from these
species was aggregated, and data from A. sacharinum data (n = 3) were
included with A. rubrum (n = 9), a closely related species (Saeki et al.,
2011). The PRESS statistic was used to select the optimal number of
components, up to 20 components, for each cross-validation split. Model
performance was evaluated using the R%, RMSE and %RMSE of the out-
of-sample datasets. R metrics were calculated from the linear fit be-
tween the predicted and observed values while %RMSE was calculated
using the full season range to allow for comparison among dates and
species.

All canopy-level models were built using the SWIR region of the
spectrum with the exception of chlorophyll A (400-750 nm) for which
we aimed to exploit pigment absorption features (Curran, 1989; Gitelson
et al., 1996). The remaining traits were predicted using only the SWIR
spectrum (1200-2400 nm) because the primary absorption features
associated with those traits are located in the SWIR (Curran, 1989;
Workman Jr and Weyer, 2008), but also to reduce confounding influ-
ence of pigment-related spectral features in the visible that may corre-
late with non-pigment traits and to limit the influence of canopy
structure in the NIR wavelengths.

2.6. Species classification

To assess species-specific patterns in mapped traits we developed a
species map of the island. Species classification was performed using an
object-oriented (segmentation) classification approach, in which both
spatial context and spectral signatures are used to delineate trees. Image
segmentation was performed using the Shepherd segmentation algo-
rithm (Shepherd et al., 2019) implemented using the Python library
‘RSGISLib’ (Bunting et al., 2014). Shepherd segmentation uses an iter-
ative process of grouping spectrally similar regions of pixels until all
regions reach a user-defined minimum mapping size, which we estab-
lished as 25 pixels (25 m?) to correspond to the minimum crown size
sampled. The segmentation was performed on a five-band composite of
principal component (PC) images from three dates 16 May (PC bands: 2,
4, 5), 04 June (PC band: 4) and 29 June (PC band: 4). We used multiple
dates to exploit phenological and spectral differences among canopy tree
species. The PC transformation was performed to reduce the dimen-
sionality of the data, thus improving processing time and limiting data
redundancy. We visually inspected the PCs and chose for segmentation
those that showed the greatest amount of contrast between neighboring
crowns. Late season images were not used as testing demonstrated that
they provided no improvement in segmentation results.

After segmentation, species classification was performed using a
bootstrapped random forest classifier built with 100 trees using the
‘scikit-learn’ library in Python (Pedregosa et al., 2011). For each
segment we calculated the mean value of all contained pixels for each
band across seven dates, resulting in 1309 features per segment (187
bands x 7 dates). Imagery from October 17 was excluded due to asyn-
chronous senescence of deciduous species across the island. To reduce
the dimensionality of the data we applied a PC transformation and
retained as predictor variables the first 78 components, which explained
>99.99% of the variance in the data. Species labels for training and
testing of the classifier were derived from a combination of field data
collected in 2018 and 2019 and photointerpretation, yielding 418 in-
dividual trees representing 13 species. We excluded species for which
there were less than three individuals found on the island, including
yellow birch (B. alleghaniensis), cottonwood (Populus deltoides) and elm
(Ulmus sp.). We used the point locations associated with the identified
trees to select the corresponding image segments. The data were then
split 50:50 into training and testing data, stratified by species. A clas-
sification model was built with the training dataset and used to label the
testing dataset, on which we calculated accuracy metrics. After accuracy
assessment the classifier was rebuilt using all of the data and applied to
all image segments to make a map to intersect with the trait maps. We
retained the classification probability of each segment to use in
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subsequent analyses to filter segments with less than 30% classification
probability and eliminate canopy gaps and low growing vegetation.

3. Results
3.1. Canopy trait models

The results of the full-season PLSR models varied by trait (R%
0.25-0.86), and, with the exception of calcium, all traits had a %RMSE
of less than 20% (Table 2). Values of standardized PLSR coefficients
provide a basis for interpretation of the models, with highly negative
coefficients expected to correspond to spectral absorption features.
Models for estimating chlorophyll A content and total phenolics showed
the strongest predictive performance (R% 0.86%RMSE: 11%), and both
leveraged well-documented spectral features, the red edge (685-730
nm; Gitelson et al., 1996) for chlorophyll and aromatic C—H absorption
(1660 nm; Kokaly and Skidmore, 2015) for total phenolics. Similarly,
large negative standardized coefficients for nitrogen were present at
2050 and 2017 nm, wavelengths with absorption features associated
with proteins and N—H bonds (Curran, 1989; Osborne et al., 1993). The
standardized coefficients for lignin exhibited a large negative value at
1685 nm, a wavelength associated with C—H and C=0 bonds in lignin
(Workman Jr and Weyer, 2008). Standardized model coefficients for
both phosphorus and potassium were the most similar to each other
among all pairwise comparisons (Pearson r: 0.74) and both exhibited
large negative coefficients at 1735 and 2215 nm (Fig. 3). Conversely,
potassium and total phenolics showed the strongest negative correlation
between standardized coefficients (Pearson r: —0.57) and both exhibited
coefficient peaks at 1660 nm, negative for total phenolics and positive
for potassium.

Similar ordering of model performances was seen in species cross-
validation analyses (Fig. 4; See Table S4 for detailed metrics). Chloro-
phyll A content was well estimated on withheld species (R% 0.64-0.98)
whereas calcium concentration was generally poorly estimated (R*:
0.0-0.66). Total phenolics were systematically underestimated in
A. rubrum and A. saccharinum species when withheld (Bias: —4.77%
mass) compared to all other species (Bias: —1.39-2.25% mass).

The ability of our models to estimate total phenolics content on new
dates was high (R% 0.7-0.97, %RMSE < 17%; Fig. 5), whereas calcium
models generally performed poorly on new dates (R%: 0-0.9, %RMSE:
12-55%). Estimates of LMA on June 29 and September 26 exhibited a
systemic underestimation of 24 and 21 g m~2, respectively. We found
that on average across all traits, errors were highest at the beginning
(May 16, %RMSE: 19.6%) and end of the season (October 17, %RMSE:
16.9%).

3.2. Species classification

The accuracy of the classifier was high (Overall accuracy: 88.5%;
Cohen’s kappa: 0.87; see Table S5 for details). With the exception of
white ash, all species had user’s and producer’s accuracies of 75% or
greater. Red oak (Quercus rubra) was the most common tree species on
Blackhawk Island (40% cover), followed by white pine (Pinus strobus)
(17%) and sugar maple (Acer saccharum) (12%), with all other species
having less than 10% cover.

3.3. Seasonal patterns

Species-averaged trait trajectories varied across the course of the
growing season (Fig. 6). Traits associated with leaf structure, including
LMA and lignin, displayed similar species ordering from low to high
values on all dates, and followed a generally similar trend of increasing
values until leveling off in the late summer. Calcium displayed a similar
trend, but species ordering differed from LMA and lignin, with Tilia
americana and Carya cordiformis accumulating the greatest concentra-
tions of calcium among the five broadleaf species. Chlorophyll A content
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Table 2
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Average calibration and independent validation metrics for 500 permutations of full-season canopy-level PLSR trait model. C indicates median number of components

used in the permuted PLSR models.

Calibration Validation
Trait Units Wavelengths (nm) C R? RMSE %RMSE Bias R? RMSE %RMSE Bias
Calcium % mass 1201.4-2389.4 6 0.61 0.4 0.13 0 0.25 0.67 0.26 0.03
Chlorophyll A pmol m? 407.1-745.6 5 0.91 38.68 0.07 0.23 0.86 52.7 0.11 -1.03
LMA g m? 1201.4-2389.4 14 0.91 5.71 0.06 0.11 0.58 14.35 0.17 0.42
Lignin % mass 1201.4-2389.4 12 0.91 1.34 0.07 0.01 0.62 2.91 0.17 -0.03
Nitrogen % mass 1201.4-2389.4 14 0.94 0.17 0.04 0 0.67 0.42 0.15 0
Phosphorus % mass 1201.4-2389.4 6 0.81 0.03 0.09 0 0.66 0.04 0.16 0
Potassium % mass 1201.4-2389.4 9 0.88 0.15 0.07 0 0.63 0.31 0.17 —0.01
Total phenolics % mass 1201.4-2389.4 10 0.96 0.9 0.05 0.01 0.86 1.75 0.11 0.06
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Fig. 3. Averaged full season standardized PLSR model coefficients. Dashed vertical lines and shaded regions indicate locations of reported spectral features that align

with standardized coefficients (see Table S3).

trajectories showed the greatest dynamic range among all traits with a
two-fold increase and subsequent decrease over the growing season. All
species had similar seasonal trends but showed differences in pheno-
logical timing and, with the exception of B. nigra, all species had similar
magnitudes of maximum chlorophyll content (> 400 pmol m™2). Ni-
trogen, potassium and phosphorus decreased in concentration as the
season progressed, but rates of decrease varied among traits and species.
After full leaf expansion, nitrogen concentration was stable during the
peak of the growing season before declining in late September, while
phosphorus and potassium exhibited a gradual and continuous decline
across the growing season. Seasonal trajectories of phenolics varied

(=)}

most widely across species in both magnitude and direction. Acer species
had the highest phenolics concentration among the common species on
Blackhawk Island, and gradually decreased over the course of the
growing season. C. cordiformus, Q. rubra and T. americana displayed a U-
shaped seasonal pattern, with the highest concentrations of phenolics
early and late in the season.

We visualized the trait maps by generating three band composite
images across four dates in the growing season and summarized the
species-average patterns in the eight most common broadleaf species on
the island (Fig. 7). Here we display total phenolics, LMA and potassium
in the red, green and blue channels, respectively, as these traits have
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Fig. 4. Cross-validation results for species iteratively withheld from image PLSR model building. Colored lines correspond to linear fit between predicted and
observed values for each species or group of species. Overall R* and RMSE and bias reported; metrics for individual species in Table S4.

different seasonal trajectories and show distinct patterns in species
sorting (Fig. 6). For visualization, each trait value was first normalized
to 10-90 percentile range across all four dates, then for each date and
pixel, traits values were normalized to their sum. On May 16 broadleaf
species are characterized by relatively high concentrations of total
phenolics and potassium and low LMA and exhibit two distinct group-
ings, Acer species and non-Acer species. Beginning on June 04, non-Acer
species begin to diverge, but generally exhibit a relative decrease in total
phenolics content captured by the shift in color from purple to blue. As
the season progressed, LMA increased across all species resulting in an
island-wide shift towards green on the map. In the July and September
composite images there is a distinct gradient in tri-variate trait space of
species: from species with high phenolics, low potassium and lower LMA
than other species (specifically maples) to those with comparatively
high LMA and relatively lower phenolics (red oak, white oak), with
basswood standing out as intermediate in LMA and phenolics but
comparatively higher than other species in potassium.

4. Discussion
4.1. Cross-seasonal trait mapping

Using a time series of imaging spectroscopy data over a single
growing season, we developed maps of canopy foliar traits to charac-
terize phenological variation in a temperate broadleaf forest. We
demonstrate that accurate maps of canopy traits can be derived using a
single cross-seasonal model per trait and that these models accurately
characterize interspecific trait trajectories (Fig. 6). Models that per-
formed best included those with strong absorption features in the VSWIR
spectrum (400-2500 nm), including chlorophyll (R%: 0.86) and total
phenolics (R% 0.86). Other traits, like calcium, despite lower validation
R? (R% 0.25), still accurately captured interannual trends with a vali-
dation RMSE of 26% of the data range and aligned with species ordering
as reported in the literature (Chandler, 1939; Chandler, 1941; Insley
et al.,, 1981; Cote and Fyles, 1994). In addition to chlorophyll and
phenolics, we also found that PLSR models for nitrogen and lignin
leveraged well documented molecular absorption features (Fig. 3).



A. Chlus and P.A. Townsend

Remote Sensing of Environment 275 (2022) 113023

»7 600 A 4 7
44 R?:0.07 § R?:0.84 a9’ R?:0.43 o e
RMSE : 0.84 4 RMSE : 57.12 140 1 RMSE : 18.07 o o
P / e e ’
5 Bias :@.2 o~ L, 400 4 Bias : —3.56 120 - Bias : 0.84 P
= (] e ‘9 8 /.
5 sl o 100 g oCoXBw” ©
521 o _os . 200 A 1t &
5 e 3‘” % 80{ %0 %
] Y ) /’. ] 0 )
1 (J ] . z 60 /
g 0?) Calci 0 % Chiorophyll A ’ M
CA) o © alciym R/ orophyll 40 7 Leaf Mass per Aiea
0 488 o0 (Godw) | (umol-m~2) 07, )
0 1 2 3 4 —200 0 200 400 600 50 100 150
25 4 ’ 5 ’ ’
R?:0.52 [5) //' //' R?:0.64 1) ,/'
RMSE : 3.31 @ 7 4 0.4 4 RMSE:0.04 ’
20d oo, [ 5) ¢ i s : T e
Bias : 0.36 ° ‘),‘3 4 Bias: 0.0 (@) P
9/
15+ 3 - éo )
@ e
A
O 10 1 5]
> 1 o Nitrogen Phosphorus
g rid (% d.w.) (% d.w.)
10 20 1 2 3 4 5 01 02 03 04
2.5 4 / R
R?:0.73 o 20 A R?:0.85 1o} L
RMSE : 0.26 o /. RMSE : 1.83
201 Bias: —0.05 /% Bias : —0.02 o O Mayl16
OO(; 15 O,y‘l ® June 04
_E) % o9 O  June 29
g 10 %® © ® July2s
3 @8 o © August 13
o ® P @® September 10
51 Pfoe ©  September 26
Potassium ° Total phenolics @® October 17
(% d.w.) ol %dw) 11
2 5 10 15 20
Predicted Predicted

Fig. 5. Cross-validation results for dates iteratively withheld from image PLSR model

building. Colored lines correspond to linear fit between predicted and observed

values for each date. Overall R%, RMSE and bias reported; metrics for individual dates in Table S5.

Other biochemical traits like potassium and phosphorus, despite having
no or very weak absorption features in visible through shortwave range
(Shenk et al., 1979; Workman Jr and Weyer, 2008), were well estimated,
indicating the ability to accurately map these traits is due to correlations
with other compounds. Coefficients for both traits were positively
correlated (r = 0.74; p < .001) and showed standardized coefficient
minima and maxima at 2215 nm and 1735 nm, respectively (Fig. 3).
1735 nm is a characteristic absorption band of the C—H group
(Workman Jr and Weyer, 2008) and its use in accurately estimating P
and K may reflect the impact of increasing concentration of carbon rich
compounds on the dilution of phosphorus and potassium as leaves
develop. LMA, which is a composite measure of dry mass per unit area,
had standardized coefficient minima at 1582 and 2270 nm, wavelengths
that are associated with absorptions by dry matter constituents
including cellulose, starch and sugar (Curran, 1989). Conversely, the
coefficient maximum occurred at 1758 nm, while the associated spectral
absorption feature is unclear, Cheng et al. (2014) found a wavelet
featured centered on 1756 nm to be correlated with LMA.

Similar to the full season analyses, models for traits with strong ab-
sorption features exhibited the strongest performance in the cross-

validation analysis in which species or dates were withheld. However,
our cross-validation results highlight the limitations of data-driven al-
gorithms for predicting beyond the range of measurements on which the
model was developed. For example, concentrations of total phenolics
were underestimated in A. rubrum and A. saccharinum, species with high
concentrations of phenolics, when applying models calibrated using
datasets in which maples were excluded. Unlike leaf-level spectroscopy,
which allows for the collection of reflectance measurements under
controlled conditions (i.e. leaf clip or integrating sphere), imaging
spectroscopy presents multiple additional challenges for trait estimation
based on canopy reflectance retrievals. These include radiometric cali-
bration, atmospheric correction and BRDF correction (Weyermann
et al.,, 2013; Thompson et al., 2018), as well as other factors such as
crown architecture, canopy openness and the presence and relative
density of understory vegetation. These impacts can be seen in our cross-
validation results (Fig. 5) and seasonal trajectories (Fig. 6): on some
dates trait retrievals appear systematically biased across all species (e.g.,
see June 29 for LMA and nitrogen). However, these biases are not uni-
versal across traits and are likely a function of both model wavelength
weightings (Fig. 3) and crown characteristics. For example, we found
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that image-derived estimates of calcium in white oak (Quercus alba)
were systematically overestimated on May 16 compared to field mea-
surements (image average: 1.58% mass; field average: 0.40% mass). At
the time of the May 16 overflight white oak trees had not developed a
fully closed canopy (average leaf area on May 16: 8.2 cm? vs. June-Oct:
44.5 cm?) highlighting the importance of considering species specific
phenology when interpreting seasonal trait maps. While white oak
represents the extreme in our study area, < 20% leaf expansion, field
measurements of leaf area indicated that leaf expansion percentages
ranged from 35 to 70% on May 16 for all other sampled trees. In some
cases, it is likely that traits of the understory vegetation contribute to
image-predicted traits in early-season imagery.

4.2. Phenological trends in traits

The trends in mapped chlorophyll content follow expected pheno-
logical patterns of green-up and senescence observed from multispectral
spaceborne platforms (Melaas et al., 2013; Li et al., 2019). However,
with the high spatial resolution of the HySpex airborne sensor, we also
detected variation in phenological phenomena among species (Fig. 6).
Our maps captured the variability in phenological timing between spe-
cies, most notably the delayed development of bitternut hickory and
early senescence of sugar maple. We also observed lower peak chloro-
phyll A content in Betula nigra and Acer saccharinum (not shown in Fig. 6)
canopies compared to all other species. On Blackhawk Island, B. nigra
and A. saccharinum are both found growing on sandy soils (Pastor et al.,

1982), which are generally low in nutrients including magnesium, a key
component of the chlorophyll A molecule (Farhat et al., 2016).
Phenological patterns in total phenolics closely matched those re-
ported in the literature for the same or similar species. Rossiter et al.
(1988) and Louis et al. (2009) both observed that phenolic concentra-
tions in Quercus species were highest immediately following leaf emer-
gence and stabilized at low levels after full leaf expansion, mirroring the
patterns observed in Quercus species at Blackhawk Island. High con-
centrations of phenolics early in the growing season may inhibit her-
bivory before the development of unpalatable structural compounds like
lignin (Lambers and Poorter, 1992). We found that for several non-Acer
species total phenolics also showed an increase at the end of the growing
season, following patterns observed by Schultz et al. (1982) in Betula
alleghanienis. Similar to our results, Schultz et al. (1982) found that sugar
maple foliage reached a maximum level of phenolics early in the
growing season and declined through the growing season. While
phenolic compounds are generally studied within the context of plant-
herbivore interactions, the analytical method we used to measure total
phenolics is sensitive to a broad range of phenolic compounds that differ
in identity both among species and within a species during a single
growing season (Nicol, 1997; Appel et al., 2001). As such, it is difficult to
interpret the causation underlying intra-annual patterns or interspecific
differences. Beyond their role as defensive compounds against herbiv-
ory, phenolics are also associated with photoprotection, nutrient stress,
cold acclimation and litter decomposition rates (Dixon and Paiva, 1995;
Close and McArthur, 2002; Pennycooke et al., 2005; Hattenschwiler and
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Jorgensen, 2010).

Nutrients related to growth, including nitrogen, potassium and
phosphorus, all decreased in concentration during the course of the
growing season, as a consequence of dilution by increased content of
carbon-rich structural compounds as leaves develop (Chapin, 1980),
followed by resorption at the end of the growing season (Killingbeck,
1996). In contrast, calcium, which plays an important role in cell wall
formation, increased as the growing season progressed, but is not
resorbed due to its low mobility in phloem (Guha and Mitchell, 1966;
Zipkin, 1973; Day and Monk, 1977). Similar patterns were observed in
lignin and LMA, which increase during the season, reflecting an in-
vestment in structural compounds as leaves develop (Groeneveld et al.,
1998; Poorter et al., 2009).

While our study site was small, intra-annual maps of traits over
larger areas with more significant gradients in soils, topography and
climate may provide more insights into drivers of variation in foliar
biochemistry than field measurements alone. Such maps would also
provide a framework to understand the impacts of phenology on esti-
mates of functional diversity and its contribution to a range of ecological
functions (Duran et al., 2019). Moreover, seasonal maps of traits may act
as inputs into the next generation of vegetation models that are able to
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Fig. 7. Top two rows: RGB composite images of total
phenolics (red), LMA (green) and potassium (blue) at
four time points during the growing season. For each
date the species wise averages of the eight most
common broadleaf species are shown on the ternary
legend. Bottom left: species map, only trees with
>30% classification probability are shown, to
exclude canopy gaps, shadows and low growing
vegetation. (For interpretation of the references to
color in this figure legend, the reader is referred to
the web version of this article.)
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take advantage of rich spatially explicit information provided by im-
aging spectroscopy beyond basic plant functional types (Berzaghi et al.,
2020).

4.3. Implications for broad-scale application

Our maps of foliar traits represent top-of-canopy conditions. Because
some traits vary through the canopy as a function of biotic and abiotic
variables, these top-of-canopy estimates may not be representative of
within or total canopy biochemistry. Others have used measurements of
leaf area index (LAI) (Smith et al., 2002; Ollinger et al., 2008) or pub-
lished foliage distribution data (Singh et al., 2015) to upscale to whole
canopy traits, however, these approaches are dependent on a robust
relationship between the top-of-canopy reflectance signal and total
canopy biochemistry. More recently, coincident lidar and imaging
spectroscopy data have been used to estimate full-canopy foliar traits
(Chlus et al., 2020; Kamoske et al., 2021). Regardless of scaling tech-
nique, developing and validating these full-canopy approaches remains
a challenge due to the labor-intensive fieldwork require to collect
within-canopy samples.

In this study we focused on broadleaf deciduous species, and
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continued work is needed to assess the ability of imaging spectroscopy to
characterize seasonal variation across a range of species and ecosystems.
For example, needleleaf species also display seasonal variation in can-
opy biochemistry associated with the development of new needles and
remobilization of nutrients into existing foliage (Wyttenbach and
Tobler, 1988; Billow et al., 1994). As well, foliar traits can vary signif-
icantly in grasslands, for example where the relative dominance of
species changes over the course of the growing season such as from Cs to
C4 and back to Cs species (Dickinson and Dodd, 1976). Outside of
temperate ecosystems, there is also considerable seasonal variability in
tropical systems. Species in dry deciduous systems would be expected to
show variability in traits related to leaf structure and water conservation
(Ishida et al., 2006; Kenzo et al., 2016). Moist tropical systems also
exhibit variability, since leaf turnover occurs year-round (Hikosaka,
2005), while seasonality in Mediterranean systems is variable due to
climate drivers (Sperlich et al., 2015).

Our work focused on a single growing season, but foliar biochemistry
also varies from year-to-year (Mitchell, 1936; Taylor and Parkinson,
1988). Plant phenology is known to be driven by climatic variation,
which thus affects allocation of resources at the leaf level (Shen et al.,
2011; Liu et al., 2016). For instance, long-term trends of increasing
temperatures are associated with earlier spring green-up (Cleland et al.,
2007; Dai et al., 2019), for which imaging spectroscopy could provide an
approach to document resulting impacts on foliar traits and associated
vegetation function. Numerous other factors also alter phenological
timing and could be expressed in foliar traits, including biotic forcings,
such as herbivory (Lemoine et al., 2017), plant developmental stage and
ontogeny (Augspurger and Bartlett, 2003; Grassi et al., 2005). However,
our understanding of the patterns and drivers of interannual variation in
foliar biochemistry is limited to few species or localized areas, largely
due to the challenges of making in situ measurements. Continued long-
term imaging with airborne and future spaceborne spectroscopy mis-
sions will provide a better understanding of the role of climate, envi-
ronment and ontogeny in driving intra-annual variability in foliar
biochemistry and subsequent impacts on ecological processes.

Our study site had relatively low species diversity (< 15 broadleaf
species), whereas highly diverse ecosystems like tropical forests can
have hundreds of species in a comparable area (Keil and Chase, 2019).
Globally, there are over 300,000 vascular plant species (Christenhusz
and Byng, 2016) and over 60,000 tree species (Beech et al., 2017), which
has been a strong justification for utilizing a trait- rather than species-
based approach to characterizing ecosystems and their function. How-
ever, given the diversity of plants on Earth, further investigation is
needed into the feasibility of developing global, cross-seasonal predic-
tive models to map foliar traits or, alternatively, whether locally opti-
mized models are more appropriate. Models for some traits like
chlorophyll and total phenolics, which have relatively well character-
ized absorption features, may be well suited for a global model
approach. In contrast, traits like calcium, for which the underlying
relationship between trait and spectra is ambiguous, may require
ecosystem-specific modeling. Despite the low species diversity in our
study area, pairwise correlations between both PLSR coefficients and
field measured traits were positively correlated with those reported by
Chadwick and Asner (2016b) (Pearson r = 0.76 and 0.84, respectively, p
< .05), who used imaging spectroscopy to map canopy traits in
Amazonian rainforests, suggesting similar underlying trait and spectral
relationships across ecosystems.

4.4. Methodological implications

The choice of predictive algorithm on seasonal trait retrievals also
warrants further investigation. We chose PLSR, a data-driven approach,
for developing our mapping algorithms. Unlike other empirical
methods, like Gaussian process regression (GPR), PLSR does not provide
explicit uncertainties. Instead, we used a permutational approach to
estimate prediction uncertainties. We found that the magnitudes of the
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uncertainties were largely a function of whether a given surface/vege-
tation type was included in our models. For example, canopy gaps, co-
nifers, fields, impervious surfaces and water all had high uncertainties
while uncertainties for broadleaf trees were generally uniformly low.
Wang et al. (2019) reported similar results in grassland experiment and
found that grass plots with conditions not represented in the field data
had higher uncertainties. Other data-driven methods have also been
used for mapping foliar traits from imaging spectroscopy with compa-
rable levels of accuracy to PLSR, including GPR (Verrelst et al., 2012;
Wang et al., 2019) and neural networks (Mutanga and Skidmore, 2004).
Radiative transfer models (RTM), like 4SAIL (Verhoef et al., 2007) and
INFORM (Atzberger, 2000), provide an alternative method for trait
retrieval using a physically based approach to model light transmission
as a function of canopy and leaf properties (Schlerf and Atzberger,
2006). RTMs also have been used to estimate traits across the growing
season at the leaf level (Gara et al., 2019), however the catalog of
biochemical traits retrieved using RTMs is limited to those with well-
defined absorbance properties. More recent work has combined RTMs
with machine learning (ML) methods to develop a hybrid approach for
estimating foliar biochemistry where RTM simulations are used to train
ML models (Verrelst et al., 2016; Berger et al., 2020), although RTM-
based approaches have not been widely implemented in complex nat-
ural vegetation. See Verrelst et al. (2019) for a comprehensive review of
modeling techniques for foliar biochemistry retrievals.

Current and future spaceborne imaging spectroscopy missions (ex:
DESIS, PRISMA, CHIME, EnMAP and SBG) will provide the opportunity
to map seasonal variation in foliar biochemistry on a global scale. These
maps will provide spatial context to both inform and complement da-
tabases of field measurements (e.g., Kattge et al., 2020) and modeled
predictions of global traits (e.g., Butler et al., 2017; Moreno-Martinez
et al., 2018; Vallicrosa et al., 2021), while potentially also providing
inputs to drive and/or validate earth system models. The lower spatial
resolution (20-30 m) pixels of current and planned spaceborne imagers
will be composed of species mixes, as well as canopy gaps (possibly with
understory vegetation present), shadows and non-vegetated areas in
addition to vegetation. In contrast, the high spatial resolution of our
imagery allowed us to develop and apply our models on individual trees
and mask non vegetated areas. As such, more work is needed to test the
impacts of spatial resolution on biochemistry retrievals. Moreover, the
presence of multiple species in a single pixel may make interpretation of
spatiotemporal patterns in foliar biochemistry and functional diversity
challenging.

5. Conclusion

We used imaging spectroscopy to characterize the variation in foliar
biochemistry in nine traits across the course of a growing season in a
temperate broadleaf deciduous forest. Our method used a single cross-
seasonal model to map foliar biochemistry at eight time points from
May to October, but we also tested the consequences of using models on
dates and species that were withheld from analyses. We demonstrate
that seasonal patterns in foliar traits are highly variable, both spatially
and temporally, and not all traits follow a consistent pattern of increase
and/or decrease whereby mid-season trait values at peak greenness can
be considered representative. Thus, the date of image collection can
significantly impact inferences made about ecosystem processes. Our
research illustrates that when using data-driven methods to map canopy
traits, models will generally need to be developed using data repre-
senting the full range of values expected to be encountered. Our results
demonstrate the potential for future spaceborne imaging spectrometers
to map ecologically important seasonal variations in foliar biochemistry.

Data availability

Field data, leaf spectra and canopy spectra can be found in the EcoSIS
spectral repository (https://ecosis.org/). Leaf and canopy-level spectral
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models can be found in the Ecological Spectral Model Library (https://ec
osml.org/). Species and trait maps can be found on the Dryad Data
Repository (https://doi.org/10.5061/dryad.4j0zpc8cm).
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