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A B S T R A C T   

Foliar biochemical traits are important indicators of ecosystem functioning and health that are impractical to 
characterize at large spatial and temporal scales using traditional measurements. However, comprehensive in
ventories of foliar traits are important for understanding ecosystem responses to anthropogenic and natural 
disturbances, as inputs into ecosystem process models, and for quantifying spatial variation in functional di
versity. Imaging spectroscopy has been demonstrated as a valuable tool for developing maps of ecologically 
important foliar traits at large scales, but its application to mapping foliar traits over the course of the growing 
season has been limited. We collected high-resolution imaging spectroscopy data over Blackhawk Island, Wis
consin, USA at eight time points during the 2018 growing season (May – October). Using partial least squares 
regression (PLSR) we developed predictive models applicable to all dates to produce canopy-level maps of eight 
traits related to ecophysiological function: chlorophyll content, leaf mass per area and concentrations of calcium, 
nitrogen, phosphorus, potassium, phenolics and lignin. The accuracy of our models varied across traits (R2: 
0.25–0.86); traits with well-defined absorption features were retrieved with high accuracy including chlorophyll 
(R2: 0.86; %RMSE: 11.0) and total phenolics (R2: 0.86; %RMSE: 11.0). We also assessed how well our models 
estimated biochemistry on novel species and new dates using a cross-validation analysis. Chlorophyll and total 
phenolics were well estimated across withheld dates and species, whereas calcium was estimated poorly on both 
withheld species (R2: 0.08) and dates (R2: 0.07). Our canopy-level maps of macronutrients (N, P and K) showed 
general trends of decreasing concentration over the course of the year, reflecting dilution by carbon-rich com
pounds during the growing season and resorption during senescence. Conversely, recalcitrant compounds 
including lignin and calcium increased until late summer, after which they stabilized. These results demonstrate 
the potential of current and proposed spaceborne imaging spectroscopy missions for mapping seasonal patterns 
in foliar biochemistry at a global scale.   

1. Introduction 

Foliar biochemical traits are dynamic properties of plants that vary 
through space and time and are linked to multiple ecosystem processes, 
including primary productivity and nutrient cycling (de Bello et al., 
2010). Foliar traits include biochemical properties related to photo
synthesis, such as chlorophyll and nitrogen, structure and decomposi
tion, including fiber and lignin, and defense, like condensed tannins and 
other phenolic compounds. Understanding how functional traits vary 
through space and time is important for developing accurate ecosystem 
process models, for predicting ecosystem response to change and un
derstanding patterns in community assembly (Ito et al., 2006; Reichstein 
et al., 2014). In general, studies that use functional traits to assess 

patterns in community composition and ecological function make use of 
mean trait values for species (Albert et al., 2011). However, variability 
in functional traits is known to be scale dependent and driven by both 
taxonomic and environmental factors (Albert et al., 2010; Messier et al., 
2010, 2017). Moreover, ecosystems with strong seasonal patterns, like 
temperate deciduous forests, display significant variation in foliar traits 
as leaves develop and senesce; this variation in turn drives intra-annual 
patterns in ecosystem processes (Reich et al., 1991; Salminen et al., 
2004; Noda et al., 2015). 

Studies dating to the early 20th century reported the seasonal vari
ation in foliar biochemical traits and demonstrated that interannual 
patterns vary between species, within species, and across locations 
(McHargue and Roy, 1932; Alway et al., 1934; Sampson and Samisch, 
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1935; Chandler, 1939). In a review of more than 20 studies, Turner et al. 
(1977) found that the direction of intra-annual trends (increasing, 
decreasing or stable) in foliar nutrient concentrations was not universal. 
In general, with elemental concentrations, calcium and manganese in
crease during the growing season, while nitrogen, phosphorus and po
tassium decrease, and boron, copper and magnesium are stable 
throughout the year. Other studies have reported on seasonal patterns in 
more complex compounds including pigments (Schertz, 1929; Sanger, 
1971), phenolics (Schultz et al., 1982; Salminen et al., 2004; Zehnder 
et al., 2009), nonstructural carbohydrates (McLaughlin et al., 1980; 
Flower, 2007) and lignin (Martin and Aber, 1997; Zehnder et al., 2009). 
In general, inter- and intra-species seasonal patterns of trait variation 
represent trade-offs in allocation of resources, with overall trends driven 
by a combination of resource availability, environmental cues, species 
identity, phylogeny and genetics. 

Trait-based ecology has emerged due the relative ease with which 
functional traits can be measured compared to their underlying physi
ological processes. This has led to the development of trait databases 
such as TRY (Kattge et al., 2020), which have enabled global-scale an
alyses of the variation in and drivers of ecosystem function (Díaz et al., 
2015; Dong et al., 2020). Despite their relative ease of measurement, 
there are limits to the density of measurements, spatial extent and 
temporal richness at which functional traits can be quantified using in- 
situ sampling and laboratory analysis before efforts become prohibi
tively costly. Leaf-level spectroscopy represents a viable alternative for 
rapidly and nondestructively measuring foliar functional traits (Asner 
and Martin, 2011; Serbin et al., 2014, 2019; Couture et al., 2016), which 
in turn has vastly increased the amount of data available to characterize 
evolutionary, taxonomic and environmental sources of trait variation 
(Asner et al., 2014; Nunes et al., 2017; Meireles et al., 2020). Imaging 
spectroscopy has now also emerged as a valuable technology for further 
expanding the scale at which foliar functional traits can be measured. By 
developing relationships between canopy spectra and field measured 
leaf traits, maps of these traits can be generated at large spatial scales. 
These maps have been used to characterize relationships between can
opy traits and precipitation (Asner et al., 2005), geomorphology 
(Chadwick and Asner, 2016a), soil chemistry (Chadwick and Asner, 
2018), and land use (Swinfield et al., 2019). However, most studies 
using imaging spectroscopy to map foliar traits have largely focused on a 
single point in time, namely the peak of the growing season (Martin and 
Aber, 1997; Asner et al., 2015; Singh et al., 2015; Wang et al., 2020), 
whereas foliar traits are known to vary throughout the course of the 
growing season and are most dynamic during shoulder seasons 
following leaf out and over the course of senescence (Reich et al., 1991; 
Yang et al., 2016). 

Remote sensing of phenology has historically been studied within the 
context of greenness using the normalized difference vegetation index 
(NDVI), or similar indices like the enhanced vegetation index (EVI), as 
metrics of vegetative vigor (Duchemin et al., 1999). Greenness indices 
are valuable for representing large-scale phenological patterns due their 
ease of computation and compatibility with a wide variety of remote 
sensing platforms (e.g., Landsat, MODIS, Sentinel). However, these 
indices are largely capturing variation in pigment content and leaf/ 
canopy structure, whereas other ecologically relevant foliar traits may 
not exhibit the same temporal patterns (Wu et al., 2009). With its high 
spectral resolution, full-range (400–2500 nm) imaging spectroscopy 
provides the ability to resolve narrowband absorption features associ
ated with biochemical traits not discernible from broadband sensors 
(Curran, 1989). Few studies have used imaging spectroscopy to study 
phenological patterns of foliar biochemistry of natural ecosystems 
(Matson et al., 1994), mostly due to lack of data. At the leaf and plant 
level, trait-spectra relationships vary across the course of the growing 
season, and predictive models developed using data from one time point 
may introduce biases in prediction on a different point in the growing 
season (Sanches et al., 2013; Yang et al., 2016). This is expected to 
transfer to the canopy level, but the magnitude of the effect remains 

untested. 
Here we demonstrate for the first time the application of imaging 

spectroscopy to track changes in foliar biochemistry across a growing 
season in a temperate deciduous forest and demonstrate the ability to 
capture interspecific variation in biochemical phenology. Using data 
from eight airborne imaging spectroscopy acquisitions over Blackhawk 
Island, Wisconsin, USA in 2018 combined with field data, we map 
variation in eight canopy traits related to growth (chlorophyll, nitro
gen), structure (LMA, lignin), defense (total phenolics) and mineral 
acquisition (calcium, phosphorus and potassium). We also assessed the 
capacity to estimate intraspecific variation in foliar traits and tested how 
well models transfer to new dates and novel species. Finally, we apply 
our models to the entire time series of imagery and characterize the 
spatiotemporal patterns in canopy biochemistry across the course of the 
growing season. 

2. Methods 

2.1. Study area 

Blackhawk Island is a 73-ha island located in the Wisconsin River 
near Wisconsin Dells, WI, USA (43.65◦ N, 89.79◦ W) (Fig. 1). Blackhawk 
Island has a long history of ecological research, including some of the 
earliest studies linking decomposition processes, species composition 
and primary productivity (Pastor et al., 1984). The island has variable 
topography, with steep slopes along the river edge and relatively flat 
terrain in the center of the island, at its highest point it rises 33 m above 
the river. Five soil orders are present on the island, including Alfisols, 
Entisols, Incepticols, Histosols and Spodosols (Pastor et al., 1984). Forest 
community composition on Blackhawk Island is closely related to soil 
properties (Pastor et al., 1982). Canopy dominant species are primarily 
oaks (Quercus alba and Quercus rubra), pines (Pinus resinosa and Pinus 
strobus), and maples (Acer rubrum and Acer saccharum). Aboveground 
production is driven by soil texture and N mineralization, with miner
alization rates a function of N and P return to the soil in leaf litter and 
litter quality variation due to species identity (Pastor et al., 1982, 1984). 
As a consequence of these and other studies, Blackhawk Island has also 
been the site of numerous studies that have used imaging spectroscopy 
to map canopy biochemistry (Martin and Aber, 1997; Singh et al., 2015) 
and is the site where Wessman and colleagues first demonstrated the 
potential for hyperspectral imagery to map ecosystem-relevant foliar 
traits (Wessman et al., 1988), especially as drivers of decomposition 

Fig. 1. Locations of sampled trees on Blackhawk Island. The western end of the 
island is dominated by coniferous tree species which were not included in 
this study. 
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processes. 

2.2. Remote sensing data 

Imaging spectroscopy data was collected using a HySpex airborne 
imaging system (Norsk Elektro Optikk As, Skedsmokorset, Norway). The 
system consists of two cameras, a VNIR-1800 camera, which measures 
radiation between 400 and 997 nm across 186 channels with a spectral 
sampling interval of 3.26 nm, and a SWIR-384 camera, which covers 
975–2500 nm and measures radiation at 288 channels with a spectral 
sampling interval of 5.45 nm. The cameras were mounted on a 
vibration-dampening platform with an iTraceRT F400-E GPS/IMU 
(iMAR Navigation GmbH, St. Ingbert, Germany). The imaging system 
was flown aboard a Cessna 180 at a nominal altitude of 700 m above 
ground level, resulting in a spatial resolution of 0.5 m for the VNIR 
camera and 1.0 m for the SWIR camera. Each overflight consisted of nine 
flightlines with 60% sidelap. A total of eight overflights were flown 
between 16 May and 17 October 2018, and all flights were conducted 
+/− 2 h of solar noon (Table 1). 

Raw image data were converted to radiance using manufacturer- 
provided calibration coefficients. Wavelength centers were estimated 
following Guanter et al. (2009). Camera alignment and geometric 
registration were performed using PARGE 6.0 orthorectification soft
ware (RESE, Wil SG, Switzerland). A secondary geometric adjustment 
was performed using a correlation-based image matching algorithm 
(Gao et al., 2009), using a 2015 National Agriculture Imagery Program 
aerial image as a reference image. Calculation of apparent surface 
reflectance from at-sensor radiance was performed using an inverse 
algebraic atmospheric correction algorithm with the ‘libRadtran’ radi
ative transfer code (Emde et al., 2016) based on the method of Adler-
Golden et al. (1999). Total column water vapor was estimated using the 
depth of the water vapor feature at 940 nm (Carrere and Conel, 1993). 
Visibility, which was high during all overflights, was set to a constant of 
50 km. Next, a bidirectional reflectance distribution function (BRDF) 
correction was applied to remove brightness gradients resulting from 
varying sun and sensor geometry using the approach described in Chlus 
et al. (2020). Briefly, using sensor and sun geometry, we modeled the 
volumetric, geometric and isometric scattering components using the 
Ross and Li scattering kernels (Schläpfer et al., 2014). For each date we 
pooled data across all flightlines and generated a single set of BRDF 
correction coefficients by regressing the resulting kernels against the 
uncorrected reflectance data for each wavelength. The VNIR imagery 
was aggregated and averaged to 1 m to match the spatial resolution of 
the SWIR camera. Image data from both cameras were combined at 980 
nm to create a single full range (400–2500 nm) image for each flightline. 
The SWIR spectrum tail (>2400 nm) and water absorption bands were 
excluded from analysis due to low signal-to-noise ratio (SNR). Individual 
flightlines were merged to create a mosaic of the island for each date; in 
overlapping regions the pixel with the smallest viewing zenith angle (i. 
e., closest to nadir) was used (Fig. 2). To improve SNR we averaged 
bands pairwise, resulting in a total of 187 bands with nominal spectral 

sampling intervals of 7 nm and 10 nm in the VNIR and SWIR, respec
tively. Finally, to suppress residuals in the reflectance spectra we 
calculated per-date multiplicative correction factors, using a sand bar as 
a smooth reference surface (Thompson et al., 2015). 

2.3. Foliar sampling 

Within eight days of each overflight, we collected foliage from 9 to 
11 trees. To ensure that our field-derived foliar measurements were from 
trees identifiable in the imagery we sampled trees that had crowns 
greater than 5 m in diameter. From each tree we sampled 1–3 branches 
from the sun exposed top of the canopy. Branches were sampled using 
either extendable pole pruners or a custom-built cutting device (Chlus 
et al., 2020). From each branch we measured the reflectance of 20 leaves 
with a PSR 3500+ spectrometer equipped with a leaf clip (Spectral 
Evolution, Boston, MA, USA) to estimate leaf-level foliar traits using 
spectroscopic models. Of those 20 leaves, we measured the one-sided 
area of three leaves using a flatbed scanner to calculate leaf mass per 
area (LMA) and retained a single leaf for pigment analysis to validate the 
spectral models. We combined the remaining 16 leaves with an addi
tional 20–30 leaves from each branch for bulk chemical analyses. All 
foliar samples were stored in plastic bags with a damp paper towel in 
coolers with ice until the end of each day when they were frozen in 
liquid nitrogen and stored in a − 20 ◦C freezer until further processing. 
In addition to foliar sampling, we also recorded the species, diameter at 
breast height (DBH), crown shape of each tree sampled and made a 
general site characterization. We recorded tree locations with a differ
entially corrected GeoXM or Geo7x GPS receiver (Trimble Inc., Sunny
vale, CA, USA). Over the course of the study period a total of 80 trees 
were sampled representing 11 broadleaf species (Table S1). 

2.4. Sample processing 

Bulk foliar samples were dried in a lyophilizer (> 120 h) and ground 
using a Wiley Mill (Thomas Scientific, Swedesboro, NJ, USA) equipped 
with a #20 mesh (0.841 mm). A subset of ground samples was analyzed 
for concentrations of elements (N, P, K, Ca) (n = 27), total phenolics (n 
= 49) and acid-digested lignin (n = 28). Elemental concentration was 
determined using combustion analysis (N) and inductively coupled 
plasma emission spectroscopy (Ca, K, P) (Gavlak et al., 2003). Total 
phenolics concentration was determined using the Folin-Ciocalteu 
method (Ainsworth and Gillespie, 2007), while lignin concentration 
was determined using a hot-acid detergent extraction (Couture et al., 
2012). Leaves measured for leaf area were dried for >72 h in a 68 ◦C 
oven and weighed on a precision balance (0.0001 g) to determine dry 
mass. LMA was calculated by dividing measured dry mass by leaf area. 
Chlorophyll A content was measured on a subset of samples (n = 63) 
using high performance liquid chromatography (HPLC) following 
Schweiger et al. (2018). 

Spectral measurements were made on all dried and ground samples 
with an ASD Fieldspec 3 spectrometer (Analytical Spectral Devices, 
Boulder, CO, USA) following Serbin et al. (2014). Prior to spectral 
measurements ground samples were stored in a 68◦ oven overnight to 
remove any residual moisture absorbed during storage. Spectroscopic 
models were then used to estimate foliar biochemistry for all samples. 
Estimation of foliar traits from reflectance spectra is a well-established 
method for rapidly and accurately estimating foliar biochemical prop
erties (Asner and Martin, 2008; Serbin et al., 2014; Yang et al., 2016). 
Fresh leaf-level reflectance spectra were used to estimate LMA and 
chlorophyll A content, while spectra of dried and ground samples were 
used for the estimation of all other traits. Models were built using partial 
least squares regression (PLSR) using ‘scikit-learn’ in Python (Pedregosa 
et al., 2011). PLSR models were calibrated with data from three inde
pendent datasets: Serbin et al. (2014), Wang et al. (2020) and Chlus 
et al. (In prep.) and validated against the subset of samples from Black
hawk Island that were measured using laboratory techniques. Models for 

Table 1 
Airborne HySpex imagery used in the study.  

Overflight date Mean local acquisition 
time 

Local solar 
noon 

Mean solar zenith 
angle 

May 16, 2018 12:22 12:55 25◦

June 04, 2018 11:19 12:57 29◦

June 29, 2018 12:18 13:02 22◦

July 25, 2018 13:38 13:05 25◦

August 13, 2018 14:26 13:04 34◦

September 10, 
2018 

12:18 12:56 39◦

September 26, 
2018 

12:40 12:50 45◦

October 17, 2018 12:22 12:44 53◦
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all traits were built using the SWIR region of the spectrum (1200–2500 
nm), with the exception of chlorophyll A models that used the VNIR 
(400–750 nm). Prior to model building, each spectrum was normalized 
to its mean to remove brightness differences, similar to normalization 
used in other studies (Feilhauer et al., 2010; Kim et al., 2013). The 
optimal number of model components was determined using the cross- 
validated predicted residual sum of squares (PRESS) calculated on the 
calibration dataset. A series of 500 calibration models was generated, 
each built using a random 70% of the calibration data. These models 
were then applied to the independent (fully withheld) validation dataset 
and the mean trait value across the 500 models was calculated for each 
sample and compared against the observed trait value. Model perfor
mance was assessed using the coefficient of determination (R2), root 
mean squared error (RMSE) and normalized RMSE (%RMSE) (Table S2). 
Following the accuracy assessment, 500 new permuted models were 
built using the entire dataset and were applied to all fresh and ground 
spectra. Any negative trait predictions were truncated to zero. 

2.5. Canopy trait mapping 

Trait maps were generated using PLSR, predicting canopy-level traits 
as a function of HySpex imaging spectroscopy. We chose PLSR over 
other modeling methods due to its computational efficiency, ease of 
interpretation and track record for accurately estimating foliar 
biochemistry from imaging spectroscopy (Chadwick and Asner, 2016a, 
2016b; Martin et al., 2018; Wang et al., 2020). In-situ top-of-canopy 
traits were derived by simple averaging of all leaf-level trait estimates 
from sampled branches from each tree. Canopy spectra of sampled trees 
were extracted from the imagery using manually digitized crown poly
gons and averaged, resulting in a single spectrum per tree. We used all 
pixels from a crown, including both sunlit and shaded components, as 
this is more representative of canopy spectra than using sun-facing 
pixels exclusively, and also better facilitates comparison with coarser- 

resolution data expected from forthcoming satellite missions. Similar 
to the leaf-level models we mean-normalized the canopy spectra prior to 
analysis. 

For each trait we began by randomly dividing the data 70:30 for 
calibration and validation. The optimal number of model components 
was determined by minimizing the cross-validated PRESS statistic 
calculated on the calibration dataset, up to 20 components. Next, we 
built a series of 500 permuted models, each using a random 70% subset 
of calibration dataset. These models were applied to the original vali
dation subset and averaged by validation sample across all permuta
tions. To evaluate the predictive ability of the model we calculated the 
R2, RMSE and %RMSE for both calibration and validation datasets. We 
found that due to the sample size of 80 the optimal model and model 
performances varied widely as a function of the original random split, 
leading to both under- or over-optimistic results among all of the per
mutations (Fig. S1). To get a better representation of model performance 
we repeated the model building process 500 times, each with a new 
random 70:30 split of the data for calibration and validation (See Fig. S2 
for details). This resulted in 25,000 sets of model coefficients (500 splits 
× 500 permutations), to reduce the number of coefficients used for 
prediction each set of permuted model coefficients was averaged, 
resulting in a total of 500 models. The resulting 500 models were applied 
to all images in the time series and the mean trait estimates were 
calculated for each pixel. We also calculated per-pixel trait standard 
deviation as a measure of predictive uncertainty. For analysis, we 
masked pixels whose values were outside ±15% of the range of field 
measured traits or had negative values. 

To test the sensitivity of our models to both novel species and new 
dates we performed a leave-one-group-out cross-validation, where we 
withheld for validation either species or image collection dates. For each 
withheld group, we developed a permuted PLSR model using data from 
the remaining groups and applied this model to the withheld group data. 
Due to the small number of individual trees sampled for Betula species (n 

Fig. 2. True color RGB mosaics of HySpex imagery for each overflight date.  
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= 2 for Betula alleghaniensis and n = 3 for B. nigra) data from these 
species was aggregated, and data from A. sacharinum data (n = 3) were 
included with A. rubrum (n = 9), a closely related species (Saeki et al., 
2011). The PRESS statistic was used to select the optimal number of 
components, up to 20 components, for each cross-validation split. Model 
performance was evaluated using the R2, RMSE and %RMSE of the out- 
of-sample datasets. R2 metrics were calculated from the linear fit be
tween the predicted and observed values while %RMSE was calculated 
using the full season range to allow for comparison among dates and 
species. 

All canopy-level models were built using the SWIR region of the 
spectrum with the exception of chlorophyll A (400–750 nm) for which 
we aimed to exploit pigment absorption features (Curran, 1989; Gitelson 
et al., 1996). The remaining traits were predicted using only the SWIR 
spectrum (1200–2400 nm) because the primary absorption features 
associated with those traits are located in the SWIR (Curran, 1989; 
Workman Jr and Weyer, 2008), but also to reduce confounding influ
ence of pigment-related spectral features in the visible that may corre
late with non-pigment traits and to limit the influence of canopy 
structure in the NIR wavelengths. 

2.6. Species classification 

To assess species-specific patterns in mapped traits we developed a 
species map of the island. Species classification was performed using an 
object-oriented (segmentation) classification approach, in which both 
spatial context and spectral signatures are used to delineate trees. Image 
segmentation was performed using the Shepherd segmentation algo
rithm (Shepherd et al., 2019) implemented using the Python library 
‘RSGISLib’ (Bunting et al., 2014). Shepherd segmentation uses an iter
ative process of grouping spectrally similar regions of pixels until all 
regions reach a user-defined minimum mapping size, which we estab
lished as 25 pixels (25 m2) to correspond to the minimum crown size 
sampled. The segmentation was performed on a five-band composite of 
principal component (PC) images from three dates 16 May (PC bands: 2, 
4, 5), 04 June (PC band: 4) and 29 June (PC band: 4). We used multiple 
dates to exploit phenological and spectral differences among canopy tree 
species. The PC transformation was performed to reduce the dimen
sionality of the data, thus improving processing time and limiting data 
redundancy. We visually inspected the PCs and chose for segmentation 
those that showed the greatest amount of contrast between neighboring 
crowns. Late season images were not used as testing demonstrated that 
they provided no improvement in segmentation results. 

After segmentation, species classification was performed using a 
bootstrapped random forest classifier built with 100 trees using the 
‘scikit-learn’ library in Python (Pedregosa et al., 2011). For each 
segment we calculated the mean value of all contained pixels for each 
band across seven dates, resulting in 1309 features per segment (187 
bands × 7 dates). Imagery from October 17 was excluded due to asyn
chronous senescence of deciduous species across the island. To reduce 
the dimensionality of the data we applied a PC transformation and 
retained as predictor variables the first 78 components, which explained 
>99.99% of the variance in the data. Species labels for training and 
testing of the classifier were derived from a combination of field data 
collected in 2018 and 2019 and photointerpretation, yielding 418 in
dividual trees representing 13 species. We excluded species for which 
there were less than three individuals found on the island, including 
yellow birch (B. alleghaniensis), cottonwood (Populus deltoides) and elm 
(Ulmus sp.). We used the point locations associated with the identified 
trees to select the corresponding image segments. The data were then 
split 50:50 into training and testing data, stratified by species. A clas
sification model was built with the training dataset and used to label the 
testing dataset, on which we calculated accuracy metrics. After accuracy 
assessment the classifier was rebuilt using all of the data and applied to 
all image segments to make a map to intersect with the trait maps. We 
retained the classification probability of each segment to use in 

subsequent analyses to filter segments with less than 30% classification 
probability and eliminate canopy gaps and low growing vegetation. 

3. Results 

3.1. Canopy trait models 

The results of the full-season PLSR models varied by trait (R2: 
0.25–0.86), and, with the exception of calcium, all traits had a %RMSE 
of less than 20% (Table 2). Values of standardized PLSR coefficients 
provide a basis for interpretation of the models, with highly negative 
coefficients expected to correspond to spectral absorption features. 
Models for estimating chlorophyll A content and total phenolics showed 
the strongest predictive performance (R2: 0.86%RMSE: 11%), and both 
leveraged well-documented spectral features, the red edge (685–730 
nm; Gitelson et al., 1996) for chlorophyll and aromatic C–H absorption 
(1660 nm; Kokaly and Skidmore, 2015) for total phenolics. Similarly, 
large negative standardized coefficients for nitrogen were present at 
2050 and 2017 nm, wavelengths with absorption features associated 
with proteins and N–H bonds (Curran, 1989; Osborne et al., 1993). The 
standardized coefficients for lignin exhibited a large negative value at 
1685 nm, a wavelength associated with C–H and C––O bonds in lignin 
(Workman Jr and Weyer, 2008). Standardized model coefficients for 
both phosphorus and potassium were the most similar to each other 
among all pairwise comparisons (Pearson r: 0.74) and both exhibited 
large negative coefficients at 1735 and 2215 nm (Fig. 3). Conversely, 
potassium and total phenolics showed the strongest negative correlation 
between standardized coefficients (Pearson r: −0.57) and both exhibited 
coefficient peaks at 1660 nm, negative for total phenolics and positive 
for potassium. 

Similar ordering of model performances was seen in species cross- 
validation analyses (Fig. 4; See Table S4 for detailed metrics). Chloro
phyll A content was well estimated on withheld species (R2: 0.64–0.98) 
whereas calcium concentration was generally poorly estimated (R2: 
0.0–0.66). Total phenolics were systematically underestimated in 
A. rubrum and A. saccharinum species when withheld (Bias: −4.77% 
mass) compared to all other species (Bias: −1.39–2.25% mass). 

The ability of our models to estimate total phenolics content on new 
dates was high (R2: 0.7–0.97, %RMSE ≤ 17%; Fig. 5), whereas calcium 
models generally performed poorly on new dates (R2: 0–0.9, %RMSE: 
12–55%). Estimates of LMA on June 29 and September 26 exhibited a 
systemic underestimation of 24 and 21 g m−2, respectively. We found 
that on average across all traits, errors were highest at the beginning 
(May 16, %RMSE: 19.6%) and end of the season (October 17, %RMSE: 
16.9%). 

3.2. Species classification 

The accuracy of the classifier was high (Overall accuracy: 88.5%; 
Cohen’s kappa: 0.87; see Table S5 for details). With the exception of 
white ash, all species had user’s and producer’s accuracies of 75% or 
greater. Red oak (Quercus rubra) was the most common tree species on 
Blackhawk Island (40% cover), followed by white pine (Pinus strobus) 
(17%) and sugar maple (Acer saccharum) (12%), with all other species 
having less than 10% cover. 

3.3. Seasonal patterns 

Species-averaged trait trajectories varied across the course of the 
growing season (Fig. 6). Traits associated with leaf structure, including 
LMA and lignin, displayed similar species ordering from low to high 
values on all dates, and followed a generally similar trend of increasing 
values until leveling off in the late summer. Calcium displayed a similar 
trend, but species ordering differed from LMA and lignin, with Tilia 
americana and Carya cordiformis accumulating the greatest concentra
tions of calcium among the five broadleaf species. Chlorophyll A content 
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trajectories showed the greatest dynamic range among all traits with a 
two-fold increase and subsequent decrease over the growing season. All 
species had similar seasonal trends but showed differences in pheno
logical timing and, with the exception of B. nigra, all species had similar 
magnitudes of maximum chlorophyll content (> 400 μmol m−2). Ni
trogen, potassium and phosphorus decreased in concentration as the 
season progressed, but rates of decrease varied among traits and species. 
After full leaf expansion, nitrogen concentration was stable during the 
peak of the growing season before declining in late September, while 
phosphorus and potassium exhibited a gradual and continuous decline 
across the growing season. Seasonal trajectories of phenolics varied 

most widely across species in both magnitude and direction. Acer species 
had the highest phenolics concentration among the common species on 
Blackhawk Island, and gradually decreased over the course of the 
growing season. C. cordiformus, Q. rubra and T. americana displayed a U- 
shaped seasonal pattern, with the highest concentrations of phenolics 
early and late in the season. 

We visualized the trait maps by generating three band composite 
images across four dates in the growing season and summarized the 
species-average patterns in the eight most common broadleaf species on 
the island (Fig. 7). Here we display total phenolics, LMA and potassium 
in the red, green and blue channels, respectively, as these traits have 

Table 2 
Average calibration and independent validation metrics for 500 permutations of full-season canopy-level PLSR trait model. C indicates median number of components 
used in the permuted PLSR models.      

Calibration Validation 

Trait Units Wavelengths (nm) C R2 RMSE %RMSE Bias R2 RMSE %RMSE Bias 

Calcium % mass 1201.4–2389.4 6 0.61 0.4 0.13 0 0.25 0.67 0.26 0.03 
Chlorophyll A μmol m2 407.1–745.6 5 0.91 38.68 0.07 0.23 0.86 52.7 0.11 −1.03 
LMA g m2 1201.4–2389.4 14 0.91 5.71 0.06 0.11 0.58 14.35 0.17 0.42 
Lignin % mass 1201.4–2389.4 12 0.91 1.34 0.07 0.01 0.62 2.91 0.17 −0.03 
Nitrogen % mass 1201.4–2389.4 14 0.94 0.17 0.04 0 0.67 0.42 0.15 0 
Phosphorus % mass 1201.4–2389.4 6 0.81 0.03 0.09 0 0.66 0.04 0.16 0 
Potassium % mass 1201.4–2389.4 9 0.88 0.15 0.07 0 0.63 0.31 0.17 −0.01 
Total phenolics % mass 1201.4–2389.4 10 0.96 0.9 0.05 0.01 0.86 1.75 0.11 0.06  

Fig. 3. Averaged full season standardized PLSR model coefficients. Dashed vertical lines and shaded regions indicate locations of reported spectral features that align 
with standardized coefficients (see Table S3). 
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different seasonal trajectories and show distinct patterns in species 
sorting (Fig. 6). For visualization, each trait value was first normalized 
to 10–90 percentile range across all four dates, then for each date and 
pixel, traits values were normalized to their sum. On May 16 broadleaf 
species are characterized by relatively high concentrations of total 
phenolics and potassium and low LMA and exhibit two distinct group
ings, Acer species and non-Acer species. Beginning on June 04, non-Acer 
species begin to diverge, but generally exhibit a relative decrease in total 
phenolics content captured by the shift in color from purple to blue. As 
the season progressed, LMA increased across all species resulting in an 
island-wide shift towards green on the map. In the July and September 
composite images there is a distinct gradient in tri-variate trait space of 
species: from species with high phenolics, low potassium and lower LMA 
than other species (specifically maples) to those with comparatively 
high LMA and relatively lower phenolics (red oak, white oak), with 
basswood standing out as intermediate in LMA and phenolics but 
comparatively higher than other species in potassium. 

4. Discussion 

4.1. Cross-seasonal trait mapping 

Using a time series of imaging spectroscopy data over a single 
growing season, we developed maps of canopy foliar traits to charac
terize phenological variation in a temperate broadleaf forest. We 
demonstrate that accurate maps of canopy traits can be derived using a 
single cross-seasonal model per trait and that these models accurately 
characterize interspecific trait trajectories (Fig. 6). Models that per
formed best included those with strong absorption features in the VSWIR 
spectrum (400–2500 nm), including chlorophyll (R2: 0.86) and total 
phenolics (R2: 0.86). Other traits, like calcium, despite lower validation 
R2 (R2: 0.25), still accurately captured interannual trends with a vali
dation RMSE of 26% of the data range and aligned with species ordering 
as reported in the literature (Chandler, 1939; Chandler, 1941; Insley 
et al., 1981; Côté and Fyles, 1994). In addition to chlorophyll and 
phenolics, we also found that PLSR models for nitrogen and lignin 
leveraged well documented molecular absorption features (Fig. 3). 

Fig. 4. Cross-validation results for species iteratively withheld from image PLSR model building. Colored lines correspond to linear fit between predicted and 
observed values for each species or group of species. Overall R2 and RMSE and bias reported; metrics for individual species in Table S4. 
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Other biochemical traits like potassium and phosphorus, despite having 
no or very weak absorption features in visible through shortwave range 
(Shenk et al., 1979; Workman Jr and Weyer, 2008), were well estimated, 
indicating the ability to accurately map these traits is due to correlations 
with other compounds. Coefficients for both traits were positively 
correlated (r = 0.74; p < .001) and showed standardized coefficient 
minima and maxima at 2215 nm and 1735 nm, respectively (Fig. 3). 
1735 nm is a characteristic absorption band of the C–H group 
(Workman Jr and Weyer, 2008) and its use in accurately estimating P 
and K may reflect the impact of increasing concentration of carbon rich 
compounds on the dilution of phosphorus and potassium as leaves 
develop. LMA, which is a composite measure of dry mass per unit area, 
had standardized coefficient minima at 1582 and 2270 nm, wavelengths 
that are associated with absorptions by dry matter constituents 
including cellulose, starch and sugar (Curran, 1989). Conversely, the 
coefficient maximum occurred at 1758 nm, while the associated spectral 
absorption feature is unclear, Cheng et al. (2014) found a wavelet 
featured centered on 1756 nm to be correlated with LMA. 

Similar to the full season analyses, models for traits with strong ab
sorption features exhibited the strongest performance in the cross- 

validation analysis in which species or dates were withheld. However, 
our cross-validation results highlight the limitations of data-driven al
gorithms for predicting beyond the range of measurements on which the 
model was developed. For example, concentrations of total phenolics 
were underestimated in A. rubrum and A. saccharinum, species with high 
concentrations of phenolics, when applying models calibrated using 
datasets in which maples were excluded. Unlike leaf-level spectroscopy, 
which allows for the collection of reflectance measurements under 
controlled conditions (i.e. leaf clip or integrating sphere), imaging 
spectroscopy presents multiple additional challenges for trait estimation 
based on canopy reflectance retrievals. These include radiometric cali
bration, atmospheric correction and BRDF correction (Weyermann 
et al., 2013; Thompson et al., 2018), as well as other factors such as 
crown architecture, canopy openness and the presence and relative 
density of understory vegetation. These impacts can be seen in our cross- 
validation results (Fig. 5) and seasonal trajectories (Fig. 6): on some 
dates trait retrievals appear systematically biased across all species (e.g., 
see June 29 for LMA and nitrogen). However, these biases are not uni
versal across traits and are likely a function of both model wavelength 
weightings (Fig. 3) and crown characteristics. For example, we found 

Fig. 5. Cross-validation results for dates iteratively withheld from image PLSR model building. Colored lines correspond to linear fit between predicted and observed 
values for each date. Overall R2, RMSE and bias reported; metrics for individual dates in Table S5. 
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that image-derived estimates of calcium in white oak (Quercus alba) 
were systematically overestimated on May 16 compared to field mea
surements (image average: 1.58% mass; field average: 0.40% mass). At 
the time of the May 16 overflight white oak trees had not developed a 
fully closed canopy (average leaf area on May 16: 8.2 cm2 vs. June-Oct: 
44.5 cm2) highlighting the importance of considering species specific 
phenology when interpreting seasonal trait maps. While white oak 
represents the extreme in our study area, < 20% leaf expansion, field 
measurements of leaf area indicated that leaf expansion percentages 
ranged from 35 to 70% on May 16 for all other sampled trees. In some 
cases, it is likely that traits of the understory vegetation contribute to 
image-predicted traits in early-season imagery. 

4.2. Phenological trends in traits 

The trends in mapped chlorophyll content follow expected pheno
logical patterns of green-up and senescence observed from multispectral 
spaceborne platforms (Melaas et al., 2013; Li et al., 2019). However, 
with the high spatial resolution of the HySpex airborne sensor, we also 
detected variation in phenological phenomena among species (Fig. 6). 
Our maps captured the variability in phenological timing between spe
cies, most notably the delayed development of bitternut hickory and 
early senescence of sugar maple. We also observed lower peak chloro
phyll A content in Betula nigra and Acer saccharinum (not shown in Fig. 6) 
canopies compared to all other species. On Blackhawk Island, B. nigra 
and A. saccharinum are both found growing on sandy soils (Pastor et al., 

1982), which are generally low in nutrients including magnesium, a key 
component of the chlorophyll A molecule (Farhat et al., 2016). 

Phenological patterns in total phenolics closely matched those re
ported in the literature for the same or similar species. Rossiter et al. 
(1988) and Louis et al. (2009) both observed that phenolic concentra
tions in Quercus species were highest immediately following leaf emer
gence and stabilized at low levels after full leaf expansion, mirroring the 
patterns observed in Quercus species at Blackhawk Island. High con
centrations of phenolics early in the growing season may inhibit her
bivory before the development of unpalatable structural compounds like 
lignin (Lambers and Poorter, 1992). We found that for several non-Acer 
species total phenolics also showed an increase at the end of the growing 
season, following patterns observed by Schultz et al. (1982) in Betula 
alleghanienis. Similar to our results, Schultz et al. (1982) found that sugar 
maple foliage reached a maximum level of phenolics early in the 
growing season and declined through the growing season. While 
phenolic compounds are generally studied within the context of plant- 
herbivore interactions, the analytical method we used to measure total 
phenolics is sensitive to a broad range of phenolic compounds that differ 
in identity both among species and within a species during a single 
growing season (Nicol, 1997; Appel et al., 2001). As such, it is difficult to 
interpret the causation underlying intra-annual patterns or interspecific 
differences. Beyond their role as defensive compounds against herbiv
ory, phenolics are also associated with photoprotection, nutrient stress, 
cold acclimation and litter decomposition rates (Dixon and Paiva, 1995; 
Close and McArthur, 2002; Pennycooke et al., 2005; Hättenschwiler and 

Fig. 6. Seasonal trajectories of traits derived from imaging spectroscopy for five broadleaf species on Blackhawk Island. Trajectories were fit using 2nd (calcium, 
LMA, lignin, total phenolics), 3rd (nitrogen, phosphorus, potassium) and 4th (chlorophyll A) order polynomials. Sugar and red maple (Acer saccharum, A. rubrum), 
basswood (T. americana) and river birch (B. nigra) are not shown for October as nearly all trees had dropped all their leaves. Bitternut hickory (C. cordiformis) was not 
shown for May as most trees had not leafed out. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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Jørgensen, 2010). 
Nutrients related to growth, including nitrogen, potassium and 

phosphorus, all decreased in concentration during the course of the 
growing season, as a consequence of dilution by increased content of 
carbon-rich structural compounds as leaves develop (Chapin, 1980), 
followed by resorption at the end of the growing season (Killingbeck, 
1996). In contrast, calcium, which plays an important role in cell wall 
formation, increased as the growing season progressed, but is not 
resorbed due to its low mobility in phloem (Guha and Mitchell, 1966; 
Zipkin, 1973; Day and Monk, 1977). Similar patterns were observed in 
lignin and LMA, which increase during the season, reflecting an in
vestment in structural compounds as leaves develop (Groeneveld et al., 
1998; Poorter et al., 2009). 

While our study site was small, intra-annual maps of traits over 
larger areas with more significant gradients in soils, topography and 
climate may provide more insights into drivers of variation in foliar 
biochemistry than field measurements alone. Such maps would also 
provide a framework to understand the impacts of phenology on esti
mates of functional diversity and its contribution to a range of ecological 
functions (Durán et al., 2019). Moreover, seasonal maps of traits may act 
as inputs into the next generation of vegetation models that are able to 

take advantage of rich spatially explicit information provided by im
aging spectroscopy beyond basic plant functional types (Berzaghi et al., 
2020). 

4.3. Implications for broad-scale application 

Our maps of foliar traits represent top-of-canopy conditions. Because 
some traits vary through the canopy as a function of biotic and abiotic 
variables, these top-of-canopy estimates may not be representative of 
within or total canopy biochemistry. Others have used measurements of 
leaf area index (LAI) (Smith et al., 2002; Ollinger et al., 2008) or pub
lished foliage distribution data (Singh et al., 2015) to upscale to whole 
canopy traits, however, these approaches are dependent on a robust 
relationship between the top-of-canopy reflectance signal and total 
canopy biochemistry. More recently, coincident lidar and imaging 
spectroscopy data have been used to estimate full-canopy foliar traits 
(Chlus et al., 2020; Kamoske et al., 2021). Regardless of scaling tech
nique, developing and validating these full-canopy approaches remains 
a challenge due to the labor-intensive fieldwork require to collect 
within-canopy samples. 

In this study we focused on broadleaf deciduous species, and 

Fig. 7. Top two rows: RGB composite images of total 
phenolics (red), LMA (green) and potassium (blue) at 
four time points during the growing season. For each 
date the species wise averages of the eight most 
common broadleaf species are shown on the ternary 
legend. Bottom left: species map, only trees with 
>30% classification probability are shown, to 
exclude canopy gaps, shadows and low growing 
vegetation. (For interpretation of the references to 
color in this figure legend, the reader is referred to 
the web version of this article.)   
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continued work is needed to assess the ability of imaging spectroscopy to 
characterize seasonal variation across a range of species and ecosystems. 
For example, needleleaf species also display seasonal variation in can
opy biochemistry associated with the development of new needles and 
remobilization of nutrients into existing foliage (Wyttenbach and 
Tobler, 1988; Billow et al., 1994). As well, foliar traits can vary signif
icantly in grasslands, for example where the relative dominance of 
species changes over the course of the growing season such as from C3 to 
C4 and back to C3 species (Dickinson and Dodd, 1976). Outside of 
temperate ecosystems, there is also considerable seasonal variability in 
tropical systems. Species in dry deciduous systems would be expected to 
show variability in traits related to leaf structure and water conservation 
(Ishida et al., 2006; Kenzo et al., 2016). Moist tropical systems also 
exhibit variability, since leaf turnover occurs year-round (Hikosaka, 
2005), while seasonality in Mediterranean systems is variable due to 
climate drivers (Sperlich et al., 2015). 

Our work focused on a single growing season, but foliar biochemistry 
also varies from year-to-year (Mitchell, 1936; Taylor and Parkinson, 
1988). Plant phenology is known to be driven by climatic variation, 
which thus affects allocation of resources at the leaf level (Shen et al., 
2011; Liu et al., 2016). For instance, long-term trends of increasing 
temperatures are associated with earlier spring green-up (Cleland et al., 
2007; Dai et al., 2019), for which imaging spectroscopy could provide an 
approach to document resulting impacts on foliar traits and associated 
vegetation function. Numerous other factors also alter phenological 
timing and could be expressed in foliar traits, including biotic forcings, 
such as herbivory (Lemoine et al., 2017), plant developmental stage and 
ontogeny (Augspurger and Bartlett, 2003; Grassi et al., 2005). However, 
our understanding of the patterns and drivers of interannual variation in 
foliar biochemistry is limited to few species or localized areas, largely 
due to the challenges of making in situ measurements. Continued long- 
term imaging with airborne and future spaceborne spectroscopy mis
sions will provide a better understanding of the role of climate, envi
ronment and ontogeny in driving intra-annual variability in foliar 
biochemistry and subsequent impacts on ecological processes. 

Our study site had relatively low species diversity (< 15 broadleaf 
species), whereas highly diverse ecosystems like tropical forests can 
have hundreds of species in a comparable area (Keil and Chase, 2019). 
Globally, there are over 300,000 vascular plant species (Christenhusz 
and Byng, 2016) and over 60,000 tree species (Beech et al., 2017), which 
has been a strong justification for utilizing a trait- rather than species- 
based approach to characterizing ecosystems and their function. How
ever, given the diversity of plants on Earth, further investigation is 
needed into the feasibility of developing global, cross-seasonal predic
tive models to map foliar traits or, alternatively, whether locally opti
mized models are more appropriate. Models for some traits like 
chlorophyll and total phenolics, which have relatively well character
ized absorption features, may be well suited for a global model 
approach. In contrast, traits like calcium, for which the underlying 
relationship between trait and spectra is ambiguous, may require 
ecosystem-specific modeling. Despite the low species diversity in our 
study area, pairwise correlations between both PLSR coefficients and 
field measured traits were positively correlated with those reported by 
Chadwick and Asner (2016b) (Pearson r = 0.76 and 0.84, respectively, p 
< .05), who used imaging spectroscopy to map canopy traits in 
Amazonian rainforests, suggesting similar underlying trait and spectral 
relationships across ecosystems. 

4.4. Methodological implications 

The choice of predictive algorithm on seasonal trait retrievals also 
warrants further investigation. We chose PLSR, a data-driven approach, 
for developing our mapping algorithms. Unlike other empirical 
methods, like Gaussian process regression (GPR), PLSR does not provide 
explicit uncertainties. Instead, we used a permutational approach to 
estimate prediction uncertainties. We found that the magnitudes of the 

uncertainties were largely a function of whether a given surface/vege
tation type was included in our models. For example, canopy gaps, co
nifers, fields, impervious surfaces and water all had high uncertainties 
while uncertainties for broadleaf trees were generally uniformly low. 
Wang et al. (2019) reported similar results in grassland experiment and 
found that grass plots with conditions not represented in the field data 
had higher uncertainties. Other data-driven methods have also been 
used for mapping foliar traits from imaging spectroscopy with compa
rable levels of accuracy to PLSR, including GPR (Verrelst et al., 2012; 
Wang et al., 2019) and neural networks (Mutanga and Skidmore, 2004). 
Radiative transfer models (RTM), like 4SAIL (Verhoef et al., 2007) and 
INFORM (Atzberger, 2000), provide an alternative method for trait 
retrieval using a physically based approach to model light transmission 
as a function of canopy and leaf properties (Schlerf and Atzberger, 
2006). RTMs also have been used to estimate traits across the growing 
season at the leaf level (Gara et al., 2019), however the catalog of 
biochemical traits retrieved using RTMs is limited to those with well- 
defined absorbance properties. More recent work has combined RTMs 
with machine learning (ML) methods to develop a hybrid approach for 
estimating foliar biochemistry where RTM simulations are used to train 
ML models (Verrelst et al., 2016; Berger et al., 2020), although RTM- 
based approaches have not been widely implemented in complex nat
ural vegetation. See Verrelst et al. (2019) for a comprehensive review of 
modeling techniques for foliar biochemistry retrievals. 

Current and future spaceborne imaging spectroscopy missions (ex: 
DESIS, PRISMA, CHIME, EnMAP and SBG) will provide the opportunity 
to map seasonal variation in foliar biochemistry on a global scale. These 
maps will provide spatial context to both inform and complement da
tabases of field measurements (e.g., Kattge et al., 2020) and modeled 
predictions of global traits (e.g., Butler et al., 2017; Moreno-Martínez 
et al., 2018; Vallicrosa et al., 2021), while potentially also providing 
inputs to drive and/or validate earth system models. The lower spatial 
resolution (20–30 m) pixels of current and planned spaceborne imagers 
will be composed of species mixes, as well as canopy gaps (possibly with 
understory vegetation present), shadows and non-vegetated areas in 
addition to vegetation. In contrast, the high spatial resolution of our 
imagery allowed us to develop and apply our models on individual trees 
and mask non vegetated areas. As such, more work is needed to test the 
impacts of spatial resolution on biochemistry retrievals. Moreover, the 
presence of multiple species in a single pixel may make interpretation of 
spatiotemporal patterns in foliar biochemistry and functional diversity 
challenging. 

5. Conclusion 

We used imaging spectroscopy to characterize the variation in foliar 
biochemistry in nine traits across the course of a growing season in a 
temperate broadleaf deciduous forest. Our method used a single cross- 
seasonal model to map foliar biochemistry at eight time points from 
May to October, but we also tested the consequences of using models on 
dates and species that were withheld from analyses. We demonstrate 
that seasonal patterns in foliar traits are highly variable, both spatially 
and temporally, and not all traits follow a consistent pattern of increase 
and/or decrease whereby mid-season trait values at peak greenness can 
be considered representative. Thus, the date of image collection can 
significantly impact inferences made about ecosystem processes. Our 
research illustrates that when using data-driven methods to map canopy 
traits, models will generally need to be developed using data repre
senting the full range of values expected to be encountered. Our results 
demonstrate the potential for future spaceborne imaging spectrometers 
to map ecologically important seasonal variations in foliar biochemistry. 

Data availability 

Field data, leaf spectra and canopy spectra can be found in the EcoSIS 
spectral repository (https://ecosis.org/). Leaf and canopy-level spectral 
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models can be found in the Ecological Spectral Model Library (https://ec 
osml.org/). Species and trait maps can be found on the Dryad Data 
Repository (https://doi.org/10.5061/dryad.4j0zpc8cm). 
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