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ARTICLE INFO ABSTRACT

Editor: Marie Weiss Lespedeza cuneata (sericea lespedeza; hereafter “sericea”) is an invasive species brought to the U.S. from East Asia
in the 1890s to be used as forage. However, it has now become a growing ecological and economic threat in

Keywords: grasslands of several states in the U.S. southern Great Plains including Oklahoma, Kansas, Missouri, and

Invasive alien species Nebraska. Here, we demonstrate the capability of airborne imaging spectroscopy to map sericea in a large natural

Airborne remote sensing
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Lespedeza cuneata
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grassland within the Tallgrass Prairie Preserve, the largest protected tallgrass prairie in the world, located in
northeastern Oklahoma. Through this research, we investigated which remotely observable vegetation functional
traits (referring to biochemical, physiological, and structural traits) contribute to distinguishing sericea from co-
occurring native species and whether we can detect sericea remotely through quantifying these functional traits
using imaging spectroscopic data (also known as hyperspectral data). To achieve these objectives, full-range
airborne hyperspectral data with spatial resolution of 1 m were collected from the study area in August 2020.
In addition, a total of 12 vegetation functional traits were measured through field sampling for model devel-
opment. We first identified functional traits that contributed to separating sericea from other species, and then
used them in a classification model to detect sericea in our study site. We found total carotenoids (sum of
neoxanthin, violaxanthin, antheraxanthin, zeaxanthin, and lutein), chlorophyll a + b (sum of chlorophyll a and
chlorophyll b), total nitrogen, canopy height, potassium, and magnesium as the main functional traits contrib-
uting to the detection of sericea; an overall classification accuracy of approximately 94% was reported. However,
the proposed approach overestimated sericea cover in species-rich plant communities. Overall, our findings
demonstrated an essential role for airborne remote sensing in 1) direct mapping of invasive plants and 2)
quantifying functional traits associated with success strategies of invasive species. Eventually, experiments like
ours can aid in developing large-scale and science-driven management practices to both identify the current
extent, and to control the spread of invasive species in grasslands and similar short-stature environments. This
will not only improve management practices but will have major societal and economic benefits.
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1. Introduction
1.1. Background

Invasive alien species (IAS) are non-native species that can cause
adverse ecosystem and economic effects once introduced (Kettenring
and Adams, 2011; Mack et al., 2000). With their rapid expansion, IAS
homogenize the flora and fauna of ecosystems and negatively impact
ecosystem services (Mooney and Hobbs, 2000; Pejchar and Mooney,
2009). IAS are considered to be the second main cause of global biodi-
versity loss after habitat destruction (Williamson, 1999). It is estimated
that invasive species have caused an economic loss of at least $1.288
trillion (U.S. dollars) worldwide since 1970 (Diagne et al., 2021). IAS are
often introduced by humans to habitats outside of their natural range
(Hulme, 2009); once introduced, IAS can grow and spread rapidly.
Concurrent global changes (e.g., climate, land-use, nutrient cycles)
generally promote these biological invasions (Eschtruth and Battles,
2009). However, the impact of global change factors on invasions is
spatially complex; while some aspects can promote biological invasions
in one region, they might hinder the spread of IAS in other regions
(Bradley et al., 2010; Dukes and Mooney, 1999). Given the trans-
boundary and large-scale impacts of IAS, monitoring the spread and
studying the mechanisms and strategies of invasions require spatially-
explicit approaches. Remote sensing technologies provide the neces-
sary information to develop cost- and time-effective solutions for
assessing current and future invasion processes over large geographical
extents. In this study, we test how effective remotely sensed data are for
detecting IAS in grasslands.

1.2. IAS in grasslands

Grassland ecosystems are threatened by IAS as well as disturbances
and land-use change, which in turn can facilitate invasions. Many non-
native plants in grasslands were originally introduced for forage pro-
duction because of their ability to establish and persist in diverse envi-
ronments, but these are also characteristics that amplify the potential for
invasion into unintended ecosystems (Ball et al., 2002). It is paradoxical
that most of the characteristics of “good” forage are the same that confer
invasiveness and facilitate dominance in diverse plant communities,
such as rapid maturation, ability to germinate under a variety of con-
ditions, high seed production, allelopathy, and association with bene-
ficial fungal symbionts. With their rapid expansion, IAS can have
negative impacts on grasslands diversity and their capacity to retain
existing function and structure in the face of environmental change
(Makinen et al., 2015; Marquard et al., 2009; Tilman et al., 1997). IAS
also reduce forage quality and livestock production of grasslands,
lowering economic activity across regions. In the U.S., forage losses
alone to IAS are estimated to be approximately $1 billion per year
(Pimentel et al., 2001). Given the potential for IAS to have far-reaching
negative environmental and economic effects on grasslands, it is critical
that we develop operational and cost-effective monitoring systems to
understand the status of IAS.

1.3. Remote sensing of IAS in grasslands and short-stature environments

The success of remote sensing techniques at direct mapping of
invasive plants, in general, is due to 1) contrasting seasonal phenology
of IAS compared to co-occurring native plants, including differences in
timing of green-up, flowering, and/or leaf senescence, 2) distinct
biochemical, physiological, and structural traits of IAS from native
plants, and 3) prevalence of invasive species in the study area (Bolch
et al., 2020; He et al., 2015).

The phenology-based approaches use remotely sensed data during
time periods in which IAS are spectrally most distinct from native spe-
cies. For instance, in western California, the invasive Lepidium latifolium
(pepperweed) was mapped using fine resolution (i.e., small pixel size; 3
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m) hyperspectral data during flowering and fruiting when it had distinct
spectral response from surrounding green plants (Andrew and Ustin,
2008). Similar remote sensing studies have taken advantage of
phenology to map the invasive Solidago altissima (Canada goldenrod)
early in the growing season (late April) in Japan using fine-resolution
hyperspectral data (1.5 m) (Ishii and Washitani, 2013). These
phenology-based approaches have also been used for mapping invasive
species using coarse-resolution multispectral data. For instance, the
invasive Eragrostis lehmanniana (Lehmann lovegrass) and Bromus tecto-
rum (Cheatgrass) were mapped in southwestern U.S. using MODIS data
(Bradley et al., 2018; Huang and Geiger, 2008). While phenology-based
IAS detection has shown promising results, its success depends on
distinct phenology of target IAS as well as access to remote sensing data
with fine temporal resolution.

In addition to phenology, spectral response of plants is affected by
their biochemical, physiological, and structural traits. As such, IAS can
be remotely detected when they have distinct biochemical, physiolog-
ical, and structural traits from native plants. For instance, the invasive
Euphorbia esula (leafy spurge) was detected using imaging spectroscopic
data with spatial resolution of 3.5 m (Glenn et al., 2005; Mitchell and
Glenn, 2009) presumably because floral bracts of leafy spurge have
significantly lower pigment content (chlorophyll a + b and carotenoid)
than its leaves (Hunt Jr et al., 2004). Similarly, Yang and Everitt (2010)
were able to distinguish Gutierrezia sarothrae (Broom snakeweed; an
undesirable shrub due to its toxicity to livestock) in Texas rangelands
using hyperspectral imagery with fine spatial resolution (1.3 m) due to
its erectophile canopy morphology (Everitt et al., 1987). Remote
detection of IAS based on their distinct biochemical, physiological, and
structural traits is of particular importance in cases where the IAS and
co-occurring native species have similar phenology. However, success of
these approaches often depends on the availability of hyperspectral data
because these data provide the fine spectral resolution necessary for
elucidating plant biochemistry and physiology remotely.

Eventually, what makes remote detection of IAS feasible is the
abundance of IAS within a plant community (i.e., area covered by IAS)
(He et al., 2015). To effectively detect IAS remotely, they need to be the
dominant species within a community or form homogeneous patches,
large enough to match the spatial resolution of remote sensing obser-
vations. Therefore, in addition to temporal and spectral resolution of
remotely sensed data, paying specific attention to spatial resolution is
warranted if we are to develop operational remote sensing-based IAS
monitoring approaches. The role of spatial resolution in detecting IAS in
grasslands is particularly significant because 1) grassland IAS often grow
in small patches relative to the spatial resolution of common remotely
sensed data (e.g., NASA/USGS Landsat-8, ESA Sentinel-2 constellation)
and 2) the canopy size of grassland plants is often smaller than the
spatial resolution of most remote sensing platforms. In this study, we
collected airborne remote sensing data with fine spectral and spatial
resolution (pixel size of 1 m) to map the invasive L. cuneata, which is a
growing threat in grasslands of several states in the U.S.

1.4. The invasive L. cuneata

L. cuneata (commonly known as sericea lespedeza; hereafter “ser-
icea”) is a warm-season perennial nitrogen-fixing legume that was
brought to the U.S. from East Asia in the 1890s as a cheap forage and for
controlling soil erosion (Pieters, 1938; Pieters et al., 1950). Sericea was
introduced as a forage species mainly because it is persistent once
established. Specifically, sericea is a prolific seed producer, can tolerate
drought, reproduces under poor soil conditions (e.g., infertile and acidic
soil) and sloping terrain, and is taller than most co-occurring native
species and therefore can outcompete other species for light (Brandon
et al., 2004; Cline and Silvernail, 1997; Cummings et al., 2007; Don-
nelly, 1954; Hoveland et al., 1990; Stitt and Clarke, 1941). However,
while highly nutritious and palatable early in its development, grazing
animals strongly avoid sericea at maturity (Donnelly, 1954; Stitt and
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Clarke, 1941). This avoidance is partly due to high concentrations of
phenolics, specifically condensed tannins, located throughout the plant
that cause gastro-intestinal malaise in many ruminants, including cattle
(Donnelly, 1954; Mosjidis et al., 1990; Silanikove et al., 2001). As a
result, sericea has become a growing problem in grassland ecosystems
and is threatening biodiversity, ecosystem services, and resilience in the
face of future environmental change. As of now, the total grassland area
invaded by sericea is unknown, in large part due to the difficulty of
mapping short-statured invaders of biodiverse grasslands.

Sericea has similar phenology to dominant species in grasslands
where it has invaded, with the exception of its green-up and senescence
periods. Sericea, anecdotally, starts to green-up about two weeks before
other common grassland species and senesces approximately two weeks
after native prairie plants. However, this pattern has been reported to
vary significantly depending on environmental conditions (e.g., fire
regimes, precipitation, temperature) and is likely to shift, albeit with a
high level of uncertainty, in response to future global change. Because of
comparable phenology of sericea and native species, especially across
the broad range of environmental conditions which sericea has invaded,
we posit that identifying sericea using its distinct biochemical, physio-
logical, and structural traits instead of those based on phenology may
result in more accurate remote detection of this IAS.

This paper seeks to fill a critical knowledge gap that moves beyond a
reliance on phenology alone towards using vegetation functional traits
for remote detection of IAS in natural grasslands. Specifically, we
addressed two objectives: 1) determine remotely observable vegetation
functional traits—focusing specifically on biochemical, physiological,
and structural traits—that distinguish sericea from co-occurring native
species and 2) use these functional traits to develop a robust method for
detecting the extent of sericea invasions. To achieve these objectives, we
collected airborne imaging spectroscopic data with fine spatial resolu-
tion (1 m) as well as a suite of vegetation functional traits from The
Nature Conservancy’s Tallgrass Prairie Preserve (TGPP; also known as
the Joseph H. Williams Tallgrass Prairie Preserve), a large natural
grassland ecosystem located in northeastern Oklahoma. Our central
hypothesis was that sericea has specific functional traits (e.g., higher
total nitrogen content, large canopy height) that can be used to distin-
guish it from co-occurring native species in remotely sensed data. We
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based our central hypothesis upon the fact that depending on their
functional traits, plants can display different spectral signatures in
remotely sensed data (Ustin and Gamon, 2010). We are not aware of any
other research that has delineated spatial distribution of IAS in grass-
lands through direct quantification of vegetation functional traits using
remotely sensed data. This work helps us 1) identify the underlying
functional traits that distinguish sericea from native species and 2) fill
knowledge gaps surrounding remote detection of IAS in grasslands and
similar short-stature environments, where direct detection of IAS is
deemed challenging because of scale mismatch between spatial resolu-
tion of remotely sensed data and plant size.

2. Methods
2.1. Study site

The study was conducted in northeastern Oklahoma at TGPP (36" 50’
N, 96  25' W) which is the largest protected tallgrass prairie on Earth
(Coppedge et al., 1998; TNC, 2021). TGPP is managed using synergistic
application of prescribed fire and grazing with the goal of generating
structural heterogeneity that is critical to grassland biodiversity con-
servation (Fuhlendorf and Engle, 2004; Fuhlendorf et al., 2009). We
limited our experiment to the northern portion of TGPP with a total area
of 47 km? (approximately one-third of TGPP’s total area; Fig. 1). In this
part of TGPP, about one-third of pastures are burned annually, and cattle
freely graze throughout. Approximately 90% of TGPP is covered with
tallgrass species, such as little bluestem (Schizachyrium scoparium), big
bluestem (Andropogon gerardii), Indian grass (Sorghastrum nutans), and
switchgrass (Panicum virgatum), with the remaining land-cover being
oak woodland (Hamilton, 2007). Average summer high temperature and
winter low temperature are 32 °C and 3 °C, respectively. Average annual
precipitation at TGPP is approximately 960 mm (Sherrill, 2019).

Sericea invasion is a growing threat at TGPP. Previous work based on
two field-based species inventories has reported 9% increase in sericea
percent cover at TGPP from 1997 (near zero sericea cover) to 2018
(approximately 9% sericea cover; Sherrill, 2019). As a result, The Nature
Conservancy has spent over $1.3 million and more than 25,000 person-
hours between 1997 and 2019 to control the spread of sericea through

(b)

Fig. 1. (a) The study area within The Nature Conservancy’s Tallgrass Prairie Preserve (TGPP; also known as Joseph H. Williams Tallgrass Prairie Preserve) is shown
with a true colour composite (date of imagery: August 03, 2020). This portion of TGPP is managed with fire-cattle grazing while the cross-hatched regions are
managed by fire-bison grazing. (b) Homogeneous patches of sericea are shown inside dashed white rectangles. Sericea patches are often taller and denser than their
neighboring co-occurring native species at TGPP (date of photos: August 8, 2020). Sericea does not necessarily always occur in large and homogeneous patches
(similar to Fig. 1b); it can also occur in low abundance mixed with co-occurring native species (see Fig. S1 in Supplementary material).



H. Gholizadeh et al.

application of herbicide (e.g., metsulfuron-methyl and triclopyr)
coupled with management through fire and grazing.

2.2. Collecting ground reference data for image classification

We collected three data sets for developing and testing our models.
We will refer to these as (1) homogenous training data set (n = 49), (2)
homogenous validation data set (n = 78), and (3) heterogeneous vali-
dation data set (n = 133). Briefly, the homogenous training data set
included 49 homogeneous grassland “patches” and was used for devel-
oping models, the homogenous validation data set included 78 homo-
geneous grassland “patches” and was used for model validation, and the
heterogeneous validation data set included 133 60 m x 60 m hetero-
geneous and diverse grassland “plots” and was used for model
validation.

2.2.1. Collecting ground reference data for classification training

We identified 49 grassland “patches” at TGPP for model develop-
ment and trait sampling between late July and early August 2020. We
selected grassland patches that were dominated by sericea as well as
those that were free of sericea. A patch was labeled sericea if the
observed sericea canopy cover was more than 75% and a patch was
labeled non-sericea if the observed sericea canopy cover was approxi-
mately 0%. All non-sericea patches were homogeneous and covered
with dominant species at TGPP. Specifically, these non-sericea patches
did not include more than three dominant species; percent cover of each
species in non-sericea patches was determined visually.

In our homogenous training data set, 20 patches were dominated by
sericea (i.e., recorded as “sericea”) and the remaining 29 patches were
non-sericea (i.e., native species). Since our ultimate goal was mapping
sericea, this binary sericea vs. non-sericea approach was justifiable. We
recorded the area of these patches using a GPS unit (Trimble GeoXH,
Trimble, Sunnyvale, CA, USA) and applied differential GPS correction in
the GPS Pathfinder Office software v5.90 (Trimble, Sunnyvale, CA, USA)
to minimize uncertainty associated with GPS measurements and
improve location accuracy to 1-3 m. Area of these patches ranged from
approximately 19 m? to 855 m?, with an average area of 208 + 182 m?
(mean =+ standard deviation). We chose to use this patch-level approach,
rather than a point-to-pixel approach that would link one individual
plant to a single pixel in airborne remotely-sensed data, to minimize risk
of mismatch between field sampling points and remotely-sensed pixels.
Given the small size of plants in our grassland, even a slight positional
mismatch of 10-20 cm, could have translated into assigning functional
traits of one species (e.g., sericea) to the image spectrum of another
species (for example, see Fig. S1 in Supplementary material).

2.2.2. Collecting ground reference data for classification validation

Although we used homogeneous patches of sericea to develop clas-
sification models, IAS do not necessarily always grow in large patches
similar to Fig. 1b; they can also occur in low abundance mixed with co-
occurring native species (see Fig. S1 in Supplementary material). To test
the capability of remote sensing models for detecting sericea in both
cases, we collected two validation data sets. Specifically, we collected
one independent homogenous validation data set to assess model per-
formance at detecting homogeneous patches of sericea and one het-
erogeneous validation data set to determine how accurately our model
estimated actual sericea percent cover in species-rich plant
communities.

For our homogenous validation data set, we identified 78 grassland
“patches” at TGPP in late July 2020. Out of 78 patches, 36 patches were
sericea and the remaining 42 patches were non-sericea. We applied the
same criteria used for selecting patches in our homogenous training data
set (described in Section 2.2.1) to identify patches for our homogenous
validation data set. We recorded the extent of these patches using a GPS
unit (Trimble GeoXH, Trimble, Sunnyvale, CA, USA) and differentially
corrected GPS coordinates. Minimum and maximum area of these
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validation patches were approximately 11 m? and 1139 m?, respec-
tively, with an average area of 175 + 166 m? (mean + standard
deviation).

For our heterogeneous validation data set, we collected sericea
abundance data at 133 equal-sized grassland “plots” in July-August
2020. These validation plots were approximately 60 m x 60 m in size.
Sericea percent cover was documented every five meters along two
perpendicular 60 m transects within each plot using a 50 cm x 20 cm
quadrat. Overall, we collected sericea percent cover at 25 50 cm x 20 cm
quadrats within each plot and 3325 quadrats in total (Fig. S2 in Sup-
plementary material). Endpoints of each transect were measured using a
handheld GPS unit (Trimble Juno 3B, Trimble, Sunnyvale, CA, USA) and
differentially corrected afterwards. This validation data set was repre-
sentative of communities with high plant diversity; the average species
richness within these plots was approximately 29.

2.3. Collecting foliage samples for quantifying vegetation functional traits

We sampled a total of 193 plants from our 49 patches in the ho-
mogenous training data set. Specifically, we selected sunlit top-of-
canopy foliage from 69 sericea and 124 non-sericea canopies. These
samples were used to quantify 12 vegetation functional traits, including
total nitrogen (TN, %), chlorophyll a + b (Chl a + b; mg/g), total ca-
rotenoids (Car; pg/g), total phenolic content (TPC; mg/g), phosphorus
(P; %), calcium (Ca; %), potassium (K; %), magnesium (Mg; %), iron (Fe;
ppm), zinc (Zn; %), leaf mass per area (LMA, g/m?), and canopy height
(cm). We selected functional traits that are relevant for plant and
ecosystem function, including light capture and growth (TN, Chl a + b,
Car), photoprotection (Car), chemical defense and grazing animals’ diet
preference (TPC), metabolic processes and micro- and macronutrients
(P, Ca, K, Mg, Fe, Zn), and vegetation structure (LMA, canopy height).

We quantified TN with a combustion analyzer (Leco CN628, LECO
Corporation, St. Joseph, Michigan, USA) using 0.15 g of each foliage
sample at The Soil, Water, and Forage Analytical Laboratory (SWFAL),
Oklahoma State University. We analyzed mass-based Chl a + b, Car, and
TPC at The Forest Entomology Lab, University of Wisconsin-Madison.
For Chl a + b (sum of chlorophyll a and chlorophyll b), Car (sum of
neoxanthin, violaxanthin, antheraxanthin, zeaxanthin, and lutein), and
TPC quantification, foliage samples were immediately frozen in liquid
nitrogen, and stored on dry ice in the field until they could be transferred
to a -80 °C freezer. Chl a + b and Car were quantified using High-
Performance Liquid Chromatography (HPLC; Agilent 1200 Series, Agi-
lent Technologies, Santa Clara, CA). The HPLC system included a 150
mm x 4.6 mm column with 2.7 pm particle size (Poroshell EC-120 C18,
Agilent InfinityLab, Agilent Technologies, Santa Clara, CA). Chl a + b
and Car were extracted by sonicating 0.1 g of ground tissue in 0.5 mL of
ice-cold acetone for ten minutes, after which 1 mL of ice cold EtOH
containing 0.1% butylated hydroxyanisole was added, and the mixture
was sonicated for five minutes. Samples were then centrifuged for five
minutes at 10,000 r.p.m. at 4 °C. This extraction was repeated twice, the
supernatants were pooled, and solvents were evaporated under a stream
of N. Residue was resuspended in 1 mL of Acetonitrile:Methanol:Tris8.0
(76:17:7; Solvent A). Methanol:Hexane (4:1) was used as solvent B. For
each sample, 20 pL of pigment extract was injected and the flow was set
to 0.8 mL/min. Concentrations of chlorophyll a and chlorophyll b were
quantified based on their absorbance at 432 and 466 nm, respectively.
To determine concentration of Car (i.e., neoxanthin, violaxanthin,
antheraxanthin, zeaxanthin, and lutein), absorbance at 445 nm was
used. Quantification of neoxanthin, violaxanthin, antheraxanthin,
zeaxanthin was based on the normalized coefficients provided in De Las
Rivas et al. (1989). For TPC, 0.1 g of ground tissue was extracted in 1 mL
of MeOH for 24 h. The supernatants were decanted and the samples were
centrifuged for five minutes at 12,000 r.p.m. Next, 25 pL of each sample
extract was added to 50 pL of 10% Folin-Ciocalteau reagent (Ainsworth
and Gillespie, 2007) and 200 pL of 1 M NaHCO3 was added to each tube.
The mixture was then incubated at room temperature on an orbital
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shaker at 150 r.p.m. for 60 min. TPC was quantified in Gallic Acid
Equivalents (GAE) relative to gallic acid standard curve. We quantified
P, Ca, K, Mg, F, and Zn from 0.5 g of dry leaf tissue after digestion in 10
mL of nitric acid at 120 °C for 2 h using an Inductively Coupled Plasma
device (ICP; Spectro Arcos II, SPECTRO Analytical Instruments GmbH,
Kleve, Germany) at the SWFAL lab. Foliage samples for LMA measure-
ments were first weighed in the field, stored in humidified bags, and kept
on ice to prevent wilting during transport to The Environmental Ecology
Lab at Oklahoma State University. To calculate LMA, we first scanned
leaves on a flatbed scanner (Canon CanoScan 4400, Canon, Tokyo,
Japan). Then, leaf area was quantified from images using ‘leafarea’
package (Katabuchi, 2015) in R (R Core Team; www.r-project.org).
After scanning, samples were oven-dried at 65 °C for 48 h before
recording dry mass. We calculated LMA as leaf dry mass (g) divided by
leaf area (m?). Finally, we measured canopy height at each foliage
sampling location within each grassland patch in the homogenous
training data set using a visual obstruction technique (Limb et al., 2007).
Specifically, a 1 m x 1 m whiteboard was placed vertically at each fo-
liage sampling location and an RGB image was taken with the white-
board in the background (see Fig. S3 in Supplementary material for an
example). We took a total of 193 images using an RGB digital camera
(Fuji FinePix XP135, Fyjifilm, Tokyo, Japan). Through setting an image
threshold, vegetation pixels were separated from the 1 m x 1 m
whiteboard background and vegetation height was determined.

2.4. Spectral data collection

2.4.1. Leaf-level spectral sampling

We collected leaf-level spectra in the field within the 350-2500 nm
range using an ASD FieldSpec 3 spectroradiometer equipped with a
contact leaf probe (Malvern Panalytical, Malvern, UK; Fig. 2a). Data
were acquired between late July and early August 2020 simultaneously
with our vegetation functional trait sampling. Three sets of foliage
samples from the same plants that were used for functional trait sam-
pling were selected and their leaf-level spectral reflectance signatures
were measured. Each spectrum was the average of 100 readings. The
average spectrum obtained from these three samples was used as the
final leaf-level spectral signature. The spectroradiometer was warmed-
up in the field for 45 min before each data collection campaign, cali-
brated for dark current, and referenced to a white calibration panel
(Labsphere, North Sutton, NH, USA) every 15 min.

2.4.2. Airborne data collection for canopy-level spectral sampling

We collected full-range airborne hyperspectral data from TGPP. Data
collection started at 10:07 am (15:07 GMT) and ended before solar noon
at 12:42 pm local time (17:42 GMT), on August 03, 2020 using a Twin
Commander 500-B aircraft (Aero Commander, Oklahoma City, OK). A
total of 21 flight lines were collected using a pushbroom imaging
spectrometer (AISA Fenix 1 k, Specim, Oulu, Finland). The sensor covers
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400-2450 nm range in 323 bands with spectral resolution of approxi-
mately 4.5 nm in the 400-970 nm range and 14 nm in the 970-2450 nm
range. The airborne imager had 1024 spatial pixels and field of view was
40°. Flight altitude of the aircraft was approximately 1400 m above
ground level and the resulting data had spatial resolution (i.e., pixel
size) of 1 m. To improve the positional accuracy of airborne data, real-
time kinematic Global Navigation Satellite System (GNSS) corrections
were used, hyperspectral sensor and the navigation system of the aircraft
were boresight-calibrated, and 1 m digital elevation model (DEM; from
USGS 3DEP) was used for ortho-correction of hyperspectral data.
Finally, all radiance images were converted to reflectance using ATCOR-
4 (Richter and Schlapfer, 2002), which uses MODTRAN-5 radiative
transfer model (Berk et al., 2006). After removing the noisy and water
vapor absorption bands, the final airborne data set had 238 bands
covering 431.10-1299.36 nm, 1487.71-1775.03 nm, and
1998.23-2353.76 nm wavelengths (Fig. 2b).

2.5. Data analysis

Our approach had four main steps. Briefly, step 1 included identi-
fying vegetation functional traits that distinguished sericea from co-
occurring native species using traits measured in the field. In step 2,
we developed partial least squares regression (PLSR; Wold et al., 2001)
models and applied them to airborne hyperspectral data to estimate
functional traits identified in step 1 throughout our study area. In step 3,
we used raster layers of vegetation functional traits generated in the
previous step and developed partial least squares linear discriminant
analysis (PLS-LDA) classification (Barker and Rayens, 2003; Brereton,
2009) to separate sericea from co-occurring native species. Finally, step
4 focused on classification accuracy assessment using two independent
validation data sets. Detailed descriptions of all the analysis steps are
discussed below. In addition, a schematic diagram of our approach is
illustrated in Fig. 3.

2.5.1. Determining vegetation functional traits that distinguish sericea from
co-occurring native species

We used Kruskal-Wallis test (non-parametric version of ANOVA)
(Kruskal and Wallis, 1952) to assess the difference between sericea and
non-sericea species for each functional trait individually. We applied
this test to 12 functional traits measured from 193 foliage samples in our
homogenous training data set.

This statistical test does not consider the synergetic effect of vege-
tation functional traits at separating sericea from non-sericea species (i.
e., when the combined effect of two or more vegetation functional traits
is greater than the sum of independent individual effects). Therefore, to
identify vegetation functional traits that contributed to distinguishing
sericea from native species (we refer to these functional traits as
“important traits”), we used PLS-LDA classification approach coupled
with conditional synergetic score (COSS) (Li et al., 2010). COSS
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® 04+ 1
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Fig. 2. (a) Average reflectance of sericea leaves vs. non-sericea leaves from leaf-level ASD data and (b) average reflectance of sericea patches vs. non-sericea patches
from airborne data. Missing wavelength regions in the airborne data are water vapor absorption bands. Shaded regions show +1 standard deviation of spectra.
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1

Fig. 3. Schematic diagram illustrating analysis steps in our study. While this diagram shows the main analyses and objectives, detailed data processing steps are
described in Section 2.5. In this flowchart, blue rectangles represent processing steps (e.g., partial least squares regression), yellow parallelograms represent remote
sensing data products (e.g., remotely-estimated vegetation functional traits), and green rectangles with wavy base represent other input/output data (e.g., validation
data). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

estimates the importance of each variable while taking into account the
effect of all other variables. Standardized (i.e., centered and scaled) leaf-
level vegetation functional traits were inputs and class labels (i.e., ser-
icea and non-sericea) were PLS-LDA outputs.

Specifically, we selected a random subset of training data points
(50% of 193 foliage samples), developed PLS-LDA models (Fig. 3) with
and without the i trait (out of 12 vegetation functional traits), esti-
mated classification mean prediction error of each model using the
remaining 50% of the data points, and calculated COSS. COSS was
defined as -logy (p), where p is the Mann-Whitney U test p-value of the
difference between mean prediction errors of two models: a model
including all vegetation functional traits and a model with one of the
vegetation functional traits permuted. A COSS threshold value of 2,
which corresponds to p-val of 0.01, was considered and all vegetation
functional traits with COSS >2 were deemed important in separating
sericea from non-sericea.

2.5.2. Scaling leaf-level traits to patch-level

To develop models for remote detection of sericea in airborne
hyperspectral data, we needed to quantify vegetation functional traits at
a patch-level. Because sampling and quantifying functional traits for all
leaves in each patch was not feasible, we used the average of leaf-level
traits within each patch in our homogenous training data set. For canopy
height, we took the average of vegetation height in each patch—meas-
ured through the visual obstruction technique. For patches that were
composed of more than one species, we weighted leaf-level traits by
field-measured species percent cover. Since patches in our training data
set were homogeneous and did not include more than three dominant
species, we assumed that this area-based scaling approach had compa-
rable performance to other weighting approaches, such as those based
on relative biomass (Wang et al., 2019).

2.5.3. Developing PLSR models for mapping important functional traits
using spectral data

We used PLSR to estimate the values of important vegetation func-
tional traits from spectral data (Asner and Martin, 2009; Serbin and

Townsend, 2020; Singh and Glenn, 2009; Wang et al., 2020; Wold et al.,
2001). Specifically, we developed PLSR models at both leaf- and patch-
level using the data collected from 49 patches in our homogenous
training data set. While the patch-level PLSR models were applied to
airborne spectral data to estimate vegetation functional traits
throughout the study area, leaf-level PLSR models were developed solely
for the purpose of evaluating the performance of our patch-level PLSR
models and were not used for further analysis.

For leaf-level PLSR models, we used the vector-normalized reflec-
tance data from the ASD FieldSpec 3 spectroradiometer as the inde-
pendent variables (or input; Fig. S4a in Supplementary material)—
where reflectance in each wavelength is divided by the full-spectrum’s
P-norm (Feilhauer et al., 2010)—and important functional traits as the
dependent variables (or output). We used 50% of traits from 193 foliage
samples and the corresponding spectra for developing PLSR models and
the remaining data points for testing. We developed separate PLSR
models for each important trait and repeated this process 300 times
(Fig. 3) through randomized permutations to estimate uncertainty in our
trait retrievals (Singh et al., 2015). Optimum number of PLSR compo-
nents were determined based on cross-validated mean squared predic-
tion error.

For our patch-level PLSR models, we used the average vector-
normalized reflectance spectra of each patch from airborne data
(except for noisy and water vapor absorption bands) as the independent
variables (Fig. S4b in Supplementary material) and scaled patch-level
traits from Section 2.5.2 as the dependent variables. We then repeated
the same process that we used for developing our leaf-level PLSR models
as described above; each important vegetation functional trait was
estimated 300 times throughout the study area by applying 300 patch-
level PLSR models to airborne hyperspectral data. To implement
PLSR, the “plsregress” command in (MATLAB, 2020) was used (Math-
Works Inc., Natick, Massachusetts, USA).

2.5.4. Mapping sericea invasion using airborne data
After determining important vegetation functional traits that sepa-
rated sericea from co-occurring native species (Section 2.5.1) and
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estimating the values of important vegetation functional traits
throughout the study area by applying PLSR models to airborne data
(Section 2.5.3), we developed PLS-LDA classification models for map-
ping sericea in our study area.

Inputs for PLS-LDA classification were raster layers of average
vegetation functional traits estimated from 300 PLSR models that were
developed in Section 2.5.3 (one raster layer for each important trait) and
the outputs were class labels (sericea vs. non-sericea). We used the ho-
mogenous training data set for training the PLS-LDA classification
model, where each patch was considered as one data point. In other
words, each patch was represented by the vector of important traits as
classification input and one label as classification output. We developed
300 PLS-LDA models using a leave-25%-out approach iterated 300
times. Specifically, we selected a random subsample comprised of 75%
of training patches from our homogenous training data set, developed a
PLS-LDA model for each subsample, and repeated this process 300 times.
We developed 300 PLS-LDA models, instead of one model, to have a
more reliable assessment of accuracy (or uncertainty) as described
below.

2.5.5. Classification accuracy assessment

We used two independent validation data sets to assess the perfor-
mance of our IAS detection approach as described in Section 2.2.2. The
homogenous validation data set included 78 patches of sericea and co-
occurring native species. We used this data set to assess classification
accuracy in terms of overall accuracy, producer’s accuracy (=100%-
omission error), user’s accuracy (=100%-commission error), and kappa
statistic (Cohen, 1960; Rosenfield and Fitzpatrick-Lins, 1986) obtained
from our 300 PLS-LDA models.

The heterogeneous validation data set included sericea percent cover
measured at 133 heterogeneous grassland plots. PLS-LDA-estimated
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abundance of sericea within sampling plots were compared to
observed sericea abundance in terms of proportion of explained variance
(RZ), root mean square error (RMSE), and normalized RMSE (NRMSE).

2.5.6. Determining spectral regions in airborne data that separated sericea
from native species

Finally, we also identified spectral bands in our airborne data that
contributed to detecting sericea. To achieve this goal, we evaluated the
relative importance of each spectral band in the airborne data at sepa-
rating sericea from co-occurring native species using COSS analysis,
similar to what we used in Section 2.5.1. For this analysis, we used
spectral bands from airborne data (except for noisy and water vapor
absorption bands) as inputs; we also used class labels (i.e., sericea and
non-sericea) from 49 patches in the homogenous training data set as
outputs. Following this approach, we assigned COSS scores to spectral
bands to determine the relative contribution of each band at detecting
sericea.

3. Results
3.1. Vegetation functional traits—sericea vs. other species

Statistical analysis based on Kruskal-Wallis test showed that sericea
had significantly higher TN, Chl a + b, Car (and Chl a + b/Car ratio; see
Fig. S5 in Supplementary material), TPC, and canopy height than other
species at o = 0.05, while it had significantly lower K, Mg, and Fe
content compared to other species (Fig. 4). The difference between
sericea and non-sericea species was not significant for the remaining
functional traits (P, Ca, Zn, and LMA). Results also showed that, in
general, the range and variation of functional trait values for non-sericea
patches were larger than sericea patches. This was expected as our non-
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Fig. 4. Leaf-level functional traits (69 sericea and 124 non-sericea foliage samples). We used Kruskal-Wallis test to assess differences between sericea and non-sericea
leaves. Functional trait acronyms: TN: total nitrogen, Chl a + b: Chlorophyll a + b, Car: total carotenoids (sum of neoxanthin, violaxanthin, antheraxanthin,
zeaxanthin, and lutein), TPC: total phenolic content, P: phosphorus, Ca: calcium, K: potassium, Mg: magnesium, Fe: iron, Zn: zinc, and LMA: leaf mass per area. In
each boxplot, the central box indicates the middle 50% of the data (between 25" and 75" percentile), the blue horizontal line inside each box represents the data
median, the whiskers indicate the remaining data points excluding outliers, and data points beyond the whiskers show outliers. *All traits, except canopy height, were
measured at leaf-level; we measured canopy height at each foliage sampling location within our training patches using the visual obstruction technique. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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sericea category included several species from different functional
groups, such as graminoids and woody shrubs, which can potentially
result in large inter-species trait variability.

COSS scores were used to estimate the importance of each vegetation
functional trait in separating sericea from non-sericea species. COSS
scores estimated from leaf-level functional traits identified Car, Chl a +
b, TN, canopy height, K, and Mg as the most important functional traits
for separating sericea from non-sericea species (Fig. 5).

3.2. Estimating vegetation functional traits from spectral data using PLSR

After identifying important vegetation functional traits (i.e., Car, Chl
a + b, TN, canopy height, K, and Mg), we used PLSR to estimate them
using leaf-level and airborne spectral data (Fig. 3). Although the re-
lationships between measured and PLSR-predicted functional traits were
significant at both leaf- and patch-level (i.e., estimated from airborne
imagery) for a = 0.05, PLSR model performance was not the same for all
functional traits (Fig. 6).

For leaf-level data points (Fig. 6a, c, e, g, i), model performance,
expressed as R2, ranged from 0.42 + 0.06 (mean =+ 1 standard deviation
of 300 permutations; p-val < 0.001) for TN (Fig. 6a) to 0.63 &+ 0.06 (p-
val < 0.001) for K (Fig. 6g). In terms of prediction error, Car had the
highest error rate (NRMSE of 19.26 + 2.20%; Fig. 6e) and K had the
lowest error rate (NRMSE of 15.09 + 2.18%; Fig. 6g).

After scaling up functional traits to patch-level based on percent
cover (as described in Section 2.5.2), PLSR models were developed to
link scaled traits to airborne spectra (Fig. 6b, d, f, h, j, k). Chl a + b and
Car PLSR models showed the weakest predictive performance at patch-
level with R? of 0.32 + 0.10 (p-val < 0.001; Fig. 6d) and 0.34 =+ 0.09 (p-
val < 0.001; Fig. 6f), respectively. PLSR-predicted canopy height and K
showed the strongest agreement with the observed data at patch-level
with R? of 0.57 + 0.13 (p-val < 0.001; Fig. 6k) and 0.51 £+ 0.12 (p-
val < 0.001; Fig. 6h), respectively.

Our results showed that although the performance of patch-level
PLSR models, in general, weakened after scaling up, these models had
comparable performance to those obtained from leaf-level data. This
comparable performance indicated the potential of area-based trait
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Fig. 5. COSS scores showing the importance of each vegetation functional trait
in separating sericea from non-sericea species. Dashed line shows cutoff COSS
value of 2. Functional traits with COSS values greater than 2 are considered
important. Functional trait acronyms: TN: total nitrogen, Chl a + b: Chlorophyll
a + b, Car: total carotenoids, TPC: total phenolic content, P: phosphorus, Ca:
calcium, K: potassium, Mg: magnesium, Fe: iron, Zn: zinc, and LMA: leaf mass
per area. Note: standardized (i.e., centered and scaled) vegetation functional
traits were used in the analysis. *All traits, except canopy height, were
measured at leaf-level; we measured canopy height at each foliage sampling
location within our training patches using the visual obstruction technique.
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upscaling when sampling functional traits from large number of in-
dividuals is not feasible. Overall, based on PLSR results, sericea leaves
and sericea-dominated patches consistently showed significantly higher
Car, Chl a + b, TN, and canopy height values but lower K and Mg.

PLSR coefficients at both leaf-level and patch-level (i.e., airborne
imagery) showed that wavelengths contributing to the prediction of
functional traits (i.e., those wavelengths with coefficients deviating from
zero) were distributed across different regions of the electromagnetic
spectrum (Fig. 7; Fig. S6 in Supplementary material). Some of these
wavelength features aligned well with the known absorption features of
a number of selected key traits (Fig. 5). Notable was the contribution of
bands within the visible region of the spectrum which are associated
with the absorption features of Chl a + b and Car (Curran, 1989; Wang
et al., 2020; see also Section 4.2 for further discussion of the linkages
between key traits and key spectral bands).

3.3. Sericea mapping using remotely-estimated vegetation functional traits

3.3.1. Sericea presence/absence mapping accuracy assessment

To assess the performance of PLS-LDA approach at detecting sericea
absence/presence, an independent validation data set consisting of 78
grassland patches was collected (the homogenous validation data set as
described in Section 2.2.2; Fig. 3). Results obtained from this validation
data set reported an overall classification accuracy of 94.0 + 2.0%
(mean + 1 standard deviation obtained from 300 PLS-LDA models)
indicating that PLS-LDA classifier correctly classified a patch with the
probability of approximately 94% (Table 1). Kappa coefficient was 0.87
+ 0.04 indicating a very strong agreement between classified data and
reference validation data (Landis and Koch, 1977). Producer’s accuracy
for sericea and non-sericea classes were 91.5 + 4.8% and 96.2 + 2.2%,
respectively, indicating the percentage of ground truth patches in each
class that were correctly labeled (e.g., approximately 92% of sericea
ground truth patches were classified correctly). User’s accuracy was
reported to be 95.5 + 2.4% and 93.1 + 3.5% for sericea and non-sericea
classes, respectively. User’s accuracy values showed the percentage of
classified patches in each class that were correctly labeled (e.g.,
approximately 96% of patches labeled as sericea in the final product
were classified correctly).

3.3.2. Sericea abundance estimation accuracy assessment

PLS-LDA classification was also used to estimate sericea abundance
fraction at our heterogeneous validation data set, where sericea was
rarely the dominant species (Fig. 3). Minimum and maximum measured
sericea percent cover in these validation “plots” were approximately 0%
and 57.5%, respectively. There was a strong agreement between
measured and estimated sericea abundance fraction in our validation
plots with an R? of 0.66 (p-val < 0.001; Fig. 8). Model RMSE and NRMSE
values were 0.07 and 12.69%, respectively. Although there was a
significantly strong relationship between measured and estimated ser-
icea abundance fraction, the PLS-LDA approach overestimated sericea
abundance. Furthermore, the developed regression model was driven by
a few data points (i.e., plots) with high sericea percent cover.

Finally, sericea invasion within the study area was mapped by
applying the 300 PLS-LDA models to the airborne imagery (Fig. 9a). A
pixel was considered sericea if it was classified as sericea in all 300 PLS-
LDA models. This mapping analysis reported that about 10% of the study
area was dominated by sericea (Fig. 9b).

3.4. Contribution of different bands at separating sericea from non-
sericea species in airborne imagery

COSS scores were used to estimate the relative contribution of each
spectral band to sericea detection in airborne data (Fig. 10). Considering
a threshold value of 2, out of 238 bands in our airborne data, 66 bands
were deemed important in separating sericea from non-sericea species.
COSS analysis pointed to greater contribution of bands within the visible
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Fig. 6. Predicted vs. observed functional
traits. (a, ¢, e, g, i) In these PLSR models,
independent  variables are  vector-
normalized leaf-level ASD reflectance
data and dependent variables are leaf-level
functional traits. (b, d, f, h, j) Independent
variables are vector-normalized airborne
reflectance data and dependent variables
are scaled-up patch-level functional traits.
(k) For canopy height, only patch-level
results obtained from airborne data are
shown. For these PLSR models, all spectral
bands (except for noisy and water vapor
absorption bands) were used. Horizontal
bars show +1 standard deviation from 300
permutations. NRSME: normalized RMSE
in percent; numbers inside parentheses
show standard deviation from 300 per-
mutations; p-val is the median p-val of 300
permutations. Dashed lines are 1:1 lines.
Functional trait acronyms: TN: total ni-
trogen, Chl a + b: Chlorophyll a + b, Car:
total carotenoids, K: potassium, and Mg:
magnesium.
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Fig. 7. PLSR coefficients obtained from leaf-level (left column) and canopy-level (right column) data. (a, c, e, g, i) For leaf-level data, independent variables are
vector-normalized ASD reflectance data and dependent variables are leaf-level traits. (b, d, f, h, j) For canopy-level data, independent variables are vector-normalized
airborne reflectance data and dependent variables are scaled-up patch-level traits. (k) For canopy height, only patch-level results obtained from airborne data are
shown. Shaded regions show +1 standard deviation from 300 permutations. Missing wavelength regions are water vapor absorption bands in the airborne data. For
comparison purposes, water vapor absorption bands were excluded from leaf-level ASD data, although these data were not affected by atmospheric effects (because a
contact leaf probe and an internal light source was used for leaf-level data collection). Functional trait acronyms: TN: total nitrogen, Chl a + b: Chlorophyll a + b, Car:
total carotenoids, K: potassium, and Mg: magnesium.
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Table 1
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Performance of PLS-LDA classification using important functional traits based on the independent homogenous validation data set consisting of 78 patches, including
36 sericea patches and 42 non-sericea patches. In the PLS-LDA classification, each patch was considered as one data point. Numbers in the confusion matrix below
represent the PLS-LDA model with median overall accuracy on 300 trials. Accuracy metrics are the average of 300 trials and numbers inside parentheses indicate +1

standard deviation from 300 trials.

Map Producer’s accuracy
Sericea Non-sericea Total
Sericea 33 3 36 91.5% (+4.8%)
Field Non-sericea 2 40 42 96.2% (£2.2%)
Total 35 43 78

User’s accuracy 95.5% (£2.4%)

Overall accuracy
Kappa

93.1% (£3.5%)

94.0% (£2.0%)
0.87 (4+0.04)
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Fig. 8. Performance of PLS-LDA classification based on the heterogeneous
validation data set consisting of 133 plots (see Section 2.2.2 for details). In this
figure, O refers to 0% sericea cover within each plot and 1 refers to 100%
sericea cover. Estimated sericea abundance fraction was calculated as the total
number of pixels classified as sericea in all of 300 PLS-LDA models divided by
the total number of pixels within each plot. The green line is the line of best fit
and the dashed line is the 1:1 line. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

range (~400-700 nm) and red edge region (~700-740 nm), although
several bands within the near-infrared (~740-1100 nm) and shortwave
infrared regions (~1100-2450 nm) were also selected. Specifically, out
of 66 selected bands, 39 bands were within the visible range, which is
about 97% of the total number of bands within this range in our airborne
data set; five bands fell within the red edge region (83% of the total
number of bands within the red edge region in our airborne data set).
Additionally, 11 bands were near-infrared (20% of the total number of
near-infrared bands in our airborne data set) and 11 bands were short-
wave infrared (8% of the total number of bands in this region in our
airborne data set). It is worth noting the significant contribution of
bands in the photosynthetically active radiation (PAR) and red edge
regions of airborne data at detecting sericea.

4. Discussion

Given the negative ecological and economic impacts of sericea, an
operational IAS monitoring system is necessary for understanding in-
vasion across large geographical extents. In this paper, by detecting
grassland regions that have been invaded by sericea, we showed that
there is a potential for developing such a monitoring system. Specif-
ically, we first identified key functional traits that differentiated sericea
from co-occurring native plants. These functional traits were then
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estimated throughout the study area using a PLSR approach applied to
fine-resolution airborne hyperspectral data. Tested with field validation
data, we found that remote estimation of these functional traits can
successfully map sericea invasion in grasslands when used in a PLS-LDA
classification approach.

4.1. Remote sensing can identify specific vegetation functional traits that
contribute to the success of IAS

This research not only adapted the use of new methodologies for IAS
detection but facilitated a deeper understanding of functional traits that
aid mechanisms related to competition and tolerance strategies, spe-
cifically as IAS outcompete native species and succeed in a new com-
munity. Our results identified Car, Chl a + b, TN, and canopy height as
well as two macronutrients (K and Mg) as the most important factors
that contribute to distinguishing sericea from other species (Fig. 5).
Surprisingly, TPC was not an important functional trait for dis-
tinguishing sericea from co-occurring native species, even though this
plant is known to have high levels of a phenolic compound called tannin
that cause digestive problems in ruminants such as cattle (Donnelly,
1954; Mosjidis et al., 1990; Silanikove et al., 2001).

Sericea had significantly higher photosynthetic and photoprotective
pigments (Chl a + b and Car) compared to co-occurring native species
(Fig. 4 and 6¢-f), suggesting superior photophysiological performance of
sericea compared to native plants. Specifically, Chl a + b can be viewed
as a proxy for photosynthetic activity and Car, in addition to enhancing
light harvesting for photosynthesis, has photoprotective properties and
dissipates excess energy not used by the plant (Thayer and Bjorkman,
1990). As sericea forms canopy-dominant patches in full sun, enhanced
photoprotection from Car likely aids in the species’ invasive potential.
Additionally, sericea had higher Chl a + b/Car ratio than co-occurring
native species (Fig. S5 in Supplementary material). A large body of
literature has indicated that a higher Chl a + b/Car ratio is linked to
increased light use efficiency and photosynthetic activity (Gamon et al.,
2016; Sims and Gamon, 2002) presumably because Car levels increase
when plants are subjected to stress (Penuelas et al., 1995). Therefore,
this finding suggests an adaptive response of sericea to the tallgrass
ecosystem during environmental stress.

TN was significantly higher in sericea (Fig. 4 and 6a-b). In addition,
TN was selected as one of the key traits for distinguishing sericea from
co-occurring native plants (Fig. 5). Invasive legumes, including sericea,
have a competitive advantage over native species, especially in nitrogen-
poor soils, because of their nitrogen-fixing capabilities (Adams et al.,
2016; Ritchie and Tilman, 1995). Therefore, selection of TN as a key
trait appears very reasonable in the context of IAS tolerance and success
strategies.

Additionally, sericea had higher canopy height compared to other
species in our results (Fig. 4; Fig. 6k), and this trait was one of the
important factors separating sericea from native plants (Fig. 5). Previous
research has highlighted the role of canopy height on the success of
sericea (Brandon et al., 2004). Specifically, sericea can form tall and
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Fig. 9. (a) Sericea presence estimated based on 300 PLS-
LDA classification models. Dark brown regions show
pixels that were classified as sericea in all 300 model
runs. Probability values are based on frequencies derived
from 300 PLS-LDA models. The map is overlaid on an
RGB composite of the study area. (b) Abundance fraction
of sericea vs. non-sericea species (shown on y-axis; re-
ported between O and 1). This histogram shows that
approximately 10% of the study area is likely covered
with sericea. Oak woodland land-cover (dark green
vegetation cover in Fig. 9a) was not included in the cal-
culations. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web
version of this article.)
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dense stands and therefore shade out other species. A remote sensing
study in a small pasture, with total area of 0.6 km?, at Cedar Creek
Ranger District, Missouri used the maximal first-order spectral deriva-
tive in the 650-800 nm range to separate sericea from Festuca arundi-
nacea (tall fescue; the dominant native species in the study area; Wang
etal., 2008). Although the approach used in Wang et al. (2008) was fully
empirical—meaning that underlying functional traits that distinguish
sericea from tall fescue were not identified—separability of sericea from
tall fescue was attributed to sericea’s higher canopy height, density, and
chlorophyll content. Our results confirmed the hypothesis set forth by
Wang et al. (2008) and successfully identified canopy height and Chl a
+ b as important vegetation functional traits to map sericea invasion.
Overall, our experiment demonstrated that there is promising potential
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for imaging spectroscopy to identify vegetation functional traits that
lead to the success of IAS.

The central hypothesis of this experiment was that vegetation func-
tional traits, including biochemical, physiological, and structural traits
affect spectral signatures (Ustin and Gamon, 2010). However, pheno-
logy—temporal variation in biochemical, physiological, and structural
traits—was not documented in our experiment, solely because the sig-
nificant cost of multi-temporal airborne and field data collection cam-
paigns precluded us from repeating these measurements over time.
Previous studies have provided critical evidence that remote sensing
signals vary significantly as a result of phenology (Bradley, 2014; Pet-
torelli et al., 2005; Wang et al., 2005). Similarly, in-situ measurement of
a few vegetation attributes (gas exchange, chlorophyll fluorescence,
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Fig. 10. COSS scores showing the importance of each spectral band in airborne data at separating sericea patches from non-sericea patches. Dashed line shows cutoff
COSS value of 2. Vertical grey lines show wavelengths at 700 nm, 740 nm, and 1100 nm. Spectral region acronyms: VIS: visible, RE: red edge, NIR: near-infrared, and
SWIR: shortwave infrared. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

plant water status, and specific leaf area) has shown significant temporal
variations in the functional traits of sericea and dominant species at
TGPP (Allred et al., 2010), which can potentially affect distinguishing
sericea from other native species using remotely sensed data. These re-
sults, collectively, support the need for developing multi-temporal ex-
periments to test the generalizability of our IAS detection approach over
time, especially in the face of rapid global change.

4.2. Remote detection of sericea: From key traits to key spectral bands

Our results indicated the importance of almost all the visible and red
edge bands as well as portions of near-infrared and shortwave infrared
regions at distinguishing sericea from non-sericea species in our
airborne data (Fig. 10). Considering the list of key traits that were
deemed important for separating sericea from non-sericea species
(Fig. 5), we expected the selection of these bands, particularly those
within the PAR and red edge regions.

Specifically, Chl a + b and Car—two traits with the highest COSS
scores—have well-defined absorption features within the PAR region.
Chlorophyll a has strong absorption features near 430 nm and 660-680
nm, chlorophyll b exhibits absorption features near 450 and 640 nm, and
Car strongly absorbs radiation in wavelengths shorter than 550 nm
(Blackburn, 2002; Curran, 1989; Fourty et al., 1996; Kokaly et al., 2009;
Ustin et al., 2009). Confirming the findings of previous studies, our leaf-
level PLSR analysis exhibited some of these absorption features,
including the absorption feature near 680 nm (Fig. 7c; Fig. S6C in
Supplementary material). In our patch-level PLSR analysis (i.e., airborne
imagery), the majority of important wavelengths for estimating Chl a +
b and Car were those within the PAR region (Fig. 7d and f; Fig. S6D and F
in Supplementary material), which further fortifies our assumption that
the separability of sericea from non-sericea species was partly due to
differences in photosynthetic pigment content. In addition to Chl a + b
and Car, TN—the other important trait at separating sericea from non-
sericea species—may have contributed to the selection of bands within
the PAR region through nitrogen-containing photosynthetic pigments,
such as chlorophyll (Curran, 1989; Wang et al., 2019).

Selection of bands within the red edge region in our airborne
hyperspectral data (Fig. 10) can be attributed in part to Chl a + b and Car
content. Exhibited features within the red edge region in our leaf- and
canopy-level Chl a + b and Car PLSR models (Fig. 7c, e, and f; Fig. S6C-F
in Supplementary material) matched findings of previous studies; of
note is the feature near 740 nm which has been reported to be an
important spectral region for estimating mass-based Chl a + b and Car
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(Wang et al., 2020).

We should note that linking selected spectral bands (Fig. 10) to
important functional traits that separated sericea from non-sericea
species (Fig. 5) is not always straightforward. Some functional traits
do not have specific absorption features or their absorption features
might overlap with those of other traits (Kokaly et al., 2009). For
example, K—which was identified as an important trait in our ana-
lysis—can be estimated due to its association with TN and LMA (Reich
et al., 1997; Wang et al., 2020; Wright et al., 2004). In addition, at
canopy-level (i.e., airborne imagery), our ability to identify specific
absorption features and retrieve functional traits can be affected by
canopy structure, as reflectance retrieved from airborne imagery is
influenced by canopy structural characteristics, such as leaf shape and
orientation (Jacquemoud et al., 2009; Knyazikhin et al., 2013; Sullivan
et al., 2013).

Overall, except for photosynthetic pigments, establishing direct links
between selected spectral bands in our airborne hyperspectral data
(Fig. 10) and key vegetation functional traits that separated sericea from
non-sericea species (Fig. 5) was not straightforward. However, both the
direct impacts of key vegetation functional traits on remotely sensed
spectra (e.g., through absorption features of photosynthetic pigments)
and their indirect impacts (through canopy structural effects or associ-
ations among traits) translated into spectral separability between sericea
and non-sericea species in the PAR and red edge regions of remotely
sensed data. This spectral separability, in turn, suggests that there might
be promising opportunities for developing multi-band empirical ap-
proaches, similar to vegetation indices, to separate sericea from non-
sericea species.

4.3. Proposed approach overestimated sericea cover in species-rich
communities

Our classification approach detected homogeneous patches of ser-
icea with very high accuracy (overall accuracy of 94% from our ho-
mogenous validation data set; Table 1). However, it overestimated
sericea abundance fraction in our heterogeneous validation data set that
was collected from species-rich plant communities (Fig. 8). Previous
studies on remote detection of IAS have reported similar issues with
over- or underestimation of target species (Lass et al., 2002; Lawrence
et al., 2006). We posit that this uncertainty is partly due to two closely-
related issues: mixed pixels and scale mismatch between grassland plant
size and scale of remote sensing observations.
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4.3.1. Issues of mixed pixels and scale mismatch between grassland plant
size and spatial resolution of remote sensing observations

Unlike our first validation data set which included homogeneous
plant communities, in our heterogeneous validation data set, sericea
abundance fractions were measured in species-rich and heterogeneous
plots and in most cases, sericea percent cover within a community was
less than 10%. This indicates that the probability of having pure sericea
pixels within these species-rich plots was low and the majority of pixels
were mixed, meaning that a given pixel was presumably covered with
more than one species. The issue of mixed pixels is even more limiting
for grassland species as these plants are often smaller than the scale of
remote sensing observations. For example, if the size of an individual
sericea plant is approximately 15 cm by 15 cm (when viewed from
above), it occupies approximately 1/40™ of a pixel in our airborne
imagery.

Both of these issues are major challenges in remote detection of IAS
in grasslands, especially for early eradication efforts when invasive
plants are more likely to occur in low abundance mixed with native
species. Although we strived to make the best of assets at our disposal to
collect remotely sensed data with fine spatial resolution, the issues of
mixed pixels and scale mismatch were still significant sources of un-
certainty in our study. These issues are even more limiting for direct
detection of IAS using current and forthcoming spaceborne imaging
spectrometers, primarily due to their coarse spatial resolution (approx-
imately 30 m). The challenges associated with scale mismatch between
plant size and spatial resolution of remotely sensed data demonstrate the
essential role of fine-resolution airborne hyperspectral data for direct
mapping of IAS in grasslands and ecosystems with small-statured plants.

4.3.2. Recommendations to mitigate the impact of scale mismatch

We put forth two suggestions for mitigating the uncertainty associ-
ated with IAS cover estimation. First, assessing the effectiveness of
spectral unmixing approaches (also known as subpixel classification)
remains a potentially promising direction for improving direct detection
of IAS (see Fig. S7 in Supplementary material). Subpixel methods not
only have the potential to improve IAS abundance estimation but they
may also improve the detection of small and sparse IAS patches which
may be vital to the success of early eradication efforts (Moody and Mack,
1988). Second, in addition to feature fusion—for example, through PLSR
which was tested in our study—decision fusion can also potentially
improve IAS classification accuracy (Kuncheva et al., 2001; Mangai
et al., 2010). While a single classifier may not perform well for specific
data inputs, outcome of multiple classifiers are combined in a decision
fusion approach instead of relying on one classifier. Therefore, we
recommend using multiple classifiers and combining their outcome as a
potential solution to achieve more accurate and unbiased IAS detection.

4.4. Implications for sericea management practices

Landowners strive to manage and slow down sericea spread. Man-
agement practices to control the spread of sericea have typically focused
on using herbicides or mowing (Altom et al., 1992; Brandon et al., 2004;
Koger et al., 2002; Stevens, 2002). These herbicides are often effective
for only short periods of time (e.g., season-long) and do not eradicate
sericea permanently (Sherrill, 2019), presumably due to sericea’s high
seed production. In addition, repeat applications of herbicide for sericea
control might have negative impacts on native species and are costly.
Mowing has also been suggested by land managers to slow the spread of
sericea; however, previous work has suggested that mowing may actu-
ally benefit sericea (Brandon et al., 2004). As a result, landowners resort
to traditional grassland management practices, including prescribed
fire, to control the spread of sericea. But these management practices
have been originally developed to address other goals, mainly main-
taining dominant forage species for livestock production and have not
shown success in controlling the spread of sericea (Sherrill, 2019). As
such, alternative management practices based on synergistic application
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of prescribed fire and grazing (Fuhlendorf et al., 2012) have been rec-
ommended to control and eradicate sericea. Initial results have reported
that these alternative approaches outperform traditional practices that
are based on the application of herbicide or prescribed fire (Cummings
et al., 2007; Sherrill, 2019). However, such alternative practices have
mainly been applied and tested in relatively small regions. Therefore,
effectiveness of different management practices at controlling the
spread of sericea should be further tested over large areas.

Remote sensing can play a central role in this regard through map-
ping sericea invasion over large areas and identifying the underlying
functional traits that contribute to the success of invasion. Our experi-
ment can potentially have important implications for developing
science-driven management efforts to suppress the spread of sericea and
other IAS in grasslands. Eventually, this experiment, and other similar
experiments, will provide deeper understanding of invasion patterns of
IAS, including sericea, with significant societal and economic benefits,
especially for farmers, ranchers, and conservationists.

5. Conclusions

In this paper, we examined the capability of hyperspectral remote
sensing to map an invasive alien species, called sericea, in a natural
grassland. Our COSS analysis indicated that Car, Chl a + b, TN, canopy
height, K, and Mg contributed to the separation of sericea from co-
occurring native species. These functional traits were then used in a
PLS-LDA classification to detect sericea. Overall accuracy of the PLS-
LDA approach at detecting homogeneous patches of sericea was 94%
and sericea omission and commission errors both were low and
approximately 9% and 5%, respectively. Our approach, however,
overestimated sericea abundance fraction in species-rich plant com-
munities. We presume this overestimation was partly due to mixed
pixels and mismatch between plant size and spatial resolution of our
remotely sensed data.

This experiment showed the potential of remote sensing methods to
quantify vegetation functional traits associated with IAS success stra-
tegies. Among the functional traits that were considered important in
distinguishing sericea from other co-occurring native species, sericea
had significantly higher Car, Chl a + b, TN, and canopy height than
native plants. Selection of these four functional traits was reasonable in
the context of IAS tolerance and competitive strategies. Specifically,
sericea had significantly higher photosynthetic pigment content (Chl a
-+ b and Car) compared to native species, suggesting its superior pho-
tophysiological performance at TGPP. In addition, sericea is a nitrogen-
fixing legume which gives it an advantage over other species, especially
in nitrogen-poor soils. This invasive species is also taller than the ma-
jority of co-occurring native species at TGPP which reduces the amount
of light captured by native species and therefore suppresses them.

The methodology and findings of this study can have important
implications for IAS management practices. This is particularly impor-
tant for private landowners affected by IAS, especially when their re-
sources are already stretched thin. An IAS mapping effort is often
followed by appropriate management practices to control or slow down
encroachment. Performance of different commonly-used management
practices at controlling the spread of IAS is not the same. Although some
of these management regimes, such as those based on synergistic
application of prescribed fire and grazing have shown promise in con-
trolling IAS spread, they have mainly been tested and applied over
relatively small regions. Therefore, remote sensing can be considered as
a viable tool for testing the performance of different management
practices on controlling the spread of IAS over large areas.
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