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A B S T R A C T   

Lespedeza cuneata (sericea lespedeza; hereafter “sericea”) is an invasive species brought to the U.S. from East Asia 
in the 1890s to be used as forage. However, it has now become a growing ecological and economic threat in 
grasslands of several states in the U.S. southern Great Plains including Oklahoma, Kansas, Missouri, and 
Nebraska. Here, we demonstrate the capability of airborne imaging spectroscopy to map sericea in a large natural 
grassland within the Tallgrass Prairie Preserve, the largest protected tallgrass prairie in the world, located in 
northeastern Oklahoma. Through this research, we investigated which remotely observable vegetation functional 
traits (referring to biochemical, physiological, and structural traits) contribute to distinguishing sericea from co- 
occurring native species and whether we can detect sericea remotely through quantifying these functional traits 
using imaging spectroscopic data (also known as hyperspectral data). To achieve these objectives, full-range 
airborne hyperspectral data with spatial resolution of 1 m were collected from the study area in August 2020. 
In addition, a total of 12 vegetation functional traits were measured through field sampling for model devel
opment. We first identified functional traits that contributed to separating sericea from other species, and then 
used them in a classification model to detect sericea in our study site. We found total carotenoids (sum of 
neoxanthin, violaxanthin, antheraxanthin, zeaxanthin, and lutein), chlorophyll a + b (sum of chlorophyll a and 
chlorophyll b), total nitrogen, canopy height, potassium, and magnesium as the main functional traits contrib
uting to the detection of sericea; an overall classification accuracy of approximately 94% was reported. However, 
the proposed approach overestimated sericea cover in species-rich plant communities. Overall, our findings 
demonstrated an essential role for airborne remote sensing in 1) direct mapping of invasive plants and 2) 
quantifying functional traits associated with success strategies of invasive species. Eventually, experiments like 
ours can aid in developing large-scale and science-driven management practices to both identify the current 
extent, and to control the spread of invasive species in grasslands and similar short-stature environments. This 
will not only improve management practices but will have major societal and economic benefits.   
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1. Introduction 

1.1. Background 

Invasive alien species (IAS) are non-native species that can cause 
adverse ecosystem and economic effects once introduced (Kettenring 
and Adams, 2011; Mack et al., 2000). With their rapid expansion, IAS 
homogenize the flora and fauna of ecosystems and negatively impact 
ecosystem services (Mooney and Hobbs, 2000; Pejchar and Mooney, 
2009). IAS are considered to be the second main cause of global biodi
versity loss after habitat destruction (Williamson, 1999). It is estimated 
that invasive species have caused an economic loss of at least $1.288 
trillion (U.S. dollars) worldwide since 1970 (Diagne et al., 2021). IAS are 
often introduced by humans to habitats outside of their natural range 
(Hulme, 2009); once introduced, IAS can grow and spread rapidly. 
Concurrent global changes (e.g., climate, land-use, nutrient cycles) 
generally promote these biological invasions (Eschtruth and Battles, 
2009). However, the impact of global change factors on invasions is 
spatially complex; while some aspects can promote biological invasions 
in one region, they might hinder the spread of IAS in other regions 
(Bradley et al., 2010; Dukes and Mooney, 1999). Given the trans
boundary and large-scale impacts of IAS, monitoring the spread and 
studying the mechanisms and strategies of invasions require spatially- 
explicit approaches. Remote sensing technologies provide the neces
sary information to develop cost- and time-effective solutions for 
assessing current and future invasion processes over large geographical 
extents. In this study, we test how effective remotely sensed data are for 
detecting IAS in grasslands. 

1.2. IAS in grasslands 

Grassland ecosystems are threatened by IAS as well as disturbances 
and land-use change, which in turn can facilitate invasions. Many non- 
native plants in grasslands were originally introduced for forage pro
duction because of their ability to establish and persist in diverse envi
ronments, but these are also characteristics that amplify the potential for 
invasion into unintended ecosystems (Ball et al., 2002). It is paradoxical 
that most of the characteristics of “good” forage are the same that confer 
invasiveness and facilitate dominance in diverse plant communities, 
such as rapid maturation, ability to germinate under a variety of con
ditions, high seed production, allelopathy, and association with bene
ficial fungal symbionts. With their rapid expansion, IAS can have 
negative impacts on grasslands diversity and their capacity to retain 
existing function and structure in the face of environmental change 
(Mäkinen et al., 2015; Marquard et al., 2009; Tilman et al., 1997). IAS 
also reduce forage quality and livestock production of grasslands, 
lowering economic activity across regions. In the U.S., forage losses 
alone to IAS are estimated to be approximately $1 billion per year 
(Pimentel et al., 2001). Given the potential for IAS to have far-reaching 
negative environmental and economic effects on grasslands, it is critical 
that we develop operational and cost-effective monitoring systems to 
understand the status of IAS. 

1.3. Remote sensing of IAS in grasslands and short-stature environments 

The success of remote sensing techniques at direct mapping of 
invasive plants, in general, is due to 1) contrasting seasonal phenology 
of IAS compared to co-occurring native plants, including differences in 
timing of green-up, flowering, and/or leaf senescence, 2) distinct 
biochemical, physiological, and structural traits of IAS from native 
plants, and 3) prevalence of invasive species in the study area (Bolch 
et al., 2020; He et al., 2015). 

The phenology-based approaches use remotely sensed data during 
time periods in which IAS are spectrally most distinct from native spe
cies. For instance, in western California, the invasive Lepidium latifolium 
(pepperweed) was mapped using fine resolution (i.e., small pixel size; 3 

m) hyperspectral data during flowering and fruiting when it had distinct 
spectral response from surrounding green plants (Andrew and Ustin, 
2008). Similar remote sensing studies have taken advantage of 
phenology to map the invasive Solidago altissima (Canada goldenrod) 
early in the growing season (late April) in Japan using fine-resolution 
hyperspectral data (1.5 m) (Ishii and Washitani, 2013). These 
phenology-based approaches have also been used for mapping invasive 
species using coarse-resolution multispectral data. For instance, the 
invasive Eragrostis lehmanniana (Lehmann lovegrass) and Bromus tecto
rum (Cheatgrass) were mapped in southwestern U.S. using MODIS data 
(Bradley et al., 2018; Huang and Geiger, 2008). While phenology-based 
IAS detection has shown promising results, its success depends on 
distinct phenology of target IAS as well as access to remote sensing data 
with fine temporal resolution. 

In addition to phenology, spectral response of plants is affected by 
their biochemical, physiological, and structural traits. As such, IAS can 
be remotely detected when they have distinct biochemical, physiolog
ical, and structural traits from native plants. For instance, the invasive 
Euphorbia esula (leafy spurge) was detected using imaging spectroscopic 
data with spatial resolution of 3.5 m (Glenn et al., 2005; Mitchell and 
Glenn, 2009) presumably because floral bracts of leafy spurge have 
significantly lower pigment content (chlorophyll a + b and carotenoid) 
than its leaves (Hunt Jr et al., 2004). Similarly, Yang and Everitt (2010) 
were able to distinguish Gutierrezia sarothrae (Broom snakeweed; an 
undesirable shrub due to its toxicity to livestock) in Texas rangelands 
using hyperspectral imagery with fine spatial resolution (1.3 m) due to 
its erectophile canopy morphology (Everitt et al., 1987). Remote 
detection of IAS based on their distinct biochemical, physiological, and 
structural traits is of particular importance in cases where the IAS and 
co-occurring native species have similar phenology. However, success of 
these approaches often depends on the availability of hyperspectral data 
because these data provide the fine spectral resolution necessary for 
elucidating plant biochemistry and physiology remotely. 

Eventually, what makes remote detection of IAS feasible is the 
abundance of IAS within a plant community (i.e., area covered by IAS) 
(He et al., 2015). To effectively detect IAS remotely, they need to be the 
dominant species within a community or form homogeneous patches, 
large enough to match the spatial resolution of remote sensing obser
vations. Therefore, in addition to temporal and spectral resolution of 
remotely sensed data, paying specific attention to spatial resolution is 
warranted if we are to develop operational remote sensing-based IAS 
monitoring approaches. The role of spatial resolution in detecting IAS in 
grasslands is particularly significant because 1) grassland IAS often grow 
in small patches relative to the spatial resolution of common remotely 
sensed data (e.g., NASA/USGS Landsat-8, ESA Sentinel-2 constellation) 
and 2) the canopy size of grassland plants is often smaller than the 
spatial resolution of most remote sensing platforms. In this study, we 
collected airborne remote sensing data with fine spectral and spatial 
resolution (pixel size of 1 m) to map the invasive L. cuneata, which is a 
growing threat in grasslands of several states in the U.S. 

1.4. The invasive L. cuneata 

L. cuneata (commonly known as sericea lespedeza; hereafter “ser
icea”) is a warm-season perennial nitrogen-fixing legume that was 
brought to the U.S. from East Asia in the 1890s as a cheap forage and for 
controlling soil erosion (Pieters, 1938; Pieters et al., 1950). Sericea was 
introduced as a forage species mainly because it is persistent once 
established. Specifically, sericea is a prolific seed producer, can tolerate 
drought, reproduces under poor soil conditions (e.g., infertile and acidic 
soil) and sloping terrain, and is taller than most co-occurring native 
species and therefore can outcompete other species for light (Brandon 
et al., 2004; Cline and Silvernail, 1997; Cummings et al., 2007; Don
nelly, 1954; Hoveland et al., 1990; Stitt and Clarke, 1941). However, 
while highly nutritious and palatable early in its development, grazing 
animals strongly avoid sericea at maturity (Donnelly, 1954; Stitt and 
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Clarke, 1941). This avoidance is partly due to high concentrations of 
phenolics, specifically condensed tannins, located throughout the plant 
that cause gastro-intestinal malaise in many ruminants, including cattle 
(Donnelly, 1954; Mosjidis et al., 1990; Silanikove et al., 2001). As a 
result, sericea has become a growing problem in grassland ecosystems 
and is threatening biodiversity, ecosystem services, and resilience in the 
face of future environmental change. As of now, the total grassland area 
invaded by sericea is unknown, in large part due to the difficulty of 
mapping short-statured invaders of biodiverse grasslands. 

Sericea has similar phenology to dominant species in grasslands 
where it has invaded, with the exception of its green-up and senescence 
periods. Sericea, anecdotally, starts to green-up about two weeks before 
other common grassland species and senesces approximately two weeks 
after native prairie plants. However, this pattern has been reported to 
vary significantly depending on environmental conditions (e.g., fire 
regimes, precipitation, temperature) and is likely to shift, albeit with a 
high level of uncertainty, in response to future global change. Because of 
comparable phenology of sericea and native species, especially across 
the broad range of environmental conditions which sericea has invaded, 
we posit that identifying sericea using its distinct biochemical, physio
logical, and structural traits instead of those based on phenology may 
result in more accurate remote detection of this IAS. 

This paper seeks to fill a critical knowledge gap that moves beyond a 
reliance on phenology alone towards using vegetation functional traits 
for remote detection of IAS in natural grasslands. Specifically, we 
addressed two objectives: 1) determine remotely observable vegetation 
functional traits—focusing specifically on biochemical, physiological, 
and structural traits—that distinguish sericea from co-occurring native 
species and 2) use these functional traits to develop a robust method for 
detecting the extent of sericea invasions. To achieve these objectives, we 
collected airborne imaging spectroscopic data with fine spatial resolu
tion (1 m) as well as a suite of vegetation functional traits from The 
Nature Conservancy’s Tallgrass Prairie Preserve (TGPP; also known as 
the Joseph H. Williams Tallgrass Prairie Preserve), a large natural 
grassland ecosystem located in northeastern Oklahoma. Our central 
hypothesis was that sericea has specific functional traits (e.g., higher 
total nitrogen content, large canopy height) that can be used to distin
guish it from co-occurring native species in remotely sensed data. We 

based our central hypothesis upon the fact that depending on their 
functional traits, plants can display different spectral signatures in 
remotely sensed data (Ustin and Gamon, 2010). We are not aware of any 
other research that has delineated spatial distribution of IAS in grass
lands through direct quantification of vegetation functional traits using 
remotely sensed data. This work helps us 1) identify the underlying 
functional traits that distinguish sericea from native species and 2) fill 
knowledge gaps surrounding remote detection of IAS in grasslands and 
similar short-stature environments, where direct detection of IAS is 
deemed challenging because of scale mismatch between spatial resolu
tion of remotely sensed data and plant size. 

2. Methods 

2.1. Study site 

The study was conducted in northeastern Oklahoma at TGPP (36
◦

50′

N, 96
◦

25′ W) which is the largest protected tallgrass prairie on Earth 
(Coppedge et al., 1998; TNC, 2021). TGPP is managed using synergistic 
application of prescribed fire and grazing with the goal of generating 
structural heterogeneity that is critical to grassland biodiversity con
servation (Fuhlendorf and Engle, 2004; Fuhlendorf et al., 2009). We 
limited our experiment to the northern portion of TGPP with a total area 
of 47 km2 (approximately one-third of TGPP’s total area; Fig. 1). In this 
part of TGPP, about one-third of pastures are burned annually, and cattle 
freely graze throughout. Approximately 90% of TGPP is covered with 
tallgrass species, such as little bluestem (Schizachyrium scoparium), big 
bluestem (Andropogon gerardii), Indian grass (Sorghastrum nutans), and 
switchgrass (Panicum virgatum), with the remaining land-cover being 
oak woodland (Hamilton, 2007). Average summer high temperature and 
winter low temperature are 32 ◦C and 3 ◦C, respectively. Average annual 
precipitation at TGPP is approximately 960 mm (Sherrill, 2019). 

Sericea invasion is a growing threat at TGPP. Previous work based on 
two field-based species inventories has reported 9% increase in sericea 
percent cover at TGPP from 1997 (near zero sericea cover) to 2018 
(approximately 9% sericea cover; Sherrill, 2019). As a result, The Nature 
Conservancy has spent over $1.3 million and more than 25,000 person- 
hours between 1997 and 2019 to control the spread of sericea through 
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Fig. 1. (a) The study area within The Nature Conservancy’s Tallgrass Prairie Preserve (TGPP; also known as Joseph H. Williams Tallgrass Prairie Preserve) is shown 
with a true colour composite (date of imagery: August 03, 2020). This portion of TGPP is managed with fire-cattle grazing while the cross-hatched regions are 
managed by fire-bison grazing. (b) Homogeneous patches of sericea are shown inside dashed white rectangles. Sericea patches are often taller and denser than their 
neighboring co-occurring native species at TGPP (date of photos: August 8, 2020). Sericea does not necessarily always occur in large and homogeneous patches 
(similar to Fig. 1b); it can also occur in low abundance mixed with co-occurring native species (see Fig. S1 in Supplementary material). 
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application of herbicide (e.g., metsulfuron-methyl and triclopyr) 
coupled with management through fire and grazing. 

2.2. Collecting ground reference data for image classification 

We collected three data sets for developing and testing our models. 
We will refer to these as (1) homogenous training data set (n = 49), (2) 
homogenous validation data set (n = 78), and (3) heterogeneous vali
dation data set (n = 133). Briefly, the homogenous training data set 
included 49 homogeneous grassland “patches” and was used for devel
oping models, the homogenous validation data set included 78 homo
geneous grassland “patches” and was used for model validation, and the 
heterogeneous validation data set included 133 60 m × 60 m hetero
geneous and diverse grassland “plots” and was used for model 
validation. 

2.2.1. Collecting ground reference data for classification training 
We identified 49 grassland “patches” at TGPP for model develop

ment and trait sampling between late July and early August 2020. We 
selected grassland patches that were dominated by sericea as well as 
those that were free of sericea. A patch was labeled sericea if the 
observed sericea canopy cover was more than 75% and a patch was 
labeled non-sericea if the observed sericea canopy cover was approxi
mately 0%. All non-sericea patches were homogeneous and covered 
with dominant species at TGPP. Specifically, these non-sericea patches 
did not include more than three dominant species; percent cover of each 
species in non-sericea patches was determined visually. 

In our homogenous training data set, 20 patches were dominated by 
sericea (i.e., recorded as “sericea”) and the remaining 29 patches were 
non-sericea (i.e., native species). Since our ultimate goal was mapping 
sericea, this binary sericea vs. non-sericea approach was justifiable. We 
recorded the area of these patches using a GPS unit (Trimble GeoXH, 
Trimble, Sunnyvale, CA, USA) and applied differential GPS correction in 
the GPS Pathfinder Office software v5.90 (Trimble, Sunnyvale, CA, USA) 
to minimize uncertainty associated with GPS measurements and 
improve location accuracy to 1–3 m. Area of these patches ranged from 
approximately 19 m2 to 855 m2, with an average area of 298 ± 182 m2 

(mean ± standard deviation). We chose to use this patch-level approach, 
rather than a point-to-pixel approach that would link one individual 
plant to a single pixel in airborne remotely-sensed data, to minimize risk 
of mismatch between field sampling points and remotely-sensed pixels. 
Given the small size of plants in our grassland, even a slight positional 
mismatch of 10–20 cm, could have translated into assigning functional 
traits of one species (e.g., sericea) to the image spectrum of another 
species (for example, see Fig. S1 in Supplementary material). 

2.2.2. Collecting ground reference data for classification validation 
Although we used homogeneous patches of sericea to develop clas

sification models, IAS do not necessarily always grow in large patches 
similar to Fig. 1b; they can also occur in low abundance mixed with co- 
occurring native species (see Fig. S1 in Supplementary material). To test 
the capability of remote sensing models for detecting sericea in both 
cases, we collected two validation data sets. Specifically, we collected 
one independent homogenous validation data set to assess model per
formance at detecting homogeneous patches of sericea and one het
erogeneous validation data set to determine how accurately our model 
estimated actual sericea percent cover in species-rich plant 
communities. 

For our homogenous validation data set, we identified 78 grassland 
“patches” at TGPP in late July 2020. Out of 78 patches, 36 patches were 
sericea and the remaining 42 patches were non-sericea. We applied the 
same criteria used for selecting patches in our homogenous training data 
set (described in Section 2.2.1) to identify patches for our homogenous 
validation data set. We recorded the extent of these patches using a GPS 
unit (Trimble GeoXH, Trimble, Sunnyvale, CA, USA) and differentially 
corrected GPS coordinates. Minimum and maximum area of these 

validation patches were approximately 11 m2 and 1139 m2, respec
tively, with an average area of 175 ± 166 m2 (mean ± standard 
deviation). 

For our heterogeneous validation data set, we collected sericea 
abundance data at 133 equal-sized grassland “plots” in July–August 
2020. These validation plots were approximately 60 m × 60 m in size. 
Sericea percent cover was documented every five meters along two 
perpendicular 60 m transects within each plot using a 50 cm × 20 cm 
quadrat. Overall, we collected sericea percent cover at 25 50 cm × 20 cm 
quadrats within each plot and 3325 quadrats in total (Fig. S2 in Sup
plementary material). Endpoints of each transect were measured using a 
handheld GPS unit (Trimble Juno 3B, Trimble, Sunnyvale, CA, USA) and 
differentially corrected afterwards. This validation data set was repre
sentative of communities with high plant diversity; the average species 
richness within these plots was approximately 29. 

2.3. Collecting foliage samples for quantifying vegetation functional traits 

We sampled a total of 193 plants from our 49 patches in the ho
mogenous training data set. Specifically, we selected sunlit top-of- 
canopy foliage from 69 sericea and 124 non-sericea canopies. These 
samples were used to quantify 12 vegetation functional traits, including 
total nitrogen (TN, %), chlorophyll a + b (Chl a + b; mg/g), total ca
rotenoids (Car; μg/g), total phenolic content (TPC; mg/g), phosphorus 
(P; %), calcium (Ca; %), potassium (K; %), magnesium (Mg; %), iron (Fe; 
ppm), zinc (Zn; %), leaf mass per area (LMA, g/m2), and canopy height 
(cm). We selected functional traits that are relevant for plant and 
ecosystem function, including light capture and growth (TN, Chl a + b, 
Car), photoprotection (Car), chemical defense and grazing animals’ diet 
preference (TPC), metabolic processes and micro- and macronutrients 
(P, Ca, K, Mg, Fe, Zn), and vegetation structure (LMA, canopy height). 

We quantified TN with a combustion analyzer (Leco CN628, LECO 
Corporation, St. Joseph, Michigan, USA) using 0.15 g of each foliage 
sample at The Soil, Water, and Forage Analytical Laboratory (SWFAL), 
Oklahoma State University. We analyzed mass-based Chl a + b, Car, and 
TPC at The Forest Entomology Lab, University of Wisconsin-Madison. 
For Chl a + b (sum of chlorophyll a and chlorophyll b), Car (sum of 
neoxanthin, violaxanthin, antheraxanthin, zeaxanthin, and lutein), and 
TPC quantification, foliage samples were immediately frozen in liquid 
nitrogen, and stored on dry ice in the field until they could be transferred 
to a -80 ◦C freezer. Chl a + b and Car were quantified using High- 
Performance Liquid Chromatography (HPLC; Agilent 1200 Series, Agi
lent Technologies, Santa Clara, CA). The HPLC system included a 150 
mm × 4.6 mm column with 2.7 μm particle size (Poroshell EC-120 C18, 
Agilent InfinityLab, Agilent Technologies, Santa Clara, CA). Chl a + b 
and Car were extracted by sonicating 0.1 g of ground tissue in 0.5 mL of 
ice-cold acetone for ten minutes, after which 1 mL of ice cold EtOH 
containing 0.1% butylated hydroxyanisole was added, and the mixture 
was sonicated for five minutes. Samples were then centrifuged for five 
minutes at 10,000 r.p.m. at 4 ◦C. This extraction was repeated twice, the 
supernatants were pooled, and solvents were evaporated under a stream 
of N. Residue was resuspended in 1 mL of Acetonitrile:Methanol:Tris8.0 
(76:17:7; Solvent A). Methanol:Hexane (4:1) was used as solvent B. For 
each sample, 20 μL of pigment extract was injected and the flow was set 
to 0.8 mL/min. Concentrations of chlorophyll a and chlorophyll b were 
quantified based on their absorbance at 432 and 466 nm, respectively. 
To determine concentration of Car (i.e., neoxanthin, violaxanthin, 
antheraxanthin, zeaxanthin, and lutein), absorbance at 445 nm was 
used. Quantification of neoxanthin, violaxanthin, antheraxanthin, 
zeaxanthin was based on the normalized coefficients provided in De Las 
Rivas et al. (1989). For TPC, 0.1 g of ground tissue was extracted in 1 mL 
of MeOH for 24 h. The supernatants were decanted and the samples were 
centrifuged for five minutes at 12,000 r.p.m. Next, 25 μL of each sample 
extract was added to 50 μL of 10% Folin-Ciocalteau reagent (Ainsworth 
and Gillespie, 2007) and 200 μL of 1 M NaHCO3 was added to each tube. 
The mixture was then incubated at room temperature on an orbital 
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shaker at 150 r.p.m. for 60 min. TPC was quantified in Gallic Acid 
Equivalents (GAE) relative to gallic acid standard curve. We quantified 
P, Ca, K, Mg, F, and Zn from 0.5 g of dry leaf tissue after digestion in 10 
mL of nitric acid at 120 ◦C for 2 h using an Inductively Coupled Plasma 
device (ICP; Spectro Arcos II, SPECTRO Analytical Instruments GmbH, 
Kleve, Germany) at the SWFAL lab. Foliage samples for LMA measure
ments were first weighed in the field, stored in humidified bags, and kept 
on ice to prevent wilting during transport to The Environmental Ecology 
Lab at Oklahoma State University. To calculate LMA, we first scanned 
leaves on a flatbed scanner (Canon CanoScan 4400, Canon, Tokyo, 
Japan). Then, leaf area was quantified from images using ‘leafarea’ 
package (Katabuchi, 2015) in R (R Core Team; www.r-project.org). 
After scanning, samples were oven-dried at 65 ◦C for 48 h before 
recording dry mass. We calculated LMA as leaf dry mass (g) divided by 
leaf area (m2). Finally, we measured canopy height at each foliage 
sampling location within each grassland patch in the homogenous 
training data set using a visual obstruction technique (Limb et al., 2007). 
Specifically, a 1 m × 1 m whiteboard was placed vertically at each fo
liage sampling location and an RGB image was taken with the white
board in the background (see Fig. S3 in Supplementary material for an 
example). We took a total of 193 images using an RGB digital camera 
(Fuji FinePix XP135, Fujifilm, Tokyo, Japan). Through setting an image 
threshold, vegetation pixels were separated from the 1 m × 1 m 
whiteboard background and vegetation height was determined. 

2.4. Spectral data collection 

2.4.1. Leaf-level spectral sampling 
We collected leaf-level spectra in the field within the 350–2500 nm 

range using an ASD FieldSpec 3 spectroradiometer equipped with a 
contact leaf probe (Malvern Panalytical, Malvern, UK; Fig. 2a). Data 
were acquired between late July and early August 2020 simultaneously 
with our vegetation functional trait sampling. Three sets of foliage 
samples from the same plants that were used for functional trait sam
pling were selected and their leaf-level spectral reflectance signatures 
were measured. Each spectrum was the average of 100 readings. The 
average spectrum obtained from these three samples was used as the 
final leaf-level spectral signature. The spectroradiometer was warmed- 
up in the field for 45 min before each data collection campaign, cali
brated for dark current, and referenced to a white calibration panel 
(Labsphere, North Sutton, NH, USA) every 15 min. 

2.4.2. Airborne data collection for canopy-level spectral sampling 
We collected full-range airborne hyperspectral data from TGPP. Data 

collection started at 10:07 am (15:07 GMT) and ended before solar noon 
at 12:42 pm local time (17:42 GMT), on August 03, 2020 using a Twin 
Commander 500-B aircraft (Aero Commander, Oklahoma City, OK). A 
total of 21 flight lines were collected using a pushbroom imaging 
spectrometer (AISA Fenix 1 k, Specim, Oulu, Finland). The sensor covers 

400–2450 nm range in 323 bands with spectral resolution of approxi
mately 4.5 nm in the 400–970 nm range and 14 nm in the 970–2450 nm 
range. The airborne imager had 1024 spatial pixels and field of view was 
40◦. Flight altitude of the aircraft was approximately 1400 m above 
ground level and the resulting data had spatial resolution (i.e., pixel 
size) of 1 m. To improve the positional accuracy of airborne data, real- 
time kinematic Global Navigation Satellite System (GNSS) corrections 
were used, hyperspectral sensor and the navigation system of the aircraft 
were boresight-calibrated, and 1 m digital elevation model (DEM; from 
USGS 3DEP) was used for ortho-correction of hyperspectral data. 
Finally, all radiance images were converted to reflectance using ATCOR- 
4 (Richter and Schläpfer, 2002), which uses MODTRAN-5 radiative 
transfer model (Berk et al., 2006). After removing the noisy and water 
vapor absorption bands, the final airborne data set had 238 bands 
covering 431.10–1299.36 nm, 1487.71–1775.03 nm, and 
1998.23–2353.76 nm wavelengths (Fig. 2b). 

2.5. Data analysis 

Our approach had four main steps. Briefly, step 1 included identi
fying vegetation functional traits that distinguished sericea from co- 
occurring native species using traits measured in the field. In step 2, 
we developed partial least squares regression (PLSR; Wold et al., 2001) 
models and applied them to airborne hyperspectral data to estimate 
functional traits identified in step 1 throughout our study area. In step 3, 
we used raster layers of vegetation functional traits generated in the 
previous step and developed partial least squares linear discriminant 
analysis (PLS-LDA) classification (Barker and Rayens, 2003; Brereton, 
2009) to separate sericea from co-occurring native species. Finally, step 
4 focused on classification accuracy assessment using two independent 
validation data sets. Detailed descriptions of all the analysis steps are 
discussed below. In addition, a schematic diagram of our approach is 
illustrated in Fig. 3. 

2.5.1. Determining vegetation functional traits that distinguish sericea from 
co-occurring native species 

We used Kruskal-Wallis test (non-parametric version of ANOVA) 
(Kruskal and Wallis, 1952) to assess the difference between sericea and 
non-sericea species for each functional trait individually. We applied 
this test to 12 functional traits measured from 193 foliage samples in our 
homogenous training data set. 

This statistical test does not consider the synergetic effect of vege
tation functional traits at separating sericea from non-sericea species (i. 
e., when the combined effect of two or more vegetation functional traits 
is greater than the sum of independent individual effects). Therefore, to 
identify vegetation functional traits that contributed to distinguishing 
sericea from native species (we refer to these functional traits as 
“important traits”), we used PLS-LDA classification approach coupled 
with conditional synergetic score (COSS) (Li et al., 2010). COSS 

(a) (b)
Fig. 2. (a) Average reflectance of sericea leaves vs. non-sericea leaves from leaf-level ASD data and (b) average reflectance of sericea patches vs. non-sericea patches 
from airborne data. Missing wavelength regions in the airborne data are water vapor absorption bands. Shaded regions show ±1 standard deviation of spectra. 
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estimates the importance of each variable while taking into account the 
effect of all other variables. Standardized (i.e., centered and scaled) leaf- 
level vegetation functional traits were inputs and class labels (i.e., ser
icea and non-sericea) were PLS-LDA outputs. 

Specifically, we selected a random subset of training data points 
(50% of 193 foliage samples), developed PLS-LDA models (Fig. 3) with 
and without the ith trait (out of 12 vegetation functional traits), esti
mated classification mean prediction error of each model using the 
remaining 50% of the data points, and calculated COSS. COSS was 
defined as -log10 (p), where p is the Mann-Whitney U test p-value of the 
difference between mean prediction errors of two models: a model 
including all vegetation functional traits and a model with one of the 
vegetation functional traits permuted. A COSS threshold value of 2, 
which corresponds to p-val of 0.01, was considered and all vegetation 
functional traits with COSS ≥2 were deemed important in separating 
sericea from non-sericea. 

2.5.2. Scaling leaf-level traits to patch-level 
To develop models for remote detection of sericea in airborne 

hyperspectral data, we needed to quantify vegetation functional traits at 
a patch-level. Because sampling and quantifying functional traits for all 
leaves in each patch was not feasible, we used the average of leaf-level 
traits within each patch in our homogenous training data set. For canopy 
height, we took the average of vegetation height in each patch—meas
ured through the visual obstruction technique. For patches that were 
composed of more than one species, we weighted leaf-level traits by 
field-measured species percent cover. Since patches in our training data 
set were homogeneous and did not include more than three dominant 
species, we assumed that this area-based scaling approach had compa
rable performance to other weighting approaches, such as those based 
on relative biomass (Wang et al., 2019). 

2.5.3. Developing PLSR models for mapping important functional traits 
using spectral data 

We used PLSR to estimate the values of important vegetation func
tional traits from spectral data (Asner and Martin, 2009; Serbin and 

Townsend, 2020; Singh and Glenn, 2009; Wang et al., 2020; Wold et al., 
2001). Specifically, we developed PLSR models at both leaf- and patch- 
level using the data collected from 49 patches in our homogenous 
training data set. While the patch-level PLSR models were applied to 
airborne spectral data to estimate vegetation functional traits 
throughout the study area, leaf-level PLSR models were developed solely 
for the purpose of evaluating the performance of our patch-level PLSR 
models and were not used for further analysis. 

For leaf-level PLSR models, we used the vector-normalized reflec
tance data from the ASD FieldSpec 3 spectroradiometer as the inde
pendent variables (or input; Fig. S4a in Supplementary material)— 
where reflectance in each wavelength is divided by the full-spectrum’s 
l2-norm (Feilhauer et al., 2010)—and important functional traits as the 
dependent variables (or output). We used 50% of traits from 193 foliage 
samples and the corresponding spectra for developing PLSR models and 
the remaining data points for testing. We developed separate PLSR 
models for each important trait and repeated this process 300 times 
(Fig. 3) through randomized permutations to estimate uncertainty in our 
trait retrievals (Singh et al., 2015). Optimum number of PLSR compo
nents were determined based on cross-validated mean squared predic
tion error. 

For our patch-level PLSR models, we used the average vector- 
normalized reflectance spectra of each patch from airborne data 
(except for noisy and water vapor absorption bands) as the independent 
variables (Fig. S4b in Supplementary material) and scaled patch-level 
traits from Section 2.5.2 as the dependent variables. We then repeated 
the same process that we used for developing our leaf-level PLSR models 
as described above; each important vegetation functional trait was 
estimated 300 times throughout the study area by applying 300 patch- 
level PLSR models to airborne hyperspectral data. To implement 
PLSR, the “plsregress” command in (MATLAB, 2020) was used (Math
Works Inc., Natick, Massachusetts, USA). 

2.5.4. Mapping sericea invasion using airborne data 
After determining important vegetation functional traits that sepa

rated sericea from co-occurring native species (Section 2.5.1) and 

×

×

Fig. 3. Schematic diagram illustrating analysis steps in our study. While this diagram shows the main analyses and objectives, detailed data processing steps are 
described in Section 2.5. In this flowchart, blue rectangles represent processing steps (e.g., partial least squares regression), yellow parallelograms represent remote 
sensing data products (e.g., remotely-estimated vegetation functional traits), and green rectangles with wavy base represent other input/output data (e.g., validation 
data). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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estimating the values of important vegetation functional traits 
throughout the study area by applying PLSR models to airborne data 
(Section 2.5.3), we developed PLS-LDA classification models for map
ping sericea in our study area. 

Inputs for PLS-LDA classification were raster layers of average 
vegetation functional traits estimated from 300 PLSR models that were 
developed in Section 2.5.3 (one raster layer for each important trait) and 
the outputs were class labels (sericea vs. non-sericea). We used the ho
mogenous training data set for training the PLS-LDA classification 
model, where each patch was considered as one data point. In other 
words, each patch was represented by the vector of important traits as 
classification input and one label as classification output. We developed 
300 PLS-LDA models using a leave-25%-out approach iterated 300 
times. Specifically, we selected a random subsample comprised of 75% 
of training patches from our homogenous training data set, developed a 
PLS-LDA model for each subsample, and repeated this process 300 times. 
We developed 300 PLS-LDA models, instead of one model, to have a 
more reliable assessment of accuracy (or uncertainty) as described 
below. 

2.5.5. Classification accuracy assessment 
We used two independent validation data sets to assess the perfor

mance of our IAS detection approach as described in Section 2.2.2. The 
homogenous validation data set included 78 patches of sericea and co- 
occurring native species. We used this data set to assess classification 
accuracy in terms of overall accuracy, producer’s accuracy (=100%- 
omission error), user’s accuracy (=100%-commission error), and kappa 
statistic (Cohen, 1960; Rosenfield and Fitzpatrick-Lins, 1986) obtained 
from our 300 PLS-LDA models. 

The heterogeneous validation data set included sericea percent cover 
measured at 133 heterogeneous grassland plots. PLS-LDA-estimated 

abundance of sericea within sampling plots were compared to 
observed sericea abundance in terms of proportion of explained variance 
(R2), root mean square error (RMSE), and normalized RMSE (NRMSE). 

2.5.6. Determining spectral regions in airborne data that separated sericea 
from native species 

Finally, we also identified spectral bands in our airborne data that 
contributed to detecting sericea. To achieve this goal, we evaluated the 
relative importance of each spectral band in the airborne data at sepa
rating sericea from co-occurring native species using COSS analysis, 
similar to what we used in Section 2.5.1. For this analysis, we used 
spectral bands from airborne data (except for noisy and water vapor 
absorption bands) as inputs; we also used class labels (i.e., sericea and 
non-sericea) from 49 patches in the homogenous training data set as 
outputs. Following this approach, we assigned COSS scores to spectral 
bands to determine the relative contribution of each band at detecting 
sericea. 

3. Results 

3.1. Vegetation functional traits—sericea vs. other species 

Statistical analysis based on Kruskal-Wallis test showed that sericea 
had significantly higher TN, Chl a + b, Car (and Chl a + b/Car ratio; see 
Fig. S5 in Supplementary material), TPC, and canopy height than other 
species at α = 0.05, while it had significantly lower K, Mg, and Fe 
content compared to other species (Fig. 4). The difference between 
sericea and non-sericea species was not significant for the remaining 
functional traits (P, Ca, Zn, and LMA). Results also showed that, in 
general, the range and variation of functional trait values for non-sericea 
patches were larger than sericea patches. This was expected as our non- 

Fig. 4. Leaf-level functional traits (69 sericea and 124 non-sericea foliage samples). We used Kruskal-Wallis test to assess differences between sericea and non-sericea 
leaves. Functional trait acronyms: TN: total nitrogen, Chl a + b: Chlorophyll a + b, Car: total carotenoids (sum of neoxanthin, violaxanthin, antheraxanthin, 
zeaxanthin, and lutein), TPC: total phenolic content, P: phosphorus, Ca: calcium, K: potassium, Mg: magnesium, Fe: iron, Zn: zinc, and LMA: leaf mass per area. In 
each boxplot, the central box indicates the middle 50% of the data (between 25th and 75th percentile), the blue horizontal line inside each box represents the data 
median, the whiskers indicate the remaining data points excluding outliers, and data points beyond the whiskers show outliers. *All traits, except canopy height, were 
measured at leaf-level; we measured canopy height at each foliage sampling location within our training patches using the visual obstruction technique. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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sericea category included several species from different functional 
groups, such as graminoids and woody shrubs, which can potentially 
result in large inter-species trait variability. 

COSS scores were used to estimate the importance of each vegetation 
functional trait in separating sericea from non-sericea species. COSS 
scores estimated from leaf-level functional traits identified Car, Chl a +
b, TN, canopy height, K, and Mg as the most important functional traits 
for separating sericea from non-sericea species (Fig. 5). 

3.2. Estimating vegetation functional traits from spectral data using PLSR 

After identifying important vegetation functional traits (i.e., Car, Chl 
a + b, TN, canopy height, K, and Mg), we used PLSR to estimate them 
using leaf-level and airborne spectral data (Fig. 3). Although the re
lationships between measured and PLSR-predicted functional traits were 
significant at both leaf- and patch-level (i.e., estimated from airborne 
imagery) for α = 0.05, PLSR model performance was not the same for all 
functional traits (Fig. 6). 

For leaf-level data points (Fig. 6a, c, e, g, i), model performance, 
expressed as R2, ranged from 0.42 ± 0.06 (mean ± 1 standard deviation 
of 300 permutations; p-val < 0.001) for TN (Fig. 6a) to 0.63 ± 0.06 (p- 
val < 0.001) for K (Fig. 6g). In terms of prediction error, Car had the 
highest error rate (NRMSE of 19.26 ± 2.20%; Fig. 6e) and K had the 
lowest error rate (NRMSE of 15.09 ± 2.18%; Fig. 6g). 

After scaling up functional traits to patch-level based on percent 
cover (as described in Section 2.5.2), PLSR models were developed to 
link scaled traits to airborne spectra (Fig. 6b, d, f, h, j, k). Chl a + b and 
Car PLSR models showed the weakest predictive performance at patch- 
level with R2 of 0.32 ± 0.10 (p-val < 0.001; Fig. 6d) and 0.34 ± 0.09 (p- 
val < 0.001; Fig. 6f), respectively. PLSR-predicted canopy height and K 
showed the strongest agreement with the observed data at patch-level 
with R2 of 0.57 ± 0.13 (p-val < 0.001; Fig. 6k) and 0.51 ± 0.12 (p- 
val < 0.001; Fig. 6h), respectively. 

Our results showed that although the performance of patch-level 
PLSR models, in general, weakened after scaling up, these models had 
comparable performance to those obtained from leaf-level data. This 
comparable performance indicated the potential of area-based trait 

upscaling when sampling functional traits from large number of in
dividuals is not feasible. Overall, based on PLSR results, sericea leaves 
and sericea-dominated patches consistently showed significantly higher 
Car, Chl a + b, TN, and canopy height values but lower K and Mg. 

PLSR coefficients at both leaf-level and patch-level (i.e., airborne 
imagery) showed that wavelengths contributing to the prediction of 
functional traits (i.e., those wavelengths with coefficients deviating from 
zero) were distributed across different regions of the electromagnetic 
spectrum (Fig. 7; Fig. S6 in Supplementary material). Some of these 
wavelength features aligned well with the known absorption features of 
a number of selected key traits (Fig. 5). Notable was the contribution of 
bands within the visible region of the spectrum which are associated 
with the absorption features of Chl a + b and Car (Curran, 1989; Wang 
et al., 2020; see also Section 4.2 for further discussion of the linkages 
between key traits and key spectral bands). 

3.3. Sericea mapping using remotely-estimated vegetation functional traits 

3.3.1. Sericea presence/absence mapping accuracy assessment 
To assess the performance of PLS-LDA approach at detecting sericea 

absence/presence, an independent validation data set consisting of 78 
grassland patches was collected (the homogenous validation data set as 
described in Section 2.2.2; Fig. 3). Results obtained from this validation 
data set reported an overall classification accuracy of 94.0 ± 2.0% 
(mean ± 1 standard deviation obtained from 300 PLS-LDA models) 
indicating that PLS-LDA classifier correctly classified a patch with the 
probability of approximately 94% (Table 1). Kappa coefficient was 0.87 
± 0.04 indicating a very strong agreement between classified data and 
reference validation data (Landis and Koch, 1977). Producer’s accuracy 
for sericea and non-sericea classes were 91.5 ± 4.8% and 96.2 ± 2.2%, 
respectively, indicating the percentage of ground truth patches in each 
class that were correctly labeled (e.g., approximately 92% of sericea 
ground truth patches were classified correctly). User’s accuracy was 
reported to be 95.5 ± 2.4% and 93.1 ± 3.5% for sericea and non-sericea 
classes, respectively. User’s accuracy values showed the percentage of 
classified patches in each class that were correctly labeled (e.g., 
approximately 96% of patches labeled as sericea in the final product 
were classified correctly). 

3.3.2. Sericea abundance estimation accuracy assessment 
PLS-LDA classification was also used to estimate sericea abundance 

fraction at our heterogeneous validation data set, where sericea was 
rarely the dominant species (Fig. 3). Minimum and maximum measured 
sericea percent cover in these validation “plots” were approximately 0% 
and 57.5%, respectively. There was a strong agreement between 
measured and estimated sericea abundance fraction in our validation 
plots with an R2 of 0.66 (p-val < 0.001; Fig. 8). Model RMSE and NRMSE 
values were 0.07 and 12.69%, respectively. Although there was a 
significantly strong relationship between measured and estimated ser
icea abundance fraction, the PLS-LDA approach overestimated sericea 
abundance. Furthermore, the developed regression model was driven by 
a few data points (i.e., plots) with high sericea percent cover. 

Finally, sericea invasion within the study area was mapped by 
applying the 300 PLS-LDA models to the airborne imagery (Fig. 9a). A 
pixel was considered sericea if it was classified as sericea in all 300 PLS- 
LDA models. This mapping analysis reported that about 10% of the study 
area was dominated by sericea (Fig. 9b). 

3.4. Contribution of different bands at separating sericea from non- 
sericea species in airborne imagery 

COSS scores were used to estimate the relative contribution of each 
spectral band to sericea detection in airborne data (Fig. 10). Considering 
a threshold value of 2, out of 238 bands in our airborne data, 66 bands 
were deemed important in separating sericea from non-sericea species. 
COSS analysis pointed to greater contribution of bands within the visible 
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Fig. 5. COSS scores showing the importance of each vegetation functional trait 
in separating sericea from non-sericea species. Dashed line shows cutoff COSS 
value of 2. Functional traits with COSS values greater than 2 are considered 
important. Functional trait acronyms: TN: total nitrogen, Chl a + b: Chlorophyll 
a + b, Car: total carotenoids, TPC: total phenolic content, P: phosphorus, Ca: 
calcium, K: potassium, Mg: magnesium, Fe: iron, Zn: zinc, and LMA: leaf mass 
per area. Note: standardized (i.e., centered and scaled) vegetation functional 
traits were used in the analysis. *All traits, except canopy height, were 
measured at leaf-level; we measured canopy height at each foliage sampling 
location within our training patches using the visual obstruction technique. 
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(a) (b)

(e) (f)

(c) (d)

Fig. 6. Predicted vs. observed functional 
traits. (a, c, e, g, i) In these PLSR models, 
independent variables are vector- 
normalized leaf-level ASD reflectance 
data and dependent variables are leaf-level 
functional traits. (b, d, f, h, j) Independent 
variables are vector-normalized airborne 
reflectance data and dependent variables 
are scaled-up patch-level functional traits. 
(k) For canopy height, only patch-level 
results obtained from airborne data are 
shown. For these PLSR models, all spectral 
bands (except for noisy and water vapor 
absorption bands) were used. Horizontal 
bars show ±1 standard deviation from 300 
permutations. NRSME: normalized RMSE 
in percent; numbers inside parentheses 
show standard deviation from 300 per
mutations; p-val is the median p-val of 300 
permutations. Dashed lines are 1:1 lines. 
Functional trait acronyms: TN: total ni
trogen, Chl a + b: Chlorophyll a + b, Car: 
total carotenoids, K: potassium, and Mg: 
magnesium.   
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(g) (h)

(i)

(k)

(j)

Fig. 6. (continued). 
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(a) (b)(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k)
Fig. 7. PLSR coefficients obtained from leaf-level (left column) and canopy-level (right column) data. (a, c, e, g, i) For leaf-level data, independent variables are 
vector-normalized ASD reflectance data and dependent variables are leaf-level traits. (b, d, f, h, j) For canopy-level data, independent variables are vector-normalized 
airborne reflectance data and dependent variables are scaled-up patch-level traits. (k) For canopy height, only patch-level results obtained from airborne data are 
shown. Shaded regions show ±1 standard deviation from 300 permutations. Missing wavelength regions are water vapor absorption bands in the airborne data. For 
comparison purposes, water vapor absorption bands were excluded from leaf-level ASD data, although these data were not affected by atmospheric effects (because a 
contact leaf probe and an internal light source was used for leaf-level data collection). Functional trait acronyms: TN: total nitrogen, Chl a + b: Chlorophyll a + b, Car: 
total carotenoids, K: potassium, and Mg: magnesium. 
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range (~400–700 nm) and red edge region (~700–740 nm), although 
several bands within the near-infrared (~740–1100 nm) and shortwave 
infrared regions (~1100–2450 nm) were also selected. Specifically, out 
of 66 selected bands, 39 bands were within the visible range, which is 
about 97% of the total number of bands within this range in our airborne 
data set; five bands fell within the red edge region (83% of the total 
number of bands within the red edge region in our airborne data set). 
Additionally, 11 bands were near-infrared (20% of the total number of 
near-infrared bands in our airborne data set) and 11 bands were short
wave infrared (8% of the total number of bands in this region in our 
airborne data set). It is worth noting the significant contribution of 
bands in the photosynthetically active radiation (PAR) and red edge 
regions of airborne data at detecting sericea. 

4. Discussion 

Given the negative ecological and economic impacts of sericea, an 
operational IAS monitoring system is necessary for understanding in
vasion across large geographical extents. In this paper, by detecting 
grassland regions that have been invaded by sericea, we showed that 
there is a potential for developing such a monitoring system. Specif
ically, we first identified key functional traits that differentiated sericea 
from co-occurring native plants. These functional traits were then 

estimated throughout the study area using a PLSR approach applied to 
fine-resolution airborne hyperspectral data. Tested with field validation 
data, we found that remote estimation of these functional traits can 
successfully map sericea invasion in grasslands when used in a PLS-LDA 
classification approach. 

4.1. Remote sensing can identify specific vegetation functional traits that 
contribute to the success of IAS 

This research not only adapted the use of new methodologies for IAS 
detection but facilitated a deeper understanding of functional traits that 
aid mechanisms related to competition and tolerance strategies, spe
cifically as IAS outcompete native species and succeed in a new com
munity. Our results identified Car, Chl a + b, TN, and canopy height as 
well as two macronutrients (K and Mg) as the most important factors 
that contribute to distinguishing sericea from other species (Fig. 5). 
Surprisingly, TPC was not an important functional trait for dis
tinguishing sericea from co-occurring native species, even though this 
plant is known to have high levels of a phenolic compound called tannin 
that cause digestive problems in ruminants such as cattle (Donnelly, 
1954; Mosjidis et al., 1990; Silanikove et al., 2001). 

Sericea had significantly higher photosynthetic and photoprotective 
pigments (Chl a + b and Car) compared to co-occurring native species 
(Fig. 4 and 6c-f), suggesting superior photophysiological performance of 
sericea compared to native plants. Specifically, Chl a + b can be viewed 
as a proxy for photosynthetic activity and Car, in addition to enhancing 
light harvesting for photosynthesis, has photoprotective properties and 
dissipates excess energy not used by the plant (Thayer and Björkman, 
1990). As sericea forms canopy-dominant patches in full sun, enhanced 
photoprotection from Car likely aids in the species’ invasive potential. 
Additionally, sericea had higher Chl a + b/Car ratio than co-occurring 
native species (Fig. S5 in Supplementary material). A large body of 
literature has indicated that a higher Chl a + b/Car ratio is linked to 
increased light use efficiency and photosynthetic activity (Gamon et al., 
2016; Sims and Gamon, 2002) presumably because Car levels increase 
when plants are subjected to stress (Penuelas et al., 1995). Therefore, 
this finding suggests an adaptive response of sericea to the tallgrass 
ecosystem during environmental stress. 

TN was significantly higher in sericea (Fig. 4 and 6a-b). In addition, 
TN was selected as one of the key traits for distinguishing sericea from 
co-occurring native plants (Fig. 5). Invasive legumes, including sericea, 
have a competitive advantage over native species, especially in nitrogen- 
poor soils, because of their nitrogen-fixing capabilities (Adams et al., 
2016; Ritchie and Tilman, 1995). Therefore, selection of TN as a key 
trait appears very reasonable in the context of IAS tolerance and success 
strategies. 

Additionally, sericea had higher canopy height compared to other 
species in our results (Fig. 4; Fig. 6k), and this trait was one of the 
important factors separating sericea from native plants (Fig. 5). Previous 
research has highlighted the role of canopy height on the success of 
sericea (Brandon et al., 2004). Specifically, sericea can form tall and 

Table 1 
Performance of PLS-LDA classification using important functional traits based on the independent homogenous validation data set consisting of 78 patches, including 
36 sericea patches and 42 non-sericea patches. In the PLS-LDA classification, each patch was considered as one data point. Numbers in the confusion matrix below 
represent the PLS-LDA model with median overall accuracy on 300 trials. Accuracy metrics are the average of 300 trials and numbers inside parentheses indicate ±1 
standard deviation from 300 trials.   

Map Producer’s accuracy 

Sericea Non-sericea Total 

Field 
Sericea 33 3 36 91.5% (±4.8%) 
Non-sericea 2 40 42 96.2% (±2.2%) 
Total 35 43 78  

User’s accuracy 95.5% (±2.4%) 93.1% (±3.5%)  

Overall accuracy 94.0% (±2.0%) 
Kappa 0.87 (±0.04)  

Fig. 8. Performance of PLS-LDA classification based on the heterogeneous 
validation data set consisting of 133 plots (see Section 2.2.2 for details). In this 
figure, 0 refers to 0% sericea cover within each plot and 1 refers to 100% 
sericea cover. Estimated sericea abundance fraction was calculated as the total 
number of pixels classified as sericea in all of 300 PLS-LDA models divided by 
the total number of pixels within each plot. The green line is the line of best fit 
and the dashed line is the 1:1 line. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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dense stands and therefore shade out other species. A remote sensing 
study in a small pasture, with total area of 0.6 km2, at Cedar Creek 
Ranger District, Missouri used the maximal first-order spectral deriva
tive in the 650–800 nm range to separate sericea from Festuca arundi
nacea (tall fescue; the dominant native species in the study area; Wang 
et al., 2008). Although the approach used in Wang et al. (2008) was fully 
empirical—meaning that underlying functional traits that distinguish 
sericea from tall fescue were not identified—separability of sericea from 
tall fescue was attributed to sericea’s higher canopy height, density, and 
chlorophyll content. Our results confirmed the hypothesis set forth by 
Wang et al. (2008) and successfully identified canopy height and Chl a 
+ b as important vegetation functional traits to map sericea invasion. 
Overall, our experiment demonstrated that there is promising potential 

for imaging spectroscopy to identify vegetation functional traits that 
lead to the success of IAS. 

The central hypothesis of this experiment was that vegetation func
tional traits, including biochemical, physiological, and structural traits 
affect spectral signatures (Ustin and Gamon, 2010). However, pheno
logy—temporal variation in biochemical, physiological, and structural 
traits—was not documented in our experiment, solely because the sig
nificant cost of multi-temporal airborne and field data collection cam
paigns precluded us from repeating these measurements over time. 
Previous studies have provided critical evidence that remote sensing 
signals vary significantly as a result of phenology (Bradley, 2014; Pet
torelli et al., 2005; Wang et al., 2005). Similarly, in-situ measurement of 
a few vegetation attributes (gas exchange, chlorophyll fluorescence, 

0 1 20.5 Kilometers

Probability of sericea presence (%)
High : 100

Low : 0

(b)

(a)

Fig. 9. (a) Sericea presence estimated based on 300 PLS- 
LDA classification models. Dark brown regions show 
pixels that were classified as sericea in all 300 model 
runs. Probability values are based on frequencies derived 
from 300 PLS-LDA models. The map is overlaid on an 
RGB composite of the study area. (b) Abundance fraction 
of sericea vs. non-sericea species (shown on y-axis; re
ported between 0 and 1). This histogram shows that 
approximately 10% of the study area is likely covered 
with sericea. Oak woodland land-cover (dark green 
vegetation cover in Fig. 9a) was not included in the cal
culations. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web 
version of this article.)   
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plant water status, and specific leaf area) has shown significant temporal 
variations in the functional traits of sericea and dominant species at 
TGPP (Allred et al., 2010), which can potentially affect distinguishing 
sericea from other native species using remotely sensed data. These re
sults, collectively, support the need for developing multi-temporal ex
periments to test the generalizability of our IAS detection approach over 
time, especially in the face of rapid global change. 

4.2. Remote detection of sericea: From key traits to key spectral bands 

Our results indicated the importance of almost all the visible and red 
edge bands as well as portions of near-infrared and shortwave infrared 
regions at distinguishing sericea from non-sericea species in our 
airborne data (Fig. 10). Considering the list of key traits that were 
deemed important for separating sericea from non-sericea species 
(Fig. 5), we expected the selection of these bands, particularly those 
within the PAR and red edge regions. 

Specifically, Chl a + b and Car—two traits with the highest COSS 
scores—have well-defined absorption features within the PAR region. 
Chlorophyll a has strong absorption features near 430 nm and 660–680 
nm, chlorophyll b exhibits absorption features near 450 and 640 nm, and 
Car strongly absorbs radiation in wavelengths shorter than 550 nm 
(Blackburn, 2002; Curran, 1989; Fourty et al., 1996; Kokaly et al., 2009; 
Ustin et al., 2009). Confirming the findings of previous studies, our leaf- 
level PLSR analysis exhibited some of these absorption features, 
including the absorption feature near 680 nm (Fig. 7c; Fig. S6C in 
Supplementary material). In our patch-level PLSR analysis (i.e., airborne 
imagery), the majority of important wavelengths for estimating Chl a +
b and Car were those within the PAR region (Fig. 7d and f; Fig. S6D and F 
in Supplementary material), which further fortifies our assumption that 
the separability of sericea from non-sericea species was partly due to 
differences in photosynthetic pigment content. In addition to Chl a + b 
and Car, TN—the other important trait at separating sericea from non- 
sericea species—may have contributed to the selection of bands within 
the PAR region through nitrogen-containing photosynthetic pigments, 
such as chlorophyll (Curran, 1989; Wang et al., 2019). 

Selection of bands within the red edge region in our airborne 
hyperspectral data (Fig. 10) can be attributed in part to Chl a + b and Car 
content. Exhibited features within the red edge region in our leaf- and 
canopy-level Chl a + b and Car PLSR models (Fig. 7c, e, and f; Fig. S6C-F 
in Supplementary material) matched findings of previous studies; of 
note is the feature near 740 nm which has been reported to be an 
important spectral region for estimating mass-based Chl a + b and Car 

(Wang et al., 2020). 
We should note that linking selected spectral bands (Fig. 10) to 

important functional traits that separated sericea from non-sericea 
species (Fig. 5) is not always straightforward. Some functional traits 
do not have specific absorption features or their absorption features 
might overlap with those of other traits (Kokaly et al., 2009). For 
example, K—which was identified as an important trait in our ana
lysis—can be estimated due to its association with TN and LMA (Reich 
et al., 1997; Wang et al., 2020; Wright et al., 2004). In addition, at 
canopy-level (i.e., airborne imagery), our ability to identify specific 
absorption features and retrieve functional traits can be affected by 
canopy structure, as reflectance retrieved from airborne imagery is 
influenced by canopy structural characteristics, such as leaf shape and 
orientation (Jacquemoud et al., 2009; Knyazikhin et al., 2013; Sullivan 
et al., 2013). 

Overall, except for photosynthetic pigments, establishing direct links 
between selected spectral bands in our airborne hyperspectral data 
(Fig. 10) and key vegetation functional traits that separated sericea from 
non-sericea species (Fig. 5) was not straightforward. However, both the 
direct impacts of key vegetation functional traits on remotely sensed 
spectra (e.g., through absorption features of photosynthetic pigments) 
and their indirect impacts (through canopy structural effects or associ
ations among traits) translated into spectral separability between sericea 
and non-sericea species in the PAR and red edge regions of remotely 
sensed data. This spectral separability, in turn, suggests that there might 
be promising opportunities for developing multi-band empirical ap
proaches, similar to vegetation indices, to separate sericea from non- 
sericea species. 

4.3. Proposed approach overestimated sericea cover in species-rich 
communities 

Our classification approach detected homogeneous patches of ser
icea with very high accuracy (overall accuracy of 94% from our ho
mogenous validation data set; Table 1). However, it overestimated 
sericea abundance fraction in our heterogeneous validation data set that 
was collected from species-rich plant communities (Fig. 8). Previous 
studies on remote detection of IAS have reported similar issues with 
over- or underestimation of target species (Lass et al., 2002; Lawrence 
et al., 2006). We posit that this uncertainty is partly due to two closely- 
related issues: mixed pixels and scale mismatch between grassland plant 
size and scale of remote sensing observations. 
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4.3.1. Issues of mixed pixels and scale mismatch between grassland plant 
size and spatial resolution of remote sensing observations 

Unlike our first validation data set which included homogeneous 
plant communities, in our heterogeneous validation data set, sericea 
abundance fractions were measured in species-rich and heterogeneous 
plots and in most cases, sericea percent cover within a community was 
less than 10%. This indicates that the probability of having pure sericea 
pixels within these species-rich plots was low and the majority of pixels 
were mixed, meaning that a given pixel was presumably covered with 
more than one species. The issue of mixed pixels is even more limiting 
for grassland species as these plants are often smaller than the scale of 
remote sensing observations. For example, if the size of an individual 
sericea plant is approximately 15 cm by 15 cm (when viewed from 
above), it occupies approximately 1/40th of a pixel in our airborne 
imagery. 

Both of these issues are major challenges in remote detection of IAS 
in grasslands, especially for early eradication efforts when invasive 
plants are more likely to occur in low abundance mixed with native 
species. Although we strived to make the best of assets at our disposal to 
collect remotely sensed data with fine spatial resolution, the issues of 
mixed pixels and scale mismatch were still significant sources of un
certainty in our study. These issues are even more limiting for direct 
detection of IAS using current and forthcoming spaceborne imaging 
spectrometers, primarily due to their coarse spatial resolution (approx
imately 30 m). The challenges associated with scale mismatch between 
plant size and spatial resolution of remotely sensed data demonstrate the 
essential role of fine-resolution airborne hyperspectral data for direct 
mapping of IAS in grasslands and ecosystems with small-statured plants. 

4.3.2. Recommendations to mitigate the impact of scale mismatch 
We put forth two suggestions for mitigating the uncertainty associ

ated with IAS cover estimation. First, assessing the effectiveness of 
spectral unmixing approaches (also known as subpixel classification) 
remains a potentially promising direction for improving direct detection 
of IAS (see Fig. S7 in Supplementary material). Subpixel methods not 
only have the potential to improve IAS abundance estimation but they 
may also improve the detection of small and sparse IAS patches which 
may be vital to the success of early eradication efforts (Moody and Mack, 
1988). Second, in addition to feature fusion—for example, through PLSR 
which was tested in our study—decision fusion can also potentially 
improve IAS classification accuracy (Kuncheva et al., 2001; Mangai 
et al., 2010). While a single classifier may not perform well for specific 
data inputs, outcome of multiple classifiers are combined in a decision 
fusion approach instead of relying on one classifier. Therefore, we 
recommend using multiple classifiers and combining their outcome as a 
potential solution to achieve more accurate and unbiased IAS detection. 

4.4. Implications for sericea management practices 

Landowners strive to manage and slow down sericea spread. Man
agement practices to control the spread of sericea have typically focused 
on using herbicides or mowing (Altom et al., 1992; Brandon et al., 2004; 
Koger et al., 2002; Stevens, 2002). These herbicides are often effective 
for only short periods of time (e.g., season-long) and do not eradicate 
sericea permanently (Sherrill, 2019), presumably due to sericea’s high 
seed production. In addition, repeat applications of herbicide for sericea 
control might have negative impacts on native species and are costly. 
Mowing has also been suggested by land managers to slow the spread of 
sericea; however, previous work has suggested that mowing may actu
ally benefit sericea (Brandon et al., 2004). As a result, landowners resort 
to traditional grassland management practices, including prescribed 
fire, to control the spread of sericea. But these management practices 
have been originally developed to address other goals, mainly main
taining dominant forage species for livestock production and have not 
shown success in controlling the spread of sericea (Sherrill, 2019). As 
such, alternative management practices based on synergistic application 

of prescribed fire and grazing (Fuhlendorf et al., 2012) have been rec
ommended to control and eradicate sericea. Initial results have reported 
that these alternative approaches outperform traditional practices that 
are based on the application of herbicide or prescribed fire (Cummings 
et al., 2007; Sherrill, 2019). However, such alternative practices have 
mainly been applied and tested in relatively small regions. Therefore, 
effectiveness of different management practices at controlling the 
spread of sericea should be further tested over large areas. 

Remote sensing can play a central role in this regard through map
ping sericea invasion over large areas and identifying the underlying 
functional traits that contribute to the success of invasion. Our experi
ment can potentially have important implications for developing 
science-driven management efforts to suppress the spread of sericea and 
other IAS in grasslands. Eventually, this experiment, and other similar 
experiments, will provide deeper understanding of invasion patterns of 
IAS, including sericea, with significant societal and economic benefits, 
especially for farmers, ranchers, and conservationists. 

5. Conclusions 

In this paper, we examined the capability of hyperspectral remote 
sensing to map an invasive alien species, called sericea, in a natural 
grassland. Our COSS analysis indicated that Car, Chl a + b, TN, canopy 
height, K, and Mg contributed to the separation of sericea from co- 
occurring native species. These functional traits were then used in a 
PLS-LDA classification to detect sericea. Overall accuracy of the PLS- 
LDA approach at detecting homogeneous patches of sericea was 94% 
and sericea omission and commission errors both were low and 
approximately 9% and 5%, respectively. Our approach, however, 
overestimated sericea abundance fraction in species-rich plant com
munities. We presume this overestimation was partly due to mixed 
pixels and mismatch between plant size and spatial resolution of our 
remotely sensed data. 

This experiment showed the potential of remote sensing methods to 
quantify vegetation functional traits associated with IAS success stra
tegies. Among the functional traits that were considered important in 
distinguishing sericea from other co-occurring native species, sericea 
had significantly higher Car, Chl a + b, TN, and canopy height than 
native plants. Selection of these four functional traits was reasonable in 
the context of IAS tolerance and competitive strategies. Specifically, 
sericea had significantly higher photosynthetic pigment content (Chl a 
+ b and Car) compared to native species, suggesting its superior pho
tophysiological performance at TGPP. In addition, sericea is a nitrogen- 
fixing legume which gives it an advantage over other species, especially 
in nitrogen-poor soils. This invasive species is also taller than the ma
jority of co-occurring native species at TGPP which reduces the amount 
of light captured by native species and therefore suppresses them. 

The methodology and findings of this study can have important 
implications for IAS management practices. This is particularly impor
tant for private landowners affected by IAS, especially when their re
sources are already stretched thin. An IAS mapping effort is often 
followed by appropriate management practices to control or slow down 
encroachment. Performance of different commonly-used management 
practices at controlling the spread of IAS is not the same. Although some 
of these management regimes, such as those based on synergistic 
application of prescribed fire and grazing have shown promise in con
trolling IAS spread, they have mainly been tested and applied over 
relatively small regions. Therefore, remote sensing can be considered as 
a viable tool for testing the performance of different management 
practices on controlling the spread of IAS over large areas. 
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Mäkinen, H., Kaseva, J., Virkajärvi, P., Kahiluoto, H., 2015. Managing resilience of 
forage crops to climate change through response diversity. Field Crop Res. 183, 
23–30. 

Mangai, U.G., Samanta, S., Das, S., Chowdhury, P.R., 2010. A survey of decision fusion 
and feature fusion strategies for pattern classification. IETE Tech. Rev. 27, 293–307. 

Marquard, E., Weigelt, A., Temperton, V.M., Roscher, C., Schumacher, J., Buchmann, N., 
Fischer, M., Weisser, W.W., Schmid, B., 2009. Plant species richness and functional 
composition drive overyielding in a six-year grassland experiment. Ecology 90, 
3290–3302. 

MATLAB, 2020. version 9.9.0 (R2020b). The MathWorks Inc., Natick, Massachusetts, 
USA.  

Mitchell, J.J., Glenn, N.F., 2009. Leafy spurge (Euphorbia esula) classification 
performance using hyperspectral and multispectral sensors. Rangel. Ecol. Manag. 62, 
16–27. 

Moody, M.E., Mack, R.N., 1988. Controlling the spread of plant invasions: the 
importance of nascent foci. J. Appl. Ecol. 1009–1021. 

Mooney, H., Hobbs, R.J., 2000. Invasive Species in a Changing World. Island Press, 
Washington, D.C.  

Mosjidis, C.O.H., Peterson, C., Mosjidis, J., 1990. Developmental differences in the 
location of polyphenols and condensed tannins in leaves and stems of sericea 
lespedeza, Lespedeza cuneata. Ann. Bot. 65, 355–360. 

Pejchar, L., Mooney, H.A., 2009. Invasive species, ecosystem services and human well- 
being. Trends Ecol. Evol. 24, 497–504. 

Penuelas, J., Baret, F., Filella, I., 1995. Semi-empirical indices to assess carotenoids/ 
chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31, 221–230. 

Pettorelli, N., Vik, J.O., Mysterud, A., Gaillard, J.-M., Tucker, C.J., Stenseth, N.C., 2005. 
Using the satellite-derived NDVI to assess ecological responses to environmental 
change. Trends Ecol. Evol. 20, 503–510. 

Pieters, A.J., 1938. Legumes in soil conservation practices. In: USDA Leaflet, 163, p. 8. 
Pieters, A.J., Henson, P., Adams, W.E., 1950. Lespedeza sericea and other perennial 

lespedezas for forage and soil conservation. In: USDA Circular 863. United States 
Department of Agriculture, Washington D.C., p. 48 

Pimentel, D., McNair, S., Janecka, J., Wightman, J., Simmonds, C., O’connell, C., 
Wong, E., Russel, L., Zern, J., Aquino, T., 2001. Economic and environmental threats 
of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84, 1–20. 

Reich, P.B., Walters, M.B., Ellsworth, D.S., 1997. From tropics to tundra: global 
convergence in plant functioning. Proc. Natl. Acad. Sci. 94, 13730–13734. 
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