A type B analogue of the category of finite sets with
surjections

Nicholas Proudfoot*

Department of Mathematics
University of Oregon
Eugene, Oregon, U.S.A.

njpQuoregon.edu

Submitted: Apr 12, 2022; Accepted: Jul 12, 2022; Published: TBD
(©) The author. Released under the CC BY-ND license (International 4.0).

Abstract

We define a type B analogue of the category of finite sets with surjections,
and we study the representation theory of this category. We show that the oppo-
site category is quasi-Grobner, which implies that submodules of finitely generated
modules are again finitely generated. We prove that the generating functions of
finitely generated modules have certain prescribed poles, and we obtain restrictions
on the representations of type B Coxeter groups that can appear in such mod-
ules. Our main example is a module that categorifies the degree i Kazhdan—Lusztig
coefficients of type B Coxeter arrangements.

Mathematics Subject Classifications: 05B35, 14F43, 20F55

1 Introduction

Let F'S4 be the category whose objects are nonempty finite sets and whose morphisms are
surjective maps. The A in the subscript is there to call attention to the fact that this is a
“type A” structure. More concretely, for any positive integer n, the automorphism group
of the object [n] = {1,...,n} is the Coxeter group type A,,_1, and the set of equivalence
classes of morphisms with source [n] may be identified with the set of flats of the Coxeter
hyperplane arrangement of type A, (Example 23). Our aim is to define and study a “type
B” analogue of this category, which we call FSg.

We begin with the definition. An object of FSp is a pair (F, o), where E is a finite
set and ¢ : E — F is an involution with a unique fixed point. A morphism from (£, o)
to (Esg,09) is a surjective map ¢ : By — Ey with ¢ 007 = 09 0 . For any natural number
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n, we write [—n,n] to denote the object given by the set of integers between —n and n
(inclusive) and the involution k — —Fk; every object of FSg is isomorphic to [—n,n] for
some n € N. The automorphism group W,, of the object [—n,n| is the Coxeter group
of type B,,, and the set of equivalence classes of morphisms with source [—n,n] may be
identified with the set of flats of the Coxeter hyperplane arrangement of type B,, (Example
23).

Remark 1. A more naive definition of F'Sg would be to take finite sets with free involutions
and equivariant maps. This category would have the right automorphism groups, but it
would not have the same relationship with flats of the Coxeter hyperplane arrangements
of type B. This distinction is not relevant when one studies the type B analogue of finite
sets with injections [Will4], since any equivariant injection would have to preserve the
fixed point. The same comment applies to the category FSg, studied in [SS17] and [SS19].

Remark 2. Tt is natural to ask why we do not also introduce and study a “type D”
analogue of this category. The brief answer is that the classes of Coxeter arrangements
of types A and B are closed under contraction (Examples 23 and 24), but the analogous
statement is false in type D. This property is crucial to the examples that we consider in
this paper.

For the remainder of the introduction, we describe the results for FS4 and FSg in

parallel for comparison. All results that we state for FS4 appear in either [SS17] or
PY17).

1.1 Finiteness

The first half of this paper is devoted to applying the Sam—Snowden Grobner theory of
combinatorial categories [SS17] to the opposite category FSg”. More concretely, we fix a
left Noetherian ring k& and an essentially small category C (which will always be either
FS4 or FSg) and study the category Rep,(C) of contravariant functors from C to the
category of left k-modules. Such a functor is called an C°’-module over k. Given an
object z, the principal projective P, € Rep,(C°P) is the module that assigns to an
object y the free k-module with basis Hom¢(y, z), with maps defined on basis elements
by composition. A module M is called finitely generated if there exists a finite set of
objects x1, ..., 7, and a surjective map from @;P,, to M. The following theorem of Sam
and Snowden says that finitely generated FS3"-modules form an Abelian category [SS17,
Theorem 8.1.2].

Theorem 3. Any submodule of a finitely generated FSy’-module over k is itself finitely
generated.

We prove here the analogous theorem for FSp.

Theorem 4. Any submodule of a finitely generated FSp’-module over k is itself finitely
generated.
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An FS{P-module M is called finitely generated in degree < d if the generating
objects can all be taken to be sets of cardinality at most d. Similarly, an FSg-module N
is called finitely generated in degree < d if the generating objects can all be taken to
have at most d free orbits; equivalently, they can all be taken to be objects of the form
[—n,n] with n < d. A module over either category is called d-small if it is isomorphic
to a subquotient of a module that is finitely generated in degree < d. Theorems 3 and 4
immediately implies that a d-small object is itself finitely generated, though the degree
of generation might be much larger than d.

Borrowing terminology from [PR19] and [PR22], we call a module d-smallish if it
admits a filtration whose associated graded module is d-small. The motivation for this
definition is that, if we have a spectral sequence converging to N for which the modules
on the Fi-page are all d-small, the same will necessarily be true for the E.-page, which is
isomorphic to the associated graded module of N with respect to some filtration, and N
is therefore d-smallish. It is easy to prove that a d-smallish module is finitely generated
[PR19, Proposition 2.14]. We do not know whether or not a d-smallish module must be
d-small.

1.2 Growth

Fix a field k of characteristic zero. If A = (A1,..., Ayy)) is a partition of n, we write V) to
denote the corresponding irreducible representation of S, over k. If A and u are partitions
with [\ + || = n, we write V), to denote the corresponding irreducible representation
of W,, over k.

For an FS{"-module M and a positive integer n, we write M[n] to denote the S,-
representation M ([n]), and we define the generating function

Hy(M;t) ==Y " dim M(n)].
n=1

If M is d-smallish, we define the limit

PA(M) = Tim DM ]

n—00 dr ’

which we will show always exists. The following theorem was proved in [PY17, Theorem
4.1].

Theorem 5. Let M be a d-smallish FS3-module.

1. The generating function Ha(M;t) is a rational function whose poles are contained
in the set {1/j |1 < j <d}.

2. The limit r4(M) exists. Equivalently, Hy(M;t) has at worst a simple pole at 1/d,
and r3(M) is the residue.

3. If |\] = n and Homg, (Vy, M[n]) # 0, then {(\) < d.
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We now state the type B analogue of Theorem 5. For an FSZ’-module N and a
nonnegative integer n, we write N|[—n,n] to denote the W,-representation N([—n,n]),
and we define the generating function

Hy(N;t) := > t"dim N[-n,n].

n=0
If N is d-smallish, we define the limit
dim N
rd(N) := lim im N|—n, n)

which we will show always exists.
Theorem 6. Let N be a d-smallish FSp’-module.

1. The generating function Hg(M;t) is a rational function whose poles are contained
in the set {1/j |1 < j<2d+ 1}.

2. The limit r&(N) exists. Equivalently, Hz(N;t) has at worst a simple pole at 1/(2d+
1), and ri(N) is the residue.

3. If I\ + |u| = n and Homy, (Vi ., N[—n,n]) #0, then {(X) < d+1 and ((p) < d.

1.3 Examples

For any nonempty finite set £, we define in Example 21 a hyperplane arrangement Apg
with the property that Ap, is the Coxeter arrangement of type A,. Similarly, for any
object (E,0) of FSg, we define in Example 22 a hyperplane arrangement Ag ) with the
property that A|_, ) is the Coxeter arrangement of type B,,.

In Section 5, we define an FSy-module S} that takes E to the degree i part of the
Orlik-Solomon algebra of Ag; by taking the linear dual, we obtain an FSi’-module (S%)*.
Similarly, we define an FSg-module S that takes (F, o) to the degree i part of the Orlik—
Solomon algebra of A(g ) and the dual FS’-module (S;)*. The following proposition
was proved in [PY17, Proposition 5.1].

Proposition 7. The FS{-module (S3)* is 1-small. For all i > 0, the FS3®-module (S5)*
18 2i-small, and

ri ((S4)7) = 0.
Here we prove the following type B analogue of Proposition 7.

Proposition 8. The FSy-module (Sg)* is 0-small. For all i > 0, the FSpF-module(Sg)*
is (21 — 1)-small, and . '
g ((S)F) = 0.
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Remark 9. The smallness shift between Propositions 7 and 8 (which we will see again in
Theorems 10 and 11) can be blamed on the fact that the object [n] of F'S4 corresponds to
the Coxeter group and Coxeter arrangement of type A,_;, while the objet [—n, n] of FSp
corresponds to the Coxeter group and Coxeter arrangement of type B,,. It is also related
to the fact that [1] is the terminal object of FS4 while [0, 0] is the terminal object of FSp.

For any hyperplane arrangement 4, one may define a singular algebraic variety X 4
called the reciprocal plane of A. This variety has vanishing intersection cohomology in
odd degree, and the even degree intersection cohomology Poincaré polynomial coincides
with the Kazhdan—Lusztig polynomial of the associated matroid [EPW16, Proposition
3.12]. In Section 7, we define an FSs-module D} that takes a nonempty finite set F to
IH*(X 4, ) and an FSg-module D} that takes an object (E, o) to IH* (XA(E,U>)- One can
think of D} and D} as categorifications of the degree i Kazhdan-Lusztig coefficients of
Coxeter arrangements in types A and B, respectively. The following theorem was proved
in [PY17, Theorem 6.1].

Theorem 10. For any i > 0, the FSSP-module (D})" is 2i-smallish," and we have

e dim DY[2d] dim DY2d]
(D)) = =57 @)

Here we prove the following type B analogue of Theorem 10.

Theorem 11. For any i > 0, the FSY’-module (Dy)" is (2i — 1)-smallish, and we have

e dim D51 —24,2i — 1] dim D5 M1 — 26,20 — 1]
i Dz — B ) — B‘ )
rai-1((Dp)’) Wi 22i-1(2j — 1)

Acknowledgments: This work benefited greatly from the efforts of Patrick Durkin, who
helped to formulate the definition of FSg and wrote the first draft of the material in Section
3. The author is also grateful to Eric Ramos for his valuable help and suggestions.

2 Grobner and O-lingual categories

We begin by reviewing the relevant machinery from [SS17] that we will need to prove
Theorems 4 and 6. Let C be an essentially small category. Given morphisms ¢ : x — y
and ¢’ :x — v, we say ¢ < ¢ if there exists a morphism ¢ : y — ¢y with ¢’ = o . If
o < ¢ < @, then ¢ and ¢’ are said to be equivalent. The poset of equivalence classes
of morphisms out of z is denoted | C, |.

We say that C is directed if it has no endomorphisms other than the identity maps.
We say that C has property (G1) if, for every object x, there exists a well order < on
C, that with the property that ¢ < ¢’ = 1 o ¢ < 1 o ¢’ whenever both compositions

'In the published version of the paper, we claimed that the module was 2i-small, but we only proved
that it is 2¢-smallish. This mistake was corrected in the arXiv version.

ot
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make sense. We say that C has property (G2) if, for every object x, the poset | C, | is
Noetherian, meaning that every ideal (upwardly closed subset) has only finitely many
minimal elements. A directed category with properties (G1) and (G2) is called Grébner.

A functor @ : C — C’ has property (F) if, for any object x of C'; there exist finitely
many objects y1,...,ys of C and morphisms ¢; : © — ®(y;) such that for any object y of
C and any morphism ¢ : z — ®(y) in C, there exists a morphism 1 : y; — y in C with
© = ®(1) op;. This definition is engineered precisely so that the following result will hold
[SS17, Propositions 3.2.3].

Proposition 12. Suppose that ® : C — C' has property (F). Suppose that N € Rep,,(C’)
18 finitely generated, with generating objects x1,...,x,.. For each 1 <1 < r, choose objects
Yils - - - Yis, of C corresponding to x; as in the definition of property (F). Then the module
P*N € Rep,(C) s finitely generated, with generating objects {y;; | 1 <1 <r, 1< j < s}

The category C' is called quasi-Grobner if there exists a Grobner category C and an
essentially surjective functor ® : C — C’ with property (F). In this case, the category C
is said to be a Grobner cover of C'. Sam and Snowden use Proposition 12 to prove the
following result [SS17, Theorem 4.3.2].

Theorem 13. If C' is quasi-Grobner and k is a left Noetherian ring, then any submodule
of a finitely generated C'-module over k is itself finitely generated.

Given a finite set 3, we denote the set of words (finite sequences) in ¥ by ¥*. A lan-
guage on X is a subset of ¥*. Given two languages £; and L, on 3, their concatenation
is the set of sequences formed by concatenating a word in £; and a word in L. The set
of ordered languages on ¥ is the smallest collection of languages on ¥ that contains
singleton languages and languages of the form IT* for II C ¥ and is closed under finite
unions and concatenations.

A norm on C is a function v from the set of isomorphism classes of objects of C to
the natural numbers. The normed category C is said to be O-lingual if, for every object
x of C, there exists a finite set 3, and an inclusion ¢, : | C, | — 3% satisfying the following
two properties:

e For any ¢ : x — vy, t,(p) is a word of length v(y).
e For any ideal I C |C, |, t,(I) C X% is an ordered language.

The final result that we will need is the following, which is proved in [SS17, Corollary
5.3.8 and Theorem 6.3.2] (see also Corollary 8.1.4).

Theorem 14. Suppose that C is endowed with a norm and an O-lingual structure, k
1s a field, and N is an C-module over k that is generated by the objects x1,...,x,.. Let
m = max{|X,,|} and

Hc(N;t) = Zt”(x) dim N (z),

where the sum is over isomorphism classes of objects. Then Ho(N;t) is a rational function
whose poles are contained in the set {1/j |1 <7< m}.
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3 Ordered surjections

The purpose of this section is to prove theorems 4 and 6. We proceed by constructing a
category OSp such that OSZ” is an O-lingual Grébner cover of FSZP. The objects of OSp
will be pairs (E,0), where FE is a totally ordered finite set and o is an order-reversing
involution with a unique fixed point. We will denote the fixed point by 0, and we will
write —e := o(e) for any e € E. Let

Et:={e€FE|e>0}E :={e€ F|e<0},

so that
E=E U{0}uE".

For any element e € E, we will write |e| := max{£e}. For any subset D C E, we will
write init D := min{|e| | e € S}. A morphism from (E,01) to (Es, 09) in OSg will be a
surjective map ¢ : By — Fy with ¢ o 01 = 05 0 ¢ along with the following two additional
properties:

(i) For all e € Ey, init o' (e) € o~ (e).
(ii) For all e < f € By, init o (e) < init = 1(f).
The following lemma says that composition in OSg is well defined.

Lemma 15. If the maps ¢ : (E1,01) — (E2,02) and ¢ : (Fy,09) — (E3,03) each have
properties (i) and (ii), then so does the composition 1o ¢ : (Ey,01) — (Es3,03).

Proof. Tt will suffice to check that, for all e3 € E5, the elements
ey := init ' (init ¢~ (e3)) f1 := init(¢ 0 )" (e3)

coincide. Let ey := ¢(ey) and fo := p(f1). Property (i) for ¢ tells us that ey = init ¢~ (e3)
and property (i) for ¢ tells us that 1(e3) = e3. Thus (¢ o p)(e1) = e3, and therefore

f1 = init(y o ) (e3) < ey
We have ¥(fa) = (¥ o ¢)(f1) € {£es}, therefore
ey = init Y~ (e3) = init ¢~ (es) < |fal-
Applying property (ii) for ¢, we find that
er = init 9~ (ez) < init ™ (| fo]) = it o~ (f2) < fu.
This completes the proof that e; = f;. n

Every object of OSg is isomorphic to [—n, n] for some natural number n, and that there
are no nontrivial endomorphisms. In particular, OSg is essentially small and directed. We
define a norm v on OSg by taking v(F, o) to be equal to the number of free orbits of o
on E, so that v([—n,n]) = n. Let & : OSZ” — FS}’ be the forgetful functor.
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Lemma 16. The functor ® : OSg” — FSZ” has property (F).

Proof. Unpacking the definition of property (F), we see that is is sufficient to show that,
for any morphism ¢ : (Ey,01) — (Es,02) in FSp and any total order of E, compatible
with o9, there is a total order of F; compatible with o; such that ¢ is a morphism in
OSg. Indeed, it is clear that we can choose a total order on F;, compatible with o, with
the even stronger condition that ¢ is weakly order preserving. O]

For each object (F, o) of OSg, we define a poset structure on E* by putting e; - - - ,,, <
fi--- fn if there is a strictly increasing map 6 : [m] — [n] satisfying the following two
conditions:

e For all i € [m], &; = fyq).
e For all j € [n], there exists ¢ € [m] such that (i) < j and fy,) € {£f;}

In plain English, we require that e; - - - e,, is a subword of f; - - - f,,, and that this subword
contains the first occurrence of every o orbit appearing in f;--- f,.

Proposition 17. For any object, (E, o) of OSg, the poset E* is Noetherian.

Proof. Suppose not, and choose a sequence wy, wq, ws . .. of words such that 1 < j = w; €
w;. We may assume that our sequence is minimal in the sense that, for each 7, the length
of w; is minimal among all such sequences that begin wy, ..., w;_1. Given a word w and
an element e € F, we say that e is exceptional in w if either e or —e appears exactly
once in w (and the other, if different, does not appear at all). If w has a non-exceptional
element, we define m(w) to be the number of letters appearing to the right of the last
non-exceptional element.

There are only finitely many words of each length, thus we may choose a natural
number ¢, such that, for all i > i, the length of w; is strictly greater than v(E, o) + 1.
It follows that, for all 7 > 4y, w; has a non-exceptional element. There are only finitely
many possible values for m(w;) and only finitely many elements in E, so we may find a
natural number m and an element e € E and pass to a subsequence w;, , w;,, Wi, . . . such
that m(w;;) = m for all j and the last non-exceptional element appearing in w, is e for
all j.

Let v; be the word obtained from w;; by deleting the last appearance of e, and note
that v; < w;; for all j. Consider the sequence wy, ws, ..., w; 1,01, s, . ... By minimality
of our original sequence, this sequence must contain a pair of elements with the first less
than or equal to the second. We know that this cannot happen in the first iy — 1 terms,
and we also cannot have w;, < v; for some k < 4, and j > 1, because this would imply
that wy, < w;;. Finally, there cannot exist j < k such that v; < v, because this would
imply that w;; < w;, . Thus we have arrived at a contradiction. O

Corollary 18. For any object, (E,0) of OSp, every ideal in the poset E* is an ordered
language.
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Proof. f w=e;---e, € E*, we define [,, to be the principal ideal consisting of all words
greater than or equal to w. By Proposition 17, every ideal in E* is a finite union of
principal ideals, so it is sufficient to show that I,, is an ordered language. For all i € [n],
let II; = {#£ey,...,£e;}. Then

I, = egIlTells - - - e, 1T
is a concatenation of singleton languages and languages of the form IT?, so it is ordered. [J

Consider the norm on OSZ” that takes (F,o) to the number of free orbits in E; in
other words, the object [—n,n] has norm n. Given a morphism ¢ : [-n,n] — (E,0) in
OSB, let

e (#) = @(1)---p(n) € B

Since every object of OSg is uniquely isomorphic to [—n, n| for some n, this defines a map
B : (OSE") o) = £
Lemma 19. Let (E,0) be an object of OSg.

1. The map vp,y) is strictly order preserving. That is, ¢ < ¢' € |(OSg’)(p.0)| if and
only if ve.q) () < e (¢) € E*.

2. The image of an ideal in |(OSE) (g, is an ideal in E*.

/

Proof. We begin with statement (1). Suppose that ¢ : [-m,m| — (E,0), ¢’ : [-n,n] —
(E,0), and ¢ < ¢'. Then there exists ¢ : [—n,n| — [—m,m] such that ¢/ = p o). Define
amap 6 : [m] — [n] by 0(i) := init¢)"*(¢). Then 0 exhibits the inequality ¢(pq)(¢) <
yeq)(¥) € E*.

Conversely, suppose that v(g.)(¢) < yge(¢’) € E*, and let 6 : [m] — [n] be the
map that exhibits this inequality. By definition, for each j € [n], there exists an element
i € [m] such that 0(i) < j and ¢'(0(i)) € {£¢'(j)}. Let i be the minimal such element.
Define ¢(j) =i if ¢'(6(7)) = ¢'(j) and —i if ¢'(6(7)) = —¢'(j). This extends uniquely to
an OSg morphism v : [—n,n] — [m, m] with ¢’ = p o1, so p < ¢'.

For statement (2), we first observe that the image of ¢[_, . is equal to the ideal
Ly, C [—n,n]*. Suppose that I C [(OSg)|_nn| is an ideal, ¢ € I, and w = t[_p ().
Since the image of ¢[_,, ] is an ideal, we have w = ¢[_,, »)(¢’) for some ¢’. Statement (1)
terlls us that ¢ < ¢, s0 ¢’ € I and w € t[—ppn)({). O

Proposition 20. The category OSy is Grébner, and O-lingual with respect to the maps
L(E,a')-

Proof. Property (G2) follows from Proposition 17 and Lemma 19(1). Property (G1) is
proved by pulling back the lexicographic order from E* to [(OS}’)(g,0)|. This shows that
OSy’ is Grobner. The statement that OSZ” is O-lingual follows from Corollary 18 and
Lemma 19(2). O

Proof of Theorem 4. This follows from Theorem 13, Lemma 16, and Proposition 20. [J
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Proof of Theorem 6. We begin by proving statement (1) for an FSp’-module N that is
generated in degrees < d. By Proposition 12 and Lemma 16, the OS}’-module ®*N is
also generated by objects of norm < d. Then Theorem 14 and Proposition 20 tell us that

Hp(N;t) = Hpspe (N3 ) = Hoggr (PN 1)

is a rational function with poles contained in the set {1/j | 1 < j < 2d + 1}. Now
suppose that N is d-small. By Theorem 4, there is some d' such that N is finitely
generated in degrees < d’, so Hg(N;t) is a rational function with poles contained in
the set {1,...,2d" + 1}. However, the fact that N is d-small means that the dimension
dim N[—n, n] can only grow as fast as the dimension of a module that is finitely generated
in degree < d, therefore Hg(N;t) cannot have a pole at 1/j when j > 2d + 1. Finally,
since passing to the associated graded of a filtration does not change the Hilbert series of
a module, this proves statement (1) when N is d-smallish.

To prove statements (2) and (3), it is sufficient to check them for the principal pro-
jective P_gq. The dimension of P[,d’d][—n,n] is equal to the number of equivariant
surjections from [—n,n] to [—d,d]. The total number of equivariant maps is n?**! and
when n is large, almost all equivariant maps are surjective, hence we have rg(P[_d,d]) = 1.
Let ¢ be a morphism from [—n,n| to [—d, d], and consider the subgroup

We = W10y X Sjp—1(1)] X -+ X Sjp-1(a)) C Wh

that stabilizes . Then the W, representation P_q4[—n,n] is isomorphic to
Wi (40
@ Indy” (triv),
)

where the sum is over one representative of each W,, orbit in Homps ([—n,n], [~d, d]). The
fact that each one of these summands is a sum of representations of the form V) , with
(N) < d+1and ¢(u) < d follows from induction on d using the type B Pieri rule [GPO0O,
Section 6.1.9]. O

4 Hyperplane arrangements

Let V be a finite dimensional vector space. A hyperplane arrangement in V is a finite
set of codimension 1 linear subspaces of V. The following pair of examples will appear
many times throughout this section.

Example 21. Given a nonempty finite set £ and any element e € E, let z, be the e
coordinate function on C¥, and let Vz C C¥ be the codimension 1 subspace consisting
of vectors whose coordinates add to zero. For any unordered pair of distinct elements
e # f € E, consider the hyperplane

Hep:={veVg|z.(v)=a4v)}.
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Let

A ={H.s|e# f € E}
be the corresponding hyperplane arrangement in Viz. When E = [n], Ag can be iden-
tified with the Coxeter arrangement of type A,_1, or equivalently the set of reflection
hyperplanes for the Coxeter group S,,.

Example 22. For any object (E, o) of FSg, consider the vector space
Vige) = {v € CF | 2.(v) + 2,(¢)(v) =0 for all e € E} C Vp C C”.
For each unordered pair e # f € E, let
Jeg = Vipa) N Hep C Vig,o).

Note that we have J,(o)o(f) = Jey for alle # f € E, and if 0 € E' is the unique fixed point,
then Jes(e) = Jeo for all e # 0. Let

Aoy ={Jes e # f € E}

be the corresponding hyperplane arrangement in V(g ,). When (E,0) = [-n,n], Age)
can be identified with the Coxeter arrangement of type B,, or equivalently the set of
reflection hyperplanes for the Coxeter group W,.

Given a hyperplane arrangement A in V', a flat of A is a linear subspace FF C V
obtained by intersecting some subset of the hyperplanes. The contraction of A at F' is
the hyperplane arrangement

A ={FNH|F¢HcA}
in the vector space F'. The localization of A at F is the hyperplane arrangement
Ap={H/F|F C H € A}

in the vector space V/F. If A, is a hyperplane arrangement in V; and A, is a hyperplane
arrangement in V5, the product A; x A is defined to be the hyperplane arrangement in
Vi @V, with hyperplanes

{H1@VY2‘H1€A1}U{V1@H2’H2€./42}.

Example 23. For any surjective map ¢ : 7 — F» of finite sets, we may define a flat

Fgo = m Hef Cc Vg

e£feE
ple)=¢(f)

of the arrangement Ag. Every flat of Apg, is of this form, and if we have two surjections
¢ By = Eyand ¢ @ By — Ej, then F, = F, if and only if there is a bijection
Y+ Ey — EY such that ¢’ = ¢ o p. The contraction of Ag, at F,, can be canonically
identified with Apg,, and the localization of Ag, at the flat Fi, can be canonically identified

with the product
I Ao
ecFE>
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Example 24. Given a morphism ¢ : (Ey,01) — (E2,09) in FSp, we may define a flat

GLP = ﬂ Jef C ‘/(El,tn)

e£feEn

ele)=¢(f)
of the arrangement A, ,,). Every flat of A(g, »,) is of this form, and if we have two
morphisms ¢ : (E1,01) = (Eq,02) and ¢’ : (Ey,07) = (E»,04), then G, = G if and
only if there is an isomorphism ¢ : (Ey,09) — (E%, 04) such that ¢’ = 9 o ¢. The
contraction of Ag, ) at G, can be canonically identified with A(g, ,,). To understand
the localization, we first choose a decomposition

Ey = P, U{0} Uoy(P),

where 0 € Ej is the unique fixed point. Then the localization of A(g, -,) at the flat G,
can be canonically identified with the product

Ao X | [ Ae-0-

ecePsy

Remark 25. If we want to avoid choosing a decomposition of E, we can replace the
product over P, with a product over non-fixed ogg-orbits, and replace the preimage of
e € P, with the set of gj-orbits in the preimage of the gg-orbit. This would be more
canonical, but also more unwieldy to notate.

5 Orlik—Solomon algebras

Let A be a hyperplane arrangement. A set D C A is called dependent if the codimension
of its intersection is smaller than its cardinality (equivalently, if the corresponding set of
normal vectors is linearly dependent). For any dependent set D = {Hq,..., Hy} C A of
cardinality k, we define a class

k

Oup := Z(—l)i Hqu

i=1 j#i

in the exterior algebra Ac[uy | H € A]. Note that the element ug as we have defined it
depends on the ordering of the elements of S, but only up to sign. The Orlik—Solomon
algebra S(A)? is defined as the quotient of Aclug | H € A] by the ideal generated by
OJug for every dependent set D. If A; and A, are two hyperplane arrangements, then

21t is typical to denote the Orlik-Solomon algebra either OS(A) or A(A), but we wish to avoid conflict
with the notation for the category OSp and with the use of the letter A for type A structures. So, with
apologies to Peter Orlik, we are just using the letter S.

THE ELECTRONIC JOURNAL OF COMBINATORICS 27 (2020), #P00 12



If F'is a flat of A, then there is a canonical map
S(A) — S(AD)

defined by sending ug to upng if FF' ¢ H and to zero otherwise.

Remark 26. If V is a vector space over C, then S(A) is canonically isomorphic to the
cohomology of the complement of A4 [OS80]. In this case, Equation (1) can be regarded
as an application of the Kiinneth theorem. For a topological interpretation of the map
from S(A) to S(AF), see [PY17, Section 3.

Fix a natural number i. By Example 23, we have an FSs-module that assigns to a
finite set E the vector space S*(Ag), and to a surjection ¢ : Fy — E, the map

S'(Ap,) = S'((Ap,)"™*) = S'(Ag,) .

We denote this module by S}, and we denote the dual FS{P-module by (S5)*. Similarly,
by Example 24, we have an FSg-module that assigns to an object (E, o) the vector space
Si (.A(EJ)), and to a morphism ¢ : (Ey,01) — (Ey, 02) the map

S (A(E1,01)) - Si((‘A(Elle))Gv) ~ g ('A(EQ,UQ)) :
We denote this module by S}, and we denote the dual FSpP-module by (Sg)*.

Proof of Proposition 8. We have (S%)* = Py, so the first statement is trivial, and we
may assume that ¢ > 0. Since the Orlik-Solomon algebra is generated in degree 1, S
is a quotient of (S§)®’, and therefore (S5)* is a submodule of ((S}g)*)@. Thus it will
suffice to show that, for any object of FSp with at least 2i free orbits, every element of
(SE)*(E,0)% is a linear combination of pullbacks of classes along various maps to smaller
objects.

Let 0 € E denote the unique fixed point. The vector space Sg(F, o) is spanned by
the elements .y for unordered pairs e # f that are distinct from 0 (recall that we have
Ueo = Ueo(e) for any e # 0). For such an unordered pair, let v,y € Sp(E, 0)* be the element
that evaluates to 1 on tey = Ug(e)o(s) and to 0 on all other generators. Then (Sg)*(E, 0)®"
is spanned by classes of the form v, ® -+ ® ve,,.

Let

F:={e,0(e1), f1,0(f1)... e, 0(e), fi,o(fi),0} C E,

so that (F,o) is an object of FSp with at most 2i free orbits. Define a morphism ¢ :
(E,0) = (F,0) by fixing FF C E and sending E ~\ F' to 0. Our hypothesis implies that
the class v, f, ® -+ - ® vg,y, is sent to itself by the map

0" (Sp)"(F.0)® — (Sp)"(E,0)".

If the cardinality of F' is strictly smaller than 2¢ + 1, then we are done. If not, then the
classes appearing in the definition of F' are all distinct, so we may assume for ease of
notation that (F, o) = [—2i,2i], with e; = (25 — 1) and f; = 25 for all j.
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We will consider three morphisms 1, 1, ¥3 from [—2i,2i] to [1 — 2i,2i — 1], and we
will prove that the class

V12 @+« Q) V2i-32i—2 & V212 € (5113)*[_% Qi]®i

is in the span of the images of the pullbacks along these three morphisms. Each of these
morphisms will fix [2 — 2i,2i — 2], and they will be defined on the elements {2i — 1,2:} as
follows:?

o 1 (20) =2 —1and ¢y (2i —1) =1 — 2i
o 1(2i) = 2i — 1 and 15(2i — 1) = 0
o 5(2i) = 0 and ¢3(2i — 1) = 2 — 1.

For each positive integer j < i, all three of these maps send the class vq;_12; to itself.
Furthermore, we have

*

Y] (Vaim11-2i) = Vaim11-2i + Vai—2i + U2i—12i
*

V5 (Vgim11-2i) = Vaim11-2i + V2im1,-2;i + U2i—1,2
*

V5 (Vaim11-2i) = Vai—2i + U2i—1,—2; + Vai_1,2

and therefore

ﬂff (U2i—1,1—2i> - 1/1; (7122‘—1,1—20 + ¢§ (021—1,1—22‘) = V2;—-1,2i-
It follows that we have
V2 @ -+ @ Ugi_39i—2 QUoi—192; = Y] (V12 ® - @ Vaj_32i—2 @ Vai_11-2;)

— 3 (V12 @ -+ ® Vgi_39i—2 @ V2i—1,1-2)

+105 (V12 @ -+ - @ Vgi—3.9i—2 @ Vai—1,1-2i) -

This completes the proof of smallness. For the final statement, we note that dim St[—n,n| =
n?, therefore dim S§[—n, n| < (";), and

—— =0.

Thus T'Qi,l((Sé)*) = 0. ]

3Note that this determines what the morphisms do to the elements {—2i,1 — 2i}.
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6 Combining small modules
We begin with the following analogue of [PY17, Lemma 4.2], which mixes modules over
FSY and FSZ°.

Lemma 27. Let N be an FSZ’-module and let M, ..., M, be FS{’-modules, with N d-
small and M; c¢;-small for all i. Consider the FSZ’-module R defined on objects by the
formula

R(E,0)= @ N 0),0)@ M (1)@ My (p),
@:(E,0)—=[—p,p]

where the sum is over all morphisms in FSg from (E, o) to [—p,p|, and maps are defined
in the natural way. The module R is (d+ ¢y + - -+ + ¢,)-small.

Proof. Since smallness is preserved by taking direct sums and passing to subquotients, we
may immediately reduce to the case where N is the principal projective P, for some
n < d and for each 4, M; is the principal projective P, for some m; < ¢;. Then

R(E,o) = P N(p (0),0) @M (1)@ @ My~ (p))

:(E,0)—[—pp]

@ C {HomFSB ((¢71(0),0), [-n,n]) x H Homps, (¢ (i), [mz})}
[=p.p]

=1

I

p:(E,0)—

C{ Homps, ((E,0), [—(n+mq + -+ myp), (n+mq + -+ mp)])}

I

= P[—(n+m1+~~+mp),(n+m1+-~+mp)]<E7 ).
Thus R is (n +my + - - - +my)-small, and therefore (d + ¢; + - - - + ¢,)-small. O

For any natural numbers p and i and any object (E, o) of FSg, let

C,i(E,0) = @ S ((Awe))a,)
»:(E,0)—=[-p,p]
B T(Ap 100 X Ay X X Ay

»:(E,0)—=[—p,p]

B (S 100) @A) @+ 8 5(Apig) )

p:(EB,0)—[—p,p]

= P SEe'0).0) @8 (W) e eS¢ (¢ (p)-

0:(E,0)=[—p.p]

10+i1 4 Fip=1t

I

I

Then C,; is naturally an FSp-module, and its dual C; is an FSg’-module. The following
proposition is the type B analogue of [PY17, Proposition 5.3], and will be needed in the
next section for the proof of Theorem 11.
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Proposition 28. If i > 0, the FSg’-module C}; is (20 — 1 + p)-small. If i = 0, it is
p-small.

Proof. By Propositions 7 and 8 and Lemma 27, the direct summand of C} ; corresponding
to the tuple (ig, i1, . ..,%,) is (20 — 1 4+ d)-small, where d is the number of k£ € {0,1,...,p}
such that iy = 0. If © > 0, the maximum possible value of d is p, so the entire sum is
(2 — 1+ p)-small. If i = 0, then d = p + 1, and the sum is p-small. ]

7 Kazhdan—Lusztig coefficients

Let V be a vector space over C and A a hyperplane arrangement in V' with (., H = {0}.

We have an inclusion
Vo [[vE= A c ] P
HeA HeA HeA

Let Y4 be the closure of V' inside of the product of projective lines, and let X4 C Y4
be the open subset consisting of points where no coordinate is equal to zero. The affine
variety X 4 was introduced in [PS06], and is called the reciprocal plane of A. We will
be interested in the intersection cohomology of X 4 with coefficients in C, which vanishes
in odd degree, and has the property that its Poincaré polynomial

> "t dim IH* (X 4)

120

is equal to the Kazhdan—Lusztig polynomial of A [EPW16, Proposition 3.12]. For
this reason, we may regard the vector space IH*(X4) as a catigorification of the 4}
Kazhdan—Lusztig coefficient of A.

If F'is a flat of A, there is a (noncanonical) inclusion of varieties X 4r — X 4, which
induces a (canonical) map of intersection cohomology groups TH* (X 4) — [H*(X 4r).
These maps are functorial [PY17, Theorem 3.3|; in particular, we have an FSs-module
Dj that takes a finite set F to the vector space IH* (X 4,) and a morphism ¢ : E; — Fy
to the map

TH* (Xag, ) = T (X 4y ) = TH*(Xay,)

and we have an FSg-module D}, that takes an object (F, o) to the vector space TH* (XA(E,U))
and a morphism ¢ : (Ey,01) — (Es,09) to the map

TH® (Xap,) = TH* (X (a0 ) 2 THH (X 4,)

Proof of Theorem 11. For any hyperplane arrangement A, there a spectral sequence N (7, .A)
converging to TH* (X 4) with

NG, AT = @D ST AR) @ THH O (Xar)

dim F=p
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where the direct sum is over flats F' of A [PY17, Theorem 3.1]. For any object (E, o) of
FSg, let N(i,E,0) = N (i, A(g)). Then N(i, E,c) converges to Dj(F, o), and Example
24 tells us that 4 W

N(i, E, U)]lqu = (Cn?ifpfq(Ev o) ® D?(P)) .

This construction is functorial [PY17, Theorem 3.3], meaning that we have a spectral
sequence N (i) in the category of FSg-modules converging to Dj with

. i— Wp
N(Z)ifq = (Cp,%—p—q ® Dp q<p)) .

Dualizing, we obtain a spectral sequence N*(7) in the category of FSp’-modules converging
to (Dg)*. Since N(i)?? is a submodule of C,9_,_q @ Dj %(p), N*(i)?? is a quotient of
Croipq® D;;(p)*, and Proposition 28 implies that it is (2(2i — p — q) — 1 + p)-small
unless p + ¢ = 2i, in which case it is p-small. Furthermore, we have ng(p) = 0 unless
either (p,q) = (0,4) or p > 2(i — q) [EPW16, Proposition 3.4].

Let us consider first the case where p 4+ ¢ = 2i. Since i > 0, we cannot have (p,q) =
(0,1), so we must have p > 2(i — ¢) for N*(¢)]"? to be nonzero. This means that p cannot
be equal to 2i, so we have p < 2i, which implies that N*(:)7? is (2 — 1)-small. Even
better, it tells us that N*(:)]? is (2i — 2)-small unless p = 2i — 1 and ¢ = 1.

Now let us consider the case where p + g < 2i. If (p,q) = (0,47), then (2(2i —p —q) —
14p)=2i—1,s0 N*(4))" is (2i — 1)-small. If p > 2(i — q), then 2(2i —p —q) — 1 +p =
20—q)—p+2i—1<2i—1,s0 N*())P? is (2i — 2)-small.

Since N*(i) converges to (Dj)* and the entries of the Ej-page of N*(i) are all (2i —1)-
small, we can conclude that (D})* is (2i — 1)-smallish. Furthermore, the E., page of N* (i)
is concentrated on the diagonal p 4+ ¢ = 2¢, hence

P ((D5)7) = D0 raa (N (002

p.q

- Z(—l)p+q7’2i—1<N*(i)§éq>

p.q

= (V@)

p.q

Since 79;_1 vanishes on any FSp’-module that is (2¢ — 2)-small, this equation simplifies to
rai1 (D)) = rain (N* ()T ) + (=) raica (NG)Y)

We have N*(l)gz =Cp,; = (S%)*, thus Proposition 8 says that ry;_; (N* (@)[1”) = 0. Finally,

we have

N7 = (Coimro ® D' [1 = 23,20 — 1)) 2 (Pyigipion[—n,n] ® Dy '[1 - 23,2 — 1))
SO

. , dim Py _9;9;_11[—n,n] - dim D51 — 24,2 — 1
i (07 ] = i N ] — S B BB B
21—1
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where the last equality follows from the fact that the group Wy;_; acts freely on a basis
for Pji_s;2i—1][—n,n]. We therefore have

dim D '[1 —24,2i — 1] dim Dj'[1 — 2i,2i — 1]

7‘22‘—1((Df;)*) = 7"21’—1(P[1—2i,2i—1]) : (Wari] = (Wai_1]

This completes the proof. n

Example 29. We illustrate Theorems 6 and 11 when ¢ = 1. The coefficient of ¢ in the
Kazhdan—Lusztig polynomial of a hyperplane arrangement A is equal to the number of
flats of dimension 1 minus the number of hyperplanes [EPW16, Proposition 2.12], thus
Example 24 tells us that

3m—1
—n2.
2

_n2:

dim D}[—n,n] = ‘ Homgs, ([—n, n], [-1,1]) /W)

This means that
Hy (DL, 1) = —n’ |t = - - N '
5((Dg)"t) Z( 2 " ) 2(1-3t) 2(1—t) (1—-t?2 (1—1¢)3

This is a rational function with a poles at 1 and 1/3. The pole at 1/3 is simple, with
residue

I dim D3[-1,1]

2 Wil
As a representation of W,, Dj[—n,n|* = Di[—n,n] is isomorphic to the permutation
representation with basis given by the flats of dimension 1 modulo the permutation rep-

resentation with basis given by the hyperplanes [GPY17, Corollary 2.10]. If n < 3, then
Di[—n,n] = 0, while if n > 3, using the branching rule in [GP00, Lemma 6.1.3] allows us

to compute
Dgl—n,n] = @ Vi
Al<n
0(N<2
where
[A/2] =1 ifA=[n]Jor A=[n—1,1]
e =1 [ M\/2] ifA=[n—22or A\=[n—2]
[A\1/2] +1 otherwise.
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