The contraction category of graphs

Nicholas Proudfoot!
Department of Mathematics, University of Oregon, Eugene, OR 97403

Eric Ramos?

Department of Mathematics, Bowdoin College, Brunswick, ME 04011

Abstract. We study the category whose objects are graphs of fixed genus and whose morphisms
are contractions. We show that the corresponding contravariant module categories are Noethe-
rian and we study two families of modules over these categories. The first takes a graph to a
graded piece of the homology of its unordered configuration space and the second takes a graph
to an intersection homology group whose dimension is given by a Kazhdan—Lusztig coefficient;
in both cases we prove that the module is finitely generated. This allows us to draw conclusions
about torsion in the homology groups of graph configuration spaces, and about the growth of
Betti numbers of graph configuration spaces and Kazhdan—Lusztig coefficients of graphical ma-
troids. We also explore the relationship between our category and outer space, which is used in

the study of outer automorphisms of free groups.

1 Introduction

We are interested in ways of assigning a vector space or abelian group to a graph that are contravari-
antly functorial with respect to contractions of graphs. A contraction, which is defined precisely
in Section 2.1, preserves the genus (first Betti number) of a graph, so we consider the category G,
whose objects are graphs of genus g and whose morphisms are contractions. For any commutative
ring k, we define Repy,(Gg") to be the category of functors from Gg¥ to k-modules. An object of this

category is called a ggp—module with coefficients in k.

1.1 Noetherianity and growth

For any category C, a module M € Rep,(C) is called finitely generated if there exist finitely many
objects 1, ...,x, of C along with elements v; € M (x;) such that, for any object = of C, M(x) is
spanned over k by the images of the elements v; along the maps induced by all possible morphisms
fi : x; — x. If every submodule of a finitely generated module is itself finitely generated, the
category Rep,(C) is said to be locally Noetherian.

Sam and Snowden have developed powerful machinery for proving that module categories are
locally Noetherian. They define what it means for C to be quasi-Grobner, and they show that,
if C is quasi-Grobner, then Rep(C) is locally Noetherian for any Noetherian commutative algebra
k [SS17]. The most prominent example of a quasi-Grébner category is the category FI of finite
sets with injections; the fact that Repj(FI) is locally Noetherian has been used to prove stability
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patterns in coinvariant algebras and in the cohomology groups of configuration spaces and other
moduli spaces [CEF15], in the homology groups of congruence subgroups [Put15], and in the syzygies
of Segre embeddings [Snol3|.

In the prequel to this paper, the authors built on work of Barter [Bar| to prove that the opposite
category Go¥ of trees with contractions is quasi-Grébner [PR19|. The technical heart of this paper

is the extension of this result to arbitrary genus.

Theorem 1.1. For any non-negative integer g, the category Gg¥ is quasi-Grébner, and therefore

the category Repy,(Gg¥) is locally Noetherian for any Noetherian commutative algebra k.

Theorem 1.1 is useful for proving that specific Gy -modules are finitely generated, and this
gives some control over their dimension growth. More precisely, we say that a module is finitely
generated in degrees < d if the objects x1,...,x, in the definition of finite generation may be
taken to be graphs with at most d edges. If k is a field and M is finitely generated in degrees < d,
then the dimension of M(G) is constrained by a polynomial of degree d in the number of edges of
G (Proposition 4.3). Furthermore, if we fix a graph and modify it by either subdividing edges or
“sprouting” new leaves at a fixed set of vertices, then the dimension of M evaluated on the modified
graph behaves as a polynomial of degree at most d in the subdivision and sprouting parameters
(Corollaries 4.5 and 4.7).

Sometimes we have no control of the generation degree of a finitely generated module, but we
can still control its growth. We say that M is d-small if it is a subquotient of a module that is
finitely generated in degrees < d, and d-smallish if it admits a filtration whose associated graded is
d-small. Theorem 1.1 implies that d-small modules are finitely generated, and it is not hard to prove
that the same is true for d-smallish modules (Proposition 4.2). The degree of generation of such
modules may be much larger than d, but for the purposes of the results mentioned in the previous
paragraphs, they grow as if they were finitely generated in degrees < d. This will be important for

the two classes of examples that we study in detail, which we describe below.

1.2 Homology of configuration spaces

Given a graph G and a positive integer n, the n-stranded unordered configuration space of

G is the topological space?
UConf,(G) := {(:L’l, ceyTp) €GN | T # azj}/Sn.

The homology groups of these spaces have been extensively studied in settings both theoretical
[ADCK19, Abr00, KP12| and applied [Far08].

One powerful technique for studying these groups, which is applied for example in [ADCK19], is
to fix the graph G and consider the direct sum of the homology groups of UConf, (G) for all n. This

direct sum is a module over a polynomial ring with generators indexed by the edges of GG, where

3Later we give a formal combinatorial definition of a graph, but in the introduction we don’t distinguish between
a graph and its topological realization.



a variable acts by “adding a point” to the corresponding edge. An orthogonal approach is to fix n
and vary G. This approach has been used in a number of recent works [RW19, Ram, Liit, PR19],
and it is the approach that we take here. In particular, the homology of UConf,(G) is functorial
with respect to contractions (Section 5.2), and therefore defines an object of Repy(G,®).

Theorem 1.2. Fiz natural numbers g, i, and n. The Gg°-module
G — H;(UConf,(G);Z)

is (g + 1+ n)-small. In particular, it is finitely generated.

One concrete consequence of Theorems 1.1 and 1.2 is that we obtain some control of the type of
torsion that can appear in these homology groups. We know from the work of Ko and Park that the
only torsion that can appear in H; (UConf,(G);Z) is 2-torsion [KP12, Corollary 3.6]. Furthermore,
this torsion carries extremely interesting information: it is trivial if and only if G is planar! The
topological meaning of torsion in higher degree homology is more mysterious, but we can at least

show that there is a bound on the type of torsion that can occur.

Corollary 1.3. For any triple (g,i,n) of positive integers, there exists a constant dg;, such that

for every graph G of genus g, the torsion part of HZ-(UConfn(G); Z) has exponent at most dg; .

Remark 1.4. In this work we only consider unordered configurations of points, mainly because the
tools we use largely derive from the paper [ADCK19] and this is the setting in which they work. It
is likely that one can obtain analogues of Theorem 1.2 and Corollary 1.3 for ordered configuration

spaces, starting by reproving certain results from [ADCK19| in the ordered setting.

1.3 Kazhdan—Lusztig coefficients

Kazhdan—Lusztig polynomials of matroids are analogues of Kazhdan—Lusztig polynomials of Cox-
eter groups. Just as Kazhdan—Lusztig polynomials of Weyl groups can be interpreted as Poincaré
polynomials of certain intersection homology groups, the same is true of Kazhdan—Lusztig polyno-
mials of graphical (or, more generally, realizable) matroids. See [Prol8| for a survey that explores
this analogy in depth.

More precisely, given a graph G, we can define a complex variety X, called the reciprocal
plane, with the property that the coefficient of ¢’ in the Kazhdan-Lusztig polynomial of G is equal
to the dimension of IH2;(X¢). These homology groups are functorial with respect to contractions
[PY17], thus we obtain an object of Rep¢(Gg”).

Theorem 1.5. Fiz a natural number g and a positive integer i. The Gg°-module
G— IH,; (XG)

is (26 — 1 4 g)-smallish. In particular, it is finitely generated.



For example, Theorem 1.5 combines with the results on subdivision described in Section 1.1
to imply that the i*" Kazhdan Lusztig coefficient of the matroid associated with the n-cycle is
a polynomial in n of degree at most i. Indeed, the formulas for these coefficients appearing in
[PWY16] demonstrate that this bound is sharp (Example 6.4).

1.4 Outer automorphisms of free groups

A further motivation for studying the category G, and its modules is that this category is closely
related to Out(Fy), the outer automorphism group of a free group on g generators. This group
is in many ways analogous to various arithmetic groups and to mapping class groups of surfaces,
and much work has gone into exploring its cohomology; see Vogtmann’s ICM address [Vog06] for a
survey.

We call a graph G of genus g > 2 reduced if it has no bridges and no vertices of valence 2. If we
consider the full subcategory of G, consisting of reduced graphs and replace it with an equivalent
small category, we obtain a category whose nerve is a classifying space for Out(F,) (Corollary 7.5).

This observation leads to the following theorem.

Theorem 1.6. Fiz a non-negative integer g and a commutative ring k. Let M € Repy(Gg¥) be the
module that assigns k to every reduced graph and 0 to every non-reduced graph, with all nontrivial

transition functions equal to the identity. Then there is a canonical k-algebra isomorphism

Ext M, M) = H*(Out(F,); k).

F (
Repy (G5")
Our proof of Theorem 1.6 relies on the very non-trivial theorem of Culler and Vogtmann that
outer space is contractible [CV86]. Since Out(Fy) acts on outer space with finite stabilizers, the
rational cohomology of the quotient coincides with the rational cohomology of Out(F,). We stress,

however, that Theorem 1.6 holds for arbitrary coefficients.

1.5 Relationship to other work

This paper generalizes the authors’ previous paper [PR19]|, in which we prove Theorems 1.1 and
1.2 for the category Gy of trees. The proof of Theorem 1.1 takes the argument used in [PR19] as a
starting point and builds on this argument in order to treat graphs of higher genus. While the idea
of applying the techniques of [SS17| is the same, there is a significant additional layer of technical
difficulty in the higher genus setting.

Once we have established Theorem 1.1, the proof of Theorem 1.2 for arbitrary genus is nearly
identical to the proof in the genus 0 case. Theorem 1.5 has no direct analogue in the genus 0 setting
because Kazhdan—-Lusztig polynomials of trees are trivial. The same goes for Theorem 1.6 because
Out(Fp) is the trivial group.

In 2020, Miyata and the authors announced a proof of the categorical graph minor theorem,
which is the analogue of Theorem 1.1 for the category G whose objects are connected graphs of

arbitrary genus and whose morphisms are built out of contractions and edge deletions. The category



G, is the full subcategory of G consisting of graphs of genus g, and Theorem 1.1 would follow from
this result. Unfortunately, that preprint contained a critical mistake, and the categorical graph

minor theorem remains a conjecture.

Acknowledgments: The authors would like to thank Melody Chan, Jim Davis, Dan Dugger, Steven

Sam, Paul Seymour, Dev Sinha, and Karen Vogtmann for valuable conversations.

2 Graph categories

We begin by fixing terminology and conventions about graphs and trees and defining all of the
various categories of decorated graphs with which we will work in this paper. The reader may want

to skim this section at first and refer back to it as needed.

2.1 Graphs

A directed graph is a quadruple (V, A, h,t), where V and A are finite sets (vertices and arrows),
and h and ¢ are maps from A to V' (head and tail). We will always assume that our directed graphs
are nonempty. A graph is a quintuple (V, A, h,t,0), where (V, A, h,t) is a directed graph and o is
a free involution on A such that hoo =t. An orbit of ¢ is called an edge. A graph is connected if
it is possible to move from any vertex to any other vertex via a sequence of adjacent vertices. The
genus of a connected graph is the number of edges minus the number of vertices plus one. A tree
is a connected graph of genus 0. We will write |G| to denote the number of edges of G.

Given a pair of graphs G = (V, A, h,t,0) and G’ = (V' A, h/,t',0’), a weak contraction
¢ : G — G is given by a map

G VUA-V UA

satisfying the following properties:

o If p(a) € A', then h' o p(a) = poh(a), t' o p(a) = pot(a), and o’ o p(a) = poo(a).
e The preimage of every arrow arrow is a single arrow.
e The preimage of every vertex is a nonempty connected subgraph.

Note that the third condition implies that a maps to a vertex if and only if o(a) maps to a vertex;
the edges that map to vertices are called contracted edges. If FF C G is a subgraph, we write
G/F to denote the graph obtained from G by weakly contracting each component of F'.

For any graph G = (V, A, h,t,0), we define the topological realization Top(G) by first taking
the CW-complex with 0-cells given by V', 1-cells given by A, and attaching maps given by h and
t, and then taking the quotient by the action of o on this CW-complex. We note that a weak
contraction ¢ : G — G’ induces a map Top(y) : Top(G) — Top(G’), making Top a functor from

the category of graphs with weak contractions to the category of topological spaces.



We define a contraction ¢ : G — G’ to be a weak contraction with the additional property
that the preimage of every vertex is a tree. If ¢ : G — G’ is a contraction and G is a graph of genus
g, then so is G’. We denote by G, the category whose objects are connected graphs of genus g and
whose morphisms are contractions. Note that the weak contraction from G to G/F is a contraction

if and only if F is a forest (that is, each component of F' is a tree).

2.2 Trees

The definitions in Sections 2.2 and 2.3 will be used only in Section 3, where we prove Theorem 1.1.
A rooted tree is a pair consisting of a tree and a vertex, which is called the root. The vertex set
of a rooted tree is equipped with a natural partial order in which v < w if and only if the unique
directed path from v to the root passes through w (so the root is maximal). A leaf of a rooted tree
is a minimal vertex with respect to this partial order.

For any vertex v, we define a direct descendant of v to be a vertex covered by v in the
partial order. A planar rooted tree is a rooted tree along with a linear order on the set of direct
descendants of each vertex v. This induces a depth-first linear order on the entire vertex set of
the tree. A contraction of rooted trees is a contraction of trees that preserves the root, and a
contraction of planar rooted trees is a contraction of rooted trees with the additional property
that, if v comes before w in the depth-first order, then the first vertex in the preimage of v comes
before the first vertex in the preimage of w. Let RT and P7T be the contraction categories of rooted

trees and planar rooted trees, respectively.

Remark 2.1. Barter [Bar| defines the category RT whose objects are rooted trees and whose
morphisms are pointed order embeddings on vertex sets (embeddings compatible with the partial
order), along with the category PT whose objects are planar rooted trees and whose morphisms
are pointed order embeddings that preserve the depth-first linear order. In [PR19, Proposition 2.4,
we prove that RT is equivalent to R7°P, and a similar argument shows that PT is equivalent to

PT°P. We will make use of Barter’s work, via these equivalences, in Section 3.

Finally, we will need a labeled version of the above definitions. Let S be a finite set. We
define an S-labeled planar rooted tree to be a triple (T, v,¢), where (T, v) is a planar rooted
tree and /¢ is a function from the set of vertices of T to S. The most naive way to define a
contraction ¢ : (T,v,¢) — (T",v',¢') of labeled planar rooted trees would be to say that it is a
contraction of planar rooted trees with the property that the pullback of ¢ along ¢ is equal to £.
This, however, is not quite what we want. If ¢ : (T,v) — (T',v') is a contraction of planar rooted
trees and ¢* : (T’,v") — (T, v) is the corresponding pointed order embedding under the equivalence
of Remark 2.1, we want to impose the condition that the pullback of ¢ along ¢* is equal to £'. The
proof of [PR19, Proposition 2.4] tells us that ¢*(w’) = max ¢~ (w’), so the appropriate condition
for o : (T,v,£) — (T",v', ') to be an S-labeled contraction is that ¢ (w') = ¢(max ¢~ (w')) for all
w’ € T'. Equivalently, we say that a vertex w of T is ¢p-maximal if u < w for all vertices u with
o(u) = p(w), and we say that ¢ is an S-labeled contraction if and only if ¢’ o p(w) = ¢(w) for all

p-maximal vertices w.



2.3 Rigidified graphs

Given a nonempty connected graph G, a spanning tree for GG is a subgraph which contains all
of the vertices and is a tree. A rigidified graph of genus g is a graph of genus g along with a
choice of spanning tree and an ordering and orientation (i.e. distinguished arrow) of each of the
g extra edges that are not in the spanning tree. Equivalently, fix once and for all a graph R,
with one vertex and ¢ loops, called the rose of genus g. Then a rigidified graph of genus g is a
quadruple (G,T,v,T), where G is a graph of genus g, (T',v) is a planar rooted spanning tree of G,
and 7 : G — R, is a contraction whose contracted edges are precisely the edges of T'.

We denote by PG, the category whose objects are rigidified graphs of genus g and whose mor-
phisms are contractions that restrict to contractions of planar rooted trees (in particular, only edges
in the spanning tree can be contracted) and are compatible with the order and orientations of the
extra edges. We use the letter P in the notation because PGy = PT. The point of this defini-
tion is that rigid graphs are graphs with just enough extra structure to eliminate all nontrivial

automorphisms.

2.4 Reduced graphs

Most of the definitions in Sections 2.4 and 2.5 will be used only in Section 7, where we discuss
connections to outer automorphism groups of free groups. Fix a graph G. An edge of G is called a
bridge if deleting the edge increases the number of connected components. For any vertex v, the
valence of v is defined to be the number of arrows a with h(a) = v. We call a graph reduced if
it has no bridges and no vertices of valence 2. We also consider the unique graph with one vertex
and one edge to be reduced, even though the vertex has valence 2. Intuitively, the idea is that any
connected graph may be obtained from a reduced graph by subdividing edges and “uncontracting”
bridges, and there are finitely many isomorphism classes of reduced graphs of any fixed genus. For
example, there are two reduced graphs of genus 2 up to isomorphism, namely the rose Ry = oo and
the melon O.

Remark 2.2. If G is reduced and ¢ : G — G’ is a contraction, then G’ is also reduced. For
example, all contractions with domain equal to the melon are either automorphisms or maps to the

rose, and all contractions with domain equal to the rose are automorphisms.

We define G 1eq to be the full subcategory of G, whose objects are reduced graphs. In the next
section, we will want to talk about the nerve of this category, but one can only define the nerve of
a small category. For this reason, we choose a list Gy, ..., G, that includes a unique representative

small

of each isomorphism class of reduced graphs of genus g, and we let G red be the full subcategory of

Ggred With objects G1,...,G,. Thus g;l?jél is a small category that is equivalent to Gg reqd-

2.5 Marked reduced graphs

If G is a graph of genus g, a marking of GG is an equivalence class of contractions from G to the
rose Ry, where ¢ : G — Ry is equivalent to ¢’ : G — Ry if and only if the induced maps Top(v))

7



and Top(¢') on topological realizations are homotopy equivalent. We will denote the equivalence
class of ¥ by [¢)]. A marked graph of genus g is a pair (G, [¢]), where G is a graph of genus g
and [¢] is a marking of G. We observe that the set of all markings of G is a torsor for Out(F,). A
contraction from (G, [¢]) to (G', [¢']) is a contraction ¢ : G — G’ such that [¢)] = [0’ o ¢]. We
define outer category O, to be the category whose objects are marked reduced graphs of genus g
and whose morphisms are contractions. The group Out(Fy) acts on Oy in a natural way, fixing the
graph but changing the marking.

As in Section 2.4, we would like to define a small subcategory of O, that is equivalent to O,.
We will do this in two subtly different ways, which we now describe. Recall that we have chosen
representatives Gy, ..., G, of the isomorphism classes of reduced graphs of genus g. Let (’);man be
the full subcategory of O, consisting of objects of the form (G, [¢;]) for some ¢ and any marking
[1;] of G;. Note that there are still isomorphisms between distinct objects of O;man. Specifically, if
[¢] is a marking of G and ¢ : G — G is a nontrivial automorphism of G, then [¢)] # [¢ o ¢], but
v : (G, [¢]) = (G, [ o)) is an isomorphism. To eliminate this phenomenon, we choose for each G;
a representative of each Aut(G;) orbit in the set of markings of G;, and we define (’);my to be the

subcategory of O, generated by these objects. Note that the natural inclusions
tiny small
O C O™ C Oy

are both equivalences.

Example 2.3. There is only one reduced graph of genus 1 up to isomorphism, namely the cycle
Ry. A marking of R; is the same as an orientation of the loop. The category (’)ﬁmall has two
objects, related by the action Out(F;) = Ss, corresponding to the two choices of marking of Rj.
Neither object has nontrivial automorphisms. The category Oiiny has only one object, and it has

no nontrivial automorphisms. We discuss the nerves of these categories in Example 7.6.

The advantage of working with (’)Zma“ is that the action of Out(Fy) on Oy restricts to an action
on O;man, where it acts freely on the set of objects. The advantage of working with O;iny is that it

is a poset category in the following sense.

Proposition 2.4. If (G, [¢]) and (G',[']) are objects of OL™ | then

[ Morgyuimy (G, [¥)), (G' [¥]))] < 1.

Furthermore, if there exists a morphism in both directions, then (G',[¢']) = (G, [¢]). In particular,
the set of objects of O;iny admits a poset structure with (G, [']) < (G, [¢]) if and only if there exists
a morphism from (G, [¥]) to (G',[¢']).

Proof. If ¢ < 1, the proposition is trivial, so we assume that g > 2. We begin by proving the
proposition when G = G’. In this case, the proposition says that, if p is an automorphism of G and
Top(p) is homotopic to the identity, then p must in fact be equal to the identity. This is proved in
[Zim96, Lemma 1].



Next we consider the case where G # G’. Suppose that [¢)'] is a marking of G’ and @1, ¢ :
G — G’ are contractions with [¢)' o p1] = [¢)' 0 p9]. Since Top(¢)') is a homotopy equivalence, this
implies that Top(y;) is homotopic to Top(p2). By [SV87, Lemma 1.3|, ¢1 and ¢y differ by an
automorphism p of G'. We know that Top(p) is homotopic to the identity, therefore p is equal to
the identity by the previous paragraph. Thus @1 = @2, as desired. O

3 Local Noetherianity

The purpose of this section is to prove Theorem 1.1, which says that Rep(Gg®) is locally Noetherian

for any Noetherian commutative ring k.

3.1 Grobner theory of categories

Let C be an essentially small category and x an object of C'. We define C, to be the set of equivalence
classes of morphisms out of z, where f € More(z,y) is equivalent to g € More(x,y') if there exists
an isomorphism A from y to 3 such that ho f = g. The set C, comes equipped with a natural

quasi-order defined by putting
f <g < there exists a morphism h with ho f = g.

Note that it is possible to have f < g and g < f even if the targets of f and g are not isomorphic,
hence < is only a quasi-order. An infinite sequence fy, f1, fo, ... of a quasi-oredered set is called bad
if there is no pair of indices i < j such that f; < f;. The category C is said to satisfy property (G2)
if, for every object x of C, C, admits no bad sequences. The category C is said to satisfy property
(G1) if, for every object z of C, C, admits a linear order < that is compatible with post-composition
in the following sense: if f,g € Mor¢(z,y), h € More(y, z), and f < g, then ho f < hog. The
category C is called Grobner if it satisfies properties (G1) and (G2) and has no endomorphisms
other than the identity maps.

Remark 3.1. Sam and Snowden [SS17] explain that the motivation for properties (G1) and (G2)
is deeply rooted in Grobner basis theory from commutative algebra, with < playing the role of
the natural divisibility order on monomials and < playing the role of a term order such as the

lexicographic order.

Let C and C’ be categories and let ® : ' — C be a functor. We say that ® satisfies property
(F) if, for all objects x of C, there exists a finite collection of objects y1, ..., y, of C’ and morphisms
fi + @ = ®(y;) such that, for any object y of C' and any morphism f : z — ®(y), there exists a
morphism ¢ : y; — y with f = ®(g) o f;. We say C is quasi-Grobner if there exists a Grobner
category C and an essentially surjective functor ® : ' — C satisfying property (F).

The motivation for these definitions comes from the following two theorems, both of which are

of fundamental importance in our work.



Theorem 3.2. [SS17, Proposition 3.2.3| If ® : C — C’ has property (F) and M is a finitely generated
C'-module, then ®*M 1is a finitely generated C-module.

Theorem 3.3. [SS17, Theorem 1.1.3] If C is quasi-Grébner and k is a Noetherian commutative
ring, then Repy(C) is locally Noetherian.

3.2 The category of rigidified graphs of fixed genus is Grobner

We begin with the following translation of Barter’s work to our setting.
Theorem 3.4. The category PT°P = PGP of planar rooted trees is Grébner.
Proof. Barter proves that PT is Grobner [Bar|, and the same is true of P7°P by Remark 2.1. [

Our goal in this section is to extend Theorem 3.4 to the category PGP for arbitrary genus g.

We begin with the following corollary of Theorem 3.4.
Corollary 3.5. For any natural number g, the category PGP satisfies property (G1).

Proof. Fix arigidified graph (G, T, v, 7) of genus g. We need to define a linear order on (PGP) G 1,0,7)
that is compatible with post-composition. Let ® : PG, — PT denote the forgetful functor, which

induces a poset map

(I)(G’,T,v,T) : (ngp)(G,T,v,T) - (PTOP)(T,v)'

A key property of this map is that, if
1,00 (G, T W, 1) — (G, T,v,7)

represent different classes in (PGP) (g 1,0,r), then their classes remain different in (P7°F) 7).
Choose any linear order <g on (PGgP)(q 1,0,r) With the property that @1, ) is (weakly)
order-preserving. In order to establish property (G1), assume that ¢ and @9 are as above with
[p1] <¢ [¢2], and that
’QZ} . (G”,T”,U”,T”) N (G,,T/,’U,, 7_/)

is any contraction. Since ® (g 7, 7 is order-preserving, ®(g 1.v.7)[01] 27 @G 10,7)[P2), and by the
observation in the previous paragraph, it must be a strict inequality. By definition of <7, this

implies that @ 1,701 0 ¥] <7 @G 10702 0 Y], and therefore that [p1 0 Y] <G [w2 0 1] O

Our next task is to prove that PGP satisfies property (G2). We begin by stating a version of
Kruskal’s tree theorem for labeled planar rooted trees. Let S be a finite set. If (T, v, ¢) and (77,0, ¢)
are S-labeled planar rooted trees, we define (T7,v',¢') < (T, v,£) if there exists a contraction from
(T,v,0) to (T",v',¢'). This defines a quasi-order on the set of isomorphism classes of S-labeled

planar rooted trees.

Theorem 3.6. Let S be a finite set. The quasi-order on the set of isomorphism classes of S-labeled

planar rooted trees admits no bad sequences.

10



Proof. After using Remark 2.1 to translate between order embeddings and contractions, the case
where S is a singleton is proved in [Bar, Lemma 10]. On the other hand, the theorem is proved
for general S, but with rooted trees instead of planar rooted trees, in [Dral4, Theorem 1.2]. Both
proofs are essentially the same, and are in fact modeled on the original proof of Nash-Williams for
unlabeled rooted trees [NW63]. These arguments can be trivially modified to cover the result stated

above. O

The following corollary is a relative version of Theorem 3.6. The case where S is a singleton is
proved in |Bar, Theorem 9|. However, it turns out that the proof is greatly simplified by allowing

labels, as we demonstrate below.

Corollary 3.7. Let S be a finite set and let (T,v,¥) be an S-labeled planar rooted tree. The set
(PTS")(1,0,0) admits no bad sequences.

Proof. An element of (Pﬁp)(T’v’Z) is represented by a pair consisting of an S-labeled planar rooted
tree (T',v',¢') and a contraction ¢’ : (T',v',¢') — (T,v,f). Let V be the vertex set of T, let
U := 5 x (VU{0}), and define a U-labeled planar rooted tree (17,0, ¢};) by putting

(0'(w"), ' (") if w' is ¢-maximal

(¢'(w'),0) otherwise.

Suppose that ¢ : (77,0, ¢') — (T,v,0) and " : (T", 0", ") — (T,v,{) represent two elements
of (PTS") (1w, and let (T',0',4;;) and (T”,v",£f;) be the corresponding U-labeled planar rooted
trees. We have ¢’ < ¢” with respect to the quasi-order on (PTg") (1, ) if and only if there exists
an S-labeled contraction 1 : (T, v" ") — (T",v', ') such that ¢ = ¢/ 01). On the other hand, we
have (17,0, ¢;;) < (T",v",¢;) with respect to the quasi-order on isomorphism classes of U-labeled
planar rooted trees if and only if there exists a U-labeled contraction ¢ : (T",v", ¢f;) — (T', v, ;).

We claim that an S-labeled contraction 1 is a U-labeled contraction if and only if ¢” = ¢’ 0 4.
The easiest way to see this is to use Remark 2.1 to translate from contractions to pointed order
embeddings, as the statement becomes tautological in that setting. This implies that any bad
sequence in (P7'§p)(T,v,g) induces a bad sequence of isomorphism classes of U-labeled planar rooted

trees, and Theorem 3.6 tells us that no such sequences exist. O

Let S = {0,1}29. Given a ridigified graph (G,T,v,7) of genus g, we construct an S-labeled
planar rooted tree (T, v, ¢) as follows. Recall that 7 induces an ordering and an orientation on the g
extra edges of G. For each 1 < i < g, let wy;_; be the vertex at which the i*" extra edge originates
and let wy; be the vertex at which the i*® extra edge terminates. Then for each vertex w and each

1 < j < 2g, define the j'" component of £(w) to be 1 if w > w; and 0 otherwise.
Lemma 3.8. Let (G, T,v,7) and (G',T',v', ") be rigidified graphs of genus g, and let (T,v,¥) and
(T, 0", 0') be the associated S-labeled planar rooted trees. Let ¢ : (T,v) — (T",v") be a contraction of

planar rooted trees. Then ¢ induces a contraction of rigidified graphs if and only if it is compatible
with the S-labeling.
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Proof. On one hand, ¢ induces a contraction of rigidified graphs if and only if p(w;) = w;. for all
j. On the other hand, ¢ is compatible with the S-labeling if and only if, for all p-maximal vertices
w, w>wj <= p(w)> w}.

Assume first that ¢ induces a contraction of rigidified graphs, and let w be a p-maximal vertex.
If w > wj, then p(w) > ¢(w;) = wj. Conversely, if p(w) > w}, then w lies above that unique
p-maximal preimage of w}, which in turn lies above w;.

Assume next that ¢ is compatible with the S-labeling. For any j, we want to show that

p(w;) = w;-. To begin, let u; be the unique ¢-maximal preimage of w;-. Then
p(uj) = wh = u; > w; = wj = p(u;) = p(w;).

Assume for the sake of contradiction that ¢(w;) # w;-, and let z; be the p-maximal preimage of
@(w;). Then we have that the label of z; agrees with that of ¢(w;), which must be 0 in the j-th
coordinate by our assumption. But this would then force z; to not be bigger than w;. This directly

contradicts maximality of z; in the preimage of ¢(w;). O
Corollary 3.9. For any natural number g, the category PGP satisfies property (G2).

Proof. Fix a rigidified graph (G,T,v,7) of genus g, and let (T,v,f) be its associated S-labeled
planar rooted tree. We need to prove that the set (ngp)(GT’v,T) admits no bad sequences. By
Lemma 3.8, such a bad sequence induces a bad sequence in (PTgp)(T,M), and Corollary 3.7 says

that no such sequences exist. O
We are now ready to prove the main result of this section.
Theorem 3.10. For any g > 0, the category PGP is Grobner.

Proof. This follows from Corollaries 3.5 and 3.9, along with the fact that rigidified graphs have no

nontrivial automorphisms. O

3.3 The category of graphs of fixed genus is quasi-Grébner
Lemma 3.11. The forgetful functor ® : PGP — Gg¥ is essentially surjective and has property (F).

Proof. Essential surjectivity is clear. For any genus g graph G, we need to choose a finite collection
of genus ¢ rigidified graphs (G;, T;, v;, 7;) along with contractions ¢; : G; — G such that, for every
genus ¢ rigidified graph (G',T',v', 7') and every contraction ¢ : G' — G, there exists an index 7 and
a contraction ¢ : (G',T",v',7") = (G;, Ty, v;, 7;) such that ¢ = ¢; 0 1.

For our rigidified graphs (G;, T;,v;, ;) and our contractions ;, we will choose a representative
of every possible isomorphism class of such structures whose number of edges is at most |G| + g.
Since there is a finite number of rigidified graphs with a fixed number of edges and finitely many
contractions between any two graphs, there are only finitely many such choices.

Let (G',T',v',7') and ¢ be given, and let E’ be the set of edges of G’ that are contracted by ¢.
Let ¢ be the canonical contraction from (G',7",v',7) to (G'/(E'NT"),T"/(E'NT"),v',7"). Tt is

12



clear from the definition that ¢ factors through . It thus remains only to show that the number of
edges of G'/(E'NT") is at most |G| + g. Indeed, we have |E'| = |G'| — |G| and |T'| = |G’| — g, thus
|[E'NT'| > |G'| — (|G| + g). From this it follows that |G'/(E'NT")| = |G| — |E'NT'| < |G|+g. O

Proof of Theorem 1.1. By Theorem 3.10 and Lemma 3.11, G, is quasi-Grébner. Theorem 1.1 then

follows from Theorem 3.3. O

4 Smallness and growth

We define what it means for a module over Gg¥ to be generated in low degree, and see what this

tells us about its dimension growth.

4.1 Generation degree, smallness, and smallishness

Fix a Noetherian commutative ring k. For any genus g graph G, let P; € Repy(Gg¥) be the
principal projective module that assigns to a genus g graph G’ the free k-module with basis
Morg, (G’,G). Note that a module M is finitely generated if and only if it is isomorphic to a
quotient of a finite sum of principal projectives. We say that a module M € Repy(Gg") is finitely
generated in degree < d if we only need to use principal projectives corresponding to graphs

with d or fewer edges. The following lemma illustrates this notion in a specific example.

Lemma 4.1. Let E be the Gg*-module that takes a graph G to the free k-module with basis indexed
by edges of G, with maps given by the natural inclusions of bases. The Gg° -module E®* is generated

in degrees < g+ 1.

Proof. For any graph G of genus g, E®(G) has a basis given by an ordered i-tuple of edges, and
any such basis element is in the image of the map induced by a contraction ¢ : G — G’ if and only if
none of the distinguished edges are contracted by ¢. If G has more than g+ edges, then it has more
than ¢ edges that are not loops, therefore for any given i-tuple, one can find a non-distinguished

edge to contract. O

We say that a module M is d-small if it is a subquotient of a module that is finitely generated
in degrees < d. We say that M is d-smallish if it admits a filtration whose associated graded is

d-small.
Proposition 4.2. If M is d-smallish for some d, then M is finitely generated.

Proof. Choose a filtration of M such that the associated graded gr M is d-small. Theorem 1.1
implies that gr M is finitely generated. This means that there is a finite collection G1,...,G, of
genus g graphs, along with elements v; € gr M (G;), such that, for any genus g graph G, the natural
map

@ @ k-ei,— grM(G)

i=1 p:G—G;
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taking e; , to ¢*v; is surjective. For each i, choose an arbitrary lift o; € M(G;) of v;. The natural

map
T
B P k-ep— MG
i=1 p:G—G;
taking e; , to ©*0; is also surjective, which means that M is finitely generated. O

Proposition 4.3. Let k be a field, and suppose that M € Repy(Gg®) is d-smallish. Then there
exists a polynomial far(t) € Z[t] of degree at most d such that, for all G, dimy M(G) < fum(|G]).

Proof. We may immediately reduce to the case where M is the principal projective Pgs for some
genus g graph G’ with d edges. For any G, a contraction from G to G’ is determined, up to
automorphisms of G’, by a choice of |G| — d edges of G to contract. The number of such choices is
(191), so dimy, Per (@) < | Aut(@)|(19)). O

4.2 Subdivision

Fix a graph G of genus g, a natural number r, and an ordered r-tuple e = (ey,...,e,) of distinct
directed non-loop edges of G. For any ordered r-tuple m = (mq,...,m,) of natural numbers, let
G(e,m) be the graph obtained from G by subdividing each edge e; into m; edges. The number m; is
allowed to be zero, and we adopt the convention that subdividing e; into 0 edges means contracting
e;. For each i, the graph G(e,m) has a directed path of length m; where the directed edge e; used
to be, and we label the vertices of that path v?, o

Let OI be the category whose objects are linearly ordered finite sets and whose morphisms are
ordered inclusions. Every object of OI is isomorphic via a unique isomorphism to the finite set [m]
for some m € N. For any m € N, let [m] denote the corresponding object of the product category
or".

Our goal in this section is to define a subdivision functor &g, : OI" — Qgp and prove that
®¢ . has property (F). We define our functor on objects by putting ®¢.(m]) := G(e,m). Let

f=(f1,..., fr) be a morphism in OI" from [m] to [n]. We define the corresponding contraction
DG e(f) 1 Gle,n) = Gle,m)

by sending v} to v{, where s is the maximal element of the set {0}U{j | fi(j) <t} € {0,1,...,m;}.

For any n € N, let |n| := > n,;. We say that a contraction ¢ : G(e,n) — G’ factors nontriv-
ially if there exists a non-identity morphism f : [m] — [n] in OI" and a contraction ¢ : G(e,m) — G’
such that ¢ =1 o ®g.(f).

Proposition 4.4. The subdivision functor ®¢.e : OI" — Gg¥ has property (F).

Proof. Property (F) says exactly that, for any graph G’ of genus g, the set of contractions from
some G(e,m) to G’ that do not factor nontrivially is finite. Let ¢ : G(e,m) — G’ be given. We
have

|G(e,m)| = |G| + |m| —,
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so ¢ must contract |G| + |m| —r — |G'| edges. If |m| is sufficiently large, then at least one of those
edges must be one of the subdivided edges. We may then factor ¢ nontrivially by first contracting
that edge.

This tells us that, if we are looking for contractions from some G(e,m) to G’ that do not factor
nontrivially, we only need to consider finitely many r-tuples m. The proposition then follows from
the fact that all Hom sets in g;p are finite. O

Proposition 4.3 implies that, if M € Repy(Gg") is d-smallish, the dimension of M (G(e,m)) is
bounded by a polynomial in m of degree at most d. The following corollary to Proposition 4.4 says
that the dimension of M(G(e,m)) is in fact equal to a polynomial in m when each coordinate is

sufficiently large.

Corollary 4.5. Let k be a field, and suppose that M € Repy(G,) is d-smallish. Then there exists
a multivariate polynomial frrg.e(ti, ... tr) of total degree at most d such that, if m is sufficiently

large in every coordinate,
dimy M(G(e,m)) = fu,ge(mi,...,mp).

Proof. Proposition 4.2 tells us that M is finitely generated, though we have no control over the
degree of generation. Theorem 3.2 and Proposition 4.4 combine to tell us that (I)*G,eM is a finitely
generated OI"-module. By [SS17, Theorem 6.3.2, Proposition 6.3.3, and Theorem 7.17.2], this implies
that there exists a multivariate polynomial farq(t1,...,t.) such that, if m € N" is sufficiently large

in every coordinate,
dimg M(G(e, m)) = dimy, @5 M ([m]) = far,gelma, ..., m;).

Proposition 4.3 says that dimy M (G(e,m)) is bounded above by a polynomial of degree d in the
quantity |G(e,m)| = |G| — r + |m/|, thus the total degree of frsce(t1,...,t,) can be at most d. [

4.3 Sprouting

Fix a graph G of genus g, a natural number r, and an ordered r-tuple v := (vy,...,v,) of distinct
vertices of T'. For any ordered r-tuple m = (myq,...,m,) of natural numbers, let G(v, m) be the
tree obtained from G by attaching m; new edges to the vertex v;, each of which has a new leaf as its
other endpoint. We will label the new leaves connected to the vertex v; by the symbols vl-l, ot

Our goal in this section is to define a sprouting functor ¥¢, : OI" — Gg¥ and prove that
U, has property (F). We define our functor on objects by putting Vg .([m]) :== G(v,m). Let

f=(f1,..., fr) be a morphism in OI" from [m] to [n]. We define the corresponding contraction
Veo(f): T(v,n) = T(v,m)

by fixing all of the vertices of T, sending v! to v{ if fi(s) = t, and sending v! to v; of ¢ is not in the

image of f;.
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As in Section 4.2, we say that a contraction ¢ : G(v,n) — G’ factors nontrivially if there
exists a non-identity morphism f : [m] — [n] in OI" and a contraction ¢ : G(v,m) — G’ such that
Y = ¢ o \IJT,y(f)'

Proposition 4.6. The sprouting functor ®¢, : OI" — Gg* has property (F).

Proof. The philosophy of the proof is nearly identical to that of Proposition 4.4. Property (F) says
exactly that, for any graph G’ of genus g, the set of contractions from some G(v,m) to G’ that do

not factor nontrivially is finite. Let ¢ : G(v,m) — G’ be given. We have
G, m)| = |G|+ |ml,

so ¢ must contract |G|+ |m| —|G’| edges. If |m| is sufficiently large, then at least one of those edges
must be one of the newly sprouted edges. We may then factor ¢ nontrivially by first contracting
that edge.

This tells us that, if we are looking for contractions from some G(e,m) to G’ that do not factor
nontrivially, we only need to consider finitely many r-tuples m. The proposition then follows from
the fact that all Hom sets in G, are finite. O

The proof of the following corollary is identical to the proof of Corollary 4.5, so we omit it.

Corollary 4.7. Let k be a field, and suppose that M € Repy(Gg¥) is d-smallish. Then there exists
a multivariate polynomial furco(ti,...,t) of total degree at most d such that, if m is sufficiently

large in every coordinate,
dimy M (G(v,m)) = fugo(m,...,my).

4.4 Combining small modules

This section is devoted to stating and proving a lemma that we will need in Section 6.3.
Let H = (V, A, h,t,0) be a graph of genus h with no loops. For each vertex v € V, fix a natural
number g, and a Ggr-module N,. Let g :== h+ )., g,. Consider the Gg’-module N defined by

putting
NG = P QN(¥ (),
Pv:G—HveV
where the sum is over all weak contractions ¢ : G — H with the property that ¢~!(v) has genus
gy for all v. If ¢ : G — G’ is a contraction, the induced map N(G') — N(G) kills the ) summand
unless all of the edges contracted by ¢ are also contracted by . If this is the case, then there is an
induced weak contraction ¢/ : G’ — H whose fibers are contractions of the fibers of 1), and these

contractions induce a natural map from the ¢ summand of N(G) to the ¢’ summand of N(G’).

Lemma 4.8. In the above situation, suppose that N, is d,-small for all v € V, and let d :=
|H|+ >, dy. Then the Gg*-module N is d-small.
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Proof. We may immediately reduce to the case where each N, is a principal projective. That is,
for all v € V, we have N,, = Pg, for some fixed graph G, of genus g, with d, edges. The k-module
N(G) is spanned by classes indexed by tuples of the form

(V5 po)vev,

where ¢ : G — H is a weak contraction with the property that ¢~ (v) has genus g, for all v and
@y : Y1 (v) = G, is a contraction. The set of edges of G that are not contracted by any of the
maps ¢, has cardinality d and includes all of the loops. Thus, if G has more than d edges, at least
one edge e is a non-loop that gets contracted by one of the maps ¢,. It follows that the class may

be pulled back from the corresponding class in N(G/e). O

5 Homology of configuration spaces

The purpose of this section is to prove Theorem 1.2. Our main technical tool is the reduced
Swiatkowski complex of An, Drummond-Cole, and Knudsen [ADCK19]. Sections 5.1 and 5.2 are

reproduced from [PR19, Sections 3.1 and 3.2] for the reader’s convenience.

5.1 The reduced Swigtkowski complex
Let G = (V, A, h,t,0) be a graph, and let R be the integral polynomial ring generated by the
edges of G. For any vertex v, let

Ay :={a€ Al h(a) =0},

and let S(v) denote the free Rg-module generated by the set A, U {0}. We equip S(v) with a
bigrading by defining an element of A, to have degree (1, 1), () to have degree (0,0), and an edge to
have degree (0,1). Let §(v) C S(v) be the submodule generated by the elements () and a — @’ for
all a,a’ € A,. We equip S(v) with an Re-linear differential 8, of degree (—1,0) by putting

00 =0 and d(a—d):= ([a] - [d]),
where [a] denotes the edge {a,o(a)}. We then define the reduced Swiatkowski complex

S(@) = Q) Sw),

veV

where the tensor product is taken over the ring R¢; this is a bigraded free Rg-module with a
differential 0.

For any graph G and any natural number n, let UConf, (G) denote the configuration space of
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n distinct unordered points in Top(G). Let Ho (UConf,(G)) denote the bigraded abelian group

H,(UConf(G)) := @D Hi(UConf,(G); Z).
(im)

Theorem 5.1. [ADCK19, Theorem 4.5 and Proposition 4.9] If G has no isolated vertices, then

there is an isomorphism of bigraded abelian groups

H,(UCont,(G)) = H.(5(G)).

Remark 5.2. If G is connected, then the only way that G can have isolated vertices is if G has one

vertex and no edges. In this case, Hq(S(G)) = S(G) = Z, concentrated in bidegree (0,0), whereas
H,.(UConf,(G)) = Z®Z, concentrated in bidegrees (0,0) and (0,1). Thus the reduced Swigtkowski

complex fails only to recognize that the degree zero homology of UConf;(G) is nontrivial.

5.2 Functoriality

Suppose that we have two graphs G = (V, A, h,t,0) and G' = (V', A’ W' t',0’) along with a con-
traction ¢ : G — G’. There is a natural map of differential bigraded modules

7 S(G) = 5(@),

which induces a map

¢* : H;(UConf,(G"); Z) — H;( UConf,(G);Z)

by passing to homology [ADCK19, Lemma C.7|. To describe ¢*, we first consider the case where
the number of edges of G is one greater than the number of edges of G’; we call such a contraction

¢ a simple contraction. Let e = {ag, a1} denote the unique contracted edge, and write
0= h(ag) = t(ar) and 1 =t(ap) = h(ay).
Let
W' i= gle) = p(0) = p(1) € V.
We have a canonical ring homomorphism Rg — Rg along with an Rg-module homomorphism
&R S) - & Sw).
v'eVi\{w'} veV~{0,1}

Given a’ € A’ ,, let a € AgLI Ay be the unique arrow mapping to a’. We then define an R¢-module

w’

homomorphism

S(w') — 5(0) ® S(1)
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by the formula

(a —ap)®0 if h(a)
D ®(a—ay) if h(a)

0
1.

D=0 and a

Tensoring these two maps together, we obtain the homomorphism @* : S(G') — S(G), and it is
straightforward to check that this homomorphism respects the differential. Arbitrary contractions
may be obtained as compositions of simple contractions, and the induced homomorphism is inde-
pendent of choice of factorization into simple contractions. To summarize, we have the following

result.

Theorem 5.3. [ADCK19| There is a bigraded differential G°-module that assigns to each graph G
the reduced Swigtkowski complex §(G) The homology of this bigraded differential Gg*-module is the
bigraded Go*-module that assigns to each graph G the bigraded Abelian group H.(UConf*(G)).

5.3 Smallness

We are now ready to prove Theorem 1.2 and Corollary 1.3.

Proof of Theorem 1.2. Given a graph G and a pair of natural numbers ¢ and n, let g(G)m be the
degree (i,n) summand of the reduced Swiatkowski complex. We will show that the GgP-module
taking G to the abelian group S (G)in is generated in degrees < g + i+ n. Theorem 5.3 says that
the GgP-module taking G to H;( UConf,(G)) is a subquotient of this module, so this will imply
that it is (¢ + ¢ + n)-small.

The group S (G)in is generated by elements of the form

)

C:=e1 - ep_j ®(aj0—aj1) & ® 0,

Jj=1 vE{v1,..,v}
where e, ..., e,_; are edges (not necessarily distinct), vy, ..., v; are vertices (distinct), and, for each
Js ajo,aj1 € Ay;. For a particular ¢ of this form, we will call {v1,...,v;} the set of distinguished

vertices. Without loss of generality, we may assume that there is some integer r with 0 < r <4
such that v; is adjacent to some distinguished vertex (possibly itself) if and only if j <. We may
also assume that, if j < r, t(a;1) is distinguished. If not, then ¢ may be written as a difference of
classes of this form.

We call an edge e a distinguished edge if one of the following five conditions hold:
e ¢ is a loop

e e connects two distinguished vertices

e c—¢ forsome k <n—1

e ¢ = [ajo] for some j <1
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e ¢ = [a;1] for some j <.

We will now argue that there are at most g + ¢ + n distinguished edges. Let | be the number of
loops that are not at distinguished vertices. Let H be the induced subgraph on {v1,...,v,}, which
in particular contains all of the loops that are at distinguished vertices. Since H is a subgraph of G
and is missing [ loops, the sum of the genera of the components of H is at most g — [, and therefore
H has at most r + g — [ edges. (Equality is achieved if and only if » = 0 and G is obtained by
attaching g loops to a tree, in which case H is empty and [ = g.) This means that the total number

of distinguished edges is at most
I+(r+g-0D+n—-0i)+i+(i—7r)=g+i+n.

Let G be given with |G| > g + ¢ + n. Since there are at most g + i + n distinguished edges, we
may choose an edge e which is not distinguished. Let G’ := G/e be the graph obtained from G by
contracting e, and let ¢ : G — G’ be the canonical simple contraction. Let e} be the image of e in

G', v the image of v; in G', aj, the image of ajo in G', and a; the image of a;1 in G'. Let

(=€ -el ® (afo —aly) ® ® 0 € g(G/)i,n.
j=1 V'@ {u) .0}
We claim that ¢ = ¢*(’.

If e is not incident to any vertex vj;, this is clear. The interesting case occurs when e is incident
to one of the distinguished vertices. Assume without loss of generality that it is incident to wvq,
and let w be the other end point of e. Consider the unique a € A4,, with [a] = e (this uniquely
characterizes a because e is not a loop). Applying the map ¢* replaces each €} with e;. When
j > 1, it replaces ag-o with ajo and az-l with aji. It replaces a}, with a19 — a and af; with a1 —a.
This means that it replaces ajy — a; with ajo — a;1, and therefore that ¢*(" = (.

We thus conclude that every element of S(G);, is a linear combination of elements in the images

of map associated with simple contractions; this completes the proof. O

Proof of Corollary 1.3. Let T,;, € Repy(Gg”) be the module that assigns to each graph G the
torsion subgroup of H; ( UConf, (G); Z). By Theorem 1.2, Ty ; ,, is a submodule of a finitely generated
module, and is therefore itself finitely generated. We may then take dg; , to be the least common

multiple of the exponents of the generators. O

6 Kazhdan—Lusztig coefficients

For each graph G = (V, A, h,t,0), let Rg be the C-subalgebra of rational functions in the variables
{z, | v € V'} generated by the elements { ! ‘ v #Ew adjacent}, and let X¢g := Spec Rg. The

Ty —Tw

ring R is called the Orlik-Terao algebra of G and the variety X¢ is called the reciprocal plane
of G. We will be interested in the intersection homology group IHs;(X¢) with coefficients in the

complex numbers.
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If ¢ : G — G’ is a contraction, we obtain a canonical map from IHs;(X¢) to IH9;(X¢), and
these maps compose in the expected way [PY17, Theorem 3.3(1,3)]. The purpose of this section is
to study the G°P-module IHs; that takes G to IH2;(X¢), and in particular to prove Theorem 1.5.

6.1 Orlik-Solomon algebras

For each G, let OS®*(G) be the Orlik-Solomon algebra [OS80| of the matroid associated with G,
with coefficients in the complex numbers. For any natural number i, we will denote the linear dual
of OS*(G) by OS;(G). For the purposes of this paper, we will need to know four things about the
Orlik-Solomon algebra:

e OSY(G) is spanned by classes z. indexed by the edges of G, with relations z, = z pifeand f

are parallel and z. = 0 if e is a loop.
e OS*(Q) is generated as a C-algebra by OS*(G).

e If G’ is a contraction of G, we obtain a functorial map OS*(G) — OS*(G’) by killing the
generators indexed by contracted edges. This in turn induces a map OSe(G’) — OSe(G).

e If GG is the disjoint union of G; and Gg, then OS*(G) =2 0S*(G1) ® OS*(G2).
By the third bullet point above, OS; is a Gg’-module for any natural number i.
Lemma 6.1. For any natural number i, OS; is (g + i)-small.

Proof. Recall from Lemma 4.1 the Gg¥-module E that assigns to any graph the C-vector space with
basis given by the edges. By the first two bullet points above, OS*(G) is a quotient of the i*" tensor
power of E(G)*, therefore OS; is a submodule of E¥*. Lemma 4.1 says that E®* is generated in
degrees < g + i, therefore OS; is (g + i)-small. O]

6.2 The spectral sequence

A subgraph F' C G with the same vertex set is called a flat of G if the graph G//F has no loops.
The rank of F' is defined as the number of vertices minus the number of connected components, and

the corank of F, denoted crk F', is the number of connected components minus 1. The following
theorem was proved in [PY17, Theorems 3.1 and 3.3|; see also [PR19, Theorem 4.2].

Theorem 6.2. For any graph G and natural number i, there is a first quadrant homological spectral

sequence E(—,i) in the category of Gg*¥-modules converging to IHs;, with

E(G,i)p,= P 082 po(F) & IHyi_o)(Xcyr)-
crk F'=p

If o : G — G is a contraction, the induced map E(G', i), , — E(G, i), , kills the F-summand unless
F contains all of the edges contracted by . In this case, the image of F in G’ is a flat F' of G',
and G'/F' is canonically isomorphic to G/F. The map takes the F-summand of E(G, 1), , to the
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F'-summand of E(G',i)},, by the canonical map OSyi—p—q(F) — OSzi_p_q(F') tensored with the
identity map on IHy;_q)(Xq/F)-

6.3 Smallness

Proof of Theorem 1.5. By Theorem 6.2, IHs; admits a filtration whose associated graded is isomor-

1

phic to the infinity page of F(—,i), therefore it is sufficient to show that, for all p and ¢, E(—,1i),,

is (2¢ — 1 4 g)-small.
The set of flats of GG is in bijection with equivalence classes of weak contractions with source G
for which the target has no loops, where two such weak contractions are equivalent if they differ by

an automorphism of the target. We therefore have

Aut(H)

EGi), = D D | & 05k W) &) 1Haig)(Xn)

| Vert(H)|=p-+1 w:WGe;(H veVert(H) %—p—q
If we fix H and require that the graph v~!(v) has genus g,,, Lemmas 4.8 and 6.1 together imply that
E(—, i), is d-small, where d = |[H| +2i —p—q+ >, go. If h is the genus of H, then |H| =p+h
and ), g» = g—h, so d = 2i+ g —q. Since this is independent of the choice of H or of the numbers
gv, We can conclude that E(—, i)})’q is (2i + g — q)-small.

Finally, we note that IHy;_q)(Xy) = 0 unless 2(i —¢q) < p or ¢ = i and p = 0 [EPWI6,
Proposition 3.4], while OS2;_p_q(F) = 0 unless p + ¢ < 2i. In particular E(—,i);yo = 0 for all p,
which implies that each E(—,4);, is (20 — 1+ g)-small. O

Remark 6.3. The module IHy = FE(—, O)[lm is the constant module taking every graph to C and
every morphism to the identity. This module is g-small rather than (g — 1)-small, which is why
we required that ¢ be positive in the statement of Theorem 1.5. Indeed, one can see that the last

sentence of the proof fails when p =g =1 = 0.

Example 6.4. When g = 1, Theorem 1.5 and Corollary 4.5 combine to say that the i** Kazhdan-
Lusztig coefficient of the n-cycle should eventually agree with a polynomial in n of degree at most
2i. In fact, it is equal to [PWY16, Theorem 1.2(1)]

zi1<n_z_2>(7z)

Example 6.5. Let Gy(ai,...,a441) be the genus g > 0 graph obtained by taking the graph with

so our result is sharp.

two vertices and g + 1 edges between them and subdividing the i*® edge into a; pieces. Theorem
1.5 and Corollary 4.5 say that the first Kazhdan Lusztig coefficient of Gy(ai,...,ag+1) should

eventually agree with a multivariate polynomial of total degree at most g +1 in a1,...,a441.
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The first Kazhdan—Lusztig coefficient is equal to the number of corank 1 flats minus the number
of rank 1 flats [EPW16, Proposition 2.12|. If a; > 1 for all 4, this is equal to

g+1 g+1 w g+1

Hai+z <21> —Zai.

=1 i=1 =1
Thus our result is again sharp.

7 Outer Category

The purpose of this section is to describe how one may use the category G req to compute cohomology

groups of Out(F,) with arbitrary coefficients.

7.1 Nerves of categories

We begin by briefly reviewing some facts about small categories and their nerves. Let C be a small
category. Then we define the nerve |C| of C to be the geometric realization of the simplicial set
defined as follows. The O-simplices are in bijection with the objects of C, while the i-simplices for

1 > 0 are in bijection with i-tuples of morphisms

(f1- -5 fi)

such that, for each 0 < 7 <4, the codomain of f;;1 agrees with the domain of f;. For each 7 > 0
and 1 < j <+ 1 the face map 9; is defined by

8](f177f2): (fl’afz—l) 1f]:7,_|_1
(fi,- -y fi—2, fi—10 fj, fj+1,- -, fi) otherwise.

The degeneracy map o is defined by

oi(fo,-- fi) = (fos-- s fi—1id, fi, o fi)s

where id is the identity map on the domain of f;_; (or the codomain of f;).

Remark 7.1. We immediately see that there is a canonical homeomorphism |C| 2 |C°P|. A functor
between two categories induces a map between their nerves, and an equivalence of categories induces

a homotopy equivalence between the nerves.

Let k be a commutative ring, and let & € Rep;(C) be the module that takes every object to
the 1-dimensional vector space k and every morphism to the identity map. The following standard

result can be found, for example, in [Web07, Theorem 5.3].

Theorem 7.2. There is a canonical graded k-algebra isomorphism Extg . ) (k, k) = H*(|C|; k).
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7.2 Outer category and the cohomology of Out(F)

We begin with the following result, which relies heavily on Culler and Vogtman’s work on outer
space [CV86].

Theorem 7.3. The nerves |05 and (O™ are contractible.

Proof. The categories (’)zmau and O5™ are equivalent, therefore Remark 7.1 tells us that it is
sufficient to prove that |O5™] is contractible. By Proposition 2.4, O™ is a poset category, which
implies that |(’);iny\ is homeomorphic to the order complex of the poset structure on the set of
objects. This order complex is called the spine of outer space, and it is known to be contractible

[CV86, Corollary 6.1.2 |. O

Recall that we have an action of the group Out(Fj) on the category (’)Zman, which induces an

action on the nerve. We also have a functor ® : O;man — @gsmall

Jred given by forgetting the marking,

and this functor induces a map @, : |O;ma”\ — |g;1§g}11| of nerves.

Proposition 7.4. The action of Out(Fy) on |(’);ma“] is free and proper, and ®, : ]O;mall\ — ]g;f?gél

1s the quotient map.

Proof. The fact that the action is free and proper follows from the fact that it is free on the set of
objects (which correspond to O-simplices) and each group element acts by a simplicial map. To see
that @, is the quotient map, we need to show that it is surjective and its fibers coincide with the
orbits of Out(F,). This follows from the fact that Out(F,) acts transitively on the set of markings
of a reduced graph of genus g. O

Corollary 7.5. The nerve |QZ‘?:(§1| is a classifying space for the group Out(Fy).

Example 7.6. Let us consider the very simple case where ¢ = 1, which we began discussing
in Example 2.3. The category O;iny has only one object (an oriented loop) and no nontrivial
morphisms, so its nerve is a point. The category O?mau has two objects, namely a loop with two
different orientations, and these two objects are uniquely isomorphic. The nerve of (’)imall is an
infinite-dimensional sphere S*°, and the group Out(F;) = S acts via the antipodal map with
quotient RP*°. The category gf?gél has a single object with automorphism group So, so its nerve

is homeomorphic to RP*, which is a classifying space for Ss.

Corollary 7.7. For any commutative ring k, we have Ext}, op )(E, k) = H*(Out(Fy); k).

Repk (gg,red
Proof. To compute Ext;{epk (g;pmd)(@, k), we may replace Gy eq With the equivalent category g;f?é‘él'
The result then follows from Remark 7.1, Theorem 7.2, and Corollary 7.5. O

Proof of Theorem 1.6. Given a pair of modules M € Rep,(Gg”) and N € Repy,( ;ied)7 we will write
M to denote the restriction of M to Repk(ggﬁed) and N' to denote the extension of N by zero to
Repy(GsP). The functors M +— M and N + N' are exact and the former is left adjoint to the
epk(gg’f’ream’ N) 2 Exty gor) (M, NY). If we apply this fact with M = k'

and N = k, we see that Theorem 1.6 is equivalent to Corollary 7.7. O

latter, therefore Exty,
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7.3 A sample calculation

We now use Corollary 7.7 to compute the first cohomology of Out(F») = GL(2;Z) with coefficients
in an arbitrary field k. In particular, we illustrate the extent to which the representation theory of
finite groups (namely automorphism groups of graphs) can be used to aid our calculations.

As in Section 2.4, there are exactly two reduced graphs of genus 2 up to isomorphism, namely
the rose oo and the melon @. The automorphism group of the rose is Dy, while the automorphism
group of the melon is S3 x So. Let 1, @9, and 3 be the three contractions from the melon to
the rose obtained by cyclically permuting the edges and then contracting the middle one. Up to
post-composition by an automorphism of the rose, every contraction is of this form.

Let Py € Repk((QSchlll)OP) be the principal projective module corresponding to the rose, and
consider the surjection Py, — k that sends every basis element to 1. Let K be the kernel of this

homomorphism. Applying the functor Hom(—, k) gives us the long exact sequence
0 — Hom(k, k) — Hom(Ps, k) — Hom(K, k) — Ext'(k, k) — Ext!(Px, k).

An element of Hom(Px, k) is determined by its value on the identity morphism of co, which implies
that the first map Hom(k, k) — Hom(Px, k) is an isomorphism. The fact that P, is projective
implies that Ext!(Py,k) = 0, thus Hom(K, k) — Ext!(k, k) must also be an isomorphism. We
therefore want to compute Hom(K, k).

An element of Hom(K, k) is a pair?
(f,g) € Homp, (K(00), k) x Homg, x5, (K (D), k)

satisfying the condition that, if we pre-compose g with any of the three inclusions K (co) — K(D)
induced by @1, 2, and ¢3, we obtain f.

Let’s start by computing Homg, xs, (K (D), k) and Homp, (K(c0), k). The group S3 x Sz acts
freely on the set of contractions from the melon to the rose with two orbits, which we will call
the untwisted contractions and the twisted contractions. The untwisted contractions consist
of the orbit that includes the three maps ¢;, and the twisted contractions consist of untwisted
contractions followed by an automorphism of the rose that fixes one of the two loops and reverses the
orientation of the other loop. We therefore have Py (D) = k[S3 x So] @ k[S3 X S| as representations
of S35 x So. The space of homomorphisms from P, (D) to k is 2-dimensional, with a basis given
by the homomorphisms that take the sum of the coefficients of the twisted or untwisted maps.
Applying Homg, x5, (—, k) to the short exact sequence 0 — K(D) — Pao(D) — k — 0 and noting

that Ps (D) is a projective representation of S3 x Sy, we obtain the long exact sequence
0 — Homg, x5, (k, k) — Homg, x5, (Pso (D), k) — Homg, x5, (K (D), k) — Ext§, s, (k, k) = 0.

Since the abelianization of S3 x S5 is So X S5, we have dim Ext}%X& (k,k) = 2 if k has characteristic

4Here we are using the symbol k£ to denote the 1-dimensional trivial representations of both D4 and S3 X Ss.
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2 and 0 otherwise. Hence dim Homg, s, (K(D), k) = 3 if k has characteristic 2 and 1 otherwise. A
similar argument for the rose tells us that dim Homp, (K (o0), k) = 2 if k has characteristic 2 and 0
otherwise.

Let’s find explicit bases for our Hom spaces. Let h; : K(D) — k be the homomorphism that
adds the coefficients of the untwisted maps in K (D) C Py (D). This homomorphism is well defined
and nonzero for any field k. Let hg : K(O) — k be the homomorphism that adds the coefficients
of C3 x Sy C S3 x Sy for both the twisted and untwisted maps and let hg : K(D) — k be the
homomorphism that adds the coefficients of S3 x {id} C S3 x Sy for both the twisted and untwisted
maps. Each of these homomorphisms is well defined if and only if the characteristic of k is 2, in
which case it is straightforward to check that {h1, he,hs} is a basis for Homg,x g, (K (D), k). Let
f1: K(00) — k add the coefficients of the untwisted automorphisms of the rose (those generated by
horizontal and vertical reflections), and let fy : K (c0) — k add the coefficients of the automorphisms
that keep the left loop on the left and the right loop on the right. Each of these homomorphisms
is well defined if and only if the characteristic of k is 2, in which case it is straightforward to check
that {f1, fo} is a basis for Homg,x s, (K (D), k).

Finally, we observe that h; restricts to f; and he restricts to fo under all three inclusions of
K (00) into K (D). On the other hand, the restriction of h3 to K (co) fails to be Dy-equivariant and
depends on the choice of inclusion of K (oo) into K(D). We therefore conclude that

i 1 )2 if char(k) =2
dim H " (Out(Fr); k) =
0 otherwise.

Remark 7.8. This result can also be obtained by working directly with a presentation for Out(Fs),
such as the one in [Vog02, Section 2.1|. This presentation can be used to compute the abelianiza-
tion, and H'(Out(F); k) is isomorphic to the vector space of group homomorphisms from the

abelianization to k.
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