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ABSTRACT: We provide a first-principles analysis of the energy fluxes in the oceanic internal wave field. The resulting
formula is remarkably similar to the renowned phenomenological formula for the turbulent dissipation rate in the ocean,
which is known as the finescale parameterization. The prediction is based on the wave turbulence theory of internal gravity
waves and on a new methodology devised for the computation of the associated energy fluxes. In the standard spectral rep-
resentation of the wave energy density, in the two-dimensional vertical wavenumber–frequency (m–v) domain, the energy
fluxes associated with the steady state are found to be directed downscale in both coordinates, closely matching the fines-
cale parameterization formula in functional form and in magnitude. These energy transfers are composed of a “local” and
a “scale-separated” contributions; while the former is quantified numerically, the latter is dominated by the induced diffu-
sion process and is amenable to analytical treatment.Contrary to previous results indicating an inverse energy cascade
from high frequency to low, at odds with observations, our analysis of all nonzero coefficients of the diffusion tensor pre-
dicts a direct energy cascade. Moreover, by the same analysis fundamental spectra that had been deemed “no-flux” solu-
tions are reinstated to the status of “constant-downscale-flux” solutions.This is consequentialfor an understanding of
energy fluxes, sources, and sinks that fits in the observational paradigm of the finescale parameterization, solving at once
two long-standing paradoxes that had earned the name of “oceanic ultraviolet catastrophe.”

SIGNIFICANCE STATEMENT: The globalcirculation models cannot resolve the scales of the oceanic internal
waves. The finescale parameterization of turbulent dissipation, a formula grounded in observations, is the standard tool
by which the energy transfers due to internal waves are incorporated in the global models. Here, we provide an inter-
pretation of this parameterization formula building on the first-principles statistical theory describing energy transfers
between waves at different scales. Our result is in agreement with the finescale parameterization and points out a large
contribution to the energy fluxes due to a type of wave interactions (local) usually disregarded. Moreover, the theory
on which the traditional understanding of the parameterization is mainly built, a “diffusion approximation,” is known
to be partly in contradiction with observations.We put forward a solution to this problem,visualized by means of
“streamlines” that improve the intuition of the direction of the energy cascade.

KEYWORDS: Ocean; Gravity waves; Nonlinear dynamics; Ocean dynamics; Mixing; Fluxes; Isopycnal coordinates;
Nonlinear models

1. Introduction
The intent of this paper is to provide a theoretical analysis of

the downscale energy transfers associated with the “finescale
parameterization”for internalwave breaking (Gregg 1989;
Henyey 1991; Polzin et al. 1995). While there is some underlying
discussion of theoretical constructs in those works, application of
those theoretical considerations is incomplete and the model is,
in essence, heuristic (Polzin 2004a; Polzin et al. 2014).

The crux of the issue is that there is an essential incompatibil-
ity between the internalwave spectrum articulated in Garrett
and Munk (1972),which is separable in frequency and vertical
wavenumber, versus analytic theory summarized in Müller et al.
(1986), which is based upon extreme scale separated interactions
and emphasizestransfersin verticalwavenumber.We have

summarized this intrinsic incompatibility as the “oceanic ultravi-
olet catastrophe” (Polzin and Lvov 2017).1

There are two aspects to the oceanic ultraviolet catastro-
phe. First, that theoretical scenario depicts a transfer of inter-
nal wave energy from large to small vertical scales at constant
horizontalwavenumberand consequently from high fre-
quency to low (McComas and Müller 1981a). With such trans-
fer, a source of internalwave energy athigh frequency is
required for a stationary balance.However,a systematic
review of the nonlinear transfers and possible energy sources
of the oceanic internal wave field (Polzin and Lvov 2011) was

Supplemental information related to this paper is available at
the Journals Online website:https://doi.org/10.1175/JPO-D-21-
0121.s1.

Corresponding author: Giovanni Dematteis, dematg@rpi.edu

1The parallelwith the ultravioletcatastrophe ofblack body
radiation is merely in the fact that an assumption of spectral equi-
partition (of energy density in frequency space, in one case, and of
action density in vertical wavenumber space, in the other) leads to
a nonphysicalresult:if energy is equipartitioned in the normal
modes of a black body radiator, classical physics predicts the radi-
ated energy is infinite. If wave action is uniform in vertical wave-
number,the Fokker–Planck theory predicts that the Garrett and
Munk spectrum is associated with an equilibrium state,with no
fluxes between different scales.
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not able to identify the required source of energy at high fre-
quency (see also Le Boyer and Alford 2021;Whalen et al.
2020;Kunze 2017;Ferrari and Wunsch 2009).Second,the
Garrett and Munk 1976 (GM76) version of the oceanic spec-
trum,which was given “universal” status in Munk (1981),is
not just a stationary state in that (Müller et al. 1986) theoreti-
cal paradigm: Having no gradients of action in vertical wave-
number,GM76 is a no flux solution of the Fokker–Planck
equation,which meansno transportof energy to smaller
scales. Yet, that same theory makes a prediction for the spec-
tral power laws ofstatistically stationary states thatare in
good agreementwith observed oceanic spectra,Polzin and
Lvov (2017, their Fig. 37).

These theoreticalissues stand in contrast to the finescale
parameterization.The finescale parameterization originates
with Gregg (1989) as an empirical statement about the ability
of 10 m first difference estimates of vertical shear to act as a
proxy for the dissipation ratee. It is distinct from both ray
tracing simulations (Henyey et al. 1986) and from formal the-
ory using a characterization of the scale separated interactions
(McComas and M̈uller 1981a). In Polzin et al. (1995) one finds
further data/modelcomparisons,an attempt to address nor-
malization issues, an accounting for departures from the Gar-
rett–Munk (GM) frequency distribution using an argument
forwarded in Henyey (1991) and,importantly,an attempt to
place the discussion in the spectral domain rather than using
the 10-m first difference metric. In so doing there is an asser-
tion that the energy transfers in horizontal wavenumber keep
pace with those in verticalwavenumber such thatspectral
transports do not project strongly across frequencies.Up to
this point the finescale parameterization isinterpreted as
a modelfor the refraction of high-frequency waves in near-
inertial shear. It can be dissected into one part high-frequency
energy,one partnear-inertialshear variance,and one part
refraction rate proportional to the high-frequency wave aspect
ratio. Apart from concerns about the constant out front, these
are the same basic ingredients provided by formal theory for
extreme scale separated iterations and summarized with a Fok-
ker–Planck (or generalized diffusion)equation (Polzin and
Lvov 2017).In Polzin (2004a) one finds a fundamentally dis-
tinct interpretation being articulated,that the same finescale
parameterization can be viewed as a closure for local,rather
than scale separated, interactions. This characterization is used
to find solutions to a boundary source decay problem in Polzin
(2004b) and these solutions are employed to write a dynami-
cally based mixing recipe for the decay of internaltides in
Polzin (2009).

We address the concerns raised by the oceanic ultraviolet
catastrophe with theoreticalwork undertaken in the last
decade.These include numericalestimates thatare under-
pinned by first principles (Polzin and Lvov 2011),which sug-
gesta far more nuanced view:there is an obvious role for
interactions that are “local” in nature in addition to those
that are “extreme scale separated.” This provides an inter-
pretation that parallels the two (local versus extreme scale
separated)interpretationsof the finescale parameteriza-
tion. Moreover, there is a growing appreciation thatthe
assessment of the Garrett and Munk spectrum as a no-flux

solution is incomplete (Dematteis and Lvov 2021). Here we
build upon the results of Dematteis and Lvov (2021) to ana-
lyze the energy fluxesin the oceanic internalwave field
and provide a firstprinciples explanation ofthe finescale
parameterization.

The finescale parameterization is

Pfinescale5 8 3 10210 f
f0

N2cosh21 N=f
N2

0 cosh21 N0=f0

3 Ê 2 3 Rv 1 1( )
4Rv

2
Rv 2 1 W kg21, (1)

in which P is the downscale energy transport rate, to be parti-
tioned between kinetic energy dissipation ratee and work
done againstgravity in a buoyancy flux.The factor Ê 5
0:1 cpm=mc is a length scale metricof the shear spectral
density, with vertical wavenumber mc defined by a transition in
spectral slope (Gargett et al. 1981) to a wave breaking region:

mc

o
2m2Ek m( )dm 5 2p

10m21 (2)

with horizontal kinetic energy density Ek(m). The factor Rv is
the ratio of the gradient potential energy spectrum to the gra-
dient horizontalkinetic energy spectrum.Finally, f0 and N0
are normalization constants for the Coriolis frequency f and
the buoyancy frequency N. The parameterization uses values
corresponding to the localpendulum day at32.58 latitude
and 3 cph.Formula (1) is normalized so that for GM76,for
which R v 5 3, Ê 5 1, for f 5 f 0 and N 5 N 0 one has
Pfinescale5 8 3 10210W kg21 .

For our calculations,we use a modified version ofthe
GM76 spectrum, which is consistent with the stationary solu-
tion of the kinetic equation in the scale invariantregime,
found in Lvov et al. (2010). Denoting the wavenumber by p 5
(k, m), k being the two-dimensional horizontal projection and
m the verticalprojection,whose magnitudes are denoted by
k 5 |k| and m 5 |m|, the GM76 model is multiplied by
k=k* 0:31, with m* 5 4pN= bN0( ), k* 5 cm*f =N (where c 
3 comes from the constraint thatthe modified version pre-
serves the same energy level as GM76):

e m,v( ) 5 2f
p

1
v v2 2 f 2

2m*
p

1
m*

2 1 m2 b2NN0E
k
k*

0:31
,

(3)
where E is the nondimensional GM76 energy level. Following
the instructions of Polzin et al.(1995),numerical integration
of the modified spectrum providesÊ 5 2:46 and Rv 5 2.48,
the two parameters needed to calculate Eq.(1) for the spec-
trum (3), and thus

Pfinescale→ 5:9 3 1029W kg21: (4)

The corresponding firstprinciples estimate ofDematteis
and Lvov (2021), reviewed and analyzed in section 3, is

PDL → 9:0 3 1029 W kg21: (5)
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These estimates essentially have aÊ 2N2f scaling in com-
mon,although the theoretical estimate will have small expo-
nent corrections due to the modification to the scaling of the
GM76 spectrum [see Eqs. (11) below]. The finescale parame-
terization has a logarithmic prefactor of cosh21(N/f) while the
theoretical estimate leading to Eq. (5) contains a power series
in f/N. The relative agreement of the first principles estimate
PDL with Pfinescalerequires interpretation and discussion.

The first principles analysis provides us with more than the
simple downscale transport rate (5). The downscale direction
of the energy fluxes, both in vertical wavenumber and in fre-
quency [in agreement with the recent results by Eden et al.
(2019)], and a novel explanation of the no-flux paradox in the
Fokker–Planck paradigm, will allow us to propose a solution
to the oceanic ultraviolet catastrophe.The estimate springs
from the wave turbulence kinetic equation governing trans-
fers within a spectrum of amplitude modulated waves, and fits

within a generalpicture schematized in Fig.1, to which we
will refer in the restof the manuscript.The energy ofthe
large-scale inertialoscillations and tides (on the order ofa
cycle per day) is transferred between interacting internal grav-
ity waves.The mechanism of nonlinear resonant interaction
between internalwave triadsis assumed to dominate the
scene in an “inertial range” (in the sense of turbulence, i.e., a
range of scaleswhere no othereffectssuch as forcing or
damping are present) extending down to the buoyancy fre-
quency scales (several cycles per hour) and, in terms of verti-
cal scales, spanning from the ocean depth (several kilometers)
to the wave breaking scale (around 10 m).These resonant
transfers result in a downscale energy flux both in frequency
and vertical wavenumber. Part of this transfer can be approxi-
mated as a pointwise flux due to the scale-separated induced-
diffusion process. The streamlines of the diffusive part of the
flux (analytically obtained,see section 4) are represented as

FIG. 1. Energy pathways in the internal-wave band.Tides and inertialoscillations force the near-inertialmodes
(v ∼ f).The PSI decay mechanism is believed to transfer a large amount of energy to larger wavenumbers,at fre-
quency f, providing a plausible physical mechanism for the bottom edge atv 5 f to act as an energy source. Resonant
interactions between triads of internal waves dominate the spectral energy transfers in the inertial range (inner black
box in the figure).These energy fluxes are in part diffusive,shown as solid red (analytically obtained) streamlines,
and in part local, shown (qualitatively) as yellow dashed arrows. The energy transferred to scales smaller than 10 m
(m . m max) and frequencies above the buoyancy frequency (v . N) is assumed to excite hydrodynamic instabilities
that result in a 3D turbulent field. The end result is dissipation of turbulent kinetic energy and diapycnal mixing due to
the work of buoyancy fluxes. The power exiting the wave field, per unit ofv at the m . mmaxedge, and per unit of
m at thev 5 N edge, respectively, is represented in the two insets, result of the theoretical calculation presented in
section 2. In the figure, dashed lines represent finite spectral jumps.
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solid red lines in Fig. 1.The contribution to the flux by local
interactions,which is given by finite “jumps” between sepa-
rate points in Fourier space,is represented (qualitatively,in
the schematic of Fig. 1) by yellow dashed arrows. Last, turbu-
lent instabilities at smaller scales mark the end of the cascade
of energy, which finally goes into the work of buoyancy fluxes
againstgravity,generating diapycnalmixing,and into dissi-
pated turbulent kinetic energy.

The stationary state identified in Lvov et al.(2010) is sup-
ported by a mixture of both local and scale-separated interac-
tions. In section 2 we consider both types of interactions and
separate the (nonrotating) transports (5) into the respective
fluxes,in quantitative agreementwith the finescale para-
meterization. We locate the separation between the two types
of interactions,and we show thatthe scale-separated part
reduces correctly to the diffusive prediction.

We then overview the internalwave kinetic equation and
discuss questions of stationary states, inertial ranges, and con-
vergence of the associated integrals in section 3.In section 4
we revisit the energy flux theory of the Fokker–Planck equa-
tion in the induced-diffusion limit.We analyze the relation
between horizontaland vertical wavenumberfluxes and
discuss how these transfers project onto the frequency domain,
crucially requiring an energy source atlow frequency.In
section 5 we summarize our results and suggest a way out of
the paradox referred to as the oceanic ultraviolet catastrophe.

2. Local vs scale-separated contributions to the
energy fluxes
We consider the internal wave kinetic equation in the scale-

invariantregime,consisting ofneglecting the effects ofthe
Coriolis force.An idealized stratified ocean withoutspatial
inhomogeneities is assumed,in the isopycnalrepresentation
consisting of the use of the mass densityr as vertical coordi-
nate in place of the water depth z. Thus,k is in units of m21

and m is in units of m3 kg21. The problem is further simplified
by considering a constant stratification profile and an isotropic
wave field in the horizontaldirections.The nonrotating dis-
persion relation of internal waves reduces to

v 5 gk=m, with g5 g= r0N( ), (6)

where g is the acceleration of gravity andr0 is the reference
massdensity.The statisticalquantitiescharacterizing this
homogeneous,horizontally isotropic wave field are the 3D
spectralaction density n(p),the 2D spectralaction density
n(k, m) 5 4 pkn(p), and the 2D spectral energy density
e(k, m) 5 vn(k, m). At convenience, one can switch from the
k–m space representation to thev–m space representation.
The change of coordinates is simply defined by the dispersion
relation (6): n v, m( ) 5 n k, m( )  v=k 21, e v, m( ) 5 e k, m( )
 v=k 21}note that the latter quantity has been used in the
introduction in Eq. (3).

We consider the stationary solution (3),which translates
into a 3D action spectral density of the form

n p( ) 5 Ak 2am2b , a 5 3:69, b 5 0: (7)

The internal wave kinetic equation expresses the time evo-
lution of the 3D action due to three-wave nonlinear resonant
interactions,in a way that willbe detailed in section 3.The
equation can be written as

n p
t 5 I loc( ) 1 I sep( ), (8)

according to the classicaldecomposition putforward by
McComas and Bretherton (1977) into localand scale-sepa-
rated interactions. In particular, the latter kind of interactions
is dominated,in a spectrum close to equilibrium,by the
induced diffusion (ID) process,which allows one to simplify
its contribution to an actual diffusion such that

I sep( )
p i

aij
n p
p j

, (9)

where aij is the diffusion tensor and i,j 5 1, 2,3 denote the
three components of the wavevector p.

Let us consider the inner box delimited by a solid black line
in Fig. 1 and refer to it as the inertial range, denoted by B, in
k–m space rather than in m–v simply for ease of calculation.
Since there are no sources or sinks of energy inside B, one can
write the energy conservation equation in integral form for B, as

d
dt B

e k, m( )dkdm 1 Pin 1 P out 5 0,

P in 5
B in

F s( )ds, P out 5
B out

F s( )ds,
(10)

where s is a parameterization of the boundary B 5 Bin
B out, with B in the part of the boundary where F . 0 (energy
entering B) and Bout the part of the boundary where F , 0
(energy exiting B). The term F is the power per unit of s flow-
ing across the boundary,so that Pin . 0 and P out , 0 repre-
sent the total power going in and out of B, respectively, due to
three-wave nonlinear interactions.

The fluxes in Eq.(10) can be computed directly from the
collision integral,i.e., the r.h.s.of the wave kinetic Eq.(8).
The details on the theory and numerics of the method can be
found in Dematteis and Lvov (2021),section 5c.In addition,
the (MATLAB) numericalcodescan be found as online
supplementalmaterial.An accurate (numerical) counting of
resonancestransferring energy pastthe B out part of the
boundary leads to the following formulae for the horizontal
(in the k direction,across the upper edge atvmax in Fig. 1)
and vertical (in the m direction, across the right edge at mmax
in Fig. 1) outgoing fluxes, respectively:

Pout,h 5
mmax

mmin
dm Fout,h m( ),

Pout,y5
N=g( )mmax

f =g( )mmax
dk Fout,y k( ),

F out,h m( )
F out,y k( ) 5 4 p N2

g V0A( )2 k722a
maxCh

k622ammaxCy
,

Ch 5
1

f =N
ds Th s( ), Cy5

1

mmin=mmax
dsTy s( ),

(11)
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where A is the prefactor of the action spectrum (7),V0 is a
dimensionalprefactor of the matrix elements of the kinetic
equation [see Eq.(14) for the explicit expressions of A and
V0], and Th and Ty, plotted in Fig.2 (see also supplemental
material), are nondimensional transfer integrands quantifying
how far from the boundary the outgoing energy is coming
from. In Fig. 2, the top panels are for horizontal energy trans-
port across the boundary atv 5 N, which via the dispersion
relation maps to kmaxm( ) 5 mN=g. The lower panels are for
verticalenergy transportacross the boundary atk 5 k max.
Figures 2a and 2b depict the procedure of double integration
of the collision integrand that leads to the horizontalflux.
Figure 2c is a remapping of Fig. 2b and quantifies the
energy transferred beyond k 5 kmax from different distan-
ces from the boundary.The analogous calculation is repre-
sented in Figs.2d–f for the verticaltransportbeyond the
m 5 mmax edge.Note that we use the variable in brackets
to denote different functions Th/y(s), s ∈ [0,1] (Figs. 2c,f)

and Th/y(s ), s ∈ [0, ‘] (Figs. 2b,e). As one might expect, the
contribution to the outgoing flux coming from the immedi-
ate vicinity of the boundary (k/kmax 5 1 in Fig. 2c and m/
mmax5 1 in Fig. 2f) is due to the ID process:a wave close
to the boundary is scattered rightacross it, while at the
same time absorbing a much smaller wavenumberthat
“induces” the scattering.This part of the contribution is
represented as the red area in Figs.2c and 2f,for the hori-
zontal and the vertical fluxes,respectively.These red areas
have an analyticalexpression in terms ofthe coefficients
of the diffusion tensor, respectively of akk n p=k and
amk n p=k . The terms involving n p=m are identically
zero since the analyzed spectrum,Eq. (7) does not depend
on m.Looking at Figs.2a and 2d,one finds that these con-
tributions come from the integration of integrable singulari-
ties given by the ID asymptotics, which were quantified
numerically in Dematteis and Lvov (2021). We provide the
following newly obtained analytical result:

FIG. 2. Construction of the transfer integrals (a)–(c) Ch and (d)–(e) Cyrelative to the energy flux at the upper and right edges of the iner-
tial box in Fig. 1, respectively. The contributions in (a) and (d) are computed numerically, except for the ID singularity that is computed
analytically. Integration of the functions in (a) and (d) gives the (nondimensional) transfer integrands in (b) and (e), respectively, where
the red area denotes the contribution that comes from the scale-separated region, dominated by ID. This red area, representing the diffu-
sive part of the energy fluxes, is an explicit function of the diffusion coefficients, as shown in the legend. Panels (c) and (f) are a remapping
of (b) and (e), respectively, upon suitable change of coordinates; in this physically more intuitive representation, the contribution from the
right corner at 1 represents energy transferred across the boundary from a neighborhood of the boundary itself. Contributions from the
left side of the plot in (c) and (f), instead, are due to large jumps in spectral space. Again, the red area represents the part of the contribu-
tion due to ID scattering.
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akk  8 p 3 5:8e9=2( )2ak62am,
amk  8 p 3 4:0e9=2( )2ak52am2, (12)

that will be explained in more detail in section 4. The flux due
to ID (red areas of Fig.2c,f) is therefore given explicitly by
(minus) the term in round brackets in Eq. (9). Supplementing
the numerical integration of the local interactions by the exact
analytical integration of the ID singularities, one obtains2

Ch  28 p 3 75:4, C y  28 p 3 15:8: (13)

We point the reader to appendix A for details of the calcu-
lation. The computation is performed in horizontal wavenum-
ber variables(verticalwavenumbersare bounded to the
horizontal via the resonant conditions, see section 3), and we
estimate thatthe power series upon which the ID leading-
order approximation is based holds for points with k/kmax.
(1 1 e)21, e 1/16. This is what delimits the red ID region in
Fig. 2c.The ID asymptotics establish thatthe scattering of
point (k, m) via ID interaction results into a pointk 1 1[(
O e( ) , m 1 1 O e√ ), for e ,, 1, as represented in Fig.2d.
With the due changes of variables,this implies that the ID
region for vertical transport is given by the red area in Fig. 2f.
Therefore,we can now interpretboth transfer integrals Ch
and Cyas given by a scale-separated contribution (dominated
by the ID process) and by a local contribution. In particular,
the horizontaltransportcontribution is about96.9% local,
3.1% ID, and the verticaltransportcontribution isabout
89.9% local, 10.1% ID.

Taking into account all interactions and the explicit expres-
sions of V0 and A, Eq. (11) can be rewritten as

Pout,h 5 GCh
1 2 n 1 2 ‘

2b
12 n

f11 nNE 2,

Pout,y 5 GCy
n 1 2 f

N
n

fN11 nE2,

G 5 1
p3

2‘
b

nN12 n
0 b3

c12 n‘ , n5 2a 2 7 5 0:38,

‘ 5 10 m,

(14)

having used V2
0 5 N= 32r0( ), c  3 and A 5 Eb 2r0fm*N0

p3Nk (12n)=2
* }prefactor of the modified Garrett and Munk

spectrum (3),taking into account the change of variables to
isopycnal coordinates and to k–m space. The following values
of the physicalparameters are used:E 5 6.3 3 10 25 is the
GM76 nondimensionalenergy level,b 5 1300 m,‘ 5 10 m,
r0 5 1000 kg m23, N0 5 0.005 24 s21, f 5 2 3 7.3 3 1025 sin(l)
(at latitude l 5 32.58). Moreover, we have used m* 5
4pN= bN0( ) and k* 5 cm*f =N,with c 5 3. The factor c has
been added asa normalization factorto ensure that the
energy level of the modified GM spectrum preserves the same

energy levelof the originalGM76 spectrum,in an effort to
minimize arbitrariness in the choice of k*. Now, we can make
an estimate ofthe dissipated power athigh wavenumbers,
using N 5 N0 and f 5 f0, which gives

Pout,h  23:8 3 10 29 W kg21 ,
Pout,y  25:2 3 10 29 W kg21: (15)

This amounts to a total dissipated power

Pout 5 P h 1 P y  29:0 3 10 29 W kg21: (16)

The integration along the boundaries leading to Pout,h and
Pout,y is represented in the schematic in Fig. 1 and will be dis-
cussed in section 5.Furthermore,we are able to decompose
both horizontal and vertical transfers into local and scale sep-
arated subcontributions, each of which is dominated by a par-
ticular type of interactions:the ID process dominatesthe
scale-separated interactions while the localinteractions are
dominated by triads that are quasi-collinear in the horizontal
plane. This will be illustrated in section 3.

Surprisingly,the ID concept on which much of the under-
standing of internal wave interactions is based turns out to be
quite marginalin the economy of the total energy fluxes.
However, as will be shown in section 4, its analytical tractabil-
ity turns out very useful for the interpretation of the direction
of the energy cascade through scales.

Formulas (16) and (14) can be compared directly with the
result of the finescale parameterization with the same input
spectrum, Eq. (3), the GM76 spectrum modified in such a way
that the high wavenumber power-law behavior matches that
of the stationary solution of the wave kinetic equation,
Eq. (7). As outlined in the introduction,use of the finescale
parameterization formula (1) (Polzin etal. 1995)for such
spectrum yields

Pfinescale 5:9 3 10 29 W kg21: (17)

The consistency between the finescale parameterization
and the first-principles results (14)–(16) willbe discussed in
section 5.

3. The internal-wave kinetic equation and its steady state
The hypotheses that have been made are the following. We

consider a vertically stratified, spatially homogeneous oceanic
internal wave field,expressed in isopycnal coordinates in the
nonrotating,hydrostatic approximation.The verticalstratifi-
cation gradient profile is assumed to be constant and the wave
field isotropic in the horizontaldirections.We also assume
vertical isotropy, i.e., symmetry m ↔ 2m, so that the descrip-
tion can be restricted to the vertical wavenumber magnitude
m requiring that n(k, m) 5 n(k, 1|m|) 1 n(k, 2|m|) 5 2n(k, m)
(standard one-sided vs two-sided spectrum definition on a sym-
metric domain). The nonrotating, hydrostatic dispersion relation
is given by Eq. (6). Finally, we assume zero potential vorticity.

Let us consider an ensemble of random internal waves,in
the joint limit of large box and weak nonlinearity (Zakharov
et al.1992;Choi et al.2005;Nazarenko 2011;Eyink and Shi

2Here and in the following,a factor of 8p is kept separated
from the result of numerical integration of Eq. (18).
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2012;Chibbaro et al. 2018;Deng and Hani 2021). Under the
above assumptions,the following wave kinetic equation,
describing the time evolution of the 3D wave-action spectrum,
is derived (Lvov and Tabak 2001, 2004; Lvov et al. 2010):

n p( )
t 5 I p( ), with

I p( ) 5 8p
k f0

12V0
12

2 dm2m12m2 dv02 v12 v2
kk1k2
D012

2 0 ↔ 1( ) 2 0 ↔ 2( ) dk1dk2 dm1 dm2, (18)

where the term f0
125 n p1( )n p2( ) 2 n p( ) n p1( ) 1 n p2( ) contains

the dependence on the spectrum,double-ended arrows indi-
cate the permutation of indices, and V0

12 is the matrix element
quantifyingthe magnitudeof the nonlinear interactions
between the triad of wavenumbers p, p1, and p2. The calcula-
tion of this interaction matrix elementis challenging,with
early expressions given by Olbers (1973), Voronovich (1979),
Milder (1982),and Cailloland Zeitlin (2000).In the current
manuscript we use the interaction matrix element computed
in Lvov and Tabak (2004) by using the Hamiltonian formula-
tion of Lvov and Tabak (2001).In Eq. (18),the two delta
functions impose the conservation of vertical momentum and
energy in each three-wave interaction. The factor D012comes
from analytical integration of the horizontal momentum delta
function and is proportionalto the area of the triangle with
sides k,k1, and k2. The nonlinear collision integral I p( ) con-
tains all of the information aboutthe nonlinearresonant
energy transfers involving point p in Fourier space, after inte-
grating out the azimuthal angle thanks to horizontal isotropy.

The two independentdelta functionscan be integrated
over reducing the domain ofthe integrand to the resonant
manifold,with two degrees offreedom left.In Fig. 3 two
equivalentrepresentationsof the resonantmanifold are
shown, in the k1–k2 space (top panel) and in the m1–v1 space
(lower panel).In the k1–k2 space,the triangular inequalities
constrain the possible interactions to the so-called kinematic
box,delimited by the colored boundaries in the figure.The
points on these three boundaries identify triads with collinear
horizontalwavenumbers.The infrared (IR) scale-separated
interactions,where ID dominates,are delimited by a dashed
line at k1 5 eor k2 5 e(cf. Fig. 2, top panels). An equivalent
representation of the resonant manifold has m1 and v1 as the
two independent degrees of freedom,as represented in the
bottom panelof Fig. 3. The result is a resonantmanifold
made of six lobes. Each of the collinear boundaries in the top
panelmaps into six distinct curved edges of the same color,
respectively,in the lower panel.In the m1–v1 space,the IR
scale-separated region is mapped into the part of the resonant
lobes to the left of the dashed line (if p1 is the small wavenum-
ber or small frequency in the interaction and p2  p) or into
the small box surrounding the yellow dot (if p1  p, where the
yellow dot denotes p, and p2 ,, p). By the ID asymptotics, in
the m1 coordinate the width of such box is constrained to be
roughly the interval1 2 e√ , 1 1 e√ (see appendix B and cf.
Fig. 2, bottom panels).
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100
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FIG. 3. (top) The resonantmanifold in the space k1–k2, also
referred to as the kinematic box,delimited by the colored collinear
boundaries, where the three horizontal wavenumbers of each interac-
tion are collinear.The corners of the box at points (0, 1) and (1,0)
are the regions with (infrared) extreme scale separation,where the
ID scattering gives the leading-order contribution. (bottom) The res-
onant manifold in the spacev1–m1. Each of the collinear boundaries
in the upper panel maps into six distinct curved edges of the same
color,respectively.The resultis a resonantmanifold made ofsix
lobes. Two of the lobes contribute to the ID leading-order contribu-
tion in the scale separated region (labeled by IR–ID),involving the
interaction ofa smallwavenumber p1 thatinduces the scattering
between the two much larger wavenumbers p (yellow dot in the plot)
and p2(inside the square surrounding the yellow dot). The separation
between the scale separated and the local regions in the two plots are
intended for a delimiting value ofe5 1/16.
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In the nonrotating limit of Eq. (18) all of the factors in the
integrand of I p( ) are power laws in the variables k and m and
therefore it is natural (and general) to restrict the possible sta-
tionary solutions to a power law of the form

n p( ) 5 Ak 2am2b : (19)

This allows us to represent the possible solutions in the 2D
power-law plane a–b and obtain analytical results that could not
be pursued otherwise. Using the scale invariant properties of I p( )
and the ansatz (19), Eq. (18) in stationary conditions reduces to

n k, m( )
t 5 4p

g AV 0( )2k22a15 m| |22b11I a, b( ) 5 0, (20)

expressed for the 2D action spectrum.Here, V0 is a dimen-
sional constant prefactor of the matrix elements and I a, b( ) 5
I k 5 1, m 5 1( )g= AV0( )2 is the nondimensional collision inte-
gral: it is a function of a and b only, that must vanish in order
for the solution to be stationary. It has been shown (Lvov et al.
2010; Dematteis and Lvov 2021) that I(a, b) is a finite (nondi-
vergent) integral only on the segment a ∈ (3, 4), b 5 0. More-
over, on such convergence segmentone findsthat I(a, b)
vanishes at a  3.69,b 5 0, which represents the only well-
defined stationary solution to Eq.(18).This is shown in the
bottom panel of Fig. 4, where the separate contribution of the
scale separated and local regions is made apparent, for differ-
ent values of a ∈ (3, 4) and b 5 0. In particular, we notice that
among the local interactions,those with quasi-collinear hori-
zontal wavenumbergive the largest contribution.In the
top panel of Fig.4,we show the magnitude of the integrand
for the stationary solution,in the kinematic box.The quasi-
collinear regions are delimited by dashed lines and the inte-
grand is there visibly much larger than in the rest of the box.
Therefore,the local contribution is mainly given by triads
close to horizontal collinearity, meaning that in three dimen-
sions the three members of the triad p, p1, p2 lie on the same
vertical plane. As far as the local interactions are concerned,
the results presented in section 2 are obtained by numerical
recursive integration in suitable regions of the kinematic box,
whose result is illustrated in Fig.2,with the same numerical
method used by Dematteis and Lvov (2021).The arrows in
the top panelof Fig. 4 symbolize the action fluxes between
the waves of a triad p, p1, p2: if the integrand at point k1, k2 is
positive, p is “created” in the interaction, and this contributes
to an increase of its content of action in time; if the integrand
is negative,p is “absorbed” in the interaction,and its action
content is depleted. Equation (18) has intrinsic turbulent char-
acter, and so does its stationary state: it is a nonequilibrium solu-
tion with a flux of energy across scales that is constant in time
and directed downscale (toward larger values of k).

It is worth mentioning that the introduction of a minimal
frequency equalto the inertialfrequency f,a maximalfre-
quency equalto the buoyancy frequency N,and of physical
cutoffs at small and large vertical spatial scales has a chance
to regularize the collision integral also for spectra outside the
convergence segment. A detailed and comprehensive analysis
of this issue is subject of current research.

4. Induced diffusion revisited
Although general,the integralformulation (10)may be

hard to visualize. Further simplification of the picture may be
achieved by assuming that the transfer is dominated by triads
with extreme scale separation. In other words, in the decom-
position of Eq.(8) one assumes that Isep( ) .. I loc( ), so that
I  I sep( ), restricting the integration of the r.h.s. of Eq. (18) to

FIG. 4. Both figures are from Dematteis and Lvov (2021).(top)
Representation of the magnitude of the interactions [integrand of
Eq. (18)] for triads with horizontal wavenumbers k 5 1, k1, and k2,
for the stationary solution (a,b) 5 (3.69, 0). The smalltriangle
above k1 5 1, k2 5 0 is the ID-dominated region. The thin regions
delimited from above by a dashed line are the near-collinear
regions.The color maps representthe base-10 logarithm of
the magnitude ofthe contribution,while the left/rightcolor
map denotes negative/positive contributions,respectively.The
arrows depict the stationary balance between different regions
(whose overall sum has to be zero for stationarity), highlighting
the downscale direction of the horizontal flux. (bottom) On the
segment a ∈ (3, 4), b 5 0, breakdown of the contributions to the
collision integralas sum of the scale-separated region,domi-
nated by ID, and the more localcollinear region.The rest of
the unclassified triads gives a subleading contribution. The total
vanishes for a  3.69,the stationary state of the internalwave
kinetic equation (18).
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the IR corners of the kinematic box.Since the early works
(McComas and Bretherton 1977;McComas and Müller
1981b;Müller et al.1986),these scale-separated interactions
have been classified under the three processes of parametric
subharmonic instability (PSI),elasticscattering (ES),and
induced diffusion (ID).In particular,McComas and M̈uller
(1981a) interpreted the GM76 spectrum as resulting from the
stationary balance of a Fokker–Planck equation for the wave
action,derived underthe assumption thatthe ID process
dominatesthe transfers.The ID process involvesa net
exchange of energy between two almost identical wavenum-
bers mediated by a much smaller wavenumber.In the sim-
plest formulation of the ID theory, the attention is focused on
the large wavenumbersand the small-wavenumber,low-
frequency partof the spectrum (the so-called near-inertial
region) is considered as a decoupled independent reservoir
that is given and constant in time. In the system of large wave-
numbers alone, then,one notices that ID implies the scatter-
ing between two neighboring wavenumbers.Neglecting the
fact that the scattering would not occur without the mediation
of the smaller-wavenumber reservoir,this process preserves
wave action in the high-wavenumber region.Note thatthe
wave action can also be interpreted as the “number of quasi-
particles” (or waves),and here one wave is scattered into
another one locally preserving the total “number of waves.”
The ID equation derived in McComas and Bretherton (1977)
is given by Eqs. (9) and (8), setting Iloc( ) 5 0, where the aji (i,
j 5 1, 2, 3) denote the coefficients of the diffusion tensor, with
explicit expressions provided in the appendix therein.For a
simple visualization of the energy flux,here we use a repre-
sentation in the 2D plane k–m (or equivalentlyv–m). Using
the transformation in cylindrical coordinates,horizontal isot-
ropy and vertical isotropy, the ID equation for the 2D action
density gives

n k, m( )
t 5 2= · J n( ) k, m( ),

J n( ) k, m( ) 5 akk
k 2 akk


k 2 akm


m ,

amk
k 2 amk


k 2 amm


m n k, m( ), (21)

where = 5 (/k, /m) and a kk 5 a 11 5 a 22, akm 5 a mk 5
a13 5 a 23 5 a 31 5 a 32, amm 5 a 33. The effects ofa12 and
a21 are here cancelled by assuming horizontalisotropy.
Notice that the 3D action diffusion coefficients contribute
to both advection and diffusion terms for the 2D action in
Eq. (21).

We would like to stress two further points. First, Eq. (21) is
for the wave action density and not for the energy density
because in the high-wavenumber part ofthe spectrum itis
action,not energy,to be conserved in the ID picture, as
explained above.By making the change of variables e(k,m) 5
vn(k, m) one concludes that expressing the same equation for
the energy density implies the presence ofan extra energy
source/sink term that accounts for the absorption/creation of
the member of the triad in the near-inertial reservoir,whose

energy is transferred nonlocally to/from the high-wavenumber
region}a graphical representation of this fact is found, e.g.,
in Fig. 6 of McComas and M̈uller (1981a).For this reason
Eq. (21) is preferably expressed forthe action, but one
can obtain the energy flux simply by using J(e)(k, m) 5
vJ (n)(k, m).

Second, we stress that Eqs. (18) and (21) are not equivalent,
as made clear in section 2. The latter is derived from the for-
mer under the assumption that all of the energy transfers are
scale separated and neglecting the restof the interactions.
This is going to be analyzed below.
a. Closure for the ID energy flux: Nonrotating case

Now, for the Fokker–Planck equation (21) to have the cor-
rect scale-invariant properties of Eq.(20),at the stationary
state,the following consistency conditions must hold for the
coefficients of the diffusion tensor:

akk 5 ckkk62am12b, akm 5 ckmk52am22b,
amm5 cmmk42am32b, (22)

where the cij are constants that in principle can be determined
by straightforward calculation.For instance,explicit expres-
sions of ckk and cmk for the steady state are given in Eq. (12).
The scalings in Eq. (22) are a consequence of the nonrotating
assumption,while Eq. (21) has the same form also in the
presence of background rotation (the rotating case willbe
considered in section 4b). In Eq. (18), the convergence con-
ditions that technically restrict the range of possible solu-
tions onto the convergence segment a ∈ (3,4), b 5 0 are
due to the singularity in the ID limit. Thus, the same consid-
erations should be applied for the well-posedness ofthe
coefficients(22). Since McComas and Bretherton (1977)
and McComas and M üller (1981b),the Fokker–Planck
equation has been shown to enjoy stationary states for all
points on the two lines b 5 0 and b 5 3 2 2a/3.This has
been rederived in Lvov et al.(2010),highlighting how the
result is based on a restriction to the limit of the infrared ID
interactions.Despite this,we find that for b 5 0 there are
exact cancellations between the ID leading order of the sin-
gularities of the collision integrand [r.h.s.of Eq. (18)],that
need to be treated with particular care.An exact balance
between the leading nonzero ID contributions,both infra-
red and ultraviolet,allowed Dematteis and Lvov (2021) to
obtain analytically that the ID solution is stationary,inde-
pendentof the other interactions,for a  3.69, which is
compatible with the fullbalance obtained with allinterac-
tions. This can be observed in the lower panelof Fig. 4,
where the balancesbetween scale-separated interactions
and local interactions are shown to vanish at a  3.69 sepa-
rately. Therefore,at least for b 5 0, the Fokker–Planck
equation (21) enjoys the same stationary state (3.69,0) as
Eq. (18), while the other states with b 5 0,a Þ 3.69 are
found to be (at a subleading order that had been neglected
in previous works) off balance.

Using the expressions (22) in Eq.(21),for a generic power-
law spectrum (19) equivalent to a 2D action spectrum n(k, m) 5
4pAk2a11m2b, yields
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n k, m( )
t 5 24 pA

k ackk 1 bckm( )k622am122b

2 4 pA
m ackm 1 bcmm( )k522am222b

5 4 pA 2a 2 6( ) ackk 1 bckm( )

1 2b 2 2( ) ackm 1 bcmm( ) k522am122b: (23)

Now, assuming that the given spectrum is stationary,the
r.h.s. must vanish for all k and m. This implies the condition:

ackk 1 bckm
ackm 1 bcmm

5 2 2 2b
2a 2 6: (24)

Using again (21) and (22), we obtain the following formula
for the stationary energy flux,

J e( ) k, m( ) 5 4pgA ackk 1 bckm( )k722am22b,

ackm 1 bcmm( )k622am122b ,

5 C 0 2 2 2b( )k722am22b, 2a 2 6( )k622am122b ,
C0 . 0, (25)

where the last line is true if the solution is a stationary state
[I(a, b) 5 0], ensuring the validity of the condition (24). More-
over,exceptfor the overallnormalization constantC0, this
relation providespointwise knowledge ofthe steady state
flux. This is used next to investigate the direction of the steady
state energy flux.As a consistency check on the results of
section 2,notice that for the steady state coefficientsin
Eq. (12) we have 5.8/4.0  2/(2a 2 6)  1.45,verifying the
condition (24).

We then consider the inertial range as the region such that
mmin , m , m maxand f , v , N (see Fig. 1),which due to
the dispersion relation (6) corresponds to a trapezoid in k–m
space. The dispersion relation also allows us to change varia-
bles and express the flux inv–m space,in which the inertial
range is simply the rectangle [f,N] 3 [mmin, mmax]. In these
coordinates, the energy flux (25) takes the form

J e( ) v, m( ) 5 C 0g2a27 8 2 2a 2 2b( )v722am722a22b,

2a 2 6( )v622am822a22b : (26)

This result allows for transparent graphicalinterpretation
of the nature and paths ofthe Fourier-space diffusion-like
energy flows.Approximating the kinetic equation with the
differentialconservation form (21) allows us to analyze the
direction of the fluxes within the ID paradigm. Equation (21)
is nothing but a projection of the Fokker–Planck equation (9)
on the 2D k–m space.

Now, a further simplification,proposed in McComas and
Bretherton (1977), can be made by asserting that the transfer
is dominated by the a335 ammterm of the diffusion tensor aji.
Below, we focus on analyzing what this approximation entails,
and we find that an inverse cascade of energy in frequency is
necessarily implied, requiring existence of an energy source at

high frequencies in order to be sustained. On the other hand,
for the stationary solution of the wave kinetic equation we
show that, if all components of the diffusion tensor are consid-
ered, the Fokker–Planck equation leadsto a cascade of
energy from low to high frequency.These results are pre-
sented in Fig. 5.Namely, in the top panel of Fig. 5,we show
the streamlines of the energy flux in both systems of coordina-
tes}Eqs. (26) and (25), respectively}for the stationary solu-
tion a 5 3.69,b 5 0. In the v–m representation,the flux is
downscale in both frequency and vertical-wavenumber direc-
tions. Importantly, we observe that a source of energy at low
frequency and small vertical wavenumber would be compati-
ble with this flux.Considering the relative proximity of the
high-wavenumber GM spectrum in the space ofpower-law
solutions, and arguing that the effects of physical cutoffs may
modify the stationary solution toward the GM slope itself, we
can observe how the energy-flux streamlines behave as a → 4.
We observe that the streamlines change continuously in the
parameters a and b,tilting toward the verticaldirection in
v–m space, as a → 4. This is depicted in the central panels of
Fig. 5. Although not rigorous, this observation is in agreement
with the downscale energy cascade in the finescale parameter-
ization paradigm (Polzin et al. 2014), interpreted as an essen-
tially vertical process inv–m space.

Since the coordinate systemsconsidered have different
units in the verticaland horizontaldirection,it is usefulto
quantify the flux direction using integrated quantities that can
be compared directly.We thus compute the power flowing
out of the fixed boundary BCD,P e( )

BCD 5 P e( )
BC 1 P e( )

CD, where
the two contributions are given by integration of the compo-
nent of the flux normal to the sides BC and CD, respectively.
The computation is easiest inv–m space, yielding:

P e( )
BC 5

mmax

mmin
dmJ e( ) N, m( ) · 21, 0( )

5 2C 0
g
N

2a27
m822a22b

max 2 m822a22b
min ,

P e( )
CD 5

N

f
dvJ e( ) v, mmax( ) · 0, 21( )

5 2C 0
2a 2 6
2a 2 7 g2a27m822a22b

max f722a 2 N 722a ,

(27)

with the convention that an outgoing/incoming power is nega-
tive/positive since it is lost/gained by the set under consider-
ation (the box ABCD). So, we define the ratio

R sep( ) 5 P e( )
CD

P e( )
BC

5 2a 2 6
2a 2 7

N=f2a27 2 1
1 2 m max=mmin

2 a1b24( ) (28)

to characterize the globalvertical-to-horizontaldownscale
energy transfer ratio, restricted to the scale-separated interac-
tions under scrutiny in the current section.Substituting a 5
3.69 and b 5 0, we obtain R(sep) 4.5: in the ID paradigm, the
downscale flux in the vertical direction is about a half order of
magnitude larger than in the horizontaldirection.With the
same caveats about regularization by suitable cutoffs,statio-
narity,and departure from scale invariance,we observe that
the GM limit would imply R(sep)→ ‘, in agreement with the
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FIG. 5. Direction of the energy flux as a function of the power-law exponent according to Eqs.(25) and (26).
(top) a 5 3.69,b 50; (middle) a → 42 , b 5 0 (GM76 solution).(bottom) Constrained flux direction according to
McComas and Bretherton (1977), after the vertical–vertical-diffusion-only assumption is made. Left panels are inv–m
space, right panels are in k–m space; the two representations are equivalent.
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FIG. 6. The value of the vertical-to-horizontal outgoing power ratio for a coarse-graining
box with sides determined bye, defined as the ratio between Eqs. (32) and (31). For largee
the controlbox corresponds to the whole inertial range and allinteractions are included,
reproducing the ratio of the powers in Eqs. (14) and (15) (dashed yellow line). Ase→ 0,
more and more interactions are filtered out and the ratio becomes larger untilit reaches
quantitative agreement with the ID theory [Eqs. (27) and (28),dashed red line] when the
scale-separated interactions alone are left in the box.
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verticality of the flux in such limit.Indeed,furthermore for
the action one finds that Pn( )

BCD 1 P n( )
BAD 5 0, independent of

the values of a and b,since action is conserved by Eq.(21).
For the energy, on the other hand, we have:

P e( )
BCD 1 P e( )

BAD 5 C0g2a27

7 2 2a m22 a1b24( )
max 2 m22 a1b24( )

min

3 f 722a 2 N 722a , (29)

which is negative for a 1 b 2 4 , 0. This coincides with fluxes
toward higherfrequencies,for which horizontaltransport
in v–m space is downscale andP e( )

BCD . P e( )
BAD . An action-

conserving flux toward larger frequencies necessarily implies
an energy increase. This does not violate energy conservation
nor the stationary balance! Simply, in the ID picture the extra
energy thatappears athigh wavenumbers comes from the
near-inertial reservoir that acts as a nonlocal energy source in
the continuity equation for the energy density.This fact was
explained in Figs.5 and 6 of McComas and M̈uller (1981a),
where they had in mind a flux toward smaller frequencies
implying a sink rather than a source at high frequency.For
a 1 b 2 4 5 0 (which includes the GM76 case), instead,
P e( )

ABC 5 P e( )
BCD since the flux is verticalin v–m space,i.e.,

action is transferred at constantv.
In McComas and Bretherton (1977), after deriving the Fok-

ker–Planck equation,a further approximation ismade by
assuming that the transfers are dominated by the a33element
of the diffusion matrix.This approximation is then discussed
and analyzedfurther in McComas and Müller (1981b)
and Müller et al. (1986).In the framework developed above,
this assumption is equivalent to setting cmm Þ 0, and ckk 5
ckm5 0.

Then, since the only nonzero element is cmm, the energy
flux in Eq. (25) is purely vertical in k–m space independent of
the values of a and b. This is shown in the bottom-right panel
of Fig. 5, representative of the ID picture of McComas and
Müller (1981a).As shown in the bottom-left panel, this
translates into an inverse cascade in frequency when trans-
fers are looked at in v–m space.As pointed out in the
introduction,this fact has represented the first problem of
the oceanic ultraviolet catastrophe,since a major energy
source at high frequency is believed not to be physically
plausible.

Now, let us focus the attention on the case b 5 0. Looking
at the first line of Eq. (25),for b 5 0 the approximation that
ckk and ckm are negligible with respect to cmm appears to be
singular: since the factor b 5 0 makes the contribution of cmm
vanish,one has to look atthe other terms thatcould give
finite contributions.In particular,according to Eq.(25) [and
keeping in mind the relations (24)], in the b 5 0 case the hori-
zontal flux is due to the akk diagonal element, while the verti-
cal flux is due to the amk off-diagonal element of the diffusion
matrix [cf.Eq. (12)].Notice thatthis consideration is only
based on the fact that b 5 0, and therefore it extends also to
the GM solution.

In section 2,these analytical results in the scale-separated
region have successfully complemented the numerical results

obtained for the local interactions. On the one hand, this has
made itclear that assuming I(loc) negligible with respect to
I (sep)is not justified. On the other hand, the fact that a nonne-
gligible subsetof interactionsare diffusive providesdirect
knowledge of the pointwise diffusive part of the energy flux
(see Figs. 5 and 6) and allows us to draw important considera-
tions for the pathways of energy.

For the stationary solution with a 5 3.69, b 5 0, in partic-
ular, consideringall terms of the diffusion matrix has
implied the nonzero flux (26),which is downscale both in
frequency and verticalwavenumber and is consistent with
the steady state. Moreover, we have estimated vertical
transport to exceed horizontal transportby almost half
order of magnitude in the ID paradigm,meaning the off-
diagonal element of the diffusion tensor plays a leading role
that had remained mostly undetected so far.The key to the
solution of the long-standing paradoxes of the oceanic ultra-
violet catastrophe,according to our results,is thus to be
found in nonnegligible effects of previously neglected ele-
ments of the diffusion tensor.

The analytical resultspresented in thissection can be
made rigorous;this will be the subject of a companion
paper.An intuitive picture goes as follows.Let us consider
a squared partition of the inertialrange in boxes of sides
Dk, Dm, as represented for two different choices of Dk, Dm,
in Fig. 6. Once a partition is fixed,let us define a coarse-
grained modelfor which energy can be exchanged only
through adjacent boxes in the partition,cutting off the rest
of the interactions.We define the coarse-grained transfer
integrals

C CG( )
h e( ) 5

e

0
dz

e

z
dtzTh t( ),

C CG( )
y e( ) 5

e√

1
dz

e√

z
dtzT y t( ),

(30)

which tend to Ch and Cy for largeeand tend to restrict the
coarse-graining rectangular box to the ID region ase→ 0,
with the correct scaling that relates the horizontal side
[1 2 (1 1 e)21] to the vertical side [1 2 1 1 e√ 21] for the
ID interactions. In agreement with Eq. (11), we define
coarse-grained powers exiting the inertial range that relate
to the coarse-grained transfer integrals via

P CG( )
out,h e( ) 5 4 p NV0A( )2

(8 2 2a)g
N
g

722a
mmax2 mmin( )822aC CG( )

h e( ),

(31)

P CG( )
out,y e( ) 5 4 p NV0A( )2

(2a 2 7)g
f
g

722a
2 N

g
722a

m822a
max C CG( )

y e( ),

(32)

Let us define the ratio RCG( ) e( ) 5 P CG( )
out,y e( )=PCG( )

out,h e( ). For
large values ofe, the coarse-grained model includes all inter-
actions and Eqs.(31) and (32) reduce to Eq.(11);therefore,
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using Eq.(15),we have R(CG)(e) → 5.2/3.8  1.4 for largee.
On the other hand,as e is taken smaller and smaller,we
expect to go from the integralconservation Eq.(10) toward
the differentialcontinuity Eq.(21), for which we obtained
R(sep)  4.5 via Eq. (28). For consistency,we expectthat
R(CG)(e) → R (sep), as the ID region is approached. The behav-
ior of R(CG)(e) is shown in Fig.6. We observe that as more
and more local interactions are left out of the picture as the
size of the coarse-graining box becomes smaller, the direction
of the coarse-grained flux becomes more vertical,and this is
consistent with Fig.2, since localcollinear interactions have
an enhanced horizontaltransport while the ID region has a
stronger vertical transport. Dematteis and Lvov (2021) argued
that reasonablyeshould be located between 1/32 and 1/16, for
what is considered “scale-separated” to be approximated by
the induced diffusion approximation with an error not larger
than 5%–10% (see appendix B for supporting evidence).
Notice that in Fig.6 the value of R(CG) tends exactly to the
constant given by R(sep) 4.5, and it does so for values ofe
roughly below the chosen thresholde5 1/16,which is thus
confirmed to be aboutthe largestvalue for which the ID
approximation can hold.For e , 1/16, the diffusion coeffi-
cients scale witheaccording to Eq.(12),and their ratio is
independent ofe.

b. Closure for the ID energy flux: Rotating case
So far, we have considered the nonrotating limitof the

internal wave kinetic Eq. (18). In the presence of background
rotation f Þ 0, scale invariance is lost and the picture is more
complex, with supplementary terms in the matrix element and
a nontrivial deformation of the resonant manifold. Since f rep-
resents the lowest internal wave frequency,having f Þ 0 has
most impact on the three-wave interactions involving a low
frequency,v1 ∼ f. Thus, in first approximation one can assume
that the presenceof background rotation affectsmostly
the scale separated triads,while only marginally changing
the contribution from localtriads whose three frequencies
are abundantly larger than f.Therefore,here we focus on
the scale-separated interactions in the rotating case,where
the ID Eq. (21) represents again the leading process.We
follow a well-known derivation (McComas and M üller
1981b;Müller et al.1986;Polzin and Lvov 2017;section 4f
therein) exploiting the approximation ofthe near-inertial
frequency by f,by which one obtains a modified version of
(22) that reads

akk 5 dkkk72am2b , akm 5 dkmk62am12b,

amm5 dmmk52am22b, (33)

where the dij are constants.For example,for GM76 (a 5 4,
b 5 0) this yields the familiar scaling for the vertical–vertical
diffusion coefficient: amm∝ km2.

In analogy with the derivation in section 4a,now we use
(33) in Eq. (21),again for a 2D action spectrum n(k,m) 5
4pAk2a11m2b, and we obtain

n k, m( )
t 5 24 pA

k ackk 1 bckm( )k722am22b

2 4 pA
m ackm 1 bcmm( )k622am122b

5 4 pA 2a 2 7( ) ackk 1 bckm( )

1 2b 2 1( ) ackm 1 bcmm( ) k622am22b: (34)

Now, at the steady state the r.h.s. must vanish for all k and
m, implying

ackk 1 bckm
ackm 1 bcmm

5 1 2 2b
2a 2 7: (35)

Use of (21) and (33) yields the stationary energy flux

J e( ) k, m( ) 5 4pgA ackk 1 bckm( )k822am2122b,

ackm 1 bcmm( )k722am22b ,

5 D 0 1 2 2b( )k822am2122b, 2a 2 7( )k722am22b ,

D0 . 0, (36)

where the last line is true if the solution is a stationary state
[I(a, b) 5 0], ensuring the validity of the condition (35).

In Fig. 7 we show the streamlines of the rotating ID flux
(36), for the a 5 3.69, b 5 0 solution (top panels) and for the
GM76 high-wavenumbers limit a 5 4, b 5 0 (bottom panels).
In this rotating case we proceed only as far as the dimensional
analysis in section 4a.In the nonrotating case we have an
exact power-law solution that allows us to define a cut in the
spectral domain and enables estimates of the diffusivity tensor
leading to (31) and (32). In the rotating case, ammis relatively
insensitive toe if the cut lies, for example,at frequencies
greater than 2f, whereas akk is quite sensitive. The absence of
an exact solution in the rotating case limits greater precision.
On the other hand,we expect this result to at least provide
some qualitative guidance to our intuition, indicating that a
comprehensive approach to the kinetic equation with rota-
tion (subject of current investigation) is not likely to modify
sensibly the results of the present paper.It is important to
notice that the rotating approximation above confirms the
downscale direction of the ID flux,for spectra in the range
between the stationary solution of the kinetic equation and
GM76. In particular, we notice how the purely vertical char-
acter of the ID transport for the GM76 solution is predicted
both by (25) and (36) (middle panels of Fig.5 and bottom
panels of Fig. 7).

5. Summary and discussion
The oceanic ultravioletcatastrophe originatesin a first

principlesasymptotic analysisof the internalwave kinetic
Eq. (18) that results in the Fokker–Planck, or generalized dif-
fusion,Eq. (21).This wave-action balance characterizes the
scale-separatedlimit with high-frequencyinternal waves
refracting in the verticalshearof near-inertialwaves.As

J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 52610

Unauthenticated | Downloaded 05/04/23 06:55 PM UTC



summarized in M̈uller et al. (1986), this balance leads to pre-
dictions that are at odds with observational knowledge of the
oceanic internal wave field, its sources, and sinks. The analysis
in this paper prioritizes the unique power-law stationary solu-
tion k2am2b of the wave kinetic equation.In the 2D power-
law space a–b this solution (a  3.69,b 5 0) is not far from
the GM76 high-wavenumber scaling (a 5 4,b 5 0). More-
over, this solution is mathematically well defined, with a colli-
sion integral(r.h.s. of the wave kinetic equation)that is
convergent, in exact balance, and accessible to direct numeri-
cal evaluation.This exact solution has distinct contributions
from both extreme scale separated interactions and interac-
tions that are quasi-collinear in horizontal wavenumber hav-
ing a more local character.

In the diffusive (i.e.,extreme scale separated) paradigm,
a further assumption that the diffusion is dominated by the
vertical–vertical coefficient leads to the onset of no-flux solutions
for b 5 0. These “no-flux” solutionsinclude the stationary

solution of the kinetic equation and also the GM76 spectrum.
Considering the fundamentaluse of GM76,and generalizations
thereof, to build an understanding of the observed energy fluxes
through scales, this no-flux prediction is odd enough}represent-
ing the first point of the oceanic ultraviolet catastrophe. Here, we
have shown that the vertical–vertical diffusive representation is an
uncontrolled approximation. Thus, before regarding these b 5 0
spectra as no-flux solutions one has to consider the other elements
of the diffusion tensor. If this is done, the flux due to induced dif-
fusion turns out to be finite and different from zero.This was
shown in detail in section 4.

In section 4 we worked out a closure for the Fokker–Planck
equation based on dimensional consistency and on stationar-
ity. This closure provides the pointwise direction of the diffu-
sive part of the energyflux in Fourier space.For the
stationary spectrum,the flux is downscale in both frequency
and vertical wavenumber. In particular, this is consistent with
a main source of energy localized at large vertical scales and

FIG. 7. Direction of the ID part of the energy flux in the rotating approximation (36) (top) for the steady state of the
kinetic equation and (bottom) for the GM76 solution. As far as the downscale direction of the flux is concerned, both
in vertical wavenumber and frequency, qualitative agreement with Fig. 5 is attained.
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low frequencies.We recall that the vertical–vertical diffusion
approximation would predict energy to flow from high to low
frequencies,requiring a main energy source at high frequen-
cies that is believed not to be met in the oceans.Thus, the
solution to the apparent paradox is once again due to the pre-
viously neglected coefficients of the diffusion tensor.More-
over, ID vertical transport, due to the off-diagonal element of
the diffusion tensor, exceeds ID horizontal transport by a half
order of magnitude.This revealsa previously unnoticed
important role of off-diagonal diffusion in the Fokker–Planck
equation. This completes what we put forward as the solution
to the oceanic ultraviolet catastrophe, but it is not the end of
the story.

We have provided evidence that the reduction of the inter-
nal wave kinetic theory to the Fokker–Planck equation, which
relies on the prominent role of the induced diffusion process,
leaves important contributions without extreme scale separa-
tion out of the picture.In section 2 all interactionswere
considered.We showed that the energy transfers can be suc-
cessfully decomposed into a localpart and a scale-separated
part. Independent considerations lead to a quite distinct, non-
arbitrary delimitation of the two regions. Using the paradigm
developed by Dematteis and Lvov (2021),we can compute
the energy fluxes at the steady state directly from the full colli-
sion integral.All transfers,vertical and horizontal,local and
scale-separated,are directed downscale.The scale separated
part,dominated by ID,is effectively described by the Fokker–
Planck equation in section 4 and gives a mainly vertical energy
flux.The local part,by far the largest contribution to the total
flux,is dominated by interactions that have near-collinear hori-
zontal wavenumbers, as shown in Fig. 4, and has stronger hori-
zontal transfers compared to ID (Fig. 6). This represents a novel
simplified framework in which to cast local interactions,whose
effects have been shown to be far from negligible.

Despite having used a nonrotating framework throughout
the manuscript,in section 4b we have argued that the pres-
ence of background rotation is expected to affect mostly the
contributionfrom scale-separatedinteractions.We have
therefore used a well-known approximation in the ID regime
for f Þ 0, approximating near-inertial frequencies exactly with
f. This allowed us to obtain an alternate closure for the ID
flux direction which, although nonrigorous, takes into account
the background rotation.Importantly,this closure in the
rotating case shares with the nonrotating case the same quali-
tative behavior:the direction is downscale both in vertical
wavenumber and frequency, and in the GM76 case it becomes
purely vertical.Independentresults from Polzin and Lvov
(2011, their Fig. 38) indicate that the scale-separated low-fre-
quency contributions play a marginal role in the overall bal-
ance,in the presence of background rotation,for a vertically
homogeneous action spectrum (b 5 0).The balance appears
to be mainly determined by interactions that are “local” in
character.Both this fact and the result of section 4b indicate
that the nonrotating approximation of the matrix elements is
a relatively controlled approximation. Finally, one should not
disregard the important benefits of the f 5 0 assumption to
the rigor of the analysis. In the wave turbulence theory, when
ṅp 5 0 (stationary solution of the wave kinetic equation) is

associated with a Kolmogorov–Zakharov cascade, the latter is
synonymous with a scale-invariant solution (Zakharov et al.
1992), motivating the assumption of a power law. The reason
to use a nonrotating solution is that a stationary state can be
defined (Lvov et al. 2010), which is far from obvious with the
introduction of rotation.

The close quantitative agreementof the first-principles
energy fluxes,Eq. (5), and the phenomenologicalfinescale
parameterization, Eq. (4), deserves some last comments. The
interpretation of the power dissipated horizontally is unclear.
First, the boundary at m 5 mmin(refer to Fig. 1) lacks a con-
sistent major source of energy at high frequency.Therefore,
in absence of a source, the upper-left corner of the box (iner-
tial range) may not be filled with energy and as a consequence
the contribution Pout,h may be (at least in part) not realized in
practice.Second,what happens at the boundary atv 5 N is
likely not accurately captured by the formalism in the present
manuscript,as we recallthat the hydrostatic approximation
breaks down forv ∼ N. Necessarily, a deeper understanding
of this range of scales will be possible only departing from the
hydrostatic approximation,but this is beyond the theoretical
framework currently available. Third, although the validity of
the weak nonlinearity assumption has been shown to hold for
most of the inertial range (refer to the box in Fig.1), it was
also noticed that approaching the boundaryv 5 N the nonlin-
ear time becomes of the same order of magnitude as the lin-
ear time and the weakly nonlinearresonantpicture may
break down (Lvov et al. 2012; Eden et al. 2019). This observa-
tion echoes the early warning by Holloway (1980).On the
one hand,our analysis concerns an exact stationary state for
which,unlike for the nonstationary GM76 state,the ratio
between linear and nonlinear time (also known as normalized
Boltzmann rate)is vanishing throughoutthe whole v–m
space.On the other hand,our analysis is not strictly tied to
the choice of the edges atv 5 N or m 5 mmax, and if a differ-
ent choice is made for the integration edges in Eq.(11),the
modification propagatesstraightforwardly to Eq.(14). For
example, if we move the upper edge in Fig. 1 tov5 N= 2

√
in

order to avoid the above objections altogether (both to hydro-
static balance and weak nonlinearity),it is easy to see that
Pout,h increases ofabout14% and Pout,y reduces ofabout
3.7%, i.e., quite marginally. As a whole, this indicates that the
breakdown of both the hydrostatic balance and the weak non-
linearity assumptions approachingv 5 N should not hinder
the quantitative evaluationsof the currentmanuscript.A
thorough treatment of the dependence on boundary effects,
and a detailed study of the normalized Boltzmann rates is the
subject of current research and is beyond the scope of the pre-
sent manuscript.

On the contrary, PSI providesa fundamentalphysical
decay mechanism (MacKinnon and Winters 2005;Sun and
Pinkel 2013;MacKinnon et al.2013;Olbers et al.2020) so
that the boundaryv 5 f can act as an energy source also at
m .. m min, and “fill” the lower-rightcorner ofthe inertial
range.Moreover,both wave breaking and shear instability for
large m provide a natural pathway for the power P out,y
to be driven toward the scales of3D turbulence.So, the
contribution P out,y 5:2 3 1029 W kg21 (we recall that
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Pfinescale→ 5:9 3 1029 W kg21) appears to be better justified
from different points of view,and to fully fit in the finescale
parameterization paradigm (Polzin etal. 2014).Concerning
the dependence on the main physicalparameters,we recall
that Pfinescalescales as fN2Ê 2, Eq. (1). Since this scaling is
derived for the GM76 spectrum (a 5 4,b 5 0), we can con-
sider the scaling of Pout,yfor a 5 4 (i.e.,y5 2a 2 7 5 1), which
gives exactly fN2E2 (we recall that̂E, besides being a metric
for the shear scale length,is also a measure of the spectral
level, in units of the GM76 standard spectral level). This exact
scaling agreementestablishes a deeper connection between
the phenomenological and the first-principles estimates.

The accuracy of the kinetic equation for the extreme scale
separated interactions may be affected by Doppler shifting
and modification of the Galilean invariance (Kraichnan 1959,
1965).These effects are encapsulated in the resonant band-
width being proportional to the Doppler shift, as reported in
Polzin and Lvov (2017). This question is left for future
research.

Our efforts implement the theoreticalprogram suggested
by Webster (1969),where “due to the lack of an adequate
theoretical framework for describing turbulence in a stratified
fluid” homogeneous three-dimensionalturbulence estimates
were employed;with today’s internal wave turbulence,
over five decades later,we are able to fully exploit the
potentialof the theory that the seminalcontribution was
advocating for.

In summary,we have established the presence of extreme
scale separated and localinteractions in the internalwave
kinetic equation and have shown that
• Concerning scale-separatedinteractions,the Fokker–

Planck equation and the induced diffusion pictureof
McComasand Bretherton (1977)providesa remarkably
good characterization of the dominant contributions to the
internal wave scattering.

• The reduction ofthe diffusion tensor to a single vertical
component necessitates a high-frequency source of energy
and dominance ofinverse energy cascade.Both of these
effects are nonintuitive and lack experimental evidence.

• Taking into account the full diffusion tensor leads to direct
energy cascade consistentwith our understanding ofthe
internal wave scattering.

• The vertically homogeneous b 5 0 wave action was termed
the “no-flux” solution by McComasand Müller (1981b)
due to the properties of the Fokker–Planck equation. Tak-
ing into account the complete diffusion tensor in both verti-
cal and horizontaldirection does create nonzero vertical
and horizontal energy fluxes.

• Induced diffusion,however,does not capture allthe pro-
cesses that contribute to the direct energy cascade.Local
interactions, in particular those with near-collinear horizon-
tal wavenumbers, actually provide the majority of the total
energy transfers.

• Considering the energy balances in a finite size box allows
us to quantify numerically the magnitude and direction of
the direct energy cascade. Taking the limit of small box size
reproduces the induced diffusion limit.

• Numericalcalculation ofthe total direct energy cascade
generated by the internal wave kinetic equation leads to a
(first-principles) formula which is remarkably close to the cel-
ebrated (phenomenological)finescale parameterization for
the energy flux (Gregg 1989; Henyey 1991; Polzin et al. 1995).
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APPENDIX A

Matrix Elements and Resonant Manifold
The two delta functions in Eq.(18) can be integrated out

analytically,obtaining

 t knp 5
‘

0
dk1dk2J k, k 1, k2, m( ),

J k, k 1, k2, m( ) 5 R 0
12f0

12 2 R 1
02f1

02 2 R 2
01f2

01 ,

R0
12 5 8 pkk1k2 V0

12
2 g0

12D012 : (A1)

Here f0
125 n1n2 2 np n1 1 n2( ) is the spectrum-dependent

term of the equation,and the area of the triangle of sides
k, k1, k2, coming from integration overanglesunder the
assumption of isotropy,is given by Heron’s formula

D0125 1
2 2 k2k2

1 1 k 2k2
2 1 k 2

1k2
2 2 k 4 2 k 4

1 2 k 4
2: (A2)

The expression ofthe so-called matrix elements Vp
p1p2

in
the scale-invariant regime reads (Lvov et al.2010)

V0
p1p2

5 V 0 kk1k2
k2 1 k 2

1 2 k 2
2

2kk1

m?
2

mm?
1

1 k2 1 k 2
2 2 k 2

1
2kk2

m?
1

mm?
2

1 k2 2 k2
1 2 k 2

2
2k1k2

m
m?

1m?
2

, (A3)

and,moreover,we have

g0
125 g sign m?

1 k1
m?

1
2 2 sign m?

2 k2
m?

2
2 , (A4)

where m?
1, m?

2 are given by the solution ofthe resonance
conditions,i.e., the joint conservation ofmomentum and
energy in each triadic resonantinteraction.Thus, in the
four-dimensional space spanned by k1, k2, m1, m2, the prob-
lem is restricted to the resonant manifold,parameterized by
two independentvariablesk1 and k2 as summarized in
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Table A1. Note the symmetries ofthe resonantmanifold:
the solution (Ia) is obtained from solution (Ib) through per-
mutation of the indices 1 ↔ 2.We also notice that solutions
(IIa), (IIb) reduce to solutions(IIIa), (IIIb), respectively,
under permutation of the indices 1 ↔ 2.

The collision integralof Eq. (A1) is integrated over the
so-called “kinematic box,” represented in Fig.3.

APPENDIX B

Region of Validity of the ID Asymptotics
In the IR region (Fig. 3) the two resonant induced diffusion

branches (Ia) and (IIa) (refer to Table A1) dominate over the
others and we adopt the following change of variables

k1 5 k 1 1 y( ), k2 5 kx, (B1)

with 0 , x , e, 2x , y , x, that allows us to use the fol-
lowing Taylor expansions for the conditions (Ia) and (IIa),
respectively,

m?
1  m 1 1 x√ 1 1

2 x 1 y( ) , m?
2  2m x√ 1 1

2 x 1 y( ) ,
(B2)

m?
1  m 1 2 x√ 1 1

2 x 1 y( ) , m?
2  2m x√ 2 1

2 x 1 y( ) ,
(B3)

using the factthat x 5 O( e), y 5 O( e). In the rest of the
section,we use the short-hand notation m?

1 5 m 1 1 h( ),
m?

2 52m h, where h5 6 x√ 1 1=2 x 1 y( ) 5 O e√ , for
(B2) and (B3), respectively.With the asymptotics ofEqs.
(B2) and (B3), neglecting the lower-order term R2

01f2
01 and

Taylor expanding the spectrum-dependent terms in the col-
lision integral around the point (x,y) 5 (0, 0),we obtain

f0
12  n kx, 2 m h( ) ky n

k 1 m h n
m ,

f1
02  2n kx, 2 m h( ) ky n

k 1 m h n
m , (B4)

which implies

J k, k 1, k2, m( )  R 0
12 1 R 1

02 n kx, 2 m h( ) ky n
k 1 m h n

m :

(B5)

The leading-orderexpressionsof R0
12and R1

02 (on which
the matrix elements depend) are given by

R0
12  8 p 2k3my2

x√ x2 2 y2
2 k3m 2x2y 2 2xy2 2 y3=4

x x2 2 y2
, (B6)

R1
02  8 p 2k3my2

x√ x2 2 y2
1 k3m 2x2y 2 2xy2 2 y3=4

x x2 2 y2
: (B7)

Some algebra and one further Taylor expansion allow us
to quantify the diffusion coefficients at the stationary state
for Eq. (21), with resultgiven in Eq. (12). In Fig. B1 we
propose a simple testto establish the region ofvalidity of
the approximation (B4),for the solution (a,b) 5 (3.69, 0).
The quantitiesf0

12 and f1
02 are computed numerically and

compared with their leading-order approximation given in
Eq. (B4), for three different values of x 5 k2/k, as a func-
tion of y 5 k1/k 2 1. To visualize this in the kinematic box
one can look at Fig.3, and move horizontally on a section
at fixed x. The boundariesat y 5 6x are the locations
where the plotted functionsare largest.The error of the
estimate is about 10% at the boundaries of the section with
x 5 1/20.At the boundaries of the section with x 5 1/5 the
error is in the range 30%–80%,and the error is out of con-
trol (above 100%) when x 5 3/4.This shows thata diffu-
sion closure is not possible for interactions in the kinematic
box above k2/k  0.1, i.e., outside the IR region of Fig.3.
As a consequence,it is not possible to extend the integra-
tion region of the integrals defining akk and amk to larger
values ofe, since for e . 0.1 the diffusive character of the
interaction is gradually lost.We remark thatthis facthas
been known since the originalderivation of McComas and
Bretherton (1977),where in the definition ofthe diffusion
coefficientsthe small-wavenumberpart of the spectrum
B(p) is present,and not the fullspectrum n(p).Previously
in the paper,B(p) is defined as the restriction ofn(p) for
“small wavenumbers.” Our results illustrate that B(p) is the

TABLE A1. The six independent solutions to the resonance conditions, defining the resonant manifold in the space spanned by
the two free variables k1, k2.

Label Resonance condition Solutions
(Ia), (Ib) p 5 p1 1 p2

k
| m |5

k1
m1| |1

k2
m 2 m1| |

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m?
1 5 m

2k k 6 k16k 26 k 6 k16k 2( )27 4kk1

m?
2 5 m 2 m?

1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(IIa), (IIb) p1 5 p 1 p2
k1
m1| |5

k
m| |1

k2
m1 2 m| |

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m?
2 52 m

2k k7k 1 2 k2 1 k7k 1 2 k2( )2 1 4kk2

m?
1 5 m 1 m?

2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(IIIa), (IIIb) p2 5 p 1 p1
k2
m2| |5

k
m| |1

k1
m2 2 m| |

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m?
1 52 m

2k k 2 k17k 2 1 k 2 k17k 2( )2 1 4kk1

m?
2 5 m 1 m?

1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
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restriction of n(p) to the IR region.The rest of the contri-
butionsare local interactionsas defined in Eq. (8). The
choice of e5 1/16 to demark the separation between the
two regions named “local” and “scale-separated”corre-
sponds to an error of the approximation (B4) around 10%,
meaning thatour ID approximation to the scale-separated
contribution,as used in this manuscript,is “controlled” by
an error of at most 10%.
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sity of Hawai‘i at Mānoa,233–236,http://www.soest.hawaii.
edu/PubServices/1991pdfs/Henyey2.pdf.

FIG. B1. (top) Comparison ofthe numerically computed functions f0
12and f102 and their respective leading orders as given in

Eq. (B4) as a function of y 5 k1/k 2 1, for three different values of x 5 k2/k. (bottom) Relative errors of the leading-order esti-
mates in the top panels.

D E M A T T E I S E T A L . 615A PRIL 2022

Unauthenticated | Downloaded 05/04/23 06:55 PM UTC



}}, J. Wright,and S.M. Flatt́e, 1986:Energy and action flow
through the internal wave field: An eikonal approach.
J. Geophys. Res., 91, 8487–8495,https://doi.org/10.1029/
JC091iC07p08487.

Holloway,G., 1980:Oceanic internalwaves are not weak waves.
J. Phys.Oceanogr.,10,906–914,https://doi.org/10.1175/1520-
0485(1980)010,0906:OIWANW.2.0.CO;2.

Kraichnan,R. H., 1959:The structure of isotropic turbulence at
very high Reynoldsnumbers.J. Fluid Mech., 5, 497–543,
https://doi.org/10.1017/S0022112059000362.

}}, 1965:Lagrangian-history closure approximation for turbu-
lence. Phys. Fluids, 8, 575–598,https://doi.org/10.1063/1.
1761271.

Kunze,E., 2017:Internal-wave-driven mixing:Global geography
and budgets.J. Phys.Oceanogr.,47,1325–1345,https://doi.
org/10.1175/JPO-D-16-0141.1.

Le Boyer,A., and M.H. Alford, 2021:Variability and sources of
the internalwave continuum examined from globalmoored
velocity records.J. Phys.Oceanogr.,51,2807–2823,https://
doi.org/10.1175/JPO-D-20-0155.1.

Lvov,Y. V., and E.Tabak,2001: Hamiltonian formalism and the
Garrett-Munk spectrum of internal waves in the ocean. Phys.
Rev.Lett.,87,168501,https://doi.org/10.1103/PhysRevLett.87.
168501.

}}, and }}, 2004:A Hamiltonian formulation for long inter-
nal waves.Physica D,195,106–122,https://doi.org/10.1016/j.
physd.2004.03.010.

}}, }}, K. L. Polzin,and N. Yokoyama,2010:The oceanic
internalwavefield:Theory ofscale invariantspectra.J. Phys.
Oceanogr., 40, 2605–2623, https://doi.org/10.1175/2010JPO4132.1.

}}, K. L. Polzin,and N.Yokoyama,2012:Resonant and near-
resonantinternalwave interactions.J. Phys.Oceanogr.,42,
669–691, https://doi.org/10.1175/2011JPO4129.1.

MacKinnon,J., and K. Winters,2005:Subtropicalcatastrophe:
Significant loss of low-mode tidalenergy at 28.98. Geophys.
Res. Lett., 32, L15605, https://doi.org/10.1029/2005GL023376.

}}, M. H. Alford, O. Sun,R. Pinkel,Z. Zhao,and J. Klymak,
2013:Parametric subharmonic instability of the internaltide
at 298N. J. Phys. Oceanogr., 43, 17–28, https://doi.org/10.1175/
JPO-D-11-0108.1.

McComas, C. H., and F. P. Bretherton, 1977: Resonant interaction
of oceanic internalwaves.J. Geophys.Res.,82,1397–1412,
https://doi.org/10.1029/JC082i009p01397.

}}, and P. Müller, 1981a:The dynamic balance ofinternal
waves.J. Phys. Oceanogr.,11, 970–986,https://doi.org/10.
1175/1520-0485(1981)011,0970:TDBOIW.2.0.CO;2.

}}, and }}, 1981b:Time scalesof resonantinteractions
among oceanic internalwaves.J. Phys.Oceanogr.,11,139–
147, https://doi.org/10.1175/1520-0485(1981)011,0139:
TSORIA. 2.0.CO;2.

Milder, M., 1982:Hamiltonian dynamicsof internal waves.
J. Fluid Mech., 119, 269–282,https://doi.org/10.1017/
S0022112082001347.

Müller, P., G. Holloway,F. Henyey,and N. Pomphrey,1986:
Nonlinearinteractionsamong internalgravity waves.Rev.
Geophys., 24, 493–536, https://doi.org/10.1029/RG024i003p00493.

Munk,W., 1981:Internal waves and small-scale processes.Evolu-
tion of Physical Oceanography,B. A. Warren and C.
Wunsch, Eds., The MIT Press, 264–291.

Nazarenko, S., 2011: Wave Turbulence. Springer, 295 pp.
Olbers,D. J., 1973:On the energy balance of small-scale internal

waves in the deep sea.Hamb.Geophys.Einzelschriften,24,
91 pp.

}}, F. Pollmann,and C. Eden, 2020:On PSI interactions in
internal gravity wave fields and the decay of baroclinic tides.
J. Phys.Oceanogr.,50,751–771,https://doi.org/10.1175/JPO-
D-19-0224.1.

Polzin, K. L., 2004a:A heuristic description ofinternalwave
dynamics.J. Phys.Oceanogr.,34,214–230,https://doi.org/10.
1175/1520-0485(2004)034,0214:AHDOIW.2.0.CO;2.

}}, 2004b:Idealized solutionsfor the energy balance ofthe
finescale internal wave field.J. Phys.Oceanogr.,34,231–246,
https://doi.org/10.1175/1520-0485(2004)034,0231:ISFTEB.2.
0.CO;2.

}}, 2009: An abyssal recipe. Ocean Modell., 30, 298–309, https://
doi.org/10.1016/j.ocemod.2009.07.006.

}}, and Y. Lvov, 2011: Toward regional characterizations of the
oceanic internal wavefield.Rev. Geophys.,49, RG4003,
https://doi.org/10.1029/2010RG000329.

}}, and }}, 2017:An oceanic ultra-violet catastrophe,wave-
particle duality and a strongly nonlinear concept for geo-
physicalturbulence.Fluids, 2, 36, https://doi.org/10.3390/
fluids2030036.

}}, J. M. Toole, and R.W. Schmitt,1995:Finescale parameter-
izations of turbulent dissipation.J. Phys.Oceanogr.,25,306–
328, https://doi.org/10.1175/1520-0485(1995)025,0306:
FPOTD.2.0.CO;2.

}}, A. C. N. Garabato,T. N. Huussen,B. M. Sloyan,and S.
Waterman,2014:Finescale parameterizationsof turbulent
dissipation.J. Geophys.Res.Oceans,119,1383–1419,https://
doi.org/10.1002/2013JC008979.

Sun, O. M., and R. Pinkel, 2013:Subharmonic energy transfer
from the semidiurnalinternaltide to near-diurnalmotions
over Kaena Ridge,Hawaii.J. Phys.Oceanogr.,43,766–789,
https://doi.org/10.1175/JPO-D-12-0141.1.

Voronovich,A. G., 1979:Hamiltonian formalism forinternal
waves in the ocean.Izv. Acad. Sci. USSR Atmos.Oceanic
Phys., 15, 52–57.

Webster, F., 1969: Turbulence spectra in the ocean. Deep-Sea Res.
Oceanogr. Abstr., 16 (Suppl.), 357–368.

Whalen, C. B., C. de Lavergne, A. C. N. Garabato, J. M. Klymak,
J. A. Mackinnon,and K. L. Sheen,2020:Internalwave-
driven mixing: Governing processes and consequences for cli-
mate. Nat.Rev.Earth Environ.,1,606–621, https://doi.org/10.
1038/s43017-020-0097-z.

Zakharov,V. E., V. S. L’vov,and G.Falkovich,1992:Kolmogorov
Spectra of Turbulence. Springer, 264 pp.

J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 52616

Unauthenticated | Downloaded 05/04/23 06:55 PM UTC


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

