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ABSTRACT: We provide a first-principles analysis of the energy fluxes in the oceanic internal wave field. The resulting
formula is remarkably similar to the renowned phenomenological formula for the turbulent dissipation rate in the ocean,
which is known as the finescale parameterization. The prediction is based on the wave turbulence theory of internal gravity
waves and on a new methodology devised for the computation of the associated energy fluxes. In the standard spectral rep
resentation of the wave energy density, in the two-dimensional vertical wavenumber-etpreaay, tme energy

fluxes associated with the steady state are found to be directed downscale in both coordinates, closely matching the fines-
cale parameterization formula in functional form and in magnitude. These energy transfers are composed of a “local” and

a “scale-separated” contributions; while the former is quantified numerically, the latter is dominated by the induced diffu-
sion process and is amenable to analytical treatGosttary to previous results indicating an inverse energy cascade

from high frequency to low, at odds with observations, our analysis of all nonzero coefficients of the diffusion tensor pre-
dicts a direct energy cascade. Moreover, by the same analysis fundamental spectra that had been deemed “no-flux” solu-
tions are reinstated to the status of “constant-downscale-flux” sdlbisadesconsequentifbr an understanding of

energy fluxes, sources, and sinks that fits in the observational paradigm of the finescale parameterization, solving at once
two long-standing paradoxes that had earned the name of “oceanic ultraviolet catastrophe.”

SIGNIFICANCE STATEMENT: The globalcirculation models cannot resolve the scales of the oceanic internal

waves. The finescale parameterization of turbulent dissipation, a formula grounded in observations, is the standard tool
by which the energy transfers due to internal waves are incorporated in the global models. Here, we provide an inter-
pretation of this parameterization formula building on the first-principles statistical theory describing energy transfers
between waves at different scales. Our result is in agreement with the finescale parameterization and points out a large
contribution to the energy fluxes due to a type of wave interactions (local) usually disregarded. Moreover, the theory

on which the traditional understanding of the parameterization is mainly built, a “diffusion approximation,” is known

to be partly in contradiction with observatidfeput forward a solution to this problewisualized by means of

“streamlines” that improve the intuition of the direction of the energy cascade.

KEYWORDS: Ocean; Gravity waves; Nonlinear dynamics; Ocean dynamics; Mixing; Fluxes; Isopycnal coordinates;
Nonlinear models

1. Introduction summarized this intrinsic incompatibility as the “oceanic ultravi-

The intent of this paper is to provide a theoretical anal}%et (c):iatastrophe (Polzin and Lvov'2017).

the downscale energy transfers associated with the “ﬁnesﬁgl §re are two aspects to the oceanic ultraviolet catastro-

o . . .eFirst, that theoretical scenario depicts a transfer of inter-
parameterizatiorftr internalwave breaking (Gregg 1989; ;
: . . al wave energy from large to small vertical scales at constant
Henyey 1991; Polzin et al. 1995). While there is some underlyin .
rizontalwavenumbernd consequently from high fre-

discussion of .theoretlc.al con.struc.ts. in those works, appllcaoté%rés? o low (McComas andillér 1981a). With such trans-
those theoretical considerations is incomplete and the mgdél |

in essence, heuristic (Polzin 2004a; Polzin et al. 2014). er a. source oflntgrnalwave energy ahigh frequency !S
%rlc]ed for a stationary balanceHowever, a systematic

. . . o re

The crux of the issue is that there is an essential incompa - ) .
. . . . view of the nonlinear transfers and possible energy sources
ity between the internabve spectrum articulated in Garret

and Munk (1972hich is separable in frequency and vert|oca1]—he oceanic internal wave field (Polzin and Lvov 2011) was

wavenumber, versus analytic theory summarizést ietMl.
(1986), which is based upon extreme scale separated interactions.

and emphasizelransfersn verticalwavenumbeile have 1The parallelwith the ultravioletatastrophe oblack body
radiation is merely in the fact that an assumption of spectral equi-
partition (of energy density in frequency space, in one case, and of
action density in vertical wavenumber space, in the other) leads to
& Supplemental information related to this paper is availableoaphysicalesult:if energy is equipartitioned in the normal
the Journals Online websitéttps://doi.org/10.1175/JPO-D-21-modes of a black body radiator, classical physics predicts the radi-
0121.s1. ated energy is infinite. If wave action is uniform in vertical wave-
numberthe Fokker-Planck theory predicts that the Garrett and
Munk spectrum is associated with an equilibrium shatie,no
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not able to identify the required source of energy at highsfrkttion is incomplete (Dematteis and Lvov 2021). Here we
guency (see also Le Boyer and Alford 202W¢halen et al. build upon the results of Dematteis and Lvov (2021) to ana-
2020,Kunze 2017 Ferrariand Wunsch 2009)Second,the lyze the energy fluxesin the oceanic internalwave field
Garrett and Munk 1976 (GM76) version of the oceanic spauad provide a firstprinciples explanation ofthe finescale
trum,which was given “universal” status in Munk (1981),parameterization.

not just a stationary state in thatlldt et al. 1986) theoreti- The finescale parameterization is

cal paradigm: Having no gradients of action in vertical wave-
P 9 gnog f N2cost! N=f

number,GM76 is a no flux solution ofthe Fokker-Planck Py 1S 8310°1°
i i nesca fo N2cosH! No=§
equation,which meansno transportof energy to smaller 0 0
scales. Yet, that same theory makes a prediction for the spec- 3R, 11) 5
tral power laws ofstatistically stationary states tlaak in 3 E? 4VR .51 W kg?t, (1)
vV \Y

good agreemenwith observed oceanic spect®plzin and

Lvov (2017, their Fig. 37). . ] in which P is the downscale energy transport rate, to be parti-
These th?or?t'caBSLfes stand in contras.t to.the ﬁ.n?scalﬁoned between kinetic energy dissipation ratend work

pgrameterlzatloﬁfhe ﬁnescale' parameterlzatlon orlglnatea(?r']e againstgravity in a buoyancy flux.The factor Es

with Gregg (1989) as an empirical statement about the pifity, 1, _nis 5 length scale metricof the shearspectral

of 10 m first difference estimates of vertical shear to act @ity with vertical wavenumbeefmed by a transition in

proxy for the dissipation rate It is distinct from both ray sPectraI slope (Gargett et al. 1981) to a wave breaking region:

tracing simulations (Henyey et al. 1986) and from formal the-

ory using a characterization of the scale separated interactions me 2p

(McComas and Miller 1981a). In Polzin et al. (1995) one finds o 2ntE (m)dm 5 ﬂ)mn (2)

further data/mode@omparisonsn attempt to address nor-

malization issues, an accounting for departures from theWi-horizontal kinetic energy densityni The factor Ris

rett-Munk (GM) frequency distribution using an argumenthe ratio of the gradient potential energy spectrum to the gra-

forwarded in Henyey (1991) aimportantlyan attempt to dient horizontakinetic energy spectrurfinally, fo and No

place the discussion in the spectral domain rather than udf§ghormalization constants for the Coriolis frequency f and

the 10-m first difference metric. In so doing there is an at8eérbuoyancy frequency N. The parameterization uses values

tion that the energy transfers in horizontal wavenumber &@ggsponding to the locapendulum day at32.8 latitude

pace with those in verticawavenumber such thapectral and 3 cphFormula (1) is normalized so that for GM76r

transports do not project strongly across frequeridpeso  WhichRy53,E51, for f 5f o andN5N , one has

this point the finescale parameterization iaterpreted as Pfinescai® 8 3 1G1W kg’

a modelfor the refraction of high-frequency waves in near-For our calculationswe use a modified version ofthe

inertial shear. It can be dissected into one part high-freqé@Aé¢ spectrum, which is consistent with the stationary solu-

energy.one partnear-inertiashear Varianc@nd one part tion of the kinetic equation in the scale inVariarrEgime,

refraction rate proportional to the high-frequency wave d&y& in Lvov et al. (2010). Denoting the wavenumber by p 5

ratio. Apart from concerns about the constant out front, tifegB), k being the two-dimensional horizontal projection and

are the same basic ingredients provided by formal theory¥éhe verticaprojectionwhose magnitudes are denoted by

extreme scale separated iterations and summarized withkadFik- and m 5 |m|, the GM76 model is multiplied by

ker-Planck (orgeneralized diffusiorgquation (Polzin and k=k 931 with m, 5 4pN=( bNy), k, 5 cm,f =N (where ¢

Lvov 2017)ln Polzin (2004a) one finds a fundamentally did-comes from the constraint thétte modified version pre-

tinct interpretation being articulatidt the same finescaleserves the same energy level as GM76):

parameterization can be viewed as a closure for tataér

than scale separated, interactions. This characterization is used _ 2f 1 2m, 1

to find solutions to a boundary source decay problem in P&IIH Pv v22f2 p mZlm?

(2004b) and these solutions are employed to write a dynami- (3)

cally based mixing recipe for the decay of intertides in

Polzin (2009). where E is the nondimensional GM76 energy level. Following
We address the concerns raised by the oceanic ultravialet instructions of Polzin et #L995)numerical integration

catastrophe with theoreticakork undertaken in the last of the modified spectrum provid.%§ 2:46 and R, 5 2.48,

decadeThese include numericastimates thaére under- the two parameters needed to calculatd Bdfor the spec-

pinned by first principles (Polzin and Lvov 20@hj¢ch sug- trum (3), and thus

gesta far more nuanced viewthere is an obvious role for

interactions that are “local” in nature in addition to those P finescale™ 5:9 3 10°°W kg”': (4)

that are “extreme scale separated.” This provides an inter-

pretation that parallels the two (local versus extreme scaleThe corresponding firsprinciples estimate obematteis

separated)interpretationsof the finescale parameteriza- and Lvov (2021), reviewed and analyzed in section 3, is

tion. Moreover, there is a growing appreciation thathe

assessment of the Garrett and Munk spectrum as a no-flux PoL = 9:0 3 16° W kg?': (5)

b?NNgE —
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FIG. 1. Energy pathways in the internal-wave bEideés and inertiadscillations force the near-inentiades
(v ~ f). The PSI decay mechanism is believed to transfer a large amount of energy to larger waaefrembers,
quency f, providing a plausible physical mechanism for the bottarh étgadtas an energy source. Resonant
interactions between triads of internal waves dominate the spectral energy transfers in the inertial range (inner black
box in the figureThese energy fluxes are in part diffushyn as solid red (analytically obtained) streamlines,
and in part local, shown (qualitatively) as yellow dashed arrows. The energy transferred to scales smaller than 10 m
(m . mma) and frequencies above the buoyancy frequerityié assumed to excite hydrodynamic instabilities
that result in a 3D turbulent field. The end result is dissipation of turbulent kinetic energy and diapycnal mixing due to
the work of buoyancy fluxes. The power exiting the wave field, peratriiteom . my,5xedge, and per unit of
m at thev 5 N edge, respectively, is represented in the two insets, result of the theoretical calculation presented in
section 2. In the figure, dashed lines represent finite spectral jumps.

These estimates essentially have N 2f scaling in com- within a generapicture schematized in Fid, to which we
mon,although the theoretical estimate will have small expd} refer in the restof the manuscriptThe energy ofthe
nent corrections due to the modification to the scaling oflélhge-scale inertialscillations and tides (on the order af
GM76 spectrum [see Egs. (11) below]. The finescale paraiyee per day) is transferred between interacting internal grav-
terization has a logarithmic prefactor of 4déH) while the ity wavesThe mechanism of nonlinear resonant interaction
theoretical estimate leading to Eq. (5) contains a power dmiasen internalvave triadsis assumed to dominate the
in f/N.The relative agreement of the first principles estinst®ene in an “inertial range” (in the sense of turbulence, i.e., a
PpL with Pinescaid€quires interpretation and discussion. range of scaleswhere no othereffectssuch asforcing or

The first principles analysis provides us with more thanddraping are present) extending down to the buoyancy fre-
simple downscale transport rate (5). The downscale diredimmncy scales (several cycles per hour) and, in terms of verti-
of the energy fluxes, both in vertical wavenumber and indakscales, spanning from the ocean depth (several kilometers)
quency [in agreement with the recent results by Eden ettal.the wave breaking scale (around 10 nthese resonant
(2019)], and a novel explanation of the no-flux paradox itrdhefers result in a downscale energy flux both in frequency
Fokker-Planck paradigm, will allow us to propose a solutiand vertical wavenumber. Part of this transfer can be approxi-
to the oceanic ultraviolet catastropfibe estimate springs mated as a pointwise flux due to the scale-separated induced-
from the wave turbulence kinetic equation governing trad#fusion process. The streamlines of the diffusive part of the
fers within a spectrum of amplitude modulated waves, arfildififanalytically obtaineske section 4) are represented as
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solid red lines in Fig. TThe contribution to the flux by local The internal wave kinetic equation expresses the time evo-
interactionswhich is given by finite “jumps” between sepéition of the 3D action due to three-wave nonlinear resonant
rate points in Fourier spaces represented (qualitativelly, interactionsin a way that willbe detailed in section Fhe

the schematic of Fig. 1) by yellow dashed arrows. Last, tedugtion can be written as

lent instabilities at smaller scales mark the end of the cascade

of energy, which finally goes into the work of buoyancy fluxes % 5] (od 7 | (sen, (8)
againstgravity,generating diapycnatixing,and into dissi-
pated turbulent kinetic energy. according to the classicaldecomposition putforward by

The stationary state identified in Lvov e{20.10) is sup- McComas and Bretherton (1977) into locahd scale-sepa-
ported by a mixture of both local and scale-separated intgfi& interactions. In particular, the latter kind of interactions
tions. In section 2 we consider both types of interactionsjgndominated,n a spectrum close to equilibrium,by the
separate the (nonrotating) transports (5) into the respectiMfuced diffusion (ID) proceswhich allows one to simplify
fluxes,in quantitative agreemenwith the finescale para- its contribution to an actual diffusion such that
meterization. We locate the separation between the two types
of interactionsand we show thatthe scale-separated part R Np , (9)
reduces correctly to the diffusive prediction. Pi " Pj

We then overview the internakve kinetic equation and . . . N
discuss questions of stationary states, inertial ranges, anWr&%rr?- 3 is the diffusion tensor andji> 1, 2,3 denote the
vergence of the associated integrals in sectinrs&ction 4 three compor.\ents of Fhe wavevect.or.p. . .
we revisit the energy flux theory of the Fokker-Planck equé‘-c'_’t us consider thellnner bolx delllmlted by a solid black Ilpe
tion in the induced-diffusion limitWe analyze the relation in Fig. 1 and refer to it ?S thg inertial range, denoted t?y B, in
between horizontaland vertical wavenumberfluxes and k-m space rather than in msimply for ease of calculation.

discuss how these transfers project onto the frequency dgﬁ\%ﬁ;nthere are no sources.or sinks O,f er?er.gy inside B, one can
crucially requiring an energy source dbw frequency.in write the energy conservation equation in integral form for B, as

section 5 we summarize our results and suggest a way out of d
the paradox referred to as the oceanic ultraviolet catastrophe. gt Be( k, mdkdm 1 Pin 1 P out5 0,
(10)

Pin 5 Fé)ds, Pout5 F g)ds,
2. Local vs scale-separated contributions to the Bin B out

energy fluxes
9y where s is a parameterization of the boundary B 5;8

We consider the internal wave kinetic equation in the sgalg; with B, the part of the boundary where F . 0 (energy
invariantregime consisting ofheglecting the effects dhe entering B) and B,y the part of the boundary where F, 0
Coriolis force.An idealized stratified ocean withospatial (energy exiting B). The term F is the power per unit of s flow-
inhomogeneities is assumédthe isopycnatepresentation ing across the boundarsg that R, . 0 and P o, O repre-
consisting of the use of the mass density vertical coordi- sent the total power going in and out of B, respectively, due to
nate in place of the water depth z. Thuis, in units of ' three-wave nonlinear interactions.
and m is in units ofkg?*. The problem is further simplified The fluxes in Eq.(10) can be computed directly from the
by considering a constant stratification profile and an isoteéton integrali.e., the r.h.s.of the wave kinetic Eq(8).
wave field in the horizontalirectionsThe nonrotating dis- The details on the theory and numerics of the method can be
persion relation of internal waves reduces to found in Dematteis and Lvov (20298¢tion 5dn addition,

. the (MATLAB) numericalcodescan be found as online
V5 g=m, with g5 g=(roN), (6) supplementahaterial An accurate (numerical) counting of
resonancedransferring energy pagthe B ot part of the
boundary leads to the following formulae for the horizontal
(in the k directionacross the upper edge at,5«in Fig. 1)
and vertical (in the m direction, across the right edgg,at m

in Fig. 1) outgoing fluxes, respectively:

where g is the acceleration of gravity gnid the reference
mass density.The statisticalquantitiescharacterizing this
homogeneoudyorizontally isotropic wave field are the 3D
spectralaction density n(p)the 2D spectralaction density
n(k, m) 54 pkn(p), and the 2D spectral energy density

e(k, m) 5vn(k, m). At convenience, one can switch from the Mnax
k-m space representation to them space representation. Pouth 5 . dm Foutn(m),
The change of coordinates is simply defined by the dispersion (N:g)mn
relation (6): n(v, m5n(k, m v=k °*, v, m5 e(k, M Pouty5 " dk Foutyk),

v=k 21}note that the latter quantity has been used in the Y (f =)mmax
introduction in Eq. (3). F outn(m) N2 K7225C, (11)

We consider the stationary solution (3yhich translates 54 p—(VoA)2 max ,
into a 3D action spectral density of the form Foutytk) 9 KO28mma,Cy

1 1
np) 5 Ak 22m?°, a53:69, b50: (7) Cn> f=NdS B, Cy5 mn:r%xdsms)'
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FIG. 2. Construction of the transfer integrals (gkd) (@)-(e) (relative to the energy flux at the upper and right edges of the iner-
tial box in Fig. 1, respectively. The contributions in (a) and (d) are computed numerically, except for the ID singularity that is comy
analytically. Integration of the functions in (a) and (d) gives the (nondimensional) transfer integrands in (b) and (e), respectively, v
the red area denotes the contribution that comes from the scale-separated region, dominated by ID. This red area, representing tl
sive part of the energy fluxes, is an explicit function of the diffusion coefficients, as shown in the legend. Panels (c) and (f) are a re
of (b) and (e), respectively, upon suitable change of coordinates; in this physically more intuitive representation, the contribution
right corner at 1 represents energy transferred across the boundary from a neighborhood of the boundary itself. Contributions froi
left side of the plot in (c) and (f), instead, are due to large jumps in spectral space. Again, the red area represents the part of the «
tion due to ID scattering.

where A is the prefactor of the action spectrum Vg)isa and Ty(s), s € [0, ‘] (Figs. 2b,e). As one might expect, the
dimensionaprefactor of the matrix elements of the kineticontribution to the outgoing flux coming from the immedi-
equation [see Eq(14) for the explicit expressions of A andate vicinity of the boundary (kfkx5 1 in Fig. 2c and m/
Vol, and T, and T,, plotted in Fig.2 (see also supplementalmmyax5 1 in Fig. 2f) is due to the ID processa wave close
material), are nondimensional transfer integrands quantifgitite boundary is scattered rightacross it, while at the
how far from the boundary the outgoing energy is comingame time absorbing a much smaller wavenumberthat
from. In Fig. 2, the top panels are for horizontal energy tramduces” the scatteringThis part of the contribution is
port across the boundaryat5 N, which via the dispersionrepresented as the red area in Fig@s and 2ffor the hori-
relation maps toks{m) 5 mN=g The lower panels are for zontal and the vertical fluxagspectivelyThese red areas
verticalenergy transpordcross the boundary & 5 k 5« have an analyticalexpression in terms ofthe coefficients
Figures 2a and 2b depict the procedure of double integraifothe diffusion tensor, respectively of ai n p=k and

of the collision integrand that leads to the horizontiix. anxn ,=k . The terms involving n ,=m are identically
Figure 2c is a remapping of Fig. 2b and quantifiesthe zero since the analyzed spectrulg. (7) does not depend
energy transferred beyond k 5.k from different distan- on m.Looking at Figs.2a and 2dpne finds that these con-
ces from the boundari{he analogous calculation is repre-tributions come from the integration of integrable singulari-
sented in Figs.2d-f for the verticaltransportbeyond the ties given by the ID asymptotics, which were quantified

m 5 m,axedge.Note that we use the variable in bracketsnumerically in Dematteis and Lvov (2021). We provide the
to denote different functions {,(s), s € [0,1] (Figs. 2¢,f) following newly obtained analytical result:
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ak 8 p3 5.8d9=PRa62a energy levedf the originalGM76 spectrumin an effort to
’ minimize arbitrariness in the choice.oN&w, we can make
amk 8 p3 4:0d9=RaK52a2, (12) an estimate ofthe dissipated power ahigh wavenumbers,

using N 5 Nyand f 5 §, which gives
that will be explained in more detail in section 4. The flux due

to ID (red areas of Fig2c,f) is therefore given explicitly by Pouth 23:8 3 102° W kg?t, (15)
(minus) the term in round brackets in Eq. (9). Supplementing Pouty 25:2 3 10%° W kg?:
the numerical integration of the local interactions by the exact o
analytical integration of the ID singularities, one dbtains  This amounts to a total dissipated power
Ch 28 p375:4, Cy 28 p315:8: (13) Pout5Ph1Py 29:03102°W kg*!: (16)

We point the reader to appendix A for details of the calc(-he integration along the boundaries leading,tg Bnd
lation. The computation is performed in horizontal waverRuny is represented in the schematic in Fig. 1 and will be dis-
ber variables(vertical wavenumbersare bounded to the cussed in section 5urthermorewe are able to decompose
horizontal via the resonant conditions, see section 3), antloda horizontal and vertical transfers into local and scale sep-
estimate thathe power series upon which the ID leading-arated subcontributions, each of which is dominated by a par-
order approximation is based holds for points withJ/k ticulartype of interactionsthe ID process dominateshe
(11 821, e 1/16. This is what delimits the red ID region igcale-separated interactions while the Idoééractions are
Fig. 2c.The ID asymptotics establish théhe scattering of dominated by triads that are quasi-collinear in the horizontal
point (k, m) vig ID interaction results into a pointk[1 1  plane. This will be illustrated in section 3.
O(¢,m110 e), fore, 1, asrepresented in FiQd. Surprisinglythe ID concept on which much of the under-
With the due changes of variablesjis implies that the ID standing of internal wave interactions is based turns out to be
region for vertical transport is given by the red area in FiguiEg marginalin the economy ofthe total energy fluxes.
Therefore,we can now interpreboth transfer integrals,C However, as will be shown in section 4, its analytical tractabil-
and C,as given by a scale-separated contribution (domini¥elyrns out very useful for the interpretation of the direction
by the ID process) and by a local contribution. In particul@f the energy cascade through scales.
the horizontaltransportcontribution is abou®6.9% local, ~ Formulas (16) and (14) can be compared directly with the
3.1% ID, and the verticaltransportcontribution isabout result of the finescale parameterization with the same input
89.9% local, 10.1% ID. spectrum, Eq. (3), the GM76 spectrum modified in such a way

Taking into account all interactions and the explicit exph&d-the high wavenumber power-law behavior matches that
sions of Yand A, Eq. (11) can be rewritten as of the stationary solution of the wave kinetic equation,

Eq. (7). As outlined in the introductionise of the finescale
parameterization formula (1) (Polzin etl. 1995)for such

12n
GGy ) 112 spectrum yields
Pouth 5 m 12 2b f11"NE , . B
GC £ 0 Pfinescale 5:9 3 10" W kg*~: (17)
Gly r 11ne2
Powy> =712 N B (14)  The consistency between the finescale parameterization
1 2¢ "NI2np3 and the first-principles results (14)-(16) b&lldiscussed in
G5 ®b —Com , n52a2750:38, section 5.
‘510 m,

3. The internal-wave kinetic equation and its steady state

having used V25 N=(32), ¢ 3 and A5 Eb2r,fm.No The hypotheses that have been made are the following. We
p3Nk(12”=2}pr(()efactor ofotrlue modified Garrett gnd Munk consider a vertically stratified, spatially homogeneous oceanic
spect;um (3)%aking into account the change of variables {'gternal wave fieléxpressed in isopycnal coordinates in the
isopycnal coordinates and to k-m space. The following Vé]arégotatinghydrostatic approximatioFhe verticaktratifi-

of the physicaparameters are usefl:5 6.3 3 10 25 is the cation gradient profile is assumed to be constant and the wave

GM76 nondimensionanergy leveh 5 1300 m,* 5 10 m, field isotropic in the horizontadirectionsWe also assume

fs5 1000 kg A%, No5 0.005 2% £5 2 3 7.3 3 18 sin(l) \{ertlcal |sotrop>/,. i.e., symmetry m © 2m, so that the de_scrlp-
: tion can be restricted to the vertical wavenumber magnitude
(at latitudel 5 32.58. Moreover, we have used m, 5 o
. m requiring that n(k, m) 5 n(k, 1|m|) 1 n(k, 2|m]|) 5 2n(k, m)
4pN=(bNy) and k, 5 cm,f =N,with ¢ 5 3. The factor c has . . L
o (standard one-sided vs two-sided spectrum definition on a sym-
been added asa normalization factorto ensure thatthe . ) ) o . .
o metric domain). The nonrotating, hydrostatic dispersion relation
energy level of the modified GM spectrum preserves the same . . -
i given by Eq. (6). Finally, we assume zero potential vorticity.
Let us consider an ensemble of random internal waves,
2Here and in the followinga factor of & is kept separated the joint limit of large box and weak nonlinearity (Zakharov
from the result of numerical integration of Eq. (18). et al.1992Choi et al.2005Nazarenko 201 Eyink and Shi
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2012Chibbaro et al. 201Beng and Hani 2021). Under the
above assumptionsthe following wave kinetic equation,

describing the time evolution of the 3D wave-action spectrum
is derived (Lvov and Tabak 2001, 2004; Lvov et al. 2010):

ne)
——51R),

8
| p) 5 ?p fi)zvgzz d’\Zr’quz d/02 vi2 V2

with 4
kkky

Do12

< 3
=

]
<

20 1)20 < 2)dkdk dmy dm, (18)

where the ternf, 5 n(p;)n(p,) 2 n() n(py) 1 n(P,) contains
the dependence on the spectraoiible-ended arrows indi-
cate the permutation of indices, ahds\the matrix element
quantifyingthe magnitudeof the nonlinear interactions
between the triad of wavenumbers,mmd p. The calcula-
tion of this interaction matrix elemeid challengingwith

———— IR scale sep (below)
R UV scale sep (above)

L 1 1 1

early expressions given by Olbers (1973), Voronovich (19799,
Milder (1982)and Cailloland Zeitlin (2000])n the current
manuscript we use the interaction matrix element computed
in Lvov and Tabak (2004) by using the Hamiltonian formula-

1 2 3 4 5
ey

tion of Lvov and Tabak (2001)in Eq. (18),the two delta
functions impose the conservation of vertical momenturr

main colinear ————1IR scale sep (below)

. . . IR scal inside) - UV scal bove) [
energy in each three-wave interaction. The fagterdines ] scale sep (inside) scale sep (above)
from analytical integration of the horizontal momentum « 10 \\\ UV-ES'“_I /;"I"UV-ID
function and is proportionéb the area of the triangle with AN ’"l‘\ ,'//
sides kkj, and k. The nonlinear collision integraf ) mon- \\ ,’ ”"\.\\ ////'
tains all of the information aboutthe nonlinearresonant N\ /1y ey /

\ L
energy transfers involving point p in Fourier space, after IR-PSI __\;_’_1»“ WA
grating out the azimuthal angle thanks to horizontal isoti . _~‘~:-\:' \ ,/\.\ ,'

«IN \ 1
g

The two independentdelta functionscan be integrated 3 N\ ,\~ i
5 \

over reducing the domain dhe integrand to the resonant 3 10°
manifold,with two degrees offreedom left.In Fig. 3 two
equivalentrepresentationsf the resonantmanifold are
shown, in thekk, space (top panel) and in the-m space
(lower panel)In the k;-ks spacethe triangular inequalities
constrain the possible interactions to the so-called kinernr
box, delimited by the colored boundaries in the figlte
points on these three boundaries identify triads with colli 101 .
horizontalwavenumberdhe infrared (IR) scale-separated
interactionsyhere ID dominatesre delimited by a dashed
lineatk5 eork,5 e(cf. Fig. 2, top panels). An equivalent

representation of the resonant manifold hasndv; as the
b ; ! referred to as the kinematic delimited by the colored collinear

two independent degrees of freedaams,represented in the b . 4 .

. A . oundaries, where the three horizontal wavenumbers of each interac-
bottom pa.nelof Fig. 3. The result |§ a resonantm.anlf_old tion are collineafhe corners of the box at points (0, 1) afjl (1,
made of six lobes. Each of the collinear boundaries in the f@Rhe regions with (infrared) extreme scale separetierthe
panelmaps into six distinct curved edges of the same col@rscattering gives the leading-order contribution. (bottom) The res-
respectivelyin the lower panelln the my-v; spacethe IR onant manifold in the spacen. Each of the collinear boundaries
scale-separated region is mapped into the part of the reddrihatupper panel maps into six distinct curved edges of the same
lobes to the left of the dashed ling iéfthe small wavenumsolor,respectivelfhe resultis a resonantmanifold made ofix .
ber or small frequency in the interaction ang)por into lobes. Two of the lobes contribute to the ID leading-order contribu-

. . tion in the scale separated region (labeled by iRvi@Yying the
the small box surrounding the yellow dot (i where the interaction oé smallwavenumberhatinduces the scattering

yellow dot denotes p, and pp). By the ID asymptotics, in petyyeen the two much larger wavenumbers p (yellow dot in the plot)
the m coordinate the V‘\thh of such box is constrained todigy p(inside the square surrounding the yellow dot). The separation
roughly the interval 2 e 11 e (see appendix B and cf.between the scale separated and the local regions in the two plots are
Fig. 2, bottom panels). intended for a delimiting vale® df16.

my/m

FiG. 3. (top) The resonantmanifold in the spacekk,, also
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In the nonrotating limit of Eqg. (18) all of the factors in t
integrand of ( pare power laws in the variables k and m
therefore it is natural (and general) to restrict the possibl
tionary solutions to a power law of the form 16

1.8}

n(p) 5 Ak 22m?°: (19)

1.2}

This allows us to represent the possible solutions in the &' 1|
power-law plane a-b and obtain analytical results that co ;.
be pursued otherwise. Using the scale invariant propgrtie

and the ansatz (19), Eq. (18) in stationary conditions red il

04}
nk, m)
t

5 4_gp(AVo)2k22a15|m|22b11| @, b50, (20) 0.2¢

expressed for the 2D action spectriHere, Vg is a dimen-
sional constant prefactor of the matrix element$ anibl a,
k51, m51)gH AVO)2 is the nondimensional collision inte 150 T T T T =
gral: it is a function of a and b only, that must vanish in ¢z
for the solution to be stationary. It has been shown (Lvov Eﬂ
2010; Dematteis and Lvov 2021) that I(a, b) is a finite (n<,§ 50
vergent) integral only on the segmenta €(3,4),b50. M5
over, on such convergence segmeahe findsthatlI(a, b) 5
vanishes at a 3.69b 5 0, which represents the only well-
defined stationary solution to H3d.8).This is shown in the
bottom panel of Fig. 4, where the separate contribution ¢
scale separated and local regions is made apparent, for ¢
ent values of a € (3, 4) and b 5 0. In particular, we notice =
among the local interactiotispse with quasi-collinear hori-

zontal wavenumbemive the largest contribution.In the i . . . T ‘
top panel of Fig4, we show the magnitude of the integran '2503_1 32 33 34 35 36 37 38 39

for the stationary solutioim the kinematic boxihe quasi- a (n(k,m) o [k|™%)

coIIinefar regions_ gre delimited by dashgd lines and the intc?:-lG. 4. Both figures are from Dematteis and Lvov (263).

grand is there visibly mu.ch I.arggr tha.n n the rest of.the R éresentation of the magnitude of the interactions [integrand of
Therefore,the local contribution is mainly given by triads Eq. (18)] for triads with horizontal wavenumbers k Brid k,

close to horizontal collinearity, meaning that in three dinfgathe stationary solution (a) 5 (3.69, 0). The smalltriangle

sions the three members of the triad,g,pie on the same above k5 1, k; 5 0 is the ID-dominated region. The thin regions
vertical plane. As far as the local interactions are concernletimited from above by a dashed line are the near-collinear

the results presented in section 2 are obtained by numeriggions.The color maps representthe base-10 logarithm of
recursive integration in suitable regions of the kinematict§8xnagnitude ofthe contribution,while the left/rightcolor

whose result is illustrated in FRy.with the same numerical™aP denotes negative/positive contributisespectivelyThe

. . arrows depict the stationary balance between different regions
method used by Dematteis and Lvov (20T arrows in (whose overall sum has to be zero for stationarity), highlighting

the top panebf Fig. 4 symbolize the action fluxes betweef},o qownscale direction of the horizontal flux. (bottom) On the
the waves of a triad p, p: if the integrand at point kis  segment a € (3, 4), b 5 0, breakdown of the contributions to the
positive, p is “created” in the interaction, and this contrikigtision integralas sum ofthe scale-separated regiodpmi-

to an increase of its content of action in time; if the integnatetl by ID, and the more locakollinear regionThe rest of

is negativep is “absorbed” in the interacti@md its action the unclassified triads gives a subleading contribution. The total
content is depleted. Equation (18) has intrinsic turbulent@fghes for a 3.69,the stationary state of the internaave

acter, and so does its stationary state: it is a nonequilibriiffgi§auation (18).

tion with a flux of energy across scales that is constant in time

and directed downscale (toward larger values of k).

It is worth mentioning that the introduction of a minim
frequency equalo the inertialfrequency fa maximalfre- Although generalthe integralformulation (10)may be
quency equato the buoyancy frequency Bnd of physical hard to visualize. Further simplification of the picture may be
cutoffs at small and large vertical spatial scales has a chaabéeved by assuming that the transfer is dominated by triads
to regularize the collision integral also for spectra outsidevitieextreme scale separation. In other words, in the decom-
convergence segment. A detailed and comprehensive anpbgition of Eq.(8) one assumes thati®? .. | 199, so that
of this issue is subject of current research. I 1 (®R, restricting the integration of the r.h.s. of Eg. (18) to

100

n
=]
T

L
near (:nliuear

A

o

o
T

ribution to eollis
=)
o
:

extreme 5(:?[1(‘ S(Epﬂl"rlti()l}
unclassified
200 total

cont

é'l' Induced diffusion revisited
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the IR corners of the kinematic bo%ince the early works energy is transferred nonlocally to/from the high-wavenumber
(McComas and Bretherton1977;McComas and Mlller region}a graphical representation of this fact is found, e.g.,
1981bMliller et al.1986)these scale-separated interactiofis Fig. 6 of McComas and Miller (1981a)For this reason

have been classified under the three processes of paramegrid21) is preferably expressed fothe action, but one
subharmonic instability (PSl)glasticscattering (ES),and can obtain the energy flux simply by using §& )k, m) 5

induced diffusion (ID)In particular,McComas and Miller V) ™(k, m).

(1981a) interpreted the GM76 spectrum as resulting from thrcond, we stress that Egs. (18) and (21) are not equivalent,
stationary balance of a Fokker-Planck equation for the wagénade clear in section 2. The latter is derived from the for-
action, derived underthe assumption thathe ID process Mmer under the assumption that all of the energy transfers are
dominatesthe transfers.The ID process involvesa net scale separated and neglecting the restthe interactions.
exchange of energy between two almost identical wavenlf¥i is going to be analyzed below.

bers mediated by a much smaller wavenumbethe sim- 5 cjgsure for the ID energy flux: Nonrotating case

plest formulation of the ID theory, the attention is focused on

the large wavenumbersand the small-wavenumberow- Now, for the Fokker-Planck equation (21) to have the cor-
frequency parbf the spectrum (the so-called near-inertial€ct scale-invariant properties of EQ.0), at the stationary
region) is considered as a decoupled independent reservaiptethe following consistency conditions must hold for the
that is given and constant in time. In the system of largeGR§{fcients of the diffusion tensor:

numbers alone, theone notices that ID implies the scatter- Ak 5 Crck®22mi2e, 5 5\ k522mR2d
ing between two neighboring wavenumbaélieglecting the 42 32b
fact that the scattering would not occur without the mediation @mm3 CmnK me2®, (22)

of the smaller-wavenumber reservthis process preserves . . .
P P where thej@re constants that in principle can be determined

wave action in the high-wavenumber regiliote thatthe . . . -
. . 9 bx straightforward calculatidiar instancegexplicit expres-
wave action can also be interpreted as the “number of quasi

particles” (or waves)and here one wave is scattered into 5I0ns of & and gy for the steady state are given in Eq. (12).

another one locally preserving the total “number of wavc—:-'l-sh‘a scalings in Eq. (22) are a consequence of the nonrotating

The ID equation derived in McComas and Bretherton (199?2:2:1220;%:& Erqc;u(nzdl)r:taastizie(tss(;n;gtr;’: a(l;t;;nhtgl;lle

is given by Egs. (9) and (8), settifif'I5 0, where the;ali, Eon 9 9

j 51, 2, 3) denote the coefficients of the diffusion tensor,dmg

explicit expressions provided in the appendix theFeina

S|mple.V|s.uaI|zat|on of the energy ﬂmac.r,e we use a rgpre- due to the singularity in the ID limit. Thus, the same consid-

sentation in the 2D plane k-m (or equivalentiin). Using o tions should be applied for the well-posedness dthe

the transformation in cylindrical coordindteszontal isot- coefficients(22). Since McComas and Bretherton (1977)

ropy and vertical isotropy, the ID equation for the 2D actigfy mcComas and M dller (1981b),the Fokker-Planck

density gives equation has been shown to enjoy stationary states for all
points on the two lines b 5 0 and b 5 3 2 2a/3.This has

idered in section 4b). In Eqg. (18), the convergence con-
s that technically restrict the range of possible solu-
tions onto the convergence segmenta €43,b 5 0 are

nk m) 5 2= (K, m been rederived in Lvov et al(2010) highlighting how the
o result is based on a restriction to the limit of the infrared ID
] ™k, M5 aTIZk 2 an © 2 agm — interactionsDespite this,we find that for b 5 0 there are

exact cancellations between the ID leading order of the sin-
gularities of the collision integrand [r.ho$.Eq. (18)],that
need to be treated with particular carén exact balance
between the leading nonzero ID contributionsoth infra-
where =5 (/k, /m)anda 52115823 &m3@mk>  red and ultravioletallowed Dematteis and Lvov (2021) to
@35 @235a315a33 anm S a33 The effects ofa;; and  gptain analytically that the ID solution is stationaiipde-
a1 are here cancelled by assuming horizontalisotropy. pendentof the other interactionsfor a 3.69, which is
Notice that the 3D action diffusion coefficients contributecompatible with the fulbalance obtained with alhterac-
to both advection and diffusion terms for the 2D action intions. This can be observed in the lower panebf Fig. 4,
Eq. (21). where the balancesbetween scale-separated interactions
We would like to stress two further points. First, Eq. (2Bhi§ local interactions are shown to vanish at a 3.69 sepa-
for the wave action density and not for the energy densityately. Therefore, at leastfor b 5 0, the Fokker-Planck
because in the high-wavenumber parttbé spectrum its  equation (21) enjoys the same stationary state (306%s
action,not energy,to be conserved in the ID picture,as Eq. (18), while the other states with b 5 0,a b 3.69 are
explained abovigy making the change of variables®(k, found to be (at a subleading order that had been neglected
vn(k, m) one concludes that expressing the same equatiom fesvious works) off balance.
the energy density implies the presenceanfextra energy  Using the expressions (22) in &i.),for a generic power-
source/sink term that accounts for the absorption/creatidawfspectrum (19) equivalent to a 2D action spectrum n(k, m) 5
the member of the triad in the near-inertial resewbose 4pAk221nm??, yields

Amk

K 2amkk—2 ammF n(k, m, (21)
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6228.122b high frequencies in order to be sustained. On the other hand,
5> 24 pA kK (@Ga 1 beim)k>=“"m for the stationary solution of the wave kinetic equation we
2 4pA— (@G 1 bCmmk3222m?22b show that, if all components of the diffusion tensor are consid-
m ered, the Fokker-Planck equation leadsto a cascade of
energy from low to high frequencyhese results are pre-
12b 2 2 XaGen 1 bCmm) k3223ml22b. (23) sented in Fig. Namely, in the top panel of Fig.vée show
the streamlines of the energy flux in both systems of coordina-
Now, assuming that the given spectrum is stationdmy, tes}Egs. (26) and (25), respectively}for the stationary solu-
r.h.s. must vanish for all k and m. This implies the conditié®n a 5 3.69,b 5 0. In the v-m representatiotihe flux is
downscale in both frequency and vertical-wavenumber direc-
aGk 1 bCkm o 2 2 2b, (24) tions. Importantly, we observe that a source of energy at low
aGm 1 bcmm ™ 2226 frequency and small vertical wavenumber would be compati-
W|th this fluxConsidering the relative proximity of the
g% wavenumber GM spectrum in the spacepmfwer-law
solutions, and arguing that the effects of physical cutoffs may
J @K, M 5 4poA (aGu 1 beim)k7223m?20, modify the stationary solution toward the GM slope itself, we
can observe how the energy-flux streamlines behave as a - 4.
We observe that the streamlines change continuously in the
parameters a and kiilting toward the verticadirection in
5 Co (2 2 20K7223225 (23 2 @K6228ml22b v-m space, as a - 4..This is depicted in the central panels of
Fig. 5. Although not rigorous, this observation is in agreement
Co.0, (25) with the downscale energy cascade in the finescale parameter-
ization paradigm (Polzin et al. 2014), interpreted as an essen-
where the last line is true if the solution is a stationary stgkfly vertical processvirm space.
[I(a, b) 5 0], ensuring the validity of the condition (24). MorSince the coordinate systemsonsidered have different
over, exceptfor the overallnormalization constar, this units in the verticahnd horizontaldirectionit is usefulto
relation providegpointwise knowledge ofhe steady state quantify the flux direction using integrated quantities that can
flux. This is used next to investigate the direction of the $feadynpared directlye thus compute the power flowing
state energy fluxAs a consistency check on the results of out of the fixed boundary BCOR ., 5 P§- 1 P S, where
section 2, notice that for the steady state coefficient;n  the two contributions are given by integration of the compo-
Eq. (12) we have 5.8/4.0 2/(2a 2 6) 1.45,verifying the nent of the flux normal to the sides BC and CD, respectively.
condition (24). The computation is easiest+m space, yielding:
We then consider the inertial range as the region such that
. Mmax
Mmin, M, M axand f, v, N (see Fig. 1), which due to P(Be)c 5 dm)©(N, m - (21, Q

nk, m)
t

5 4pA2a26)agk 1 bckm)

Using again (21) and (22), we obtain the following form
for the stationary energy flux,

(aQ<m 1 bcmm)k622am122b ,

the dispersion relation (6) corresponds to a trapezoid in k-m Main >
space. The dispersion relation also allows us to change varia- 5 ¢, 9 mB22a22b 5 1,822a22b
. . . . . N max min 4
bles and express the flux ¥\am spacejn which the inertial 27)

range is simply the rectangleNT,3 [M min Mmal. Inthese  pl@ 5 " dv) ©(v, mnay - (0, 21)
coordinates, the energy flux (25) takes the form f

5 2Co 2a26 g2a27 ?n2aZXa22bf722a 2N 722a
J (Q(V' r‘r) 5 Cog7_a27 (8 22a?2 zbv722am722a22b, 2a 27
6225 822222b with the convention that an outgoing/incoming power is nega-
(2a 2 BVv>“*m : (26)  tive/positive since it is lost/gained by the set under consider-

ation (the box ABCD). So, we define the ratio
This result allows for transparent graphiiceierpretation

of the nature and paths othe Fourier-space diffusion-like R(seR 5 ﬁ 5 226 N=f2?721 (28)
energy flowsApproximating the kinetic equation with the p(Be(): 282712 m pae=Mhin 2alb24)

differentialkconservation form (21) allows us to analyze the
direction of the fluxes within the ID paradigm. Equation (&l¢haracterize the globalvertical-to-horizontalownscale
is nothing but a projection of the Fokker-Planck equationef®argy transfer ratio, restricted to the scale-separated interac-
on the 2D k-m space. tions under scrutiny in the current sectigabstituting a 5

Now, a further simplificatiomroposed in McComas and 3.69 and b 5 0, we obtaifi®R’ 4.5: in the ID paradigm, the
Bretherton (1977), can be made by asserting that the tradwferscale flux in the vertical direction is about a half order of
is dominated by thes& anmterm of the diffusion tensgr a magnitude larger than in the horizontbitection.With the
Below, we focus on analyzing what this approximation erganifee caveats about regularization by suitable cistefti-
and we find that an inverse cascade of energy in frequengrity,and departure from scale invariarwe,observe that
necessarily implied, requiring existence of an energy souttte &M limit would imply ®P’- *, in agreement with the
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FiG. 5. Direction of the energy flux as a function of the power-law exponent according (25E@nd (26).
(top) a 5 3.69b 50; (middle) a » £, b 5 0 (GM76 solution){bottom) Constrained flux direction according to
McComas and Bretherton (1977), after the vertical-vertical-diffusion-only assumption is made. Lefopanels are in

space, right panels are in k-m space; the two representations are equivalent.
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FIG. 6. The value of the vertical-to-horizontal outgoing power ratio for a coarse-graining
box with sides determinedtmefined as the ratio between Eqgs. (32) and (31). Fer large
the controbox corresponds to the whole inertial range ainttetactions are included,
reproducing the ratio of the powers in Egs. (14) and (15) (dashed yellowdind), As
more and more interactions are filtered out and the ratio becomes largeeactids
quantitative agreement with the ID theory [Egs. (27) ardh$h&Y red line] when the
scale-separated interactions alone are left in the box.
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verticality of the flux in such limilndeed,furthermore for obtained for the local interactions. On the one hand, this has
the action one finds that®, 1 P, 5 0, independent of made itclear that assumind't negligible with respect to
the values of a and tsince action is conserved by E@1). 1°P)is not justified. On the other hand, the fact that a nonne-

For the energy, on the other hand, we have: gligible subsebf interactionsare diffusive provideslirect
Coa2? knowledge of the pointwise diffusive part of the energy flux
P:?’e():D 1p (E;e/)m 5 o mﬁ]za()a(lb24) 2 mﬁ]Zi;ale‘U (see Figs. 5 and 6) and allows us to draw important considera-
722a tions for the pathways of energy.
3f 722ap 7223 (29) For the stationary solution with a 5 3.69, b 5 0, in partic-

ular, consideringall terms of the diffusion matrix has

which is negative fora 1 b 2 4, 0. This coincides with ﬂuﬂ(né]gl'ed the nonzero flux (26)which is downscale both in

toward higherfrequenciesfor which horizontaltransport frequency and verticakavenumber and ',S con5|stent. with
. . (© @ . the steady state. Moreover, we have estimated vertical
in v-m space is downscale arRigz, . Pgup . An action-

transportto exceed horizontal transport by almost half

conserving flux toward larger frequencies necessarily 'mB'HSE_r of magnitude in the ID paradigmmeaning the off-

an energy increase. This does not violate energy conservation . . .
: . . ) nal element of the diff n tensor plays a leading rol
nor the stationary balance! Simply, in the ID picture the g%%gao a’eiement o diffusion tensor play cading role

. at'had remained mostly undetected soTfae. key to the
energy thatappears athigh wavenumbers comes from the . . .
. . . solution of the long-standing paradoxes of the oceanic ultra-
near-inertial reservoir that acts as a nonlocal energy source, in

L . . violet catastropheaccording to our resultsjs thus to be
the continuity equation for the energy derisitis. fact was found in nonnegligible effects of previously neglected ele-
explained in Figs5 and 6 of McComas and Mler (1981a), 99 P yneg

where they had in mind a flux toward smaller frequencie%nents of the.diffusion tensor. . . .
The analytical results presented in thissection can be

implyi ink rather th t high f Ray. . o . .
'Mp'ying a sink rather than a source at high trequenay made rigorous;this will be the subject of a companion

alb2450 (whichincludes the GM76 case), instead, o . .
PE 5P ©  since the flux is verticah v-m spacej.e paper.An intuitive picture goes as followket us consider
ABC BCD " asquared partition of the inertiatange in boxes of sides

action is transferred at constant Dk, Dm, as represented for two different choices of Dk, Dm,

In McComas anq Bretherton (1977,)' aftler dgriving the rr?lff'lg. 6. Once a partition is fixedlet us define a coarse-
ker-Planck equationa further approximation ismade by grained modelfor which energy can be exchanged only

a?iam:jn?f th.at the trg;ﬁfers are qomltpatgd tl})qy3ﬁ1§.raent gprough adjacent boxes in the partiti@ntting off the rest
ot the diffusion matri>Lhis approximation I the€n AISCUSSELe 1o interactionsWe define the coarse-grained transfer

and analyzedfurther in McComas and Muller (1981b) integrals
and Muller et al. (1986In the framework developed above,

this assumption is equivalent to setting,& 0, and ¢« 5 <G) e e
Cm5 0. Cy~(85 0dz dt ;Th(t),
Then, since the only nonzero element is, g the energy Ve ‘ Vo (30)
flux in Eq. (25) is purely vertical in k-m space independent of C(yce)(e 5 dz  dt, T,
the values of a and b. This is shown in the bottom-right panel 1 z

of Fig. 5, representative of the ID picture of McComas and, . .
Miiller (1981a).As shown in the bottom-left panel, this which tend to ¢ and C, for largeeand tend to restrict the

translates into an inverse cascade in frequency when traﬁggrse-gralnlng rectz.angular box to the ID rggloneaslo,
fers are looked at in v-m space. As pointed out in the with the corzrlect scaling that rellatesthe hg/rlzzolntal side
introduction, this fact has represented the first problem oft 2 (1 1 @71 to the vertical side [1 211 e™"] for the
the oceanic ultraviolet catastrophasince a major energy D interactions. In agreementwith Eq. (11), we define
source at high frequency is believed not to be physically coarse-grained powers exiting the inertial range that relate
plausible. to the coarse-grained transfer integrals via

Now, let us focus the attention on the case b 5 0. Looking
at the first line of Eq. (25pr b 5 0 the approximation that PO (a5 4 (NVoA)? N 722a > 822900
G and g, are negligible with respect tq.cappears to be outh p(s 22a)gg (Miax min) h ’
singular: since the factor b 5 0 makes the contributjgg of ¢ (31)
vanish,one has to look atthe other terms thatould give
finite contributions$n particularaccording to Eq(25) [and
keeping in mind the relations (24)], in the b 5 0 case the hori-
zontal flux is due to thg.a@iagonal element, while the verti—PgCu%))/(Q 54p

722a

2 ¢ 722a
(NVoA): f 2 % m822aC(yCG)(e,

; - e (2a27)g g max
cal flux is due to thg,@off-diagonal element of the diffusion
matrix [cf.Eq. (12)].Notice thatthis consideration is only (32)
based on the fact that b 5 0, and therefore it extends also to
the GM solution. Let us define the ratio R°®)(9 5 P 5)(a=FS%) (8. For

In section 2these analytical results in the scale-separatadge values o€ the coarse-grained model includes all inter-
region have successfully complemented the numerical rescliens and Eq4.31) and (32) reduce to E¢l1);therefore,
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using Eq.(15),we have K®(§ - 5.2/3.8 1.4 for largee

On the other hand,as gis taken smallgr and smallenyve nk, m) 524pA — (agu 1 begmk’222m?2b

expect to go from the integm@anservation Eq.10) toward t k

the differentialcontinuity Eq.(21), for which we obtained 24pA — (aGm1 bCmmk®222mt22b

R(seP) 45 via Eq. (28).For consistencywe expectthat 5 4pA 2a 2 7 )(aGu 1 bCem)

R(€G) (g - R(5eP) 35 the ID region is approached. The behav-

ior of R(“®)(g is shown in Fig.6. We observe that as more 12b2 1 )MaGm 1 bcmm) k¥22am?22b; (34)

and more local interactions are left out of the picture as the

size of the coarse-graining box becomes smaller, the directi®w, at the steady state the r.h.s. must vanish for all k and
of the coarse-grained flux becomes more veriwadlthis is M, implying

consistent with Fig, since locakollinear interactions have

an enhanced horizontllansport while the ID region has a
stronger vertical transport. Dematteis and Lvov (2021) argued
that reasonablgshould be located between 1/32 and 1/16, for
what is considered “scale-separated” to be approximated t&‘{ﬁe
the induced diffusion approximation with an error not larger
than 5%-10% (see appendix B for supporting evidence). J @(k, M 5 4pdA (agu 1 beym)k822emet220,
Notice that in Fig6 the value of K® tends exactly to the

aGk lbcm - 12 2b_

aGm 1l bcym” 2a27 (35)

of (21) and (33) yields the stationary energy flux

constant given by'®P 4.5, and it does so for values &f (@Gen 1 bemmk’222m?2b

roughly below the chosen thresha® 1/16, which is thus

confirmed to be abouthe largestvalue for which the ID 5Dg (1 2 2bk8223m2122b (25 2 Pk722an220 |
approximation can holdror e, 1/16, the diffusion coeffi-

cients scale witheaccording to Eq.(12),and their ratio is Do. 0, (36)

independent of
where the last line is true if the solution is a stationary state

[I(a, b) 5 0], ensuring the validity of the condition (35).
In Fig. 7 we show the streamlines of the rotating ID flux
So far, we have considered the nonrotating lindt the (36), for the a 5 3.69, b 5 0 solution (top panels) and for the
internal wave kinetic Eq. (18). In the presence of backgragmdé high-wavenumbers limit a 5 4, b 5 0 (bottom panels).
rotation f P 0, scale invariance is lost and the picture is mangis rotating case we proceed only as far as the dimensional
complex, with supplementary terms in the matrix elemerframgis in section 4adn the nonrotating case we have an
a nontrivial deformation of the resonant manifold. Since Exget power-law solution that allows us to define a cut in the
resents the lowest internal wave frequerenying f P 0 has spectral domain and enables estimates of the diffusivity tensor
most impact on the three-wave interactions involving a |q’é’\€|ding to (31) and (32). In the rotating casgs aelatively
frequencyy, ~ f. Thus, in first approximation one can assiig8€nsitive toe if the cut lies, for example at frequencies
that the presenceof background rotation affectsnostly greater than 2f, whereagia quite sensitive. The absence of
the scale separated triadsyhile only marginally changing g exact solution in the rotating case limits greater precision.
the contribution from locatriads whose three frequenciesgp, the other handye expect this result to at least provide
are abundantly larger than Therefore,here we focus on  g,me qualitative guidance to our intuition, indicating that a
the scale-separated interactions in the rotating cabere ., nrehensive approach to the kinetic equation with rota-
the ID Eq. (21) represen.ts again the leading procelz'mte tion (subject of current investigation) is not likely to modify
follow a "weII-known der|vat.|on (McComas and M.uller sensibly the results of the present papléris important to
1981pMuIIer gtiaI.1986P0I2|n'and.Lvov 2017$e§t|on ,4f notice that the rotating approximation above confirms the
therein) exploiting the approxnmgtlon dihe 'nlear-lner.tlal ownscale direction of the ID flufor spectra in the range
frequency by fby which one obtains a modified version 0getween the stationary solution of the kinetic equation and
(22) that reads GM76. In particular, we notice how the purely vertical char-
acter of the ID transport for the GM76 solution is predicted
ak 5 dick’22m?®,  aem 5 dimk®22mi2b, both by (25) and (36) (middle panels of Fi§.and bottom
panels of Fig. 7).

b. Closure for the ID energy flux: Rotating case

amm>b dmnk52am22b' (33)
5. Summary and discussion
where the ¢ are constant§or examplefor GM76 (a 5 4, The oceanic ultravioletcatastrophe originates a first
b 5 0) this yields the familiar scaling for the vertical-vertigihciplesasymptotic analysisf the internalwave kinetic
diffusion coefficient;,@x kn?. Eq. (18) that results in the Fokker-Planck, or generalized dif-

In analogy with the derivation in section 4@w we use fusion,Eqg. (21).This wave-action balance characterizes the
(33) in Eq. (21),again for a 2D action spectrum n(ik,) 5 scale-separatetimit with high-frequencyinternal waves
4pAk?2 2, and we obtain refracting in the verticalshearof near-inertiawaves.As
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FiG. 7. Direction of the ID part of the energy flux in the rotating approximation (36) (top) for the steady state of the
kinetic equation and (bottom) for the GM76 solution. As far as the downscale direction of the flux is concerned, both
in vertical wavenumber and frequency, qualitative agreement with Fig. 5 is attained.

summarized in Mler et al. (1986), this balance leads to pselution of the kinetic equation and also the GM76 spectrum.
dictions that are at odds with observational knowledge ofttdresidering the fundamenseal of GM76and generalizations

oceanic internal wave field, its sources, and sinks. The arthrgsf, to build an understanding of the observed energy fluxes
in this paper prioritizes the unique power-law stationary shheugh scales, this no-flux prediction is odd enough}represent-
tion X2m?2® of the wave kinetic equatidn.the 2D power- ing the first point of the oceanic ultraviolet catastrophe. Here, we
law space a-b this solution (a 3.698,5 0) is not far from have shown that the vertical-vertical diffusive representation is an

the GM76 high-wavenumber scaling (a 55 0). More-

uncontrolled approximation. Thus, before regarding these b 5 0

over, this solution is mathematically well defined, with a gp#tra as no-flux solutions one has to consider the other element

sion integral(r.h.s. of the wave kinetic equation)that is

of the diffusion tensor. If this is done, the flux due to induced dif-

convergent, in exact balance, and accessible to direct nufusidn turns out to be finite and different from Ekiowas
cal evaluationThis exact solution has distinct contributionrshown in detail in section 4.
from both extreme scale separated interactions and interatn section 4 we worked out a closure for the Fokker-Planck
tions that are quasi-collinear in horizontal wavenumber hegydation based on dimensional consistency and on stationar-
ity. This closure provides the pointwise direction of the diffu-
In the diffusive (i.e.,extreme scale separated) paradignsjve part of the energyflux in Fourier space.For the

a further assumption that the diffusion is dominated by th@ationary spectrurthe flux is downscale in both frequency
vertical-vertical coefficient leads to the onset of no-flux soldtisrsical wavenumber. In particular, this is consistent with
for b5 0. These “no-flux” solutiorinclude the stationarya main source of energy localized at large vertical scales and

ing a more local character.
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low frequenciedVe recall that the vertical-vertical diffusicassociated with a Kolmogorov-Zakharov cascade, the latter is

approximation would predict energy to flow from high todgmonymous with a scale-invariant solution (Zakharov et al.

frequencieg;equiring a main energy source at high frequel892), motivating the assumption of a power law. The reason

cies that is believed not to be met in the oceaHsus, the to use a nonrotating solution is that a stationary state can be

solution to the apparent paradox is once again due to thegfieed (Lvov et al. 2010), which is far from obvious with the

viously neglected coefficients of the diffusion terdore- introduction of rotation.

over, ID vertical transport, due to the off-diagonal elementTfe close quantitative agreemendf the first-principles

the diffusion tensor, exceeds ID horizontal transport by admafgy fluxeskq. (5), and the phenomenologicfinescale

order of magnitudeThis revealsa previously unnoticed parameterization, Eq. (4), deserves some last comments. The

important role of off-diagonal diffusion in the Fokker-Planaterpretation of the power dissipated horizontally is unclear.

equation. This completes what we put forward as the sol&tiet) the boundary at m 5. (refer to Fig. 1) lacks a con-

to the oceanic ultraviolet catastrophe, but it is not the eralstént major source of energy at high frequérarefore,

the story. in absence of a source, the upper-left corner of the box (iner-
We have provided evidence that the reduction of the irttatrange) may not be filled with energy and as a consequence

nal wave kinetic theory to the Fokker-Planck equation, wiielcontribution R, may be (at least in part) not realized in

relies on the prominent role of the induced diffusion progesscticeSecondwhat happens at the boundaryvah N is

leaves important contributions without extreme scale sefiiedy not accurately captured by the formalism in the present

tion out of the picture.In section 2 all interactionsvere manuscriptas we recallthat the hydrostatic approximation

consideredWe showed that the energy transfers can be shreaks down fow ~ N. Necessarily, a deeper understanding

cessfully decomposed into a lopatt and a scale-separatedf this range of scales will be possible only departing from the

part. Independent considerations lead to a quite distinct, marostatic approximatidoyt this is beyond the theoretical

arbitrary delimitation of the two regions. Using the paradigamework currently available. Third, although the validity of

developed by Dematteis and Lvov (202&g can compute the weak nonlinearity assumption has been shown to hold for

the energy fluxes at the steady state directly from the futhostlief the inertial range (refer to the box in Higit was

sion integralAll transfers,vertical and horizontdhcal and also noticed that approaching the boundaty the nonlin-

scale-separatedre directed downscalEhe scale separated ear time becomes of the same order of magnitude as the lin-

part,dominated by IDs effectively described by the Fokkegar time and the weakly nonlinearresonantpicture may

Planck equation in section 4 and gives a mainly vertical dwweekydown (Lvov et al. 2012; Eden et al. 2019). This observa-

flux.The local parthy far the largest contribution to the totan echoes the early warning by Holloway (1980h the

flux,is dominated by interactions that have near-collineaoherikandpur analysis concerns an exact stationary state for

zontal wavenumbers, as shown in Fig. 4, and has strongewthchi-unlike for the nonstationary GM76 statehe ratio

zontal transfers compared to ID (Fig. 6). This represents betasemin linear and nonlinear time (also known as normalized

simplified framework in which to cast local interagtioss, Boltzmann rate)is vanishing throughouthe whole v-m

effects have been shown to be far from negligible. spaceOn the other handpur analysis is not strictly tied to
Despite having used a nonrotating framework throughdlié choice of the edgesvdE N or m 5 my,., and if a differ-

the manuscripin section 4b we have argued that the preent choice is made for the integration edges inEg),the

ence of background rotation is expected to affect mostlyrttualification propagatedraightforwardly to Eq(14),For

contributionfrom scale-separatednteractions.We have example, if we move the upper edge in Figvb td= 2in

therefore used a well-known approximation in the ID regionger to avoid the above objections altogether (both to hydro-

for f b 0, approximating near-inertial frequencies exactlystdtiic balance and weak nonlinearitig)is easy to see that

f. This allowed us to obtain an alternate closure for the IP oy, increases ofabout14% and Poyty reduces ofabout

flux direction which, although nonrigorous, takes into ac&dfg, i.e., quite marginally. As a whole, this indicates that the

the background rotationImportantly,this closure in the breakdown of both the hydrostatic balance and the weak non-

rotating case shares with the nonrotating case the samelinedrity assumptions approaching N should not hinder

tative behaviorthe direction is downscale both in verticalthe quantitative evaluationsf the currentmanuscriptA

wavenumber and frequency, and in the GM76 case it bedbhiwrmsigh treatment of the dependence on boundary effects,

purely verticallndependentresults from Polzin and Lvov and a detailed study of the normalized Boltzmann rates is the

(2011, their Fig. 38) indicate that the scale-separated lowtfbgect of current research and is beyond the scope of the pre-

qguency contributions play a marginal role in the overall ks#nt manuscript.

ance,in the presence of background rotatfona vertically = On the contrary, PSI providesa fundamentalphysical

homogeneous action spectrum (b 5The balance appearsdecay mechanism (MacKinnon and Winters 20856p and

to be mainly determined by interactions that are “local” Rinkel 2013MacKinnon et al.2013Olbers et al.2020) so

characterBoth this fact and the result of section 4b indicateat the boundary 5 f can act as an energy source also at

that the nonrotating approximation of the matrix elements ism ,;, and “fill” the lower-rightorner ofthe inertial

a relatively controlled approximation. Finally, one shouldnaogeMoreoverpoth wave breaking and shear instability for

disregard the important benefits of the f 5 0 assumption l@rge m provide a natural pathway for the power P oty

the rigor of the analysis. In the wave turbulence theory, whée driven toward the scales of3D turbulence.So, the

N5 O (stationary solution of the wave kinetic equation) isontribution Pouty 5:2 3 102°W kg?!  (we recall that
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P finescale= 5:9 3 18° W k?') appears to be better justified* Numericalcalculation ofthe total direct energy cascade

from different points of viewnd to fully fit in the finescale generated by the internal wave kinetic equation leads to a
parameterization paradigm (Polzinat2014)Concerning  (first-principles) formula which is remarkably close to the cel-
the dependence on the main physiparametersye recall ebrated (phenomenologicfihescale parameterization for

that Pfinescalescales as fNE2, Eq. (1). Since this scaling is  the energy flux (Gregg 1989; Henyey 1991; Polzin et al. 1995).
derived for the GM76 spectrum (a 5185 0), we can con-

sider the scaling of R for a 5 4 (i.e.y52a 2 7 5 1), which
gives exactly flE2 (we recall thak, besides being a metric AcknowledgmentsThe authors gratefullyacknowledge

for the shear scale lengtls, also a measure of the spectralSUPPOrt from the ONR Grant N0O0014-17-1-2882grate-
level, in units of the GM76 standard spectral level). This &¢h¥@cknowledges suppémim NSF DMS Award 2009418.
scaling agreemeristablishes a deeper connection betweet€ authors declare no conflicts of interest.
the phenomenological and the first-principles estimates.

The accuracy of the kinetic equation for the extreme scaf@ata availability statementlo data were created for
separated interactions may be affected by Doppler shiftikgis effort.
and modification of the Galilean invariance (Kraichnan 1959,
1965)These effects are encapsulated in the resonant band-
width being proportional to the Doppler shift, as reported in
Polzin and Lvov (2017). This question is left for future
research.

Our efforts implement the theoretiqalogram suggested The two delta functions in Eq18) can be integrated out
by Webster (1969where “due to the lack of an adequateanalyticallypbtaining
theoretical framework for describing turbulence in a stratified )
fluid” homogeneogs three—dimensicﬂwbulence estimates tknp 5 dkydk) K, k 1, ko, M,
were employed;with today’s internal wave turbulence, 0
over five decades later,we are able to fully exploit the
potential of the theory that the seminatontribution was
advocating for.

In summarywe have established the presence of extreme
scale separated and locahteractions in the internalvave
kinetic equation and have shown that

APPENDIX A

Matrix Elements and Resonant Manifold

JK k1 ke, M5 R Q22 R5f3,2 REifer
RO, 5 8 pkkiko VO, 2 Doz (A1)

Here f{’25 N1z 2 ny(n1 1 ny) is the spectrum-dependent
term of the equationand the area of the triangle of sides
Concerning scale-separatednteractions,the Fokker- g, k;, k,, coming from integration ovemnglesunder the

Planck equation and the induced diffusion pictureof gssumption of isotropig, given by Heron’s formula
McComasand Bretherton (197 7providesa remarkably

good characterization of the dominant contributions to the 1
internal wave scattering. Do125 p) 2kki1 k%31 kiks 2k42ki2k3:  (A2)
The reduction ofthe diffusion tensor to a single vertical

component necessitates a high-frequency source of energlie expression othe so-called matrix elementgy in
and dominance ofnverse energy cascadgoth of these the scale-invariant regime reads (Lvov e2@10)

effects are nonintuitive and lack experimental evidence.

Taking into account the full diffusion tensor leads to direct 2 5 5 "
energy cascade consistemtth our understanding othe VO 5V kkiky lki2k; m
internal wave scattering. PPz 2kl mm{
The vertically homogeneous b 5 0 wave action was termed

the “no-flux” solution by McComasnd Miiller (1981b)  ; kK?1k32kf m{ _ k?2kf2kj m

due to the properties of the Fokker-Planck equation. Tak- 2Kk mny ! 2kgka mim; A3)
ing into account the complete diffusion tensor in both verti-
cal and horizontaldirection does create nonzero verticabnd, moreoverwe have
and horizontal energy fluxes.

* Induced diffusionhoweverdoes not capture alihe pro- . > .
cesses that contribute to the direct energy casdaxtal 8,5 g >19n :Téz ki 2 90 7n§2 ke , (A4)
interactions, in particular those with near-collinear horizon- m ,
tal wavenumbers, actually provide the majority of the tatgre ni, nj are given by the solution ofthe resonance
energy transfers. conditions,i.e., the joint conservation ofmomentum and

Considering the energy balances in a finite size box allewsrgy in each triadic resonantinteraction.Thus, in the
us to quantify numerically the magnitude and directionfoéir-dimensional space spanned bykl, m;, m,, the prob-
the direct energy cascade. Taking the limit of small boxXesizés restricted to the resonant manifpadameterized by
reproduces the induced diffusion limit. two independentvariablesk; and k, as summarized in
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TABLE Al. The six independent solutions to the resonance conditions, defining the resonant manifold in the space spanned by

the two free variableg k.

Label Resonance condition Solutions
(1a), (1b) {p; ik 1mis 22 k6 kibk o6 (k6 K6k 227 akl
1 2
Sg My P2
[m7 ' m2mi g 5 m 2 mj
5p1 [
(1a), (11b) Prop P lm?z52 M Tk12 ka1l (K7k12 ko)1 4Kk,
£5 £1 ka 2k
[a| ™ | g 2 my (m{5m1m
5p1l [
(llia), (1lib) P22 PPy lm?152 M2 kTko1 (K2 kaTk o) 1 4kky
ko ko Kk 2k
[ma| ™ m| ™ Jmz 2 m| (my5m1m

Table Al. Note the symmetries ofhe resonantmanifold:

0 1 n n .
the solution (la) is obtained from solution (Ib) through pelj-K’ Kile,m R 3;1Rgn(kx,2mhb) kyk_ 1 mh m

mutation of the indices 1 & Rle also notice that solutions (B5)
(lla), (lIlb) reduce to solutiong(llla), (llib), respectively,
under permutation of the indices 1 & 2. The leading-orderexpression®f R%,and R, (on which

The collision integrabf Eq. (A1) is integrated over the the matrix elements depend) are given by
so-called “kinematic box,” represented inFig.
213my? k3m 2%y 2 2xy 2 y3=4

0 /
APPENDIX B R12 8 PY eny2? X 222 » (B6)

Region of Validity of the ID Asymptotics

3 3
In the IR region (Fig. 3) the two resonant induced dh"‘fusiom%2 8 p+v 2iemy’ 1 kim 22y 2 2xy’ 2 y _4:

branches (la) and (lla) (refer to Table A1) dominate over the X x22y? X x22y?
others and we adopt the following change of variables

(B7)

Some algebra and one further Taylor expansion allow us
kiS5k@1ly), ka5Kkx, (B1) to quantify the diffusion coefficients at the stationary state
) for Eq. (21), with resultgiven in Eq. (12).In Fig. B1 we
with0,x, €2x,y,x thatallows usto usethe fol- ., se 5 simple testo establish the region ofalidity of
lowing Taylor expansions for the conditions (la) and (”a)'the approximation (B4for the solution (ap) 5 (3.69, 0).
respectively, The quantitiesf?, and f}, are computed numerically and
. v 1 , v 1 compared with their leading-order approximation given in
m mll x1 i(x ly), my2m x1 i(x ly), Eqg. (B4), for three different values of x 5 ¥k, as a func-
(B2) tion of y 5 ky/k 2 1. To visualize this in the kinematic box
one can look at Fig.3, and move horizontally on a section
at fixed x. The boundariesat y 5 6x are the locations
where the plotted functionsare largest.The error of the
estimate is about 10% at the boundaries of the section with
(B3) x5 1/20.At the boundaries of the section with x 5 1/5 the
error is in the range 30%-80%nd the error is out of con-
using the factthatx 5 O( @, y 5 O( 8. In the restof the trol (above 100%) when x 5 3/4This shows thata diffu-
section, we use the short-hand notation M5 m(l1h), sion closure is not possible for interactions in the kinematic
m;52m h, where h56 x11=2(x1y)50 e, for boxabovek/k 0.1, i.e., outside the IR region of Fig.3.
(B2) and (B3), respectivelyWith the asymptotics offqs. As a consequenceit is not possible to extend the integra-
(B2) and (B3), neglecting the lower-order terngfg; and tion region of the integrals defining,a and am to larger
Taylor expanding the spectrum-dependent terms in the agiues ofg since fore. 0.1 the diffusive character of the

; A . Vo1
m m1l?2 xli(xly), m; 2m x2§(x1y),

lision integral around the point §&,5 (0, 0), we obtain interaction is gradually lostWe remark thatthis facthas
been known since the originalerivation of McComas and
O, nkx, 2mh) ky'l 1mh , Bretherton (1977)where in the definition ofthe diffusion
k m coefficientsthe small-wavenumbepart of the spectrum
fL 2nKx, 2mh) kyn— 1mh ™, (84) B(p)is present,and not the fullspectrum n(p)Previously
k m in the paper,B(p) is defined as the restriction ofi(p) for
which implies “small wavenumbers.” Our results illustrate that B(p) is the
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Fic. B1. (top) Comparison ofthe numerically computed function8,&nd §, and their respective leading orders as given in
Eqg. (B4) as a function of y 5 k/k 2 1, for three different values of x 5X}k. (bottom) Relative errors of the leading-order esti-
mates in the top panels.

restriction of n(p) to the IR regionThe rest of the contri- Eden, C., F. Polimann, and D. Olbers, 2019: Numerical evaluation

butionsare local interactionsas defined in Eq. (8). The of energy transfers in interngtavity wave spectra dhe
choice of €5 1/16 to demark the separation between the ocean.). Phys. Oceanogr.49, 737-749nttps://doi.org/10.
two regions named “local” and “scale-separatedtorre- 1175/)PO-D-18-0075.1.
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