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AbstractÐIn many real±world applications, e.g., medical diag-
nosis, behavioral analysis, Bayesian networks are used to describe
relationships between variables. In this context, a very important
task is learning the underlying structure of such networks.
However, this constitutes an NP±hard problem. In this paper,
we propose an approach to speed±up the structure learning
process without compromising accuracy, assuming a given set of
candidate network structures. Specifically, the proposed method
sequentially evaluates variable relationships until it reaches a
specific decision regarding the underlying Bayesian network.
The performance of the proposed approach is illustrated on
two standard Bayesian networks and compared with existing
methods.

Index TermsÐBayesian networks, structure learning, sequen-
tial evaluation, hypothesis space, mutual information

I. INTRODUCTION

Bayesian networks are typically used to describe relation-

ships between variables of interest in a specific domain [1], [2].

They are described by directed acyclic graphs (DAGs), where

variables are represented as nodes and relationships between

them are denoted by directed edges. However, the exact struc-

ture of the underlying DAG is not known in many application

domains (e.g., medical diagnosis [3]±[6], behavioral analysis

[7], speech recognition [8]). Thus, an increased interest in

Bayesian network structure learning [2], [9], [10], where the

goal is to identify the structure of the Bayesian network

that best describes the relationships between variables, has

emerged. In this context, domain knowledge and/or existing

data can be used to learn the structure of a Bayesian network

[2], [9], [11]±[13]. Nevertheless, using expert knowledge can

be a time±consuming task [11], [12], [14]. On the other hand,

the total number of possible DAGs grows exponentially with

the number of variables of interest [15]. Therefore, the task of

Bayesian network structure learning is NP±hard [10], [16].

Various heuristic methods [10], [17], [18] have been pro-

posed and typically used due to the complexity of the structure

learning problem. For instance, Hill±Climbing [9] constitutes

a greedy algorithm that learns a structure by maximizing a

given score (e.g., the Bayesian Information Criterion). At the

same time, various methods have been proposed to speed up

the process of structure learning from data within a restricted

search space [10], [17]±[19]. For example, the Chow±Liu

algorithm [13] learns a tree±structured Bayesian network,

where the result is sub±optimal. Nonetheless, it is widely
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used in many applications due to its low complexity [20].

In [18] ± [19], the search space is reduced to the ordering

of variables, while in [12], expert knowledge is employed. In

many real±world applications (e.g., monitoring patients in the

medical domain [21]), expert knowledge is typically available,

but expert elicitation is expensive and time±consuming [11].

In this paper, we propose an approach to speed±up structure

learning without compromising accuracy assuming a given set

of candidate network structures. Specifically, we consider the

set of candidate network structures as our hypothesis space and

devise a method that sequentially evaluates possible variable

relationships. The goal is to accurately learn the underlying

Bayesian network structure from existing data in less time

by evaluating the most prominent relationships early on. The

performance of the proposed approach is validated on two

standard Bayesian networks and compared with that of existing

structure learning methods. Experimental results indicate that

the proposed approach outperforms existing methods with

respect to various accuracy metrics and graph learning time.

II. PROBLEM DESCRIPTION

We consider a set X ≜ {X1, X2, . . . , Xn} of n discrete

random variables with a joint probability distribution P ∗.

Here, Xi, i ∈ {1, 2, . . . , n}, are categorical random variables,

with the simplest case being binary±valued. We assume there

is a gold standard Bayesian network G∗ = (V, E) induced

by the joint distribution P ∗. G∗ is a Directed Acyclic Graph

(DAG) having discrete random variables V as nodes. E is

the set of directed edges that represent relationships between

variables in G∗. We assume that we have access to a dataset D
consisting of S instances of observations of X generated from

distribution P ∗. We also assume that the dataset D is complete,

i.e., there is no missing data. We consider a finite number M of

hypotheses Gi, i ∈ {1, 2, . . . ,M}, each of which corresponds

to a single DAG. We denote as E ≜ {E1, . . . , EK}, where

K = n(n − 1)/2, the set of distinct relationships1 between

any two random variables in X . We propose to sequentially

select variable relationships from the set E based on their

significance (see Section IV) and assess their suitability as part

of the underlying Bayesian network structure given dataset D.

To this end, we consider two types of costs. Specifically, we

assume cost coefficient ek > 0, k = 1, . . . ,K, that represents

the value of time and effort spent in evaluating variable

1Directionality is not considered in the definition of E. For instance, X1 −→

X2 and X2 −→ X1 are considered as a single distinct relationship X2 −X1.
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relationships. We also consider misclassification costs Cij >
0, i, j = 1, 2, . . . ,M , where Cij denotes the cost of selecting

hypothesis Gj when the true hypothesis is Gi. Our objective

is to identify which of the graphs in G ≜ {G1, . . . , GM} best

describes the underlying distribution of the dataset D, while

balancing between accuracy and graph learning time.

A. Optimization Problem

First, we provide some important definitions. Here, Gi, i ∈
{1, . . . ,M}, is considered as a collection of information IGi

D

distributed among the edges that represents the relationships

between variables Ek, k ∈ {1, . . . ,K}. Consider IEk

D as the

information content in Ek given the dataset D. Therefore,

we define IGi

D ≜
∑

∀Ei∈EGi
IEi

D , where EGi ⊆ E. The

probability of the relationship Ek, k ∈ {1, . . . ,K}, given the

graph Gi, is denoted as P (Ek|Gi). This is proportional to the

relative strength of Ek within Gi and defined as P (Ek|Gi) ≜
I
Ek

D

I
Gi

D

if Ek ∈ EGi and 0 otherwise. First, we prove that

P (Ek|Gi) ∈ [0, 1]. Specifically, for Ek ∈ EGi , IEk

D > 0, and

thus,
∑

∀Ek∈EGi
IEk

D > 0. On the other hand, for Ek /∈ EGi ,

P (Ek|Gi) = 0 by definition. Combining these two results

shows that P (Ek|Gi) ≥ 0. Furthermore, when Ek ∈ EGi ,

IEk

D ≤
∑

∀Ei∈EGi
IEk

D . Here, the equality holds when Gi has

only one relationship and it is Ek. The last inequality suggests

that P (Ek|Gi) ≤ 1. Therefore, P (Ek|Gi) ∈ [0, 1] holds. Next

we prove that
∑K

k=0
P (Ek|Gi) = 1 as follows:

K
∑

k=0

P (Ek|Gi) =
∑

∀Ek∈EGi

(

IEi

D

IGi

D

)

+
∑

∀Ek /∈EGi

(0) ,

=

∑

∀Ek∈EGi
IEk

D

IGi

D

,

=
IGi

D

IGi

D

= 1. (1)

Finally, we assume that Ek, k ∈ {1, . . . ,K}, are conditionally

independent given the total information content of Gi, i ∈
{1, . . . ,M}, as each Ek represents a distinct relationship

between two variables in Gi.

Consider a pair (R,DR) of random variables associated

with the sequential evaluation process of Ek, k ∈ {1, . . . ,K}.

Random variable R ∈ {0, . . . ,K} represents the last variable

relationship selected from the set E. Random variable DR ∈
{1, . . . ,M} denotes the decision of selecting DAG G̃DR

among the M possible choices. Given our previously stated

objective, our goal is to minimize the following optimization

function with respect to R and DR:

J(R,DR) = E

[

R
∑

k=1

ek

]

+

M
∑

j=1

M
∑

i=1

CijP (DR = j,Gi), (2)

where P (DR = j,Gi) represents the joint probability of

selecting graph Gj while the true graph is Gi. In Eq. (2),

the first term denotes the total cost of evaluating R variable

relationships in the sequential process, while the second term

penalizes DAG decisions.

III. OPTIMUM SOLUTION

To minimize the cost function in Eq. (2), we first find

the optimum decision D∗
R for a given R. Then, the reduced

cost function J(R) depends only on R. Finally, we find the

optimum R∗ by minimizing J(R). We refer to R∗ and D∗
R as

optimum stopping and decision strategies, respectively.

Consider the posterior probability πk ≜ [π1
k, . . . , π

M
k ]T after

evaluating k out of K distinct variable relationships. The prob-

ability πi
k ≜ P (Gi|E1, . . . , Ek) denotes the posterior proba-

bility of the hypothesis Gi, i = {1, . . . ,M}. At stage k =
0, π0 ≜ [p1, . . . , pM ]T , where pi ≜ P (Gi), i = 1, 2, . . . ,M .

From Bayes’ rule, as more variable relationships are evaluated,

the posterior probability πi
k is recursively updated as follows:

πi
k =

P (Ek|Gi)π
i
k−1

P (Ek|G1)π1
k−1

+ . . .+ P (Ek|GM )πM
k−1

. (3)

Eq. (2) can be rewritten in terms of the posterior probability

and the indicator function 1A (i.e., 1A ≜ 1 when event A

occurs, and 0 otherwise) as follows:

J(R,DR) = E





R
∑

k=1

ek +

M
∑

j=1

M
∑

i=1

Cijπ
i
R1DR=j



 . (4)

The optimum decision strategy D∗
R for any R can be found

by minimizing the expected DAG decision cost as:

D∗
R = argmin

1≤j≤M

[

C
T
j πR

]

, (5)

where Cj ≜ [C1j , C2j , . . . , CMj ]
T . As a result, the cost

function in Eq. (4) can be written as:

J(R) = E

[

R
∑

k=1

ek + g(πR)

]

, (6)

where g(πR) ≜ min1≤j≤M [CT
j πR].

Finally, the optimum stopping strategy R∗ can be found

by minimizing the cost function in Eq. (6) via dynamic

programming [22]. Specifically, since there are K variable re-

lationships, there are maximum K+1 stages for the associated

dynamic programming equations:

Lk(πk) = min
[

g(πk), L̃k(πk)
]

, k = 0, . . . ,K − 1, (7)

where

L̃k(πk) = ek+1 +
∑

Ek+1

Lk+1(πk+1)∆
T
k+1(Ek+1)πk, (8)

with ∆k(Ek) ≜ [P (Ek|G1), . . . , P (Ek|GM )]T and

LK(πK) = g(πK).

IV. PROPOSED APPROACH

In this section, we outline an approach that exploits the

results of Section III to identify the graph G̃ out of the

given hypothesis space G that best describes a dataset D.

Our proposed approach consists of a preprocessing phase and

a graph learning phase. During the preprocessing phase, the

optimum decision and stopping strategies described by Eqs. (5)
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capable of identifying the gold standard network G∗ from the

given set of candidate graphs. In contrast, both Hill±Climbing

and Chow±Liu algorithms result in non±zero graph errors

(see also Fig. 4). Moreover, we observe that our approach

outperforms Hill±Climbing and the Chow±Liu algorithms.

Specifically, for both networks, the number of correct edges is

higher than that identified by the Hill±Climbing and Chow±

Liu algorithms. Even though our hypothesis space consists

of both denser and sparser graphs, our proposed approach is

able to balance between maximizing information content and

sparsity to favor the graphs that are most related to G∗. Note

that the average number of missing edges is low for both our

approach, Hill±Climbing, and Chow±Liu. One caveat of our

approach is its PT, which amounts to 2.1590± 0.1836 (s) and

2.1574 ± 0.1599 (s) for the Student and Sprinkler networks,

respectively. To address this challenge, we plan to explore

existing methods [25], [26] to improve the speed of solving

the dynamic programming approach discussed in Section III.

This is expected to considerably shorten the PT.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a method to speed±up the graph

learning time without compromising accuracy given a finite

set of candidate graphs. The proposed method sequentially

evaluates variable relationships until it reaches a specific

decision regarding the underlying Bayesian network. Overall,

the proposed approach is shown to outperform well±known

existing structure learning methods with respect to various

accuracy metrics and graph learning time. Nonetheless, the

preprocessing stage overhead is proportional to the size of

the network. Thus, we plan to explore methods to decrease

the preprocessing time and extend the proposed approach for

larger Bayesian networks. Since the number of all possible

hypotheses increases with respect to the number of random

variables, we also plan to address the problem of hypothesis

space selection by exploring hierarchical hypothesis classifica-

tion approaches. Finally, we plan to use an asymmetric score

to account for edge orientation, while explicitly deciding the

orientation of relationships as they are added to the graph.
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