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Abstract—In many real-world applications, e.g., medical diag-
nosis, behavioral analysis, Bayesian networks are used to describe
relationships between variables. In this context, a very important
task is learning the underlying structure of such networks.
However, this constitutes an NP-hard problem. In this paper,
we propose an approach to speed—up the structure learning
process without compromising accuracy, assuming a given set of
candidate network structures. Specifically, the proposed method
sequentially evaluates variable relationships until it reaches a
specific decision regarding the underlying Bayesian network.
The performance of the proposed approach is illustrated on
two standard Bayesian networks and compared with existing
methods.

Index Terms—Bayesian networks, structure learning, sequen-
tial evaluation, hypothesis space, mutual information

I. INTRODUCTION

Bayesian networks are typically used to describe relation-
ships between variables of interest in a specific domain [1], [2].
They are described by directed acyclic graphs (DAGs), where
variables are represented as nodes and relationships between
them are denoted by directed edges. However, the exact struc-
ture of the underlying DAG is not known in many application
domains (e.g., medical diagnosis [3]-[6], behavioral analysis
[7], speech recognition [8]). Thus, an increased interest in
Bayesian network structure learning [2], [9], [10], where the
goal is to identify the structure of the Bayesian network
that best describes the relationships between variables, has
emerged. In this context, domain knowledge and/or existing
data can be used to learn the structure of a Bayesian network
[2], [9], [11]-[13]. Nevertheless, using expert knowledge can
be a time—consuming task [11], [12], [14]. On the other hand,
the total number of possible DAGs grows exponentially with
the number of variables of interest [15]. Therefore, the task of
Bayesian network structure learning is NP-hard [10], [16].

Various heuristic methods [10], [17], [18] have been pro-
posed and typically used due to the complexity of the structure
learning problem. For instance, Hill-Climbing [9] constitutes
a greedy algorithm that learns a structure by maximizing a
given score (e.g., the Bayesian Information Criterion). At the
same time, various methods have been proposed to speed up
the process of structure learning from data within a restricted
search space [10], [17]-[19]. For example, the Chow-Liu
algorithm [13] learns a tree—structured Bayesian network,
where the result is sub—optimal. Nonetheless, it is widely
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used in many applications due to its low complexity [20].
In [18] — [19], the search space is reduced to the ordering
of variables, while in [12], expert knowledge is employed. In
many real-world applications (e.g., monitoring patients in the
medical domain [21]), expert knowledge is typically available,
but expert elicitation is expensive and time—consuming [11].
In this paper, we propose an approach to speed—up structure
learning without compromising accuracy assuming a given set
of candidate network structures. Specifically, we consider the
set of candidate network structures as our hypothesis space and
devise a method that sequentially evaluates possible variable
relationships. The goal is to accurately learn the underlying
Bayesian network structure from existing data in less time
by evaluating the most prominent relationships early on. The
performance of the proposed approach is validated on two
standard Bayesian networks and compared with that of existing
structure learning methods. Experimental results indicate that
the proposed approach outperforms existing methods with
respect to various accuracy metrics and graph learning time.

II. PROBLEM DESCRIPTION

We consider a set X 2 {X;, Xo,..., X, } of n discrete
random variables with a joint probability distribution P*.
Here, X;,i € {1,2,...,n}, are categorical random variables,
with the simplest case being binary—valued. We assume there
is a gold standard Bayesian network G* = (V, &) induced
by the joint distribution P*. G* is a Directed Acyclic Graph
(DAG) having discrete random variables V' as nodes. £ is
the set of directed edges that represent relationships between
variables in G*. We assume that we have access to a dataset D
consisting of S instances of observations of X' generated from
distribution P*. We also assume that the dataset D is complete,
i.e., there is no missing data. We consider a finite number M of
hypotheses G;,i € {1,2,..., M}, each of which corresponds
to a single DAG. We denote as E = {Ej, ..., Ex}, where
K = n(n — 1)/2, the set of distinct relationships' between
any two random variables in X. We propose to sequentially
select variable relationships from the set E' based on their
significance (see Section IV) and assess their suitability as part
of the underlying Bayesian network structure given dataset D.
To this end, we consider two types of costs. Specifically, we
assume cost coefficient e, > 0, k =1, ..., K, that represents
the value of time and effort spent in evaluating variable

IDirectionality is not considered in the definition of E. For instance, X1 —
Xg and X2 — X are considered as a single distinct relationship X2 — X7.
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relationships. We also consider misclassification costs C;; >
0,7,j =1,2,..., M, where C;; denotes the cost of selecting
hypothesis G; when the true hypothesis is G;. Our objective
is to identify which of the graphs in G £ {G1,...,Gy} best
describes the underlying distribution of the dataset D, while
balancing between accuracy and graph learning time.

A. Optimization Problem

First, we provide some important definitions. Here, G;,i €
{1,..., M}, is considered as a collection of information /5’
distributed among the edges that represents the relationships
between variables Ey,k € {1,...,K}. Consider Ig’“ as the
information content in Ej, given the dataset D. Therefore,
we define Igi £ ZVEieEGi IE: where EGi C E. The
probability of the relationship Ej, k € {1,..., K}, given the
graph G, is denoted as P(Fj|G;). This is proportional to the
relative strength of Ej, within G; and defined as P(E|G;) £

E

% if B, € ESi and 0 otherwise. First, we prove that
D

P(E|G;) € [0,1]. Specifically, for Ej, € ESi, I5F > 0, and

thus, ZVEkeEGi Ig"‘ > 0. On the other hand, for Ej, ¢ EC:,
P(Ey|G;) = 0 by definition. Combining these two results
shows that P(E|G;) > 0. Furthermore, when E; € E%i,
IpE <3 yp,epo. 15 Here, the equality holds when G; has
only one relationship and it is Ey. The last inequality suggests
that P(Fx|G;) < 1. Therefore, P(Ex|G;) € [0,1] holds. Next
we prove that Zf:o P(Eg|G;) =1 as follows:

K IEi
e - ¥ () ¥ o
k=0 VER,eECGi \"D VE,¢ECS:
E
_ ZVER,GEGi IDk
15 ’
15
:Igi:L (1)

Finally, we assume that Ej, k € {1,..., K}, are conditionally
independent given the total information content of G;,i €
{1,...,M}, as each Ej represents a distinct relationship
between two variables in G;.

Consider a pair (R, Dpg) of random variables associated
with the sequential evaluation process of Ey, k € {1,...,K}.
Random variable R € {0,..., K} represents the last variable
relationship selected from the set £. Random variable Dy €
{1,...,M} denotes the decision of selecting DAG Gp R
among the M possible choices. Given our previously stated
objective, our goal is to minimize the following optimization
function with respect to R and Dg:

)

where P(Dr = j,G;) represents the joint probability of
selecting graph G; while the true graph is G;. In Eq. (2),
the first term denotes the total cost of evaluating R variable
relationships in the sequential process, while the second term
penalizes DAG decisions.

M M

+ZZC’LJP DR_]7G)7

Jj=11i=1

J(R,Dg) = (@3]
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III. OPTIMUM SOLUTION

To minimize the cost function in Eq. (2), we first find
the optimum decision D7, for a given R. Then, the reduced
cost function J(R) depends only on R. Finally, we find the
optimum R* by minimizing J(R). We refer to R* and D7, as
optimum stopping and decision strategies, respectively

Consider the posterior probability 7y, = [rf, ..., 7] after
evaluating k out of K distinct variable relationsh1ps The prob-
ability mi £ P(G;|E, ..., Ey) denotes the posterior proba-
bility of the hypothesis G;,i = {1,...,M}. At stage k =
0,70 = [p1,---,pum|T, where p; = P(G;),i = 1,2,..., M.
From Bayes’ rule, as more variable relationships are evaluated,
the posterior probability 7}, is recursively updated as follows:

P(ELG)m,_,
P(Ek|G1)7T]£71 +...+ P(Ek|GM)7T]]€V£1 '
Eq. (2) can be rewritten in terms of the posterior probability

and the indicator function 14 (i.e., 14 £ 1 when event A
occurs, and 0 otherwise) as follows:

)

3)

Th

M M

Zek + ZZC'”WR]IDR —j

Jj=11i=1

J(R,Dp) = (4)

The optimum decision strategy D% for any R can be found
by minimizing the expected DAG decision cost as:

CTmal. 5)

D% = argmin

1<j<M

where Cj £ [Clj, ng, e ,C]Wj]T
function in Eq. (4) can be written as:

R
=E Zek +9(mR)
k=1

where g(ﬂ'R) £ minlSjSM[Cfﬂ'R].

Finally, the optimum stopping strategy R* can be found
by minimizing the cost function in Eq. (6) via dynamic
programming [22]. Specifically, since there are K variable re-
lationships, there are maximum K +-1 stages for the associated
dynamic programming equations:

. As a result, the cost

(6)

)

Li(my) = min [g(my), Li(m)] k=0, K =1, (D)
where
Li(mi) = eprr+ ) Liea(mee)) ALy (Bxr)me, )
Eit1
with Ap(Ey) £ [P(Ex|Gy),...,P(Ex|Gay)]T  and

Lk (mk) = 9(7K).
IV. PROPOSED APPROACH

In this section, we outline an approach that exploits the
results of Section III to identify the graph G out of the
given hypothesis space G that best describes a dataset D.
Our proposed approach consists of a preprocessing phase and
a graph learning phase. During the preprocessing phase, the
optimum decision and stopping strategies described by Egs. (5)
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and (7) are solved offline. Specifically, quantizing the interval
[0,1] such that Zi\il 7i =1, a K x d matrix is generated,
where d is the number of possible 7 vectors, and used to
numerically solve Egs. (5) and (7). We use mutual information
(MI) to estimate the importance of variable relationships in F
and appropriately rank them. First, let us recall the definition of
MI [23]. Specifically, consider a variable relationship Ey, k €
{1,..., K}, between two variables {X,,, X,} € X, where u,
ve{l,...,n}. IE* is calculated using MI as follows:

PD(XU,Xv)

o X Po(Xy)

A

Ipr 2 3" Pp(Xu, Xo) ©

Xu,Xv
Then, the variable relationships in E' are ordered in descending
order of MI. Further, MI is used to estimate P(E}|G;) (see
Section II-A). Finally, during the preprocessing phase, we
assume all hypotheses are equally likely, i.e., P(G;) = % 1=
1,...,M.

During the graph learning phase, the numerical solutions
found during preprocessing are employed to select and as-
sess the suitability of variable relationships, and identify
the graph G that best describes a dataset D. Specifically,
our proposed approach begins by initializing the posterior
probability mo = [p1,...,pm]7,pi = 25,i=1,..., M. Next,
during the evaluation of the kth relationship, the two terms
inside the minimization operator of Eq. (7) are compared.
If the cost of selecting and assessing the suitability of a
particular relationship (Ek(ﬂ'k)) is less than the cost of making
a decision (g(7x)), an appropriate relationship is selected and
the posterior probability 7y is updated through Eq. (3). This
process is repeated until a decision is reached by selecting a
subset of the available relationships or the suitability of all
variable relationships in F is assessed. The estimated G is
identified using the final posterior probability in conjunction
with the optimum decision strategy of Eq. (5). Specifically,
at each step k, relationships Fj, are evaluated in descending
order of information content. If a hypothesis G; contains
Ex, P(E;|G;) > 0 and P(Eg|G;) = 0 otherwise (see
Section II-A). Then, the hypotheses G;,i € {1,..., M}, that
contain already selected variables relationships are assigned a
higher posterior probability 741 compared to the rest. This
process continues until the optimum stopping stage, where
the optimum decision G is obtained such that the expected
DAG decision cost is minimum. Note that the proposed
approach assesses if a relationship (irrespective of orientation)
belongs to G* or not. Edge orientation is considered during
hypothesis space definition, where only DAGs are included.
When our approach stops evaluating relationships, it selects
the hypothesis with the minimum DAG decision cost (Eq. (5)).
Since hypotheses that contain the same set of relationships, but
with different orientations, have the same DAG decision cost,
the proposed approach randomly selects between them.

9

V. EXPERIMENTAL RESULTS

In this section, we present experimental results to illustrate
the performance of our proposed approach. Specifically, to
evaluate its performance, we consider two standard Bayesian
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Fig. 1. Standard Bayesian networks: (a) Student (D: Difficulty, I: Intelligence,
G: Grade, S: SAT, L: Letter) and, (b) Sprinkler (C: Cloudy, S: Sprinkler, R:
Rain, G: Wet grass).
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Fig. 2. Variation of Correct Edges (CE) metric as a function of the number
of datasets generated from the Sprinkler network.

networks (see Fig. 1), the Student network [9] and the
Sprinkler network [24], and use the associated probability
distributions to randomly generate datasets with 1, 000 samples
each. Since hypothesis space selection is out of the scope of
this work, we consider a reduced hypothesis space G consisting
of graphs with: (i) N(G;) < N(G*), (ii)) N (G;) > N(G*),
(i) M(G;) = N(G*), and (iv) the gold standard network,
G*, where N (G;) denotes the number of edges in graph G;.
In our experiments, we set M = 6, assume misclassification
costs Cy; = 1,Vi # j, and Cy; = 0,Vi,j € {1,..., M}, and
same variable relationship evaluation costs, i.e., e = e. We
assess performance with respect to the following metrics: (i)
Correct Edges (CE): number of edges present in both G and
G* with correct orientation (higher the better), (ii) Missing
Edges (ME): number of edges in G* that are not present in G
irrespective of the orientation (lower the better), (iii) Wrong
Orientation (WO): number of edges present in both G and G*
but with opposite orientation (lower the better), (iv) Wrong
Connection (WC): number of edges present in G but not in
G* excluding wrong orientation edges (lower the better), (v)
Graph Error (GE): ME + WO + WC (lower the better), (vi)
Best Result: the G associated with the minimum GE estimated
by our proposed algorithm considering the randomly generated
datasets, (vii) Preprocessing Time (PT): total time required
for the preprocessing stage described in Section IV, and (viii)
Graph Learning Time (LT). All experiments are conducted on
a PC with Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz with
16 GB memory.

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on May 04,2023 at 19:13:35 UTC from IEEE Xplore. Restrictions apply.



w
wn

w
o

=oNN
un o wu

Average value

=

[«

\
\

o©
6]

10°
Variable relationship evaluation cost e
Fig. 3. Variation of average value of the Correct Edges (CE) and Graph Error

(GE) metrics as a function of the variable relationship evaluation cost e €
{0.20,0.30, 0.40, 0.50, 0.80, 1.00, 2.00, 4.00} for the Sprinkler network.
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Fig. 4. Learned Bayesian networks by (a) Hill-Climbing, and (b) Chow-Liu
algorithms for Sprinkler network, when our approach correctly identifies the
gold standard network G*. Graph errors are shown in red while missing edges
are shown in dashed lines.

Initially, we generate different number of datasets in the
interval [3,2000], each of which includes 1,000 samples, and
evaluate the performance of the proposed approach and two
widely used methods, Hill-Climbing [9] and the Chow-Liu
[13] algorithm. Fig. 2 shows the variation of the CE metric
as we increase the number of datasets generated from the
Sprinkler network. We observe that the proposed approach
succeeds in identifying on average higher number of edges
compared to the two other algorithms. Furthermore, the value
of the CE metric stabilizes around 500 datasets. We observe
similar trends for the rest of the metrics and the Student
network, but the relevant results are not included herein due to
space limitations. For the rest of the experiments, we generate
500 datasets and report average results hereafter.

Fig. 3 illustrates the variation of CE and GE as a function
of the variable relationship evaluation cost e for the Sprinkler
network. As expected, different variable relationship evalua-
tion costs lead to different CE and GE values, while evaluating
less variable relationships leads to lower CE and thus higher
GE values. We underscore that the LT metric is also reduced
when the variable relationship evaluation cost increases, since
less relationships are evaluated in this case. Thus, an optimum
decision is reached in a shorter learning time. From here
onwards, we report average results for e e = 0.3,0.5,
for the Sprinkler and Student networks, since our experiments
indicate that these values lead to G close to G*.
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TABLE I
COMPARATIVE ANALYSIS FOR Student AND Sprinkler NETWORKS.

Metrics | Proposed Approach Hill-Climbing Chow-Liu
CE 3.0240 + 1.0007 1.3300 + 1.3932 | 2.2400 + 0.7665
- ME 0.0000 £+ 0.0000 0.0000 = 0.0000 | 0.0000 £ 0.0000
5 WO 0.9760 + 1.0007 2.6700 £ 1.3932 | 1.7600 £ 0.7665
E] WC 0.0000 + 0.0000 1.1420 + 0.9008 | 0.0000 £ 0.0000
o GE 0.9760 + 1.0007 3.8120+ 2.2678 1.7600F 0.7665
LT (s) 0.0015 £ 0.0034 0.133T £ 0.0212 | 0.0406+ 0.0123
CE 3.4920 + 0.5004 24240 £ 1.1845 | 1.8360 + 0.8139
5 ME 0.0000 £+ 0.0000 0.0000 £ 0.0000 | 1.0000 £ 0.0000
% WO 0.5080 + 0.5004 1.5760 £ 1.1845 | 1.1640 £ 0.8139
= WC 0.0000 + 0.0000 0.4100+ 0.6409 | 0.0000 + 0.0000
& GE 0.5080 + 0.5004 1.9860 + 1.7040 | 2.1640 £ 0.8139
LT (s) 0.0028 £ 0.0043 0.0768 £ 0.0126 | 0.0341 £+ 0.0057

Table I reports average statistics (% standard deviation) for
all evaluation metrics (except PT and Best Result that are
separately discussed in the text) on the Sprinkler and Student
networks for the proposed approach, Hill-Climbing and the
Chow-Liu algorithm. We compare with such methods due
to their wide use in many applications [20] and their low
time complexity. We observe that the LT of our proposed
approach is nearly 96% less than the LT of Hill-Climbing and
the Chow-Liu algorithms for both the Student and Sprinkler
networks. This is due to the fact that our proposed approach
is able to identify the most prominent relationships between
variables early on. In this way, it avoids spending resources
in non—informative relationships and results in sparser graphs
but with more appropriate information content. In contrary,
Hill-Climbing starts with a random network, manipulating one
edge at a time, until the local maximum of a given score is
found. However, in our approach we do not necessary evaluate
all variable relationships, thus, saving considerable amount of
time. In addition, if our hypothesis space includes the gold
standard network G*, our proposed approach tries to find the
global optimum solution. This is in sharp contrast to Hill-
Climbing, which ends up in a local maximum. Similar to
our approach, the Chow—Liu algorithm [13] uses the mutual
information to guide relationship selection. In contrast, our
proposed approach tries to balance between information con-
tent and the sparsity of the graph. Furthermore, the estimated
graph G can be of arbitrary DAG structure, contrary to the
tree—structured nature imposed by the Chow-Liu algorithm.
We underscore that our approach is able to prioritize edges
with higher information content. For instance, the priority of
a wrong connection edge is less than a correct one given the
way we define the information content of an edge with respect
to a particular dataset (see Section II-A).

As seen in Table I, our proposed approach is able to identify
76% and 87% of correct edges in the Student and Sprin-
kler Bayesian networks, respectively. In addition, only 24%
and 13% edges have wrong orientation. Thus, the proposed
approach, irrespective of its simplicity, achieves competitive
performance against well-known structure learning algorithms
considered in this paper. Among the randomly generated
datasets for each network, there exist instances of best results,
which identify all the correct edges present in G* resulting
in GE of 0. This suggests that our proposed approach is
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capable of identifying the gold standard network G* from the
given set of candidate graphs. In contrast, both Hill-Climbing
and Chow-Liu algorithms result in non—zero graph errors
(see also Fig. 4). Moreover, we observe that our approach
outperforms Hill-Climbing and the Chow-Liu algorithms.
Specifically, for both networks, the number of correct edges is
higher than that identified by the Hill-Climbing and Chow—
Liu algorithms. Even though our hypothesis space consists
of both denser and sparser graphs, our proposed approach is
able to balance between maximizing information content and
sparsity to favor the graphs that are most related to G*. Note
that the average number of missing edges is low for both our
approach, Hill-Climbing, and Chow-Liu. One caveat of our
approach is its PT, which amounts to 2.1590 +0.1836 (s) and
2.1574 £ 0.1599 (s) for the Student and Sprinkler networks,
respectively. To address this challenge, we plan to explore
existing methods [25], [26] to improve the speed of solving
the dynamic programming approach discussed in Section III.
This is expected to considerably shorten the PT.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a method to speed—up the graph
learning time without compromising accuracy given a finite
set of candidate graphs. The proposed method sequentially
evaluates variable relationships until it reaches a specific
decision regarding the underlying Bayesian network. Overall,
the proposed approach is shown to outperform well-known
existing structure learning methods with respect to various
accuracy metrics and graph learning time. Nonetheless, the
preprocessing stage overhead is proportional to the size of
the network. Thus, we plan to explore methods to decrease
the preprocessing time and extend the proposed approach for
larger Bayesian networks. Since the number of all possible
hypotheses increases with respect to the number of random
variables, we also plan to address the problem of hypothesis
space selection by exploring hierarchical hypothesis classifica-
tion approaches. Finally, we plan to use an asymmetric score
to account for edge orientation, while explicitly deciding the
orientation of relationships as they are added to the graph.

REFERENCES

[1] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Elsevier, 2014.

[2] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian
Networks: The Combination of Knowledge and Statistical Data,” Ma-
chine learning, vol. 20, no. 3, pp. 197-243, 1995.

[3] D. Nikovski, “Constructing Bayesian Networks for Medical Diagnosis
from Incomplete and Partially Correct Statistics,” IEEE Transactions on
Knowledge and Data Engineering, vol. 12, no. 4, pp. 509-516, 2000.

[4] K. B. Korb and A. E. Nicholson, Bayesian Artificial Intelligence. CRC
press, 2010.

[5] S. L. Lauritzen and D. J. Spiegelhalter, “Local Computations with
Probabilities on Graphical Structures and Their Application to Expert
Systems,” Journal of the Royal Statistical Society: Series B (Method-
ological), vol. 50, no. 2, pp. 157-194, 1988.

[6] S. Andreassen, R. Hovorka, J. Benn, K. G. Olesen, and E. R. Carson, “A
Model-based Approach to Insulin Adjustment,” in AIME 91. Springer,
1991, pp. 239-248.

[7]1 E. Nazerfard and D. J. Cook, “Using Bayesian Networks for Daily
Activity Prediction.” in AAAI workshop: plan, activity, and intent
recognition. Citeseer, 2013.

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

(22]
[23]
[24]

[25]

[26]

V. Mitra, H. Nam, C. Y. Espy-Wilson, E. Saltzman, and L. Goldstein,
“Gesture-based Dynamic Bayesian Network for Noise Robust Speech
Recognition,” in 2011 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 1EEE, 2011, pp. 5172-5175.
D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques. MIT press, 2009.

M. Scanagatta, A. Salmerdn, and F. Stella, “A Survey on Bayesian Net-
work Structure Learning from Data,” Progress in Artificial Intelligence,
vol. &, no. 4, pp. 425-439, 2019.

M. J. Flores, A. E. Nicholson, A. Brunskill, K. B. Korb, and S. Mascaro,
“Incorporating Expert Knowledge when Learning Bayesian Network
Structure: A Medical Case Study,” Artificial intelligence in medicine,
vol. 53, no. 3, pp. 181-204, 2011.

H. Amirkhani, M. Rahmati, P. J. Lucas, and A. Hommersom, “Exploiting
Experts’ Knowledge for Structure Learning of Bayesian Networks,”
IEEE transactions on pattern analysis and machine intelligence, vol. 39,
no. 11, pp. 2154-2170, 2016.

C. Chow and C. Liu, “Approximating Discrete Probability Distributions
with Dependence Trees,” IEEE transactions on Information Theory,
vol. 14, no. 3, pp. 462-467, 1968.

X.-W. Chen, G. Anantha, and X. Lin, “Improving Bayesian Network
Structure Learning with Mutual Information-based Node Ordering in
the K2 Algorithm,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 20, no. 5, pp. 628-640, 2008.

R. R. W,, “Counting Labeled Acyclic Digraphs,” in New Directions in
the Theory of Graphs, F. Harary, Ed. Academic Press, NY, 1973, pp.
239-273.

M. Chickering, D. Heckerman, and C. Meek, “Large-sample Learning of
Bayesian Networks is NP-hard,” Journal of Machine Learning Research,
vol. 5, 2004.

R. Daly, Q. Shen, and S. Aitken, “Learning Bayesian Networks: Ap-
proaches and Issues,” The knowledge engineering review, vol. 26, no. 2,
pp. 99-157, 2011.

M. Teyssier and D. Koller, “Ordering-based Search: A Simple and
Effective Algorithm for Learning Bayesian Networks,” arXiv preprint
arXiv:1207.1429, 2012.

S. Behjati and H. Beigy, “Improved K2 Algorithm for Bayesian Network
Structure Learning,” Engineering Applications of Artificial Intelligence,
vol. 91, p. 103617, 2020.

J. Jiao, Y. Han, and T. Weissman, “Beyond Maximum Likelihood:
Boosting the Chow-Liu Algorithm for Large Alphabets,” in 2016 50th
Asilomar Conference on Signals, Systems and Computers. 1EEE, 2016,
pp. 321-325.

I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper, “The
ALARM Monitoring System: A Case Study with Two Probabilistic
Inference Techniques for Belief Networks,” in AIME 89.  Springer,
1989, pp. 247-256.

D. P. Bertsekas, Dynamic Programming and Optimal Control, 2nd ed.
Athena Scientific, 2000.

A. Darwiche, Modeling and reasoning with Bayesian networks.
bridge university press, 2009.

S. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach,”
2002.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and Act-
ing in Partially Observable Stochastic Domains,” Artificial intelligence,
vol. 101, no. 1-2, pp. 99-134, 1998.

M. T. Spaan and N. Vlassis, “Perseus: Randomized Point-based Value It-
eration for POMDPs,” Journal of artificial intelligence research, vol. 24,
pp. 195-220, 2005.

Cam-

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on May 04,2023 at 19:13:35 UTC from IEEE Xplore. Restrictions apply.



