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Abstract: To address the demands of contemporary research and industry, it is crucial to reduce 18 
computational costs and rely on open-source codes to simulate real-world wave propagation phe-19 
nomena. As a response, we have developed an efficient solver for modeling free surfaces within the 20 
OpenFOAM computational fluid dynamics (CFD) software package. Our approach involves em-21 
ploying the finite volume method for discretization to solve the Laplacian of the velocity potential. 22 
Moreover, we have devised the necessary kinematic and dynamic boundary conditions to depict 23 
fluid behavior at the computational domain's boundaries and the free surface's behavior. Our sim-24 
ulation focused on standing waves, accounting for nonlinearity and dispersion effects. Furthermore, 25 
we compared our findings with experimental data, and the results demonstrated exceptional con-26 
sistency, compared well with Navier-Stokes simulations by capturing steeper wave crests and rep-27 
resenting the general trend and nonlinear behavior. It is pertinent to note that our solver and bound-28 
ary conditions are novel, exclusive to our research and were not present in the standard OpenFOAM 29 
distribution. 30 

Keywords: CFD; OpenFOAM; Numerical modelling; Potential flow 31 
 32 

1. Introduction 33 

Waves propagation phenomena and their interaction with structures have received 34 
considerable attention in marine and coastal engineering. There are three main methods 35 
for  analyzing  waves:  analytical,  experimental,  and  numerical.  Analytical  analysis  in-36 
volves using mathematical equations to determine how waves behave. Although this ap-37 
proach can provide insight into the underlying physics of waves, its results are often re-38 
stricted  to  idealized  conditions  and  may  not  consider  real-world  complexities. On  the 39 
other hand, experimental analysis involves measuring actual wave behavior in the real 40 
world. While this approach can provide a wealth of data, it is often limited to specific 41 
wave  conditions  and  conducting  experiments  for  various  scenarios  can  result  in  high 42 
computational costs. Finally, numerical analysis involves using computer simulations to 43 
model wave behavior. This approach is capable of accounting for complex real-world con-44 
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ditions and providing highly accurate predictions. However, it requires specialized soft-45 
ware and can be computationally intensive. Despite this, numerical solutions are often 46 
more practical in terms of cost and complexity. In fact, with the availability of powerful 47 
computational resources today, numerical modeling has become an increasingly popular 48 
tool for researchers to replicate experimental observations. 49 

 50 
The natural evolution of waves depends on various factors such as their amplitude, 51 

time period, and water depth. Typically, these waves are generated offshore and propa-52 
gate over long distances. In most cases, the effects of fluid viscosity are negligible through-53 
out the propagation of waves. Therefore, potential flow theory is used to model free sur-54 
face waves, assuming that the fluid flow is inviscid and incompressible, and the fluid is 55 
irrotational. This theory assumes that pressure and gravitational forces dominate the mo-56 
tion of fluid particles. Potential flow theory is considered computationally efficient, as the 57 
method relies on solving Laplace's equation to find the velocity potential, which is a scalar 58 
function that describes the fluid flow and is the only unknown variable in the model. The 59 
current research work aims to simulate nonlinear water waves with minimum numerical 60 
cost and to make the developed code available to the research community as an open-61 
source tool. 62 

 63 
The  developed  solver  is  implemented  in  the  OpenFOAM-Extend  environment, 64 

which is an open-source computational fluid dynamics (CFD) solver. OpenFOAM, which 65 
stands for Open Field Operation and Manipulation, is a software library that offers a range 66 
of numerical methods and solvers for simulating various physical phenomena, including 67 
fluid flow and heat transfer. OpenFOAM is widely used for CFD simulations and other 68 
multi-physics simulations due to its open-source nature and versatility  [1, 2, 3]. Open-69 
FOAM is a versatile software library that incorporates various numerical methods and 70 
solvers  for  simulating  physical  phenomena.  It  supports  both  grid-based  and  particle-71 
based methods, such as the finite volume method, the finite element method, and the lat-72 
tice-Boltzmann method. The software also provides a diverse range of pre-built solvers 73 
for common simulation problems, including turbulent flow, multiphase flow, and free 74 
surface flow. The software's flexibility is one of its main advantages, allowing it to be ap-75 
plied to a wide range of geometries, including complex and irregular shapes. Implement-76 
ing boundary conditions is also straightforward with OpenFOAM, and it can be easily 77 
coupled with other numerical methods, such as boundary element methods. Another ad-78 
vantage of OpenFOAM is its open-source nature, making it freely available to users, and 79 
the source code can be modified and improved upon by the community. To learn more 80 
details about how OpenFOAM integrates space and time, it is suggested to read reference 81 
[4]. 82 

 83 

In various fields, such as aerospace, automotive, energy, and environmental engi-84 
neering,  OpenFOAM  has  become  a  popular  software  library  for  simulating  fluid  flow 85 
problems [1, 2, 3, 5, 6]. Hydrodynamic groups have also been actively using it for coastal-86 
related applications. Researchers have developed different solvers for simulating free sur-87 
face waves, including waves2Foam [6] and IHFOAM [7]. Waves2Foam actively generates 88 
waves and absorbs them using wave relaxation zones, which extends the computational 89 
domain over a few wavelengths, increasing computational expenses. IHFOAM, on the 90 
other  hand,  generates  and  absorbs  waves  actively,  thus  reducing  computational  costs. 91 
However,  both models use the  built-in Volume Averaged  Reynolds-Averaged  Navier-92 
Stokes equations “interFoam” with a few modifications and new boundary conditions to 93 
generate and absorb waves. Both solvers simulate regular, irregular, and random waves, 94 
wave-current interactions, and wave-breaking phenomena. When dealing with big areas 95 
of space where waves don't become steeper or break, using these tools will lead to expen-96 
sive computational requirements. The current article describes a solver developed from 97 
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scratch using the OpenFOAM functions that will create and spread waves at a lower com-98 
putational expense until the point where the wave starts to overturn, which is a key ele-99 
ment currently lacking in OpenFOAM for coastal engineering studies. 100 

 101 

To model real-world problems involving fluid flow, it is necessary to simulate the 102 
full Navier-Stokes equations for both air and water above and below the free surface, in-103 
cluding the effects of aeration during wave impact on structures, wind effects on waves, 104 
and  the  hydro-elastic  response  of  compliant  structures.  A  domain  decomposition  ap-105 
proach is necessary to minimize computational costs while still capturing the physics of 106 
wave propagation and interactions with structures. This means that flow solvers with var-107 
ying degrees of physics and computational overheads are required. For wave generation 108 
at the boundary, a scalar nonlinear full potential method is suitable, while a multi-fluid 109 
Navier-Stokes solver can resolve detailed flow physics in both air and water regions as 110 
waves approach, steepen, and break over a fixed or floating wave converter. Close to the 111 
wave converter where impacting waves may entrain air into the water and/or enclose an 112 
air pocket, a compressible Navier-Stokes solver may be required. The developed solver in 113 
this paper is implemented in OpenFOAM due to its flexible framework, which  allows 114 
users to customize existing solvers or develop new ones to meet their specific require-115 
ments. However, the developed solver cannot capture wave breaking or compressibility 116 
effects, which are important aspects of wave dynamics. To address this, the simulation 117 
results of the existing solver will be coupled with existing incompressible and compressi-118 
ble Navier-Stokes solvers to capture these phenomena. A new boundary condition will be 119 
created to facilitate this coupling. 120 

 121 

OpenFOAM  employs  a  method  of  discretizing  finite  volumes  on  unstructured 122 
meshes that are made up of various types of convex polyhedral shapes. The finite volume 123 
method is a mathematical technique employed to solve partial differential equations that 124 
govern the motion of fluids. These equations include the Navier-Stokes equations and the 125 
continuity equation. It is a grid-based method that partitions the domain of interest into a 126 
finite number of small control volumes, with the equations solved at the center of each 127 
control volume. The finite volume method is extensively used in computational fluid dy-128 
namics (CFD) simulations, and it is particularly suitable for modeling complex flow phe-129 
nomena such as turbulent  flows, multiphase flows, and free surface flows [8, 9, 4, 10]. 130 
Moreover, it is a popular method utilized in water wave modeling. The approach involves 131 
dividing the domain into a grid of discrete control volumes and then utilizing the equa-132 
tions of fluid dynamics to calculate the fluid properties, like velocity and pressure, in each 133 
control volume. The method then updates the fluid's properties at each control volume, 134 
creating a time-dependent simulation of the fluid's behavior. The finite volume method is 135 
versatile and can be applied to a broad range of geometries, including irregular and com-136 
plex shapes [6, 5, 10, 11]. Furthermore, it permits the easy implementation of boundary 137 
conditions and can be coupled easily with other numerical techniques, such as boundary 138 
element methods. However, the method is computationally intensive, and the results' ac-139 
curacy may be grid resolution-dependent. 140 

 141 
The modelling of water wave propagation is a complex task, owing to various factors such 142 
as the nonlinear behavior of water waves and their interactions with boundaries such as 143 
shores, boats, and other obstacles, which can cause unpredictable wave interactions. Ad-144 
ditionally, several variables, such as wave height, wave period, wave direction, and water 145 
depth, need to be taken into account. The physics of wave propagation is governed by 146 
complex hydrodynamic equations, which include wave dispersion and nonlinear wave-147 
wave interactions. To address these complexities, different models have been developed 148 
and classified into two main categories: "surface capturing" and "surface tracking". The 149 
surface capturing approach uses the so-called "particle-based" method, which captures 150 
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the free surface of the water by tracking the motion of individual water particles. The 151 
motion of these particles is then used to calculate the water surface and wave properties 152 
such as wave height, velocity, and direction. One of the most well-known surface captur-153 
ing methods is the Smoothed Particle Hydrodynamics (SPH) method [14], which uses a 154 
set of Lagrangian particles to represent the water surface and a set of equations to calculate 155 
the forces acting on these particles. These equations include the Navier-Stokes equations, 156 
which describe the motion of fluid, and the continuity equation, which describes the con-157 
servation of mass. The surface-capturing approach allows for the simulation of complex 158 
wave behavior, such as the interaction of waves with obstacles, and the breaking of waves. 159 
Using surface capturing technique, researchers including [10, 12, 13] used Navier-Stokes 160 
equations for wave modeling that takes into account the effects of viscosity, compressibil-161 
ity, and turbulence in the fluid. The Navier-Stokes equations describe the conservation of 162 
mass, momentum, and energy of a fluid and are much more complex than the potential 163 
flow equations. 164 

 165 

On the other hand, researchers including [14, 15, 16, 17] used the potential flow wave 166 
modeling approach which assumes the fluid to be inviscid, incompressible, and irrota-167 
tional. Using the potential flow assumptions, numerical methods, such as finite element 168 
method [14, 15, 16, 18] or boundary element method [19], have been used to model the 169 
complex wave phenomena. These methods involve discretizing the flow field into a grid 170 
of points and using numerical algorithms to solve fluid motion equations. These models 171 
are computationally efficient, especially when compared to more complex models that 172 
include viscous effects (e.g., Navier-Stokes models). This efficiency allows for quick sim-173 
ulations of large-scale wave phenomena, which is especially useful  in engineering and 174 
design applications. The surface tracking method is a technique that uses a "grid-based" 175 
approach to capture the free surface of water by solving the equations of motion on a fixed 176 
grid. The movement of the water surface is then determined by solving the equations at 177 
each point on the grid. A well-known example of this approach is the Volume of Fluid 178 
(VOF) method [3, 7, 6, 20], which utilizes a scalar field to represent the water surface and 179 
track its evolution over time. In this method, the Navier-Stokes equations are used to cal-180 
culate the velocity and pressure fields, while the continuity equation is used to determine 181 
the evolution of the water surface. By employing this technique, complex wave behavior, 182 
such as the interaction of waves with obstacles and the breaking of waves, can be simu-183 
lated. However, when trying to solve for two fluids within the computational areas along 184 
with an extra scalar transport equation, it leads to expensive computational requirements, 185 
and the scalar field is also prone to numerical diffusion. 186 

 187 

The aim of the current solver is to improve the efficiency of numerical wave simula-188 
tions in marine environments using OpenFOAM. The solver utilizes the potential flow 189 
theory approach and successfully implements wave generation and absorption boundary 190 
conditions.  The  solver  tracks  the  deformable  free  surface  by  utilizing  an  OpenFOAM 191 
solver  that  is  typically  used  for  simulating  incompressible  fluid  flows  with  dynamic 192 
meshes. At each time step, the internal mesh adapts to accommodate the deformation of 193 
the free surface. Unlike the OpenFOAM standard distribution, this solver solves Laplace's 194 
equation using the finite  volume method (FVM) and incorporates necessary kinematic 195 
and  dynamic  boundary  conditions  for  free  surface  waves.  Additionally,  the  solver  in-196 
cludes wave generation and absorption boundary conditions that were developed specif-197 
ically for this purpose. 198 

2. Mathematical Formulations 199 

Considering an irrotational flow, which is also referred to as a potential flow, the 200 
flow's behaviour can be determined by solving a 2D Laplace's equation. Mathematically, 201 
it can be expressed as: 202 
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 203 ∇2𝜑(𝑥, 𝑦, 𝑡) = 0 (1) 
 204 

Here, 𝜑   represents  the  velocity  potential  and ∇2   is  the  Laplacian  operator,  which 205 
measures the rate of change of the velocity potential in space. Solving Laplace's equation 206 
as in (1) allows us to determine the velocity of the fluid at any point in space, which can 207 
be calculated using the gradient of the velocity potential as 𝒗 = 𝛁𝜑. Once the  velocity 208 
field is known, the pressure distribution can be found using Bernoulli's equation. 209 

 210 

Figure 1: Setup of the domain along with the boundary conditions, FV, which represents 211 

fixed value, and ZG, which represents zero gradient. 212 

 213 

In our Cartesian coordinate system, the origin is situated at the upper-left corner of 214 
the undisturbed domain, as shown in Figure 1. To solve Eqn. (1), we specify Neumann 215 
boundary  conditions  at  the  Inlet,  Outlet,  and  Bottom  Wall  boundaries.  At  the  upper 216 
boundary (i.e., the free surface), we apply a dynamic boundary condition expressed as: 217 𝜕𝜑𝜕𝑡 = −𝑔𝜁 − 12 ∇𝜑. ∇𝜑 (2) 

 218 

where 𝑔   is the acceleration due to gravity, 𝜁   is the wave surface elevation, t is time and 219 𝛁  is the gradient operator. We apply a kinematic boundary condition on the free surface 220 
to make sure that it responds to alterations in the velocity field and to maintain fluid vol-221 
ume conservation. The kinematic boundary condition requires that the normal compo-222 
nent of the fluid's velocity vector at the free surface matches the normal component of the 223 
free surface's velocity. This can be expressed mathematically as: 224 𝜕𝜁𝜕𝑡 = 𝜕𝜑𝜕𝑦 − 𝜕𝜑𝜕𝑥 𝜕𝜁𝜕𝑥 

(3) 

 225 

Equation (3) for the kinematic boundary condition can also be phrased with reference to 226 
the volume of fluid [12] within a system, as follows: 227 𝜕𝜁𝜕𝑡 = 𝒗. 𝒏𝑛𝑦  

(4) 

 228 

In this equation, 𝒗  represents the velocity vector, 𝒏  represents the unit normal vec-229 
tor, and 𝑛𝑦   represents the unit normal vector in the y-direction. 230 

 231 

Equation (4) provides the displacement of the vertices of the free surface. It should 232 
be noted that in the FV methodology implemented in OpenFOAM, mesh values are de-233 
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fined at vertices, which represent the corners of each cell in the mesh. However, the ve-234 
locity potential and computed velocities are known at cell centres, while the flux is defined 235 
at the face centres of the control volumes. To appropriately update the mesh, we interpo-236 
late the flux 𝒗. 𝒏  from face centres to cell vertices. The mesh is then updated, and the 237 
solution is re-computed using the updated mesh. Once the mesh is updated, we solve the 238 
dynamic boundary condition as in (2) to calculate the velocity potential on the free surface 239 
for the subsequent time step. In the implemented technique, the mesh is allowed to de-240 
form without changing its topology. It should be noted that the boundaries attached to 241 
the free surface boundary, as shown in Figure 1, are the inlet and outlet, which should 242 
have unrestricted displacement, so a zeroGradient boundary conditions are applied. The 243 
bottom of the fluid domain should remain fixed, and thus, a fixed value boundary condi-244 
tion “fixedValue=0” is imposed. Once the boundary conditions for cell vertices (i.e. point 245 
displacement) are specified, the Laplacian solver is used for mesh motion by solving the 246 
Laplace equation for the displacement of each mesh point from its initial position. 247 

 248 

The variables pertaining to fluid flow are computed at the centers of individual cells 249 
and then interpolated to cell vertices, which results in a saw-tooth free surface. To enhance 250 
the precision of the solution, a 5-point smoother is used to adjust the values of the function 251 
at  the  nodes  of  the  grid.  The  formula  for  the  5-point  smoother  is𝑓𝑖 = (−𝑓𝑖−2 + 4𝑓𝑖−1 +252 10𝑓𝑖 + 4𝑓𝑖+1 − 𝑓𝑖+2)/16   , where 𝑓   is the value of the function at the required node and 253 𝑓𝑖−2 , 𝑓𝑖−1 , 𝑓𝑖+1 , and 𝑓𝑖+2   are the values of the function at the four adjacent nodes [24] [25]. 254 
It should be noted that when using the 5-point smoother, certain modifications are re-255 
quired to account for the fact that the values at certain adjacent nodes are not available, 256 
particularly at the first and last nodes of the grid. For instance, in the case of progressive 257 
waves, the values at the first node are computed using a 3rd-order approximation as: 258 𝑓𝑖−1 = 𝑓𝑖+2 − 3𝑓𝑖+1 + 3𝑓𝑖 (5) 

 259 𝑓𝑖−2 = 3𝑓𝑖+2 − 8𝑓𝑖+1 + 6𝑓𝑖 (6) 

 260 

Since, 𝑓𝑖−1   and 𝑓𝑖−2   are the values of the function out of the domain, and  , 𝑓𝑖 𝑓𝑖+1 , and 261 𝑓𝑖+2     are the values of the function at the first node, the adjacent node, and the adjacent-262 
to-adjacent node, respectively. 263 

 264 

2.1. Moving boundary modeling 265 

In the OpenFOAM-Extend environment, we created a new boundary condition class 266 
to implement new boundaries. We defined input parameters for the boundary conditions, 267 
including  coefficients,  reference  values,  and  other  necessary  constants,  based  on  our 268 
model. We developed and implemented the following boundary conditions as:  269 

 270 

1. inlet boundary condition: The following is a description of the inlet bound-271 
ary  condition  that  we  implemented  in  the  OpenFOAM  environment.  To 272 
specify this condition, we use the equation: 273 𝜕𝜑𝜕𝑥 = 𝑢 = 𝑓(𝑦, 𝑡) (7) 

 274 

where 𝑓(𝑦, 𝑡)   is  any  known  function.  However,  for  standing  wave  test  cases,  we  set 275 𝑓(𝑦, 𝑡) = 0, which corresponds to a zeroGradient boundary condition. This assumes that 276 
the value at the inlet is equal to the neighboring cell value. For progressive wave test cases, 277 
we impose a velocity component u in the x-direction of the known wave theory as follows: 278 
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 279 𝜕𝜑𝜕𝑥 = 𝑢 
(8) 

 280 

The applied velocity u can be from either the Stokes wave theory or an experimental wave 281 
maker. The Stokes wave theory predicts that the wave profile is sinusoidal, and the wave 282 
height and wavelength are related to the frequency and water depth. Additionally, we 283 
use a ramp function to gradually increase the wave height of the generated waves to a 284 
desired level over a period of time. Currently, the code support sinusoidal and linear ramp 285 
functions.   286 

 287 

2. freeSurface boundary condition: We enforce both the kinematic boundary 288 
condition described as in (4) and the dynamic boundary condition as in (2) 289 
on this surface. 290 

3. bottom wall boundary condition: We impose the no-slip condition at this 291 
surface which assumes that the fluid is stationary at the bottom wall. 292 

4. outlet boundary condition: In order to avoid wave reflections back into the 293 
computational domain, which can lead to interference and inaccuracies in 294 
the simulation, we employ an absorbing boundary condition. This condition 295 
facilitates the smooth exit of waves from the domain without reflection, ef-296 
fectively absorbing them as they leave the modeled region. For this purpose, 297 
we implemented the Sommerfeld condition. 298 

 299 𝜕𝜑𝜕𝑡 + 𝑣𝑝ℎ𝑎𝑠𝑒 𝜕𝜑𝜕𝑛 = 0 
(9) 

 300 

In this equation, n represents the normal vector pointing outward from the outlet bound-301 
ary's surface, and 𝑣𝑝ℎ𝑎𝑠𝑒   refers to the wave's phase velocity. The parameter 𝑣𝑝ℎ𝑎𝑠𝑒 is de-302 

termined  by  the  linear  harmonic  wave  velocity  equation 𝑣𝑝ℎ𝑎𝑠𝑒 = √𝑔 × tanh(𝑘𝐻) /𝑘 , 303 
where H signifies the water depth and k represents the wave number. The newly devel-304 
oped boundary conditions are designed to be modular and require only the input of wave 305 
amplitude, wave period, and the time required for full development. The wave length and 306 
wave number are then computed using wave dispersion relations. As a result, switching 307 
to different boundary conditions only requires changing the expression and the necessary 308 
variables for initialization. To validate these boundary conditions, we compared simula-309 
tion results with analytical and experimental data, which are presented in the Results and 310 
Discussions section. 311 

 312 

2.2. Sequence of the Solution Procedure of the solver 313 

The steps for implementing the potential flow solver in OpenFOAMfrom tn   to 𝑡𝑛+1  314 

are as follows. 315 

 316 

1. Create the grid. 317 
2. Apply the necessary boundary conditions on the computational domain. 318 
3. Calculate the velocity potential by solving Laplace's equation. 319 
4. Compute velocities at the centers of cells and fluxes at the centers of faces. 320 
5. Find  the  updated  shape  of  the  surface  of  the  fluid  by  solving  (4)  that  de-321 

scribes the behavior of the fluid at the boundary. 322 
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6. Based on the free surface elevation computed in the previous step (step 5), 323 
update the grid. 324 

7. Solve (2) that describes the dynamic boundary condition at the free surface 325 
on the updated grid. This calculation provides the velocity potential on the 326 
boundary for the next time step. Adjust the boundary conditions for the re-327 
maining three boundaries based on the updated information. 328 

8. To progress the solution in time, repeat the aforementioned steps (steps 4-7) 329 
for each time step. 330 

 331 
Moreover, to run a case(example) using the current solver in OpenFOAM, one will 332 

need to follow these steps:   333 
1. Set up the geometry: The first step is to create the 3D geometry of the domain 334 

that includes the fluid and the free surface. This can be done using a CAD 335 
software or OpenFOAM's built-in meshing tools 336 

2. Mesh the domain: The next step is to generate a suitable mesh that will be 337 
able  to  resolve  the  wave  features.  This  can  be  done  using  OpenFOAM's 338 
meshing tools, such as snappyHexMesh or Gmsh. 339 

3. Set up the case: The next step is to set up the case by defining the solver 340 
which is named as ''potDyMFoam", time and spatial discretization schemes, 341 
initial and boundary conditions. 342 

4. Run the simulation: The simulation is run by using the command in a ter-343 
minal window ``potDyMFoam". The solver solves the Laplace equation for 344 
the  velocity potential, and calculates the  velocity fields by the gradient of 345 
velocity potential and then pressure using the Bernoulli's equations. 346 

5. Post-processing: Once the simulation is complete, the results can be post-347 
processed to visualize the wave height, velocity field, and pressure distribu-348 
tion. OpenFOAM provides several post-processing tools, such as ParaView, 349 
foamToVTK, and foamToSurface. 350 

 351 

3. Results and Discussion 352 

We validated the accuracy of our developed numerical model by comparing its re-353 
sults with theoretical solutions, published numerical simulation results, and experimental 354 
data. Our goal was to establish the numerical model's reliability and accuracy. The vali-355 
dation process consisted of several steps, including convergence analysis in space and 356 
time, wave period comparison, comparison of the simulation results for standing water 357 
waves, progressive waves, and finally, comparison with experimental data. In all the sim-358 
ulations, we utilize the Crank-Nicolson method to integrate the kinematic and dynamic 359 
boundary conditions over time. 360 

3.1. Convergence in Space and time 361 

To ensure independence from grid size, we conducted a simulation of a sinusoidal 362 
wave. The simulations were conducted with a mean water depth of H = 0.8 m, and the 363 
wave characteristics were set as follows: amplitude a = 0.01 m and wavelength λ = 1.0 m. 364 
The simulation was carried out using several regular grids, as described in 365 

Table 1, using the function 𝜁 = asin⁡(𝑘𝑥)   and a dimensional time step of ∆t = 0.005 s. 366 
We plotted the error on the y-axis and the grid size on the x-axis, both in a logarithmic 367 
scale, as shown in Figure 2. We calculated the error as the difference between the nu-368 
merical and analytical solutions. As indicated by the plot, the error decreases with a re-369 
duction in the grid size, demonstrating the expected first-order accuracy. 370 

Table 1: The number of different meshes used. 371 

Cases Grid size 
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Grid-1 13 × 11 × 1 
Grid-2 20 × 17 × 1 
Grid-3 33 × 26 × 1 
Grid-4 49 × 39 × 1 
Grid-5 75 × 59 × 1 
Grid-6 113 × 89 × 1 
Grid-7 169 × 134 × 1 
Grid-8 211 × 167 × 1 
Grid-9 253 × 201 × 1 

 372 

 373 

Figure 2: The plot shows the error as a function of the number of grid points in the x-direction. 374 

We conducted a time discretization study using Grid-4, which comprises 49 points 375 
in the x-direction and 39 points in the y-direction. The simulation utilized a sinusoidal 376 
wave with a mean water depth of  H = 0.8 m, and the wave characteristics were set as 377 
follows: amplitude a = 0.01 m and wavelength λ = 1.0 m. The simulation was carried out 378 
for different time step sizes, namely ∆t = 0.025, ∆t = 0.0125, ∆t = 0.00625, and ∆t = 0.003125. 379 
The L1-error was calculated for each time step size, and the results were plotted against 380 
the time steps in Figure 3Figure 3. The graph shows that decreasing the time step size 381 
results in lower error, indicating that the simulation achieves good temporal convergence.   382 

 383 

 384 

Figure 3: Change in error estimate with time step. 385 

3.2. Wave Period Comparison 386 

We also made wave period comparison for the developed numerical solution. We 387 
obtain  the  numerical  solution  for  different  kinds  of  waves  covering  a  range  of  water 388 
depths from shallow to deep. We calculated the wave period of the numerical solution by 389 
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identifying the time interval between two consecutive wave peaks. We then compared the 390 
results we obtained with the wave period calculated using 2nd-order Airy wave theory. 391 
We examined two distinct wave amplitudes, namely a = 0.005 m and 0.01 m, while keep-392 
ing the wave length constant at λ = 1.0 m. We gradually altered the mean water depth and 393 
recorded the wave periods from the resulting simulations. Figure  4 shows a comparison 394 
between the wave periods obtained and the analytical values, plotted against the mean 395 
water depth. The depicted plot indicates a close agreement between the wave periods ob-396 
tained from the current numerical scheme and those predicted by the 2nd order Airy wave 397 
theory. 398 

 399 

Figure 4: The plot shows how the wave period varies with the mean water depth, with the 400 

wavelength used as a normalizing factor. 401 

3.3. Standing Waves 402 

Standing water waves are a common occurrence in bodies of water such as lakes, 403 
rivers, and oceans. These waves can be generated by several factors, such as wind, tides, 404 
and the interaction of waves with obstacles like breakwaters, piers, and other structures. 405 
Accurate simulation of standing water waves is crucial for predicting the behavior of more 406 
complex phenomena and for designing structures, bridges, and ships. It can also lead to 407 
improved models for a range of physical phenomena, making it an essential area of study 408 
in fluid dynamics. Understanding the behavior of standing water waves is, therefore, crit-409 
ical for advancing the field of fluid dynamics. 410 

 411 

We utilized a mathematical function 𝜁 , also known as the wave profile or waveform, 412 
to simulate standing waves. The initial shape of the free surface was specified using this 413 
function, as depicted in Figure 5. The test cases were chosen to have relatively large wave 414 
amplitudes and small water heights, enabling us to observe nonlinear effects. We used a 415 
wave profile based on the 2nd-order Stokes theory [21] for this purpose. 416 

 417 𝜁(𝑥, 𝑡) = acos(𝑘𝑥) cos(𝜔𝑡 )+ 𝜋𝑎2𝜆 [𝑐𝑜𝑠 2(𝜔𝑡 ) − 14𝑐𝑜𝑠ℎ 2(𝑘𝐻)+ 3cos⁡(2𝜔𝑡)4𝑠𝑖𝑛ℎ2(𝑘𝐻)] cos⁡(2𝑘𝑥)  

(10) 
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 418 𝜕𝜑𝜕𝑥 = (𝐻2 cosh(𝑘 (𝑦 + ℎ))sinh(𝑘ℎ) cos(𝑘𝑥 − 𝜔𝑡)+ 316 ℎ2𝜔𝑘 cosh(𝑘 (𝑦 + ℎ))sinh(𝑘ℎ) cosh(2𝑘 (𝑦 + ℎ))sinh3(𝑘ℎ) ) 𝑐𝑜𝑠2(𝑘𝑥 − 𝜔𝑡) 

 

(11) 

 419 

Here, a is the amplitude of the wave, k is the  wave number (2𝜋 𝜆)⁄   ,   is the angular 420 
frequency (2𝜋 𝑇)⁄ , and T is the period of the wave and h is the height of the wave at posi-421 
tion x and time t.    The wave profile used in our simulation takes into account nonlinearity 422 
and dispersion effects, which give rise to a wave shape different from that of a purely 423 
sinusoidal wave predicted by linear wave theory.   424 

 425 

 We consider a wave with amplitudes of 0.01 m and 0.02 m, a wavelength of 1.0 m, 426 
and a mean water depth of H=0.1 m, as studied by Santos and Greaves [16]. To generate 427 
the initial profile for the standing wave, we utilized the "arc" utility, which is a built-in 428 
tool in OpenFOAM. This utility writes the initial profile based on known wave theories 429 
over all grid points of the free surface boundary. The initial point displacements are then 430 
extracted from the grid points and saved in the pointDisplacement file, which is located 431 
in the 0 folder of the case directory. Once the initial values for the velocity potential and 432 
the initial shape of the standing wave are set, we run the "potDyMFoam" solver to simu-433 
late the wave motion over the run time of the case. 434 

 435 

Figure 5: The starting shape of the stationary wave. 436 

 437 
(a) 438 

 439 
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 440 

(b) 441 

Figure 6: A comparison of the time trace history between the current simulations and the pre-442 

dicted theories of the free surface elevation. 443 

 444 

Figure 6 displays the changes over time in the height of the wave at the halfway point of 445 
the free surface boundary, and also shows the results obtained from the linear and 2nd-446 
order Airy wave solutions to compare with the simulation results. The wave elevation is 447 
nondimensionalized by the wave amplitude, providing a relative measure of the wave 448 
elevation compared to the amplitude. As shown in Figure 6(a) and Figure 6 (b), this non-449 
dimensionalization results in values between -1 and 1, irrespective of the actual wave am-450 
plitude.  Similarly,  we  nondimensionalized  time  by  dividing  it  by  a  characteristic  time 451 
scale, such as the wave period, which can be determined from the relation 2𝜋 𝜔⁄   , where 452 𝜔 = √𝑔 × 𝑘 × tanh⁡(𝑘𝐻). The simulation results accurately predict the general behavior of 453 
the wave, as predicted by the theoretical solutions. However, the simulations differ from 454 
the theoretical solutions in the crest level, where the theories fail to capture the high crest. 455 
The simulations show much larger crests and flatter troughs than a linear wave with the 456 
same  amplitude  due  to  the  nonlinear  interactions  between  the  different  wave  compo-457 
nents. Santos and Greaves [19] (Fig. 13) also observed similar  nonlinear  behavior. In a 458 
nonlinear wave, the crest can become steeper, and eventually break, resulting in a much 459 
larger wave. The nonlinear interactions between the different wave components lead to 460 
complex and unpredictable wave behavior [22]. 461 

3.4. Progressive Waves 462 

Regular water waves, also known as linear waves, are a type of water wave that fol-463 
lows  the linear  wave  equation,  which  describes  the  small  amplitude,  long  wavelength 464 
waves that are commonly found in oceans and other large bodies of water. These waves 465 
have a sinusoidal shape, with a constant amplitude and wavelength, and they travel in a 466 
particular direction. Regular water waves can be characterized by several parameters, in-467 
cluding wavelength , wave period T, wave frequency f, wave speed c, and wave height 468 
H. The wavelength, period, and frequency are related by the equation 𝑐 = 𝜆 𝑇 = 2𝜋𝑓⁄ . In 469 
order to simulate progressive waves, it is necessary to specify the inlet boundary as the 470 
location where the waves are generated and the outlet boundary as the location where the 471 
waves exit the domain. In our simulations, we utilized an inlet boundary condition (7) 472 
and a Sommerfeld condition (9) to achieve this. Various test cases with different wave 473 
heights were simulated, and for validation purposes, two test cases are presented with 474 
their corresponding data in   475 
Table  2. To avoid interference between incoming and reflected waves in the  computa-476 
tional domain, the tank length was set to L=10 m for both test cases. At the inlet boundary 477 
of the domain, the horizontal component of the velocity was determined based on the 478 
Stokes-I theory. The wave number k and angular frequency   of the wave were calculated 479 
using the linear dispersion relation 𝜔 2 = 𝑔 × 𝑘 × tanh⁡(𝑘ℎ). To study the wave's behavior 480 
over time, free surface elevation was measured at three different locations: 7.5 m, 7.87 m, 481 
and 8.424 m from the inlet boundary. 482 
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 483 

Table 2: Results obtained for a progressive wave. 484 

 Wave amplitude 
(cm) Water depth (cm) Time period (sec) 

Case 1 2.5 50 3.0 

Case 2 4.5 100 2.0 

   485 

Figure 7 and Figure 8 depict the variation in wave amplitude over time. The x-axis 486 
represents time in seconds, while the y-axis represents wave amplitude in meters. In Fig-487 
ure 7, the wave has an amplitude of 2.5 cm, a water depth of H=50 cm, and a time period 488 
of T=3.0 seconds. In Figure 8, the wave has an amplitude of 4.5 cm, a water depth of H=10 489 
m, and a time period of T=2.0 seconds. The wave elevation is also plotted based on Stoke's 490 
1st and 2nd-order theories. The numerical simulations for the considered wave parame-491 
ters generally follow the theoretical trends in terms of time period and phase, but the the-492 
ories do not capture the non-linear interaction between different wave components. In 493 
Figure 7(a), (b), and (c), the wave crests and troughs are symmetric and sinusoidal accord-494 
ing to Stokes First theory (linear theory), represented by a red line. The wave profile re-495 
mains unchanged as the wave travels, and the crest and trough are always aligned with 496 
the direction of wave propagation. In contrast, Stokes 2nd theory, represented by the blue 497 
dashed line, and the current simulations, represented by the black solid line, do not nec-498 
essarily produce symmetric or sinusoidal crests and troughs. The non-linear interaction 499 
between different wave components can cause the wave profile to become distorted, with 500 
the crest becoming steeper and narrower while the trough becomes wider and flatter. This 501 
process is known as wave steepening, and it can lead to the formation of breaking waves 502 
[22]. 503 

 504 
(a) 505 

 506 
(b) 507 
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 508 
(c) 509 

Figure 7: Comparison of the free surface elevation obtained from the first and second Stokes theo-510 

ries with the results obtained from current simulations at three different locations (a) 7.5 m, (b) 7.87 m 511 

and (c) 8.24 m from inlet domain, where a=6 cm and T=1.5 sec. 512 

 513 
(a) 514 

 515 
(b) 516 

 517 
(c) 518 

Figure 8: Comparison of the free surface elevation obtained from the first and second Stokes theo-519 

ries with the results obtained from current simulations at three different locations (a) 7.5 m, (b) 7.9 520 

m and (c) 8.42 m from inlet domain, where H=6 cm and T=2.0 sec. 521 

For the second test case, we modified the wave by increasing its wave amplitude to 522 
4.5 cm and decreasing the time period to T=2.0 seconds. These modifications can make 523 
higher-order waves more susceptible to breaking and losing their harmonic structure. The 524 
wave crest in Figure 8(a), (b), and (c) is steeper than those in Figure 7(a), (b), and (c) due 525 
to the shorter wavelength, which causes an increase in the wave profile's steepness. The 526 
current  simulations  accurately  predict  this  nonlinear behavior  that  the  theories  cannot 527 
predict. It is crucial to capture this nonlinear behavior as the steeper wave profile can lead 528 
to easier wave breaking, causing the higher-order waves to dissipate quickly. 529 

 530 
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To  further  verify  and  validate  our  current  numerical  simulation  results,  we  con-531 
ducted  a  comparison  with  Feng  Gao's  experimental  data  [23].  Feng  Gao  placed  three 532 
gauges in the flume to measure wave elevation at positions 0.55 m, 3.55 m, and 5.45 m. 533 
The length of the wave tank was maintained at 8.85 m to match the experimental condi-534 
tions, with water depth H set at 0.28 m. Previous full Navier-Stokes (NS) computations 535 
were also conducted for this test case by Qian, Causon, Mingham and Ingram  [24] , as 536 
well as Bai, Mingham, Causon and Qian [25] . The wave amplitude was set to 0.025 m and 537 
the wave period T was set to 1.0 seconds, with the following mathematical expression 538 
used for wave generation. 539 

 540 𝑢 = 𝑎𝜔sin⁡(𝑘𝑥 − 𝜔𝑡) (12) 
 541 

In these simulations, we used a linear ramped function that was added to the system 542 
from t=0 to t=T. To ensure both accuracy and efficiency of the current solver, we utilized 543 
both coarser mesh (354 x 17 x 1) and fine mesh (708 x 33 x 1) and compared the obtained 544 
solutions at the same locations as the experiment (Figure 9). The purpose of using different 545 
mesh sizes was to verify the solver's performance. The experimental data was plotted in 546 
red, while the finer mesh and coarse mesh were plotted in black solid line and blue dotted 547 
line, respectively. The results of the current solver showed excellent agreement with the 548 
experimental data, very similar to that of Navier-Stokes simulations conducted by Qian 549 
Causon, Mingham, and Ingram [24] (Fig. 7(a)) and Bai, Mingham, Causon, and Qian [25] 550 
(Fig. 13(a)). The solver successfully captured the steeper wave crests, even with the coars-551 
est discretization used. Although the free surface was not accurately captured at gauge 552 
no. 3, the general trend and nonlinear behavior were adequately represented. Gauge 1 553 
and 2 showed excellent agreement with the observations, whereas gauge 3 showed some 554 
differences, particularly in terms of dispersion. A possible explanation for this discrep-555 
ancy could be the change in celerity due to the higher wave amplitude or the discretization 556 
near the reflecting wall. 557 

 558 
(a) 559 

 560 
(b) 561 

 562 
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(c) 563 

Figure 9: The current numerical solver for free surface elevation is being compared with 564 

experimental observations at positions (a) Gauge 1 at 0.55 m, (b) Gauge 2 at 3.55 m, and (c) Gauge 3 565 

at 5.45 m. 566 

4. Conclusions 567 

In this paper, we have developed a methodology that is able to simulate fluid flow 568 
using the OpenFOAM-Extend environment. The method is based on the potential flow 569 
solver  that  uses  Laplace's  equation  to  determine  the  velocity  potential  at  any  point  in 570 
space. The simulation of standing water waves with relatively large wave amplitudes and 571 
small water heights enables the observation of nonlinear effects, making it an essential 572 
area of study in fluid dynamics. Subsequently, we compared model results with experi-573 
mental data and obtained excellent agreement, demonstrating the successful implemen-574 
tation of the model. Our findings suggest that the current solver, along with the boundary 575 
conditions, is efficient for modeling real-life applications where the flow remains irrota-576 
tional, inviscid, and incompressible. To facilitate collaboration and knowledge transfer 577 
and  to  improve  the  solver  further,  the  developed  model  and  corresponding  boundary 578 
conditions will be released as open source in the OpenFOAM environment. 579 
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