
1

Meta-Learning Online Control for
Linear Dynamical Systems

Deepan Muthirayan, Dileep Kalathil, and Pramod P. Khargonekar

Abstract—In this paper, we consider the problem of finding a
meta-learning online control algorithm that can learn across the
tasks when faced with a sequence of N (similar) control tasks.
Each task involves controlling a linear dynamical system for a
finite horizon of T time steps. The cost function and system
noise at each time step are adversarial and unknown to the
controller before taking the control action. Meta-learning is a
broad approach where the goal is to prescribe an online policy for
any new unseen task exploiting the information from other tasks
and the similarity between the tasks. We propose a meta-learning
online control algorithm for the control setting and characterize
its performance by meta-regret, the average cumulative regret
across the tasks. We show that when the number of tasks
are sufficiently large, our proposed approach achieves a meta-
regret that is smaller by a factor D/D∗ compared to an
independent-learning online control algorithm which does not
perform learning across the tasks, where D is a problem constant
and D∗ is a scalar that decreases with increase in the similarity
between tasks. Thus, when the sequence of tasks are similar the
regret of the proposed meta-learning online control is significantly
lower than that of the naive approaches without meta-learning.
We also present experiment results to demonstrate the superior
performance achieved by our meta-learning algorithm.

I. INTRODUCTION

Meta-learning is a powerful paradigm in machine learning
for learning-to-learn new tasks efficiently, e. g., with limited
data [1]. Meta-learning is based on the intuitive idea that if
the new task is similar to previous tasks, it can be learned
very quickly by using the data and knowledge from previously
encountered related tasks. Recently there has been tremendous
progress in practical algorithms for meta-learning [2]–[4] with
impressive performance in many applications such as image
classification [5], natural language processing [6], and robotic
control [7]. These algorithms, however, are in the batch
learning setting, where data sets composed of different tasks
are available for offline training. A meta-model (typically a
neural network) is then trained using these data sets with the
objective of fast adaptation to a new/unseen task at the test
time using only a few data samples corresponding to that new
task. Significantly different from the batch learning setting
which are offline by nature, many learning algorithms have
to operate in an online setting where the data samples are
obtained in a sequential manner. For example, personalized
recommendation systems [8], various applications in robotics

This work is supported in part by the National Science Foundation under
Grant ECCS-1839429 and NSF- CAREER-EPCN-2045783. D. Muthirayan
and P. P. Khargonekar are with the Department of Electrical Engineering
and Computer Sciences, University of California Irvine, Irvine, CA (emails:
deepan.m@uci.edu, pramod.khargonekar@uci.edu). Dileep Kalathil is with
the Department of Electrical and Computer Engineering, Texas A&M Uni-
versity (email:dileep.kalathil@tamu.edu).

[9]–[13], demand response management in smart grid [14], and
load balancing in data centers [15] require online learning.

Online convex optimization (OCO) [16], [17] focuses on de-
veloping algorithms for online learning setting where the loss
functions are sequentially revealed and the learner is trained
as well as tested at each round. The standard OCO objective
is to minimize the regret which is defined as the difference
between the cumulative cost incurred by the online algorithm
and the optimal policy from a certain class of policies. Even
though the OCO approach offers a fundamental theoretical
framework to analyze a variety of online learning scenarios,
the existing works do not consider how the past experience
can be used to accelerate adaptation to a new task, which is
the key idea behind meta-learning. There are many works in
the area of online control algorithms for dynamical systems
with uncertain/unknown disturbances, system parameters and
cost functions. The online control literature extends the OCO
approach to problems with dynamics [18]–[21]. However,
these existing works only consider the problem of learning
within a task assuming that the task is fixed. In particular,
they do not consider the possibility of learning across the
tasks when faced with a sequence of similar control tasks.

In this paper, we consider the problem of finding a meta-
learning online control algorithm that learns across the tasks
when faced with a sequence of N (similar) control tasks. Each
task involves controlling a linear dynamical system for T time
steps. The cost function and system noise at each time step
are adversarial and unknown to the algorithm before taking
the control action. The key idea behind meta-learning is to
prescribe an online control policy for any new unseen task
exploiting the information from prior tasks and the similarity
between the tasks. We characterize the performance of a meta-
learning online control algorithm by meta-regret, the average
(taken over the tasks) cumulative regret across the tasks. Our
goal is to develop a meta-learning online control algorithm
that can achieve superior performance, in theory and practice,
over an independent-learning online control algorithm which
applies a standard online control algorithm to each task
without performing any learning across the tasks.

Our approach is motivated by some recent works in online
meta-learning [22]–[24] which combine the meta-learning idea
with the OCO framework. In [22], the authors extend the
model-agnostic meta-learning (MAML) approach [2] to the
online setting. Their goal is to learn a good meta-policy
parameter that allows fast adaptation to all the previously
seen tasks by taking only a few gradient steps from this
meta-policy parameter. The work that is closest to ours is
[23], which proposes the Follow-the-Meta-Regularized-Leader

2

(FTMRL) approach. FTMRL learns a meta-intialization for
a task specific OCO algorithm such that the individual task
regret of these algorithms improves with the similarity of the
online tasks. However, these works consider only the online
optimization setting without state evolution. In particular, they
do not consider the more challenging problem of online control
for uncertain dynamical systems.

Our contributions: We consider the problem of developing
a meta-learning online control algorithm for a sequence of
similar control tasks. Each task involves controlling a linear
dynamical system with adversarial cost functions and distur-
bances, which are unknown before taking the control action.
Our algorithm has a two loop structure where the outer loop
performs the meta-learning update to prescribe an initialization
parameter for the task specific online control algorithm used
in the inner loop. We show that when the number of tasks are
sufficiently large the meta-regret of our proposed approach
is smaller by a factor D/D∗ compared to an independent-
learning online control algorithm which does not perform
learning across the tasks, where D is a problem constant and
D∗ is a scalar that represents the task similarity (D∗ decreases
with similarity between tasks). Therefore, when the sequence
of tasks are similar, i.e., when D∗ ≪ D, we achieve a regret
that is significantly lower than that of the naive approaches
without meta-learning. We also present experiments results
to demonstrate the superior performance of our meta-learning
algorithm.

Our technical contribution lies in expanding the framework
and technical analysis of online control to incorporate meta-
learning. To the best of our knowledge, ours is the first work
that combines the ideas of meta-learning and online control to
develop a learning algorithm with provable guarantees for its
performance. A preliminary conference version of this work
has been accepted for publication [25]. Compared to [25], this
detailed version includes a general meta-learning algorithm
that avoids the requirement of knowing certain parameters
of the underlying problem a priori. Moreover, this version
contains the detailed proofs of all the results, which is not
available in the conference version.

Related Works:
Online Control: Substantial number of works have been

published in the area of online control [18]–[21], [26]–[28].
Most of these works focus on developing online control algo-
rithms for linear dynamical systems with provable guarantees
for the regret. In our work we make use of the task specific
online control algorithm proposed in [20]. This considers the
control of a known linear dynamic system with adversarial
disturbance and (convex) cost functions and shows that the
proposed algorithm can achieveO(

√
T) regret for a given task.

Our meta-learning online control algorithm is developed by
extending the task specific online control algorithm proposed
in [20] with an additional outer loop for performing the meta-
learning update and slightly modifying the task specific (inner
loop) update.

Adaptive and Robust Control: Classical adaptive and robust
control literature addresses the problem of control of systems
with parametric, structural, modeling and disturbance uncer-

tainties [29]–[32]. Typically, these classical approaches are
concerned with stability and asymptotic performance guaran-
tees of the systems. Online control literature focuses typically
on the finite time regret performance of the algorithms. This is
one of the key differences compared to the conventional adap-
tive and robust control literature, and it requires combining
techniques from statistical learning, online optimization and
control. In this work, we focus on the online control approach
for developing our meta-learning algorithm.

Notations: Unless otherwise specified ∥·∥ denotes the Eu-
clidean norm and the Frobenious norm for vectors and matri-
ces respectively. We use O(·) for the standard big-O notation
while Õ(·) denotes the big-O notation neglecting the poly-
log terms. We also use o(·) for the standard little-o notation.
Further, when a function g(n) = on(1), then g(n) → 0 as
n → ∞. We denote the sequence (xm1

, xm1+1, . . . , xm2
)

compactly by xm1:m2
.

II. PROBLEM SETTING

We consider the problem of finding a meta-learning online
control (M-OC) algorithm that learns across the tasks when
faced with a sequence of (similar) control tasks. The sequence
of tasks are denoted as τ1, τ2, . . . , τN . Each control task τi
involves controlling a linear dynamical system for T time steps
whose system dynamics is given by the equation

xi,t+1 = Aixi,t +Biui,t + wi,t, 1 ≤ t ≤ T, (1)

where Ai ∈ Rn×n and Bi ∈ Rn×m are the matrices that
paramaterize the system, and xi,t ∈ Rn is the state, ui,t ∈ Rm

is the action, wi,t ∈ Rn is the system noise at time t. For
conciseness we represent the system parameter for task τi as
θi = [Ai, Bi]. We assume that the systems noise is adversarial.

A control policy π for task τi selects a control action uπ
i,t at

each time t depending on the available information, resulting
in a sequence of actions uπ

i,1:T and the state trajectory xπ
i,1:T .

The cumulative cost of a policy π under the system dynamics
(1) is given by

Ji(π) =
T∑

t=1

ci,t(x
π
i,t, u

π
i,t), (2)

where ci,t is the cost function for task τi at time t. We assume
that ci,ts are arbitrary convex functions. The typical goal is to
find the optimal policy π⋆

i such that π⋆
i = argminπ Ji(π).

Clearly, computing π⋆
i requires the knowledge of the system

parameter θi and the entire sequence of cost functions ci,1:T .
The online control framework considers the more realistic

setting where the future cost functions are not available for
deciding the control action ui,t at time t. More precisely the
policy πi for task τi has only the following information at
each time t for selecting the action ui,t: (i) past and current
state observations xi,1:t, (ii) past control actions ui,1:t−1, (iii)
past cost functions ci,1:t−1. We also assume that the system
parameter θi is known to the control policy. The task regret
of the control policy πi for the task τi is defined as

Ri
T (πi) = Ji(πi)−min

π∈Π
Ji(π), (3)

3

where Π is the class of control policies. The objective is to find
a policy that minimizes the task regret assuming that the task
is fixed. In particular the existing online control algorithms
do not consider learning across tasks when faced with a
sequences of similar control tasks.

Our goal is to find a meta-policy πm that can learn across
the tasks when faced with a sequence of (similar) control
tasks τ1, τ2, . . . , τN and minimize the task regret for individual
tasks. A meta-policy πm produces a sequence of task specific
policies πm

i , 1 ≤ i ≤ N, by learning across the tasks. For
deciding the task specific policy πm

i for task τi the meta-policy
πm makes use of the observation available from the previous
tasks: the state observations, cost functions, and task specific
policies for all previous tasks j ≤ i − 1. Since the objective
of the meta-policy is to generate task specific policies which
can do well on individual tasks, the performance of the meta-
policy is characterized by the metric meta-regret, formally
defined as

Rmeta
N (πm) =

1

N

N∑
i=1

Ri
T (π

m
i). (4)

Our objective is to find a meta-policy that performs better
than an independent-learning online control algorithm which
applies a standard online control algorithm independently to
each task without performing any learning across the tasks.

We make the following assumptions. Please note that the
assumptions stated below are standard in the (task specific)
online control literature [20] and no further assumptions are
made.

Assumption 1 (System Model): (i) The system matrices for
each task are bounded, ∥Ai∥ ≤ κA, and ∥Bi∥ ≤ κB , where
κA and κB are constants. (ii) The disturbance at time t of any
task is bounded, ∥wi,t∥ ≤ κw, where κw is a constant.

Assumption 2 (Cost Functions): For all tasks i, 1 ≤ i ≤ N
and all time steps t, 1 ≤ t ≤ T , (i) the costs functions ci,ts
are convex, (ii) for any x and u with ∥x∥ ≤ S, ∥u∥ ≤ S,

∥ci,t(x, u)∥ ≤ βS2, ∥∇xci,t(x, u)∥, ∥∇uci,t(x, u)∥ ≤ GS,

III. REVIEW: ONLINE CONTROL ALGORITHM

In this section we give a brief description of the task
specific online control (OC) algorithm proposed in [20]. We
drop the task subscript i because the discussion here is for
a single task. Our meta-learning online control algorithm is
developed by extending the task specific OC algorithm with an
additional outer loop for performing the meta-learning update
and appropriately modifying the task specific (inner loop)
update.

The OC algorithm proposed in [20] uses a control policy
parameterized by two matrices, a fixed matrix K and a time
varying matrix Mt = (M

[1]
t ,M

[2]
t , . . . ,M

[H]
t). The control

action ut at time t by this OC algorithm is given by

ut = −Kxt +
H∑

k=1

M
[k]
t wt−k. (5)

Thus, the control action is a linear map of the current state and
the past disturbances up to a certain history. This property is
convenient as it permits efficient optimization of the costs.

We note that, since the state is fully observable, the past
disturbances can be precisely estimated using the information
at time t.

The parameter K is selected by the OC algorithm as a
(κ, γ)-strongly stable linear feedback control matrix for the
underlying system. A linear feedback control policy speci-
fied by the gain K is (κ, γ)-strongly stable if there exists
matrices L,H satisfying A − BK = HLH−1 such that the
following two conditions are met: (i) ∥L∥ ≤ 1 − γ, and (ii)
∥K∥ ≤ κ, ∥H∥, ∥H−1∥ ≤ κ. The OC algorithm considers the
class Π of all (κ, γ)-strongly stable linear feedback controllers
for characterizing its regret performance according to (3).

The OC algorithm uses the framework of Online Convex
Optimization (OCO) to update the parameters Mt at each time
step. The key idea of the algorithm is to design a sequence
of cost functions f1:T in terms of the parameters M1:T while
correctly representing the actual cost incurred by the true cost
functions c1:T . This is achieved by defining an idealized state
st and idealized control input at as follows. The idealized state
st is the state the system would have reached if the controller
had executed the policy with parameters (Mt−H , . . . ,Mt−1)
from time step t − H to time step t − 1, assuming that the
state at t −H is 0. The idealized action at is the action that
would have been executed at time t if the state observed
at time t is st. We can then define the idealized cost as
ft(Mt−H , . . . ,Mt) = ct(st, at).

The complete OC algorithm proposed in [20] is shown in
Algorithm 1. An Online Gradient Descent (OGD) approach
updates the parameters Mt by the gradient of the idealized cost
function. The algorithm requires the specification of a (κ, γ)-
strongly stable matrix K. Such a matrix can be calculated
offline before the task using an Semi-Definite Programming
(SDP) relaxation as described in [33].

Algorithm 1 Online Control (OC) Algorithm
Input: Step size η, parameters κB , κ, γ, T , (κ, γ)-strongly

stable control matrix K
Define H = log T/(log (1/1− γ))
Define M = {M = (M [1], . . . ,M [H]) : ∥M [k]∥ ≤ κ3κB(1−
γ)k}

Define gt(M) = ft(M, . . . ,M)
Initialize M1 ∈M
for t = 1,. . . ,T do

Choose the action ut = −Kxt +
∑H

k=1 M
[k]
t wt−k

Observe the new state xt+1, and wt = xt+1 −Axt −But

Update Mt+1 = ProjM (Mt − η∇gt(Mt))
end

A regret guarantee of Algorithm 1 is provided in [20]:
Theorem 1 (Theorem 5.1, [20]): Suppose Assumptions 1-2

hold, η = D√
Gf (Gf/2+LH2)T

, and D = κBκ3
√
d

γ . Then, under

Algorithm 1,

RT ≤
3D
√

Gf (Gf/2 + LH2)T

2
+ Õ(1), where

L = 2GD̃κwκBκ
3, Gf = GD̃κwHd

(
2κBκ

3

γ
+H

)
,

4

D̃ =
κw(κ

2 +Hκ2
Bκ

5)

γ(1− κ2(1− γ)H+1)
+

κBκ
3κw

γ
.

Remark 1 (Diameter of the domain): It can be shown that
[20, Theorem 5.1] the multiplicative constant D in the above
regret bound is the diameter of the domain M of the control
policy parameters, i.e., D = maxM1,M2∈M∥M1 − M2∥. In
the next section we show that our meta-learning approach can
significantly reduce this multiplicative constant by learning
across the tasks.

IV. META-LEARNING ONLINE CONTROL ALGORITHM

Our meta-learning online control (M-OC) algorithm builds
on the simple yet a powerful idea of meta-initialization. In
the standard OC algorithms, the initialization parameter for
the control policy is selected arbitrarily from the domain of
possible parameters. So, inevitably the regret guarantee for
such algorithms includes a multiplicative constant that is of
the order of the radius of the domain (see Remark 1), which
can be very large in many problems. Similarly, when an
independent-learning OC algorithm is applied to a sequence
of tasks, the parameters of the control policy for each task are
initialized arbitrarily ignoring the similarities and the benefit of
learning across tasks. When the tasks are similar, the optimal
parameters for the individual tasks are closer to each other, and
the optimal parameters for the earlier tasks in the sequence can
be used to improve the learning in a new upcoming task. Our
M-OC algorithm translates this intuitive idea into providing
a clever initialization for the control policy for the current
task by learning from the previous tasks. This results in a
multiplicative constant (in the regret) that is proportional to
the diameter D∗ of a much smaller subset that contains the
parameters of the optimal control policies of the individual
tasks, instead of the diameter of the generic domain. This
scenario is illustrated in Fig. 1, where the diameter D of
the original domain M is significantly larger than D∗, which
is the diameter of the smaller set M∗ that contains the
optimal parameters corresponding to the similar tasks. Here
the diameter D∗ can be interpreted as the similarity of the
sequence of tasks.

The architecture of our M-OC algorithm is given in Fig.
2. The meta-learning in the outer loop provides the meta-
initialization for the task specific OC algorithm in the inner
loop. The control policy for each specific task is of the
same form as the independent learning OC algorithm (5). At
the beginning of any task τi a (κ, γ) stabilizing feedback
gain matrix Ki for the task τi is computed. During the
task the algorithm updates the task specific policy parameters
Mi,t exactly as in Algorithm 1. The control action ui,t is
computed using the parameters Mi,t and the feedback gain
matrix Ki with the same form as the independent learning
OC algorithm (5). The difference between the M-OC algorithm
and Algorithm 1 lies in the initialization of the parameter Mi,1.
In particular, Algorithm 1 selects Mi,1 arbitrarily from the
domain M, whereas the outer loop of meta-learner provides
the initialization Mm

i for each task τi.

M

D

D∗
M∗

Fig. 1. Illustrative figure showing the domain M of the parameters of the
online control policies and the set M∗ of the optimal parameters of the control
policies corresponding to a set of similar tasks.

Outer Loop: Meta Learner

Meta-Update
Mm

i
Meta-Loss, Li

Inner Loop: Task Specific OC Algorithm

Policy Update

Mi,t

M⋆
i−1

System
xi,t+1

Control Policy

ui,t

Fig. 2. Meta-Learning Online Control (M-OC) Algorithm Architecture. Solid
line: within task signals. Dashed line: signals that are constant within a task
but that can change across the tasks.

Specifically, the inner loop updates the control policy pa-
rameter Mi,t within each task τi by

Mi,t+1 = ProjM (Mi,t −∇gi,t(Mi,t)) , Mi,1 = Mm
i . (6)

In the outer loop, the meta-learner computes the initialization
parameter Mm

i for the inner loop as follows. Let M⋆
i the

optimal parameter in hindsight for task τi, i.e.,

M⋆
i = argmin

M∈M

T∑
t=1

gi,t(M). (7)

We note that M⋆
i is computable at the end of task τi. Given that

gi,ts are convex functions, finding M⋆
i is a convex optimization

problem, and thus can be solved efficiently. We define the
meta-learner’s loss for task i as

Li(Mm) =
1

2
∥Mm −M⋆

i ∥2. (8)

The meta-learner performs an online gradient descent step to
find the initialization Mm

i+1 for task τi+1 as

Mm
i+1 = ProjM

(
Mm

i −
1

i
∇Li(Mm

i)

)
. (9)

We note that performing the naive initialization Mm
i+1 =

M⋆
i does not improve the regret optimally as this will effec-

tively throw away the information from all the previous tasks.
Instead the meta-learner solves an online convex optimization
problem with N steps with the cost function at each step i
given by Li. Since the online gradient descent approach solves
this problem efficiently with provable guarantees for the regret
performance, we adapt this approach as the meta-learning
algorithm in the outer loop. We present two variations of the

5

algorithm: (i) a simpler algorithm which assumes knowledge
of the diameter D∗, and (ii) a complete algorithm that does
not require the knowledge of D∗.

A. Algorithm with the Knowledge of D∗

We first present the algorithm with the knowledge of D∗

for easier understanding of the idea and the technical analysis.
The key advantage of this assumption is that we can set
the learning rate η in the inner loop proportional to D∗ in
addition to updating the meta-initialization according to (9).
We emphasize that setting η ∝ D∗ is the optimal way to set
the rate, which follows from how η is set in Theorem 1 for
the independent learning OC algorithm. The assumption of
knowledge of D∗ simplifies the algorithm, which otherwise
requires setting the learning rate adaptively. We present the
more general algorithm in the next section. The algorithm with
the knowledge of D∗ is presented below.

Algorithm 2 Meta-learning Online Control (M-OC-1) Algo-
rithm
Input: Number of tasks N , the diameter D∗, inner loop step

size η, parameters κB , κ, γ, T
Define M = {M = (M [1], . . . ,M [H]) : ∥M [k]∥ ≤ κ3κB(1−
γ)k}. Initialize Mm

1 ∈M arbitrarily
for i = 1,. . . ,N do

For task τi, set the initialization Mi,1 = Mm
i for the OC

Algorithm (Algorithm 1) in the inner loop
Execute the OC Algorithm (Algorithm 1) for task τi
Compute M⋆

i as in (7)
Update Mm

i+1 as in (8)-(9)
end

We now present our main result which characterizes the
performance of Algorithm 2.

Theorem 2: Suppose Assumptions 1-2 hold, and η =
D∗√

Gf (Gf/2+LH2)T
. Then, under the M-OC-1 Algorithm (Al-

gorithm 2)

Rmeta
N ≤

(
O
(
logN

D∗N

)
+

D

2
+D∗

)√
G̃2T ,

where, D
2
= 1

N

∑N
i=1

(
M⋆

i − M̃⋆
)2

, M̃⋆ = 1
N

∑N
i=1 M

⋆
i ,

G̃2 = Gf

(
Gf

2 + LH2
)

.
Remark 2 (Comparison with independent-learning online

control algorithm): Under our M-OC-1 algorithm, when N
is sufficiently large, the multiplicative constant in the regret
upper bound is approximately equal to D

2 +D∗. When the tasks
are similar D∗ ≪ D, and by definition D ≤ D∗. Therefore,
when the tasks are similar the regret our algorithm achieves is
significantly better compared to the independent learning OC
algorithm. This clearly shows that M-OC-1 is able to learn
across tasks, which by default the independent learning OC
algorithm cannot do. This fact is verified by our numerical
simulations also; see Section VI.

Remark 3 (Achievability by meta-learning): We note that
the meta-regret scaling with respect to the duration T of a
control task is Õ(

√
T), which is same as the scaling achieved

by the independent learning OC algorithm. This aspect is
consistent with the existing theoretical results in online meta-
learning [22]–[24]. This is expected, as the meta-learner will
never be able to learn an initialization that does not require
further adaptation, especially, since the cost functions and
the disturbances are arbitrary. Furthermore, as pointed in [23,
Theorem 2.2], even in the simpler OCO setting, reductions to
the multiplicative constant are the best that can be achieved.

Remark 4 (Knowledge of D∗ vs M∗): We emphasize that
our algorithm only assumes the knowledge of a scalar D∗,
and not of the entire multi-dimensional setM∗. Assuming the
knowledge of M∗ is not realistic in most practical problems.

B. Algorithm without the Knowledge of D∗

In this subsection, we present a general version of our
algorithm which does not assume the knowledge of D∗. As
mentioned earlier, without the knowledge of D∗, requires
setting the learning rate adaptively.

Our approach is motivated by the idea proposed in [24],
but we present a simpler algorithm which lends itself to a
simpler proof. We set the learning rate for task τi as η =

Di√
Gf (Gf/2+LH2)T

, where Di is an estimate of the diameter

of the smallest bounding circle of the region M∗. We update
Di whenever there is evidence that Di is smaller that D∗.
The idea is to start Di from a guess (a small number ϵ) of D∗

and increase this guess by a factor ζ > 1 whenever ∥M⋆
i −

M̃m
i−1∥ > Di, where M̃m

i = 1
i

∑i
j=1 M

⋆
i . The term ∥M⋆

i −
M̃m

i−1∥ is the deviation of the optimal parameter for a new task
i from the average of the optimal parameters of the previous
tasks. Thus, this term is indicative of how smaller Di is, and
thus can be used to increase Di by comparing with it. In
addition, since M̃m

i−1 is equal to the output of the meta-learner
in Eq. (9) with Mm

1 set to zero, we use M̃m
i−1 itself as the

meta-initialization for the task τi. The complete algorithm is
shown in Algorithm 3.

Algorithm 3 Meta-learning Online Control (M-OC-2) Algo-
rithm
Input: Number of tasks N , parameters κB , κ, γ, T, ϵ, ζ > 1
Define M = {M = (M [1], . . . ,M [H]) : ∥M [k]∥ ≤ κ3κB(1−
γ)k}. Set Mm

1 to the origin. Initialize D1 = ϵ, k = 0.
for i = 1,. . . ,N do

Set η = Di√
Gf (Gf/2+LH2)T

For task τi, set the initialization Mi,1 = Mm
i for the OC

Algorithm (Algorithm 1) in the inner loop
Execute the OC Algorithm (Algorithm 1) for task τi
Compute M⋆

i as in (7)
Set Mm

i+1 = 1
i

∑i
j=1 M

⋆
j

if i > 1 then
if ∥M⋆

i −Mm
i ∥ > Di then

k ← k + 1
end

end
Di+1 = ζkϵ

end

6

We now present our main result which characterizes the
performance of Algorithm 3.

Theorem 3: Suppose Assumptions 1-2 hold, ϵ < D∗, and
ζ = (1+log(T))/ log(T). Then, under the M-OC-2 Algorithm
(Algorithm 3)

Rmeta
N ≤

(
O
(
logN

D∗N
+

D2

ϵN

)
+

D

2
+D∗ + oT (1)

)√
G̃2T

where, D
2
= 1

N

∑N
i=1

(
M⋆

i − M̃⋆
)2

, M̃⋆ = 1
N

∑N
i=1 M

⋆
i ,

G̃2 = Gf

(
Gf

2 + LH2
)

Remark 5 (Comparison with independent-learning online
control algorithm and M-OC-1 algorithm): Under M-OC-2
algorithm, when N is sufficiently large, the multiplicative
constant in the regret upper bound is approximately equal
to D

2 + D∗. We recall from Remark 2 that D ≤ D∗

(by definition), and when the tasks are similar D∗ ≪ D.
Therefore, when the tasks are similar, we observe that the
regret M-OC-2 achieves is significantly better compared to the
independent learning OC algorithm. We also observe that the
M-OC-2 algorithm has an additional term D2

ϵN compared to the
M-OC-1 algorithm. This indicates that when the initial guess
ϵ is very small, the number of tasks N that M-OC-2 observes
has to be sufficiently large. This is expected as, when ϵ is
much smaller compared to D∗ meta-learning will necessarily
require more experience to improve the initial guess Di = ϵ.

V. REGRET ANALYSIS

In this section, we present a detailed analysis of the M-OC
Algorithms 2 and 3. We first characterize the regret for a single
task under these algorithms. The task regret given by (3) for
a task specific policy πm

i can be decomposed as

Ri
T (π

m
i)

=
T∑

t=1

ci,t(x
πm
i

i,t , u
πm
i

i,t)−
T∑

t=1

fi,t(Mi,t−H , . . . ,Mi,t)︸ ︷︷ ︸
Cost Approximation: Ri

T,1

+
T∑

t=1

fi,t(Mi,t−H , ..,Mi,t)−min
M∗

T∑
t=1

fi,t(M
∗, ..,M∗)︸ ︷︷ ︸

Policy Regret: Ri
T,2

+min
M∗

T∑
t=1

fi,t(M
∗, . . . ,M∗)− J∗

i︸ ︷︷ ︸
Policy Approximation: Ri

T,3

, (10)

where J∗
i = minπ∈Π Ji(π).

The term Ri
T,1 is the approximation of the cost by only

considering the disturbances upto certain history. The term
Ri

T,2 is the cost difference between the control policy in (5)
with Mi,t set as the best parameter in hindsight and the optimal
policy from the class Π. The result from [20, Theorem 5.1]
can be used directly to bound the terms Ri

T,1 and Ri
T,3.

Lemma 1: Under the M-OC Algorithm 2 and Algorithm 3,
the cost approximation term Ri

T,1 and the policy approxima-

tion term Ri
T,3 are bounded by

Ri
T,1 ≤ 2TGD̃(1− γ)H+1

(
κwHκ2

Bκ
3

γ
+ D̃κ3

)
= Õ(1),
Ri

T,3 ≤ 2TGD̃2κ3(1− γ)H+1 = Õ(1).

We note that H is O(log T), which results in the final Õ(1)
bound. Also note that Õ(·) hides the poly-log terms. Intuitively
the bound for Ri

T,1 follows from the fact that the idealized cost
function as stated earlier is a good approximation of the actual
cost. The bound for Ri

T,3 indicates that the best time invariant
control policy of the form 5 is a good approximation of the
best linear feedback policy in hindsight. Next we bound the
second term Ri

T,2. This is the key step in the proof of the regret
for the task specific online control, which we then leverage to
prove our meta-learning guarantee. This is where our proof
differs from the proof of [20].

Lemma 2: Under the M-OC Algorithm 2 and 3, the policy
regret term Ri

T,2 is bounded by

Ri
T,2 ≤

∥M⋆
i −Mm

i ∥2
2η

+
TG2

fη

2
+ ηLH2GfT.

The proof proceeds by splitting Ri
T,2 to two terms: first term

is the difference between the total idealized cost and the total
cost with the per step cost given by gt(Mt), and the second
term is the difference between the total cost with the per step
cost given by gt(Mt) and the total idealized cost with Mi,t set
as the best time invariant parameter in hindsight. The first term
is bounded by using the Lipschitz conditions in Assumption
2 and the second term is bounded by a standard OCO proof
methodology. Please see Appendix A for the full proof.

Next, we use the above two lemmas to prove Theorem 2
for the M-OC algorithm 2.

A. Proof of Theorem 2

By definition

Rmeta
N =

1

N

(
N∑
i=1

Ri
T,1 +Ri

T,2 +Ri
T,3

)
.

Since, from Lemma 1 Ri
T,1 = Ri

T,2 = Õ(1), we neglect these
terms and focus only on the remaining term.

Rmeta
N =

1

N

N∑
i=1

Ri
T,2 + Õ(1)

(a)
=

1

2Nη

N∑
i=1

∥M⋆
i −Mm

i ∥2 +
TG2

fη

2
+ ηLH2GfT

(b)
=

1

2Nη

(
N∑
i=1

∥M⋆
i −Mm

i ∥2 − min
Mm∈M

N∑
i=1

∥M⋆
i −Mm∥2

)

+
(∆⋆)2

2η
+

TG2
fη

2
+ ηLH2GfT. (11)

Here, (a) follows from Lemma 2 and in (b) we have used ∆⋆ =√
1
N minMm∈M

∑N
i=1∥Mm −M⋆

i ∥2. The key idea now is to

7

bound the term
N∑
i=1

∥M⋆
i −Mm

i ∥2 − min
Mm∈M

N∑
i=1

∥M⋆
i −Mm∥2 (12)

using the ideas from online convex optimization. For this,
consider the OCO problem where the decision at step i is
denoted by Mi ∈ M, and the corresponding loss at step i is
ℓi(Mi). The goal of an OCO algorithm is to find a sequence
of decisions M1,M2, . . . ,MN in order to minimize the regret:

Regret = RN =
N∑
i=1

ℓi(Mi)− min
M∈M

N∑
i=1

ℓi(M). (13)

Consider the case where ℓi is αi-strongly convex and G-
Lipschitz. Then, the following OCO algorithm, which uses
the online gradient descent approach, can achieve logarithmic
regret [23, Theorem A.2]:

Mi+1 = ProjM

(
Mi −

1∑i
j=1 αj

∇ℓi(Mi)

)
. (14)

We state this result formally below.
Lemma 3 (Theorem A.2, [23]): Let ℓi : M → R be

a sequence of αi-strongly convex and G-Lipschitz functions
with respect to ∥·∥. Then the regret of the online optimization
algorithm given in (14) is O(log(N)).

Now, to bound (12), consider the loss function ℓi(M
o) =

1/2∥M⋆
i −Mo∥2. It is straight forward to show that ℓi is 1-

strongly convex. It is also Lipschitz inside the set M. Note
that the meta-learning step given by 9 in Algorithm 2 is indeed
the OCO algorithm given in (14). Since Eq. (12) represents
the regret corresponding to this OCO problem, Lemma 3 is
applicable here to bound the terms in (12). Hence, we get

Rmeta
N =

O(log(N))

Nη
+

(∆⋆)2

2η
+

TG2
fη

2
+ηLH2GfT +Õ(1).

(15)
The final result follows from substituting the value of η and

using the fact that ∆⋆ = D.

B. Proof of Theorem 3

The steps in the proof are similar to the proof of Theorem
2. By definition

Rmeta
N =

1

N

(
N∑
i=1

Ri
T,1 +Ri

T,2 +Ri
T,3

)
.

Since, the learning rate is set differently in each task τi, we
denote the learning rate in task τi by ηi. Since Ri

T,1 = Ri
T,2 =

Õ(1) from Lemma 1, we focus only on the remaining term.

Rmeta
N =

1

N

N∑
i=1

Ri
T,2

=
1

N

N∑
i=1

(
∥M⋆

i −Mm
i ∥2

2ηi
+

TG2
fηi

2
+ ηiLH

2GfT

)
Here the last equality follows from Lemma 2. The following

observations hold: (i) the average M̃m
i = 1

i

∑i
j=1 M

⋆
j is a

convex combination and thus lies within the smallest bounding

circle ofM∗. Thus, given the fact that M̃m
i−1 = Mm

i for i > 1,
Mm

i is always be within D∗ distance from M⋆
i for all is.

Given how Di is increased from one task to the next, it
follows from the previous observation that there are at the
most ⌊logζ(D

∗

ϵ)⌋ tasks after i = 1 when ∥M⋆
i −Mm

i ∥ > Di.
We index such instances by k and denote the corresponding
task indices by ik.

Lets define an alternate sequence in which D̃1 = D∗, D̃i =
Di when ∥M⋆

i −Mm
i ∥ ≤ Di for any i > 1, and D̃i = D∗

otherwise. Let G̃2 =
(

G2
f

2 + LH2Gf

)
. Then it follows that

ηi =
Di

G̃
√
T

. Then

Rmeta
N ≤ 1

N

(∥M⋆
1 −Mm

1 ∥2
2D1

+D1

)√
G̃2T

+
1

N

N∑
i=2

(∥M⋆
i −Mm

i ∥2
2Di

+Di

)√
G̃2T

(a)

≤ D2

2Nϵ

√
G̃2T

+
1

N

N∑
i=1

(∥M⋆
i −Mm

i ∥2
2D̃i

+ D̃i

)√
G̃2T

+
1

N

⌊logζ(
D∗
ϵ)⌋∑

k=0

(∥M⋆
ik
−Mm

ik
∥2

2ζkϵ
+ ζkϵ

)√
G̃2T .

Here (a) follows from adding additional terms for all those
tasks when D̃i ̸= Di, which by definition occurs when i = 1
and when ∥M⋆

i −Mm
i ∥ > Di for i > 1.

We make some observations. By definition, D̃i ≥ ∥M⋆
i −

Mm
i ∥ when i > 1. Consider the function g(x) = B2

x + x.
We observe that this function is increasing for x ≥ B. We
also observe that Di ≤ ζD∗. With these observations we can
simplify the bound to Rmeta

N as

Rmeta
N ≤ D2

2Nϵ

√
G̃2T

+
1

N

N∑
i=1

(∥M⋆
i −Mm

i ∥2
2D∗ + ζD∗

)√
G̃2T

+
1

N

⌊logζ(
D∗
ϵ)⌋∑

k=0

(∥M⋆
ik
−Mm

ik
∥2

2ζkϵ
+ ζkϵ

)√
G̃2T .

Next we bound the last term. We note that by definition
∥M⋆

ik
−Mm

ik
∥ ≤ D∗ for all i > 1 and by definition ik > 1.

Let K = ⌊logζ(D
∗

ϵ)⌋. Therefore,√
G̃2T

N

K∑
k=0

(∥M⋆
ik
−Mm

ik
∥2

2ζkϵ
+ ζkϵ

)

≤
√
G̃2T

N

K∑
k=0

(
D∗2

2ζkϵ
+ ζkϵ

)

=

√
G̃2T

N

(
D∗2(ζK+1 − 1)

2ζK(ζ − 1)ϵ
+

ϵ(ζK+1 − 1)

ζ − 1

)
= O

(
D∗2

ϵN

)√
G̃2T .

8

Next we bound the second term. Let M̃⋆ := 1
N

∑N
i=1 M

⋆
i .

Adding and subtracting ∥M⋆
i − M̃⋆∥ for each i, we get

1

N

N∑
i=1

(∥M⋆
i −Mm

i ∥2
2D∗ + ζD∗

)√
G̃2T

=

√
G̃2T

2D∗N

N∑
i=1

(
∥M⋆

i −Mm
i ∥2 − ∥M⋆

i − M̃⋆∥2
)

+

√
G̃2T

N

N∑
i=1

(
∥M⋆

i − M̃⋆∥2
2D∗ + ζD∗

)
(d)

≤
(O(log(N))

N
+

D

2
+ ζD∗

)√
G̃2T . (16)

Here (d) follows from (i)

M̃⋆ = arg min
M∈M

1

N

N∑
i=1

∥M⋆
i −M∥2,

(ii)
∑N

i=1

(
∥M⋆

i −Mm
i ∥2 − ∥M⋆

i − M̃⋆∥2
)

is the regret for
meta-learning given (i) and Lemma 3, and (iii) by definition
of D. The final result follows from combining all terms.

VI. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to demon-
strate the benefits of our proposed meta-learning online control
algorithm. We consider only the M-OC-1 algorithm for the
simplicity of illustration. In our experiments, each task τi is
the problem of regulating a linear dynamical system given in
1 with dimensions n = 2,m = 1. The system model Ai in
each task τi is selected as a random matrix: a perturbation
around a nominal matrix. In particular, we set Ai = 1

2nI +
1
5nWi, where Wi is a random matrix with the value of each
element generated uniformly from the interval [0, 1]. This
structure implicitly incorporates the idea of task similarity.
The cost functions ci,ts are selected as quadratic cost functions
ci,t(x, u) = x⊤Qtx+u⊤Rtu, where Qt and Rt are randomly
chosen diagonal matrices with each diagonal element chosen
randomly from the range [0.375, 0.625]. The other parameters
are selected as κa = κb = κw = 1, κ =

√
nm, γ = 0.5.

In our experiments, we compare the performance of our M-
OC algorithm with the following benchmarks:
(i) Non-adaptive control algorithm which employs the control
policy ui,t = −Kixt, where Ki is a stabilizing controller
for task τi with system parameter θi = [Ai, Bi]. We select
Ki by solving a standard linear matrix inequality (LMI)
for finding a stabilizing controller. We call this non-adaptive
control because the control policy is invariant over the duration
of the control tasks. Moreover, there is no learning across the
tasks.
(ii) Independent-learning online control algorithm employs
the task specific OC algorithm (Algorithm 1) independently to
each control task. While this approach is capable of learning
within a task, it does not perform any meta-learning across
the tasks.

Different from these benchmarks, our M-OC algorithm can
learn within and across the tasks.

0 5 10 15

N

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

R
m

e
ta

N

Non-Adaptive

Independent OC

M-OC (Meta Learner)

Fig. 3. Plot of Rmeta
N versus the number for tasks N .

2 2.5 3 3.5 4

log(T)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

lo
g

(R
m

e
ta

N
)

Non-Adaptive

Independent OC

M-OC (Meta Learner)

Fig. 4. Plot of logRmeta
N vs log T .

Figure 3 shows the meta-regret Rmeta
N as a function of the

number of tasks N with T = 25 for all tasks. Note that meta-
regret is equivalent to the average (averaged over the tasks)
cumulative regret of the tasks; see (4). Since the non-adaptive
control algorithm and the independent-learning OC algorithm
do not perform any learning across the tasks, their meta-regret
does not improve with the number of tasks. In stark difference,
the meta-regret of our M-OC algorithm decreases with the
number of tasks; see Remark 2 also. This is because our
M-OC algorithm is designed to perform meta-learning across
the tasks. This clearly demonstrates the superior performance
of the M-OC algorithm over the benchmarks without meta-
learning.

Figure 4 shows the variation of the meta-regret with N = 15
tasks as a function of the duration T of each control task.
We see that, when the task duration is small, the M-OC
outperforms independent learning OC by a notable margin.
This indeed is the very purpose meta-learning, i.e., to improve
adaptation when the data or experience available for online
learning is limited.

VII. CONCLUSION

In this paper, we address the problem of developing a meta-
learning online control algorithm for a sequence of similar
control tasks. We focus on the setting where each task is the

9

problem of controlling a linear dynamical system with arbi-
trary disturbances and arbitrarily time varying cost functions.
We propose a meta-learning online control algorithm that prov-
ably achieves a superior performance compared to the standard
online control algorithm which does not use meta-learning.
We also present numerical experiments to demonstrate the
superior performance of our algorithm. In the future work, we
plan to extend this approach to the setting where the system
parameters θis are also unknown.

REFERENCES

[1] S. Thrun and L. Pratt, Learning to learn. Springer Science & Business
Media, 2012.

[2] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International Conference on
Machine Learning (ICML), 2017.

[3] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in International Conference on Learning Representations
(ICLR), 2017.

[4] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning
algorithms,” arXiv preprint arXiv:1803.02999, 2018.

[5] X. Wang, T. Huang, J. Gonzalez, T. Darrell, and F. Yu, “Frustratingly
simple few-shot object detection,” in International Conference on Ma-
chine Learning, 2020.

[6] J. Bragg, A. Cohan, K. Lo, and I. Beltagy, “Flex: Unifying evaluation
for few-shot nlp,” in Neural Information Processing Systems (NeurIPS),
2021.

[7] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine,
and C. Finn, “Learning to adapt in dynamic, real-world environments
through meta-reinforcement learning,” in International Conference on
Learning Representations (ICLR), 2019.

[8] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in International
conference on World Wide Web, 2010, pp. 661–670.

[9] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Dı́az-
Rodrı́guez, “Continual learning for robotics: Definition, framework,
learning strategies, opportunities and challenges,” Information fusion,
vol. 58, pp. 52–68, 2020.

[10] T. Petrič, A. Gams, L. Žlajpah, and A. Ude, “Online learning of task-
specific dynamics for periodic tasks,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2014, pp. 1790–
1795.

[11] F. Alambeigi, Z. Wang, R. Hegeman, Y.-H. Liu, and M. Armand, “A
robust data-driven approach for online learning and manipulation of
unmodeled 3-d heterogeneous compliant objects,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 4140–4147, 2018.

[12] D. Romeres, M. Zorzi, R. Camoriano, S. Traversaro, and A. Chiuso,
“Derivative-free online learning of inverse dynamics models,” IEEE
Transactions on Control Systems Technology, vol. 28, no. 3, pp. 816–
830, 2019.

[13] S. Tesfazgi, A. Lederer, J. F. Kunz, A. J. Ordóñez-Conejo, and S. Hirche,
“Personalized rehabilitation robotics based on online learning control,”
arXiv preprint arXiv:2110.00481, 2021.

[14] D. Kalathil and R. Rajagopal, “Online learning for demand response,”
in Annual Allerton Conference on Communication, Control, and Com-
puting (Allerton), 2015, pp. 218–222.

[15] M. Lin, Z. Liu, A. Wierman, and L. L. Andrew, “Online algorithms
for geographical load balancing,” in International Green Computing
Conference (IGCC), 2012.

[16] S. Shalev-Shwartz et al., “Online learning and online convex optimiza-
tion,” Foundations and trends in Machine Learning, vol. 4, no. 2, pp.
107–194, 2011.

[17] E. Hazan, “Introduction to online convex optimization,” arXiv preprint
arXiv:1909.05207, 2019.

[18] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu, “Regret bounds
for robust adaptive control of the linear quadratic regulator,” in Neural
Information Processing Systems (NeurIPS), 2018.

[19] H. Mania, S. Tu, and B. Recht, “Certainty equivalence is efficient for
linear quadratic control,” in Neural Information Processing Systems
(NeurIPS), 2019.

[20] N. Agarwal, B. Bullins, E. Hazan, S. Kakade, and K. Singh, “Online
control with adversarial disturbances,” International Conference on
Machine Learning (ICML), pp. 111–119, 2019.

[21] M. Simchowitz, K. Singh, and E. Hazan, “Improper learning for non-
stochastic control,” Conference on Learning Theory (COLT), pp. 3320–
3436, 2020.

[22] C. Finn, A. Rajeswaran, S. Kakade, and S. Levine, “Online meta-
learning,” in International Conference on Machine Learning (ICML),
2019, pp. 1920–1930.

[23] M.-F. Balcan, M. Khodak, and A. Talwalkar, “Provable guarantees for
gradient-based meta-learning,” International Conference on Machine
Learning (ICML), pp. 424–433, 2019.

[24] M. Khodak, M.-F. F. Balcan, and A. S. Talwalkar, “Adaptive gradient-
based meta-learning methods,” Neural Information Processing Systems
(NeurIPS), 2019.

[25] D. Muthirayan, D. Kalathil, and P. P. Khargonekar, “Meta-learning
online control for linear dynamical systems,” Conference on Decision
and Control, 2022.

[26] A. Cohen, T. Koren, and Y. Mansour, “Learning linear-quadratic reg-
ulators efficiently with only

√
T regret,” International Conference on

Machine Learning (ICML), pp. 1300–1309, 2019.
[27] M. Simchowitz and D. Foster, “Naive exploration is optimal for online

lqr,” International Conference on Machine Learning (ICML), pp. 8937–
8948, 2020.

[28] E. Hazan, S. Kakade, and K. Singh, “The nonstochastic control prob-
lem,” Algorithmic Learning Theory, pp. 408–421, 2020.

[29] S. Sastry and M. Bodson, Adaptive control: stability, convergence and
robustness. Dover Publications, 2011.

[30] K. J. Åström and B. Wittenmark, Adaptive control. Courier Corporation,
2013.

[31] P. A. Ioannou and J. Sun, Robust adaptive control. Dover Publications,
2012.

[32] K. Zhou, J. Doyle, and K. Glover, Robust and optimal control. Prentice
hall, 1996.

[33] A. Cohen, A. Hasidim, T. Koren, N. Lazic, Y. Mansour, and K. Tal-
war, “Online linear quadratic control,” in International Conference on
Machine Learning (ICML), 2018, pp. 1029–1038.

APPENDIX A
PROOF OF LEMMA 2

In the following, for convenience we drop the subscript
i. We first introduce [20, Lemma 5.6] and [20, Lemma 5.7]
which are useful in our proof.

Lemma 4 (Lemma 5.6, [20]): Consider two policy sequences
(Mt−H , . . . ,Mt−k, . . . ,Mt) and (Mt−H , . . . , M̃t−k, . . . ,Mt)
which differ only in the policy at time t − k, where k ∈
{0, 1, . . . ,H}. Then,

|ft(Mt−H . . .Mt−k . . .Mt)− ft(Mt−H . . . M̃t−k . . .Mt)|
≤ L∥Mt−k − M̃t−k∥.

Lemma 5 (Lemma 5.7, [20]): For all M such that ∥M [j]∥ ≤
κBκ

3(1− γ)j , ∀ j ∈ {1, . . . ,H}, we have that

∥∇Mft(M, . . . ,M)∥ ≤ Gf .

We now give the main proof. We can split the policy regret
term RT,2 as

RT,2

=
T∑

t=1

ft(Mt−H , . . . ,Mt)−min
M∗

T∑
t=1

ft(M
∗, . . . ,M∗)

=
T∑

t=1

ft(Mt−H , . . . ,Mt)−
T∑

t=1

ft(Mt, . . . ,Mt)︸ ︷︷ ︸
Term I

10

+
T∑

t=1

ft(Mt, . . . ,Mt)−min
M∗

T∑
t=1

ft(M
∗, . . . ,M∗)︸ ︷︷ ︸

Term II

.

First we bound Term I.

Term I
(a)

≤ L
T∑

t=1

H∑
j=1

∥Mt −Mt−j∥

(b)

≤ L
T∑

t=1

H∑
j=1

j∑
l=1

∥Mt−l+1 −Mt−l∥

(c)

≤ Lη
T∑

t=1

H∑
j=1

j∑
l=1

∥∇ft−l(Mt−l)∥
(d)

≤ TLH2ηGf .

Here (a) follows from subtracting and adding
ft(Mt−H , . . . ,Mt−j ,Mt, . . . ,Mt) for all j ∈ {2, . . . ,H}
and for all t, applying triangle inequality, and Lemma
4, (b) follows from adding and subtracting Mt−l, for all
l ∈ {1, . . . , j − 1}, inside the norm for all j and t, and
applying triangle inequality, (c) follows from Eq. (9) and (d)
follows from applying Lemma 5 and summing all terms.

Next we bound Term II. Since ct is convex and st and at
are linear in Mt−j for all j ∈ {0, . . . ,H}, it follows that
ft(M, . . . ,M) is convex in M . In the following, we use the
notation ft(M, . . . ,M) = gt(M). In the steps to follow, we
use vectorial expansion for the matrices and the gradients to
simplify the algebraic manipulation. We denote the ∇vgt(Mt)
as the vectorial expansion of the gradient of gt(Mt) and Mv

t

and M⋆,v as the vectorial expansion of the matrices Mt and
M⋆. Since gt(M) is convex in M , we get that

Term II =
T∑

t=1

gt(Mt)− min
M∗∈M

T∑
t=1

gt(M
∗)

≤
T∑

t=1

∇vgt(Mt)
⊤(Mv

t −M⋆,v
i). (17)

Now

∥Mv
t −M⋆,v∥2 − ∥Mv

t+1 −M⋆,v∥2 (e)
= ∥Mv

t −M⋆,v∥2
− ∥Proj (Mv

t − η∇vgt(Mt))−M⋆,v∥2
(f)

≥ ∥Mv
t −M⋆,v∥2 − ∥Mv

t − η∇vgt(Mt)−M⋆,v∥2
(g)

≥ 2η∇vgt(Mt)
⊤(Mv

t −M⋆,v)− η2∥∇vgt(Mt)∥2. (18)

Here (e) follows using the meta-update rule Eq. (6), (f)
follows from the trivial fact that projection to a set decreases
the euclidean distance to any element within the set, (g)
follows from just expanding the second term and canceling
out the identical terms.

Then from Eq. (18) it follows that

∇vgt(Mt)
⊤(Mv

t −M⋆,v)

≤ 1

2η

(
∥Mv

t −M⋆,v∥2 − ∥Mv
t+1 −M⋆,v∥2

)
+

ηGf

2
.

Then combining Eq. (17) and the previous equation, and

summing over t we get that

Term II ≤ 1

2η

(
∥Mv

1 −M⋆,v∥2 − ∥Mv
T+1 −M⋆,v∥2

)
+

TηGf

2
≤ 1

2η
∥Mv

1 −M⋆,v∥2 + TηGf

2
(h)
=

1

2η
∥M1 −M⋆∥2 + TηGf

2
(i)
=

1

2η
∥Mm −M⋆∥2 + TηGf

2
. (19)

Here (h) follows from the fact that square of the Frobenious
norm of a matrix is the square of the Euclidean norm of its
vectorial expansion, (i) follows from the fact that M1 in task
τi is equal to Mm

i . Combining the bounds for Term I and
Term II we get the final result.

PLACE
PHOTO
HERE

Deepan Muthirayan is currently a Post-doctoral
Researcher in the department of Electrical Engi-
neering and Computer Science at the University
of California at Irvine. He obtained his Phd from
the University of California at Berkeley (2016) and
B.Tech/M.tech degree from the Indian Institute of
Technology Madras (2010). His doctoral thesis work
focused on market mechanisms for integrating de-
mand flexibility in energy systems. Before his term
at UC Irvine he was a post-doctoral associate at
Cornell University where his work focused on online

scheduling algorithms for managing demand flexibility. His current research
interests include control theory, machine learning, learning for control, online
learning, game theory, and their application to smart systems.

PLACE
PHOTO
HERE

Dileep Kalathil (Senior Member, IEEE) received
his Ph.D. degree from the University of Southern
California (USC) in 2014. From 2014 to 2017, he
was a Postdoctoral Researcher with the Department
of Electrical Engineering and Computer Sciences,
University of California at Berkeley. He is currently
an Assistant Professor with the Department of Elec-
trical and Computer Engineering, Texas AM Uni-
versity. His main research focus is on reinforcement
learning theory and algorithms, with applications
in energy systems, communication networks and

mobile robotics. He was a recipient of the Best Academic Performance from
the EE Department, IIT Madras and the Best Ph.D. Dissertation Prize in the
USC Department of Electrical Engineering, NSF CRII Award in 2019 and
NSF CAREER award in 2021.

11

PLACE
PHOTO
HERE

Pramod Khargonekar received B. Tech. Degree
in electrical engineering in 1977 from the Indian
Institute of Technology, Bombay, India, and M.S.
degree in mathematics in 1980 and Ph.D. degree in
electrical engineering in 1981 from the University
of Florida, respectively. He was Chairman of the
Department of Electrical Engineering and Computer
Science from 1997 to 2001 and also held the position
of Claude E. Shannon Professor of Engineering
Science at The University of Michigan. From 2001
to 2009, he was Dean of the College of Engineering

and Eckis Professor of Electrical and Computer Engineering at the University
of Florida till 2016. After serving briefly as Deputy Director of Technology
at ARPA-E in 2012-13, he was appointed by the National Science Foundation
(NSF) to serve as Assistant Director for the Directorate of Engineering (ENG)
in March 2013, a position he held till June 2016. Currently, he is Vice
Chancellor for Research and Distinguished Professor of Electrical Engineering
and Computer Science at the University of California, Irvine. His research
and teaching interests are centered on theory and applications of systems
and control. He has received numerous honors and awards including IEEE
Control Systems Award, IEEE Baker Prize, IEEE CSS Axelby Award, NSF
Presidential Young Investigator Award, AACC Eckman Award, and is a Fellow
of IEEE, IFAC, and AAAS.

	Introduction
	Problem Setting
	Review: Online Control Algorithm
	Meta-learning Online Control Algorithm
	Algorithm with the Knowledge of D*
	Algorithm without the Knowledge of D*

	Regret Analysis
	Proof of Theorem 2
	Proof of Theorem 3

	Numerical Experiments
	Conclusion
	References
	Appendix A: Proof of Lemma 2
	Biographies
	Deepan Muthirayan
	Dileep Kalathil
	Pramod Khargonekar

