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We show that several classes of polyhedra are joined by a sequence of O (1) refolding steps, 
where each refolding step unfolds the current polyhedron (allowing cuts anywhere on the 
surface and allowing overlap) and folds that unfolding into exactly the next polyhedron; 
in other words, a polyhedron is refoldable into another polyhedron if they share a 
common unfolding. Specifically, assuming equal surface area, we prove that (1) any two 
tetramonohedra are refoldable to each other, (2) any doubly covered triangle is refoldable 
to a tetramonohedron, (3) any (augmented) regular prismatoid and doubly covered regular 
polygon is refoldable to a tetramonohedron, (4) any tetrahedron has a 3-step refolding 
sequence to a tetramonohedron, and (5) the regular dodecahedron has a 4-step refolding 
sequence to a tetramonohedron. In particular, we obtain a ≤ 6-step refolding sequence 
between any pair of Platonic solids, applying (5) for the dodecahedron and (1) and/or 
(2) for all other Platonic solids. As far as the authors know, this is the first result about 
common unfolding involving the regular dodecahedron.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

A polyhedron Q is refoldable to a polyhedron Q ′ if Q can be unfolded to a planar shape that folds into exactly the 
surface of Q ′ , i.e., Q and Q ′ share a common unfolding/development, allowing cuts anywhere on the surfaces of Q and 
Q ′ . (Although it is probably not necessary for our refoldings, we also allow the common unfolding to self-overlap, as in 
[7].) The idea of refolding was proposed independently by M. Demaine, F. Hurtado, and E. Pegg [1, Open Problem 25.6], 
who specifically asked whether every regular polyhedron (Platonic solid) can be refolded into any other regular polyhedron. 
In this context, there exist some specific results: Araki et al. [8] found two Johnson-Zalgaller solids that are refoldable to 
regular tetrahedra [8], and Shirakawa et al. [3] found an infinite sequence of polygons that can each fold into a cube and an 
approaching-regular tetrahedron.

More broadly, Demaine et al. [6] showed that any convex polyhedron can always be refolded to at least one other convex 
polyhedron. Xu et al. [2] and Biswas and Demaine [9] found common unfoldings of more than two (specific) polyhedra. 
On the negative side, Horiyama and Uehara [7] proved impossibility of certain refoldings when the common unfolding is 
restricted to cut along the edges of polyhedra.

In this paper, we consider the connectivity of polyhedra by the transitive closure of refolding, an idea suggested by 
Demaine and O’Rourke [1, Section 25.8.3]. Define a (k-step) refolding sequence from Q to Q ′ to be a sequence of convex 
polyhedra Q = Q 0, Q 1, . . . , Qk = Q ′ where each Q i−1 is refoldable to Q i . We refer to k as the length of the refolding 
sequence. We just say “refoldable” when two polyhedra have a 1-step refolding sequence.
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Our results Do all pairs of convex polyhedra of the same surface area (a trivial necessary condition) have a finite-step 
refolding sequence? If so, how short of a sequence suffices? As mentioned in [1, Section 25.8.3], the regular polyhedron 
open problem mentioned above is equivalent to asking whether 1-step refolding sequences exist for all pairs of regular 
polyhedra. We solve a closely related problem, replacing “1” with “O (1)”: for any pair of regular polyhedra Q and Q ′ , we 
give a refolding sequence of length at most 6.

More generally, we give a series of results about O (1)-step refolding certain pairs of polyhedra of the same surface area:

1. In Section 3, we show that any two tetramonohedra are refoldable to each other, where a tetramonohedron is a tetra-
hedron that consists of four congruent acute triangles.
This result offers a possible “canonical form” for finite-step refolding sequences between any two polyhedra: because 
a refolding from Q to Q ′ is also a refolding from Q ′ to Q , it suffices to show that any polyhedron has a finite-step 
refolding into some tetramonohedron.

2. In Section 4, we show that every regular prismatoid and every augmented regular prismatoid are refoldable to a tetra-
monohedron.
In particular, the regular tetrahedron is a tetramonohedron, the regular hexahedron (cube) is a regular prismatoid, and 
the regular octahedron and regular icosahedron are both augmented regular prismatoids. Therefore, the regular tetra-
hedron has a 2-step refolding sequence to the regular hexahedron, octahedron, and icosahedron (via an intermediate 
tetramonohedron); and every pair of polyhedra among the regular hexahedron, octahedron, and icosahedron have a 
3-step refolding sequence (via two intermediate tetramonohedra).

3. In Section 5, we prove that a regular dodecahedron is refoldable to a tetramonohedron by a 4-step refolding sequence.
As far as the authors know, there are no previous explicit refolding results for the regular dodecahedron, except the 
general results of [6].
Combining the results above, any pair of regular polyhedra (Platonic solids) have a refolding sequence of length at most 
6.

4. In addition, we prove that every doubly covered triangle (Section 3) and every doubly covered regular polygon (Sec-
tion 4) are refoldable to a tetramonohedron, and that every tetrahedron has a 3-step refolding sequence to a tetramono-
hedron (Section 6).
Therefore, every pair of polyhedra among the list above have an O (1)-step refolding sequence.

2. Preliminaries

For a polyhedron Q , V (Q ) denotes the set of vertices of Q . For v ∈ V (Q ), define the cocurvature σ(v) of v on Q to 
be the sum of the angles incident to v on the facets of Q . The curvature κ(v) of v is defined by κ(v) = 2π − σ(v). In 
particular, if κ(v) = σ(v) = π , we call v a smooth vertex. We define �k to be the class of polyhedra Q with exactly k
smooth vertices. It is well-known that the total curvature of the vertices of any convex polyhedron is 4π , by the Gauss–
Bonnet Theorem (see [1, Section 21.3]). Thus the number of smooth vertices of a convex polyhedron is at most 4. Therefore, 
the classes �0, �1, �2, �3, �4 give us a partition of all convex polyhedra.

An unfolding of a polyhedron is a (possibly self-overlapping) planar polygon obtained by cutting and developing the sur-
face of the polyhedron (allowing cuts anywhere on the surface). Folding a polygon P is an operation to obtain a polyhedron 
Q by choosing crease lines on P and gluing the boundary of P properly. When the polyhedron Q is convex, the following 
result is crucial:

Lemma 1 (Alexandrov’s Theorem [11,1]). If we fold a polygon P in a way that satisfies the following three Alexandrov’s conditions, 
then there is a unique convex polyhedron Q realized by the folding.

1. Every point on the boundary of P is used in the gluing.
2. At any glued point, the summation of interior angles (cocurvature) is at most 2π .
3. The obtained surface is homeomorphic to a sphere.

By this result, when we fold a polygon P to a convex polyhedron Q , it is enough to check that the gluing satisfies 
Alexandrov’s conditions. (In this paper, it is easy to check that the conditions are satisfied by our (re)foldings, so we omit 
their proof.)

A polyhedron Q is (1-step) refoldable to a polyhedron Q ′ if Q can be unfolded to a connected polygon that folds to 
Q ′ (and thus they have the same surface area). A (k-step) refolding sequence of a polyhedron Q to a polyhedron Q ′ is a 
sequence of convex polyhedra Q = Q 0, Q 1, . . . , Qk = Q ′ where Q i−1 is refoldable to Q i for each i ∈ {1, . . . , k}. To simplify 
some arguments that Q is refoldable to Q ′ , we sometimes only partially unfold Q (cutting less than needed to make the 
surface unfold flat), and refold to Q ′ so that Alexandrov’s conditions hold.
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Fig. 1. A refolding between two tetramonohedra.

We introduce some key polyhedra. A tetrahedron is a tetramonohedron if its faces are four congruent acute triangles.1
We consider a doubly covered polygon as a special polyhedron with two faces. Precisely, for a given n-gon P , we make a 
mirror image P ′ of P and glue corresponding edges. Then we obtain a doubly covered n-gon which has 2 faces, n edges, 
and zero volume. A doubly covered rectangle can be regarded as a special case of tetramonohedron whose faces are triangle 
with a right angle.

3. Refoldability of tetramonohedra and doubly covered triangles

In this section, we first show that any pair of tetramonohedra can be refolded to each other. We note that a doubly 
covered rectangle is a (degenerate) tetramonohedron, by adding edges along two crossing diagonals (one on the front side 
and one on the back side). It is known that a polyhedron is a tetramonohedron if and only if it is in �4 [4, p. 97]. In other 
words, �4 is the set of tetramonohedra.

Theorem 1. For any Q , Q ′ ∈ �4 , Q is refoldable to Q ′ .

Proof. Let T be any triangular face of Q . Let a be the length of the longest edge of T and b be the height of T for the 
base edge of length a. We define T ′ , a′ , and b′ in the same manner for Q ′; refer to Fig. 1. We assume a > a′ without loss of 
generality. Now we have a′ > b′ because a′ is the longest edge of T ′ , and a′b′ = ab because T and T ′ are of the same area. 
Thus, (a′)2 = a′b′ a′

b′ > a′b′ = ab, and 2a′ > a′ > b by a > a′ .
We cut two edges of Q of length a, resulting in a cylinder of height b and circumference 2a. Then we can cut the 

cylinder by a segment of length 2a′ because 2a′ > b. The resulting polygon is a parallelogram such that two opposite sides 
have length 2a and the other two opposite sides have length 2a′ (Fig. 1). Now we glue the sides of length 2a and obtain a 
cylinder of height b′ and circumference 2a′ . Then we can obtain Q ′ by folding this cylinder suitably (the opposite of cutting 
two edges of Q ′ of length 2a′). �

To complement the doubly covered rectangles handled by Theorem 1, we give a related result for doubly covered trian-
gles:

Theorem 2. Any doubly covered triangle Q is refoldable into a doubly covered rectangle. Thus, Q has a refolding sequence to any 
doubly covered triangle Q ′ of length at most 3. If doubly covered triangles Q and Q ′ share at least one edge length, then the sequence 
has length at most 2.

Proof. Let Q consist of a triangle T and its mirror image T ′ . We first cut Q along any two edges, and unfold along the 
remaining attached edge, resulting in a quadrilateral unfolding as shown in Fig. 2. Let b be the length of the uncut edge, 
which we call the base, and let h be the height of T with respect to the base. Let p and q be the midpoints of the two 
cut edges. Then the line segment pq is parallel to the base and of length b/2. In the unfolding of Q , let p′ and q′ be the 
mirrors of p and q, respectively. Then we can draw a grid based on the rectangle pp′q′q as shown in Fig. 2. By folding along 
the crease lines defined by the grid, we can obtain a doubly covered rectangle Q ′′ of size b/2 × h (matching the doubled 
surface area of Q ). (Intuitively, this folding wraps T and T ′ on the surface of the rectangle pp′q′q.)

Because a doubly covered rectangle is a special case of tetramonohedra, Q ′′ is also a tetramonohedron. Therefore, the 
second claim follows from Theorem 1. When Q has an edge of the same length as an edge of Q ′ , as in the third claim, 
we can cut the other two edges of Q and Q ′ to obtain the same doubly covered rectangle, resulting in a 2-step refolding 
sequence. �
1 This notion is also called isoscels tetrahedron or isotetrahedron in some literature.
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Fig. 2. A refolding from a doubly covered triangle to a doubly covered rectangle.

Fig. 3. A common unfolding of a regular icosahedron and a tetramonohedron, from [7].

Fig. 4. A spine polygon with 2n spikes.

The technique in the proof of Theorem 2 works for any doubly covered triangle Q even if its faces are acute or obtuse 
triangles.

4. Refoldability of a regular prismatoid to a tetramonohedron

In this section, we give a 1-step refolding sequence of any regular prism or prismatoid to a tetramonohedron. We extend 
the approach of Horiyama and Uehara [7], who showed that the regular icosahedron, the regular octahedron, and the regular 
hexahedron (cube) can be refolded into a tetramonohedron. As an example, Fig. 3 shows their common unfolding for the 
regular icosahedron.

A polygon P = (p0, c1, p1, c2, p2, . . . , p2n, c2n, p2n+1, p0) is called a spine polygon if it satisfies the following two condi-
tions (refer to Fig. 4):

1. Vertex pi is on the line segment p0pn for each 0 < i < n; vertex pi is on the line segment pn+1p2n+1 for each n + 1 <
i < 2n + 1; and the polygon B = (p0, pn, pn+1, p2n+1, p0) is a parallelogram. We call B the base of P , and require it to 
have positive area.

2. The polygon Ti = (pi, ci+1, pi+1, pi) is an isosceles triangle for each 0 ≤ i ≤ n − 1 and n + 1 ≤ i ≤ 2n. The triangles 
T0, T1, . . . , Tn−1 are congruent, and Tn+1, Tn+2, . . . , T2n are also congruent. These triangles are called spikes.

Lemma 2. Any spine polygon P can be folded to a tetramonohedron.
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Fig. 5. A regular prismatoid and an augmented regular prismatoid.

Proof. Akiyama and Matsunaga [10] prove that a polygon P can be folded into a tetramonohedron if the boundary 
of P can be divided into six parts, two of which are parallel and the other four of which are rotationally symmet-
ric. We divide the boundary of a spine polygon P into l1 = (p0, c1, p1, c2, . . . , pn−1, cn); l2 = (cn, pn), l3 = (pn, pn+1); 
l4 = (pn+1, cn+1, pn+2, cn+2, . . . , p2n, c2n), l5 = (c2n, p2n+1); and l6 = (p2n+1, p0). Then l3 and l6 are parallel because the 
base of P is a parallelogram. Each of l2 and l5 is rotationally symmetric on its own as line segments, centering its midpoint. 
Each of l1 and l4 is rotationally symmetric because each spike of P is an isosceles triangle. �

Now we introduce some classes of polyhedra; refer to Fig. 5.
A prismatoid is the convex hull of parallel base and top convex polygons. We sometimes call the base and the top roofs

when they are not distinguished. We call a prismatoid regular if (1) its base P1 and top P2 are congruent regular polygons 
and (2) the line passing through the centers of P1 and P2 is perpendicular to P1 and P2. (Note that the side faces of a 
regular prismatoid do not need to be regular polygons.) The perpendicular distance between the planes containing P1 and 
P2 is the height of the prismatoid. The set of regular prismatoids contains prisms and antiprisms, as well as doubly covered 
regular polygons (prisms of height zero).

A pyramid is the convex hull of a base convex polygon and an apex point. We call a pyramid regular if the base 
polygon is a regular polygon, and the line passing through the apex and the center of the base is perpendicular to the base. 
(Note that the side faces of a regular pyramid do not need to be regular polygons.) A polyhedron is an augmented regular 
prismatoid if it can be obtained by attaching two regular pyramids to a regular prismatoid base-to-roof, where the bases of 
the pyramids are congruent to the roofs of the prismatoid and each roof is covered by the base of one of the pyramids.

Theorem 3. Any regular prismatoid or augmented regular prismatoid of positive volume can be unfolded to a spine polygon.

Proof. Let Q be a regular prismatoid. Let c1 and c2 be the center points of two roofs P1 and P2, respectively. Cutting from 
ci to all vertices of Pi for each i = 1, 2 and cutting along a line joining between any pair of vertices of P1 and P2, we obtain 
a spine polygon. For an augmented regular prismatoid Q , we can similarly cut from the apex ci of each pyramid to the 
other vertices of the pyramid, which are the vertices of the roof Pi of the prismatoid. �

When the height of the regular prismatoid is zero (or it is a doubly covered regular polygon), the proof of Theorem 3
does not work because the resulting polygon is not connected. In this case, we need to add some twist.

Theorem 4. Any doubly covered regular n-gon is refoldable to a tetramonohedron for n > 2.

Proof. First suppose that n is an even number 2k for some positive integer k > 1. We consider a special spine polygon 
where the top angles are 2π

k ; the vertices p0, p2n+1, p1 are on a circle centered at c1; and the vertices p2n+1, p1, p2 are 
on a circle centered at c2n; see Fig. 6. Then we can obtain a doubly covered n-gon by folding along the zig-zag path 
p2n+1, p1, p2n, p2, . . . , pn+2, pn (shown by the doted lines in Fig. 6) such that we glue two segments (p0, p2n+1), (pn, pn+1)

and zip the both side edges at each pi . Thus when n = 2k for some positive integer k, we obtain the theorem.
Now suppose that n is an odd number 2k + 1 for some positive integer k. We consider the spine polygon whose top 

angles are 4π
2k+1 ; the vertices p0, p2n+1, p1 are on a circle centered at c1; and the vertices p2n+1, p1, p2 are on a circle 

centered at c2n . From this spine polygon, we cut off two triangles c1, p0, c2n+1 and cn+1, pn+1, pn , as in Fig. 7. Then we can 
obtain a doubly covered n-gon by folding along the zig-zag path p2n+1, p1, p2n, p2, . . . , pn+2, pn shown in Fig. 7. Although 
the unfolding is no longer a spine polygon, it is easy to see that it can also fold into a tetramonohedron by letting l′1 =
(c1, p1, . . . , pn), l′2 = (pn, pn), l′3 = (pn, cn+1), l′4 = (cn+1, pn+2 . . . , p2n+1), l′5 = (p2n+1, p2n+1), and l′6 = (p2n+1, c1) in the 
proof of Lemma 2. �

The proof of Theorem 4 is effectively exploiting that a doubly covered regular 2k-gon (with k > 1) can be viewed as a 
degenerate regular prismatoid with two k-gon roofs, where each of the side triangles of this prismatoid is on the plane of 
the roof sharing the base of the triangle.
E.D. Demaine, M.L. Demaine, Y. Diomidov et al. Computational Geometry: Theory and Applications 113 (2023) 101995
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Fig. 6. The case of a doubly covered regular 8-gon.

Fig. 7. The case of a doubly covered regular 5-gon.

Fig. 8. Z-flip.
6
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Fig. 9. An example of Z-flippable (1,1)-paths.

Fig. 10. An example of Z-flippable paths that form a tree structure.

Because the cube and the regular octahedron are regular prismatoids and the regular icosahedron is an augmented 
regular prismatoid, we obtain the following:

Corollary 1. Let Q and Q ′ be regular polyhedra of the same area, neither of which is a regular dodecahedron. Then there exists a 
refolding sequence of length at most 3 from Q to Q ′ . When one of Q or Q ′ is a regular tetrahedron, the length of the sequence is at 
most 2.

5. Refoldability of a regular dodecahedron to a tetramonohedron

In this section, we show that there is a refolding sequence of the regular dodecahedron to a tetramonohedron of length 
4. Combining this result with Corollary 1, we obtain refolding sequences between any two regular polyhedra of length at 
most 6.

Demaine et al. [6] mention that the regular dodecahedron can be refolded to another convex polyhedron. Indeed, they 
show that any convex polyhedron can be refolded to at least one other convex polyhedron using an idea called “flipping a 
Z-shape”. We extend this idea.

Definition 1. For a convex polyhedron Q and n, k ∈ N , let p = (s1, s2, . . . , s(2k+1)n) be a path that consists of isometric and 
non-intersecting (2k + 1)n straight line segments si on Q . We cut the surface of Q along p. Then each line segment is 
divided into two line segments on the boundary of the cut. For each line segment si , let sli and sri correspond to the left 
and right sides on the boundary along the cut (Fig. 8). Then p is a Z-flippable (n, k)-path on Q , and Q is Z-flippable by p, 
if the following gluing satisfies Alexandrov’s conditions.

• Glue sl1, s
l
2, . . . , s

l
n to sl2n, s

l
2n−1, . . . , s

l
n+1.

• Glue sr1, s
r
2, . . . , s

r
n to sl2n+1, s

l
2n+2, . . . , s

l
3n .

• Glue srn+1, s
r
n+2, . . . , s

r
2n to sr3n, s

r
3n−1, . . . , s

r
2n+1.

...

• Glue sr2(k−1)n+1, s
r
2(k−1)n+2, . . . , s

r
2kn to sr

(2k+1)n, s
r
(2k+1)n−1, . . . , s

r
2kn+1.

Fig. 9 gives an example of a refolding by a Z-flippable (1, 1)-path.
If there are Z-flippable paths p1, p2, . . . , pm inducing a tree structure on the surface of Q , we can flip them all at the 

same time (See Fig. 10). Then we say that Q is Z-flippable by p1, p2, . . . , pm . This method also works when the obtained 
structure is disconnected trees with no intersections because we can flip each tree independently.

Theorem 5. There exists a 4-step refolding sequence between a regular dodecahedron and a tetramonohedron.
7
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Fig. 11. The initial regular dodecahedron.

Fig. 12. A refolding from D to Q 1.

Fig. 13. A refolding from Q 1 to Q 2.

Proof. Let D be a regular dodecahedron. To simplify, we assume that each edge of a regular pentagon is of length 1. We 
show that there exists a refolding sequence D, Q 1, Q 2, Q 3, Q 4 of length 4 for a tetramonohedron Q 4.

All cocurvatures of the vertices of D are equal to 9π5 . For any vertices v , there are 3 vertices of distance 1 from v and 6 
vertices of distance φ = 1+√

5
2 from v . Hereafter, in figures, each circle describes a non-flat vertex on a polyhedron and the 

number in the circle describes its cocurvature divided by π
5 . Each pair of vertices of distance 1 is connected by a solid line, 

and each pair of vertices of distance φ is connected by a dotted line. Fig. 11 shows the initial state of D in this notation. 
We note that solid and dotted lines do not necessarily imply edges (or crease lines) on the polyhedron.

First, we choose p1 = (s11, s
1
2, . . . , s

1
6), p

2 = (s21, s
2
2, s

2
3), p

3 = (s31, s
3
2, . . . , s

3
6), and p4 = (s41, s

4
2, s

4
3) on the surface of D on the 

left of Fig. 12. Then, p1 and p3 are Z-flippable (2, 1)-paths and p2 and p4 are Z-flippable (1, 1)-paths. Thus, D is Z-flippable 
by p1, p2, p3, p4 to the polyhedron on the right of Fig. 12. Let Q 1 be the resulting polyhedron.

Second, we choose p1 = (s11, s
1
2, . . . , s

1
5) on the surface of Q 1 on the left of Fig. 13. Then, p1 is a Z-flippable (1, 3)-

path. Thus, Q 1 is Z-flippable by p1 to the next polyhedron Q 2 on the right of Fig. 13. Third, we choose p1 = (s11, s
1
2, s

1
3)

and p2 = (s21, s
2
2, s

2
3) on the surface of Q 2 on the left of Fig. 14. Then, p1 and p2 are Z-flippable (1, 1)-paths. Thus, Q 2 is 

Z-flippable by p1 and p2 to the polyhedron Q 3 on the right of Fig. 14.
Fourth, we choose p1 = (s11, s

1
2, . . . , s

1
5), p

2 = (s21, s
2
2, . . . , s

2
5), and p3 = (s31, s

3
2, s

3
3) on the surface of Q 3 on the left of 

Fig. 15. Then, p1 and p2 are Z-flippable (1, 3)-paths and p3 is a Z-flippable (1, 1)-path. Thus, Q 3 is Z-flippable by p1, p2, 
and p3 to the polyhedron Q 4 on the right of Fig. 15. Finally, we obtain a tetramonohedron Q 4 from a regular dodecahedron 
D by a 4-step refolding sequence.

In this proof, we used partial unfolding between pairs of polyhedra in the refolding sequence. We give the (fully un-
folded) common unfoldings in Appendix A. Thus, there exists a 4-step refolding sequence between a regular dodecahedron 
and a tetramonohedron. �
8
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Fig. 14. A refolding from Q 2 to Q 3.

Fig. 15. A refolding from Q 3 to Q 4.

Fig. 16. The refolding step �0 or �1 to �2.

6. Refoldability of a tetrahedron to a tetramonohedron

In this section, we prove that any tetrahedron can be refolded to a tetramonohedron. Let Qk denote the class of polyhe-
dra with exactly k vertices.

Theorem 6. For any Q ∈Q4 , there is at most 3-step refolding sequence from Q to some Q ′′′ ∈ �4 .

Proof. There are three possible cases about Q : Q ∈ �0, Q ∈ �1, or Q ∈ �2 (the case of Q ∈ �3 never happen by the 
Gauss–Bonnet Theorem). First, we consider the case of Q ∈ �0 and Q ∈ �1 (See Fig. 16). In each case, there are two 
vertices v0, v1 such that σ(v0) + σ(v1) ≤ 2π by the Gauss–Bonnet Theorem. We cut along the segment v0v1 and glue the 
point v0 to v1. On the resulting polyhedron, there are a new vertex v ′ of a cocurvature σ(v0) + σ(v1) ≤ 2π and two new 
smooth vertices λ0, λ1. Thus, we can obtain a convex polyhedron Q ′ ∈ �2 by Alexandrov’s Theorem. That is, we can reduct 
these two cases to the case of Q ∈ �2 by the 1-step refolding sequence. Next, we prove that Q ′ ∈ �2 is 2-step refoldable 
into a polyhedron Q ′′′ ∈ �4 by the following two lemmas.

Lemma 3. Any polyhedron Q ′ ∈ �2 ∩Q5 is refoldable into a polyhedron Q ′′ ∈ �3 ∩Q5 .

Proof. Let λ0, λ1 be the two smooth vertices of Q ′ . We cut Q ′ by the shortest line segment l joining λ0 and λ1 and denote 
the obtained surface by C . By making crease lines from each of the other vertices to l perpendicularly and embedding the 
cut end of C to xy plane, we can form C as a triangular prism sliced (Fig. 17). Let h(t) be the hight of a point t on the side 
of Q ′ . Let v0, v1, v2 be the other vertices of Q ′ clockwisely from the viewpoint of the outside of Q ′ and li be the shortest 
line segments from vi to v0. We assume that h(v0) ≤ h(v1), h(v2) without loss of generality. Let θi denote the angle from 
the perpendicular line of v0 to li . Then, since π

2 ≤ θ1, θ2 and θ1 + θ2 < σ(v0), we have κ(v0) < π .
Since κ(v0) + κ(v1) + κ(v2) = 2π from the Gauss–Bonnet Theorem, at least one of κ(v1), κ(v2) is less than π . Thus 

we assume κ(v1) < π . Let l′ be the line where the counter-clockwise angle from l1 to l′ at v0 is π (Fig. 18). Note that the 
clockwise angle from l1 to l′ at v0 is σ(v0) − π = π − κ(v0).
9
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Fig. 17. A triangular prism sliced diagonally.

Fig. 18. A side view of C .

Fig. 19. A way of cutting and glueing.

By h(v0) ≤ h(v1), h(v2), l′ and l have an intersection point m. Let θ be the counter-clockwise angle from l′ to l at m. l1
and l′ do not intersect except at v0 because ∀t1 ∈ l1,∀ t2 ∈ l′ and h(t2) < h(v0) < h(t1). Then we cut C by l1, l′ (Fig. 19).

We denote α(p) as the interior angle of a point p. On the obtained boundary, there are four points whose interior angles 
are not π : Let pv0 , pv1 correspond to v0, v1 and the both of pm, p′

m correspond to m such that α(pv1 ) = σ(v1), α(pv0 ) =
π − κ(v0), α(pm) = θ , and α(p′

m) = π − θ . Let c0 be the center point of (pv1 , pv0 ), and s be the point that have the 
same distance with p′

m from c0. Let c1 and c2 be the center point of (pm, pm′ ) and (pm, s). We glue each of pv0 , pv1
and p′

m, pm, s. Let Q ′′ be the resulting polyhedron. Since α(pv0 ) + α(pv1 ) = π − κ(v0) + σ(v1) = 3π − (κ(v0) + κ(v1)) =
3π − (2π − κ(v1)) = π + κ(v1) < 2π . Q ′′ satisfies the Alexandrov’s conditions.
That is, Q ′′ is a convex polyhedron in �3 ∩Q5. �
Lemma 4. Any polyhedron Q ′′ ∈ �3 ∩Q5 is refoldable into a polyhedron Q ′′′ ∈ �4 .

Proof. Let λ0, λ1, λ2 be the three smooth vertices of Q ′′ and v0, v1 be the other vertices. In the proof of Lemma 3, the 
vertex v3 of Q ′ remains as the vertex of Q ′ without cutting, and v0, v1 are chosen such that κ(v0), κ(v1) < π holds. Thus, 
we can apply the proof of Lemma 3 to a proof of Lemma 4 by replacing v2 to λ2. As a result, we obtain a polyhedron Q ′′′
of �4. �

By Lemmas 3 and 4, Theorem 6 follows. �
7. Conclusion

In this paper, we give a partial answer to Open Problem 25.6 in [1]. For every pair of regular polyhedra, we obtain a 
refolding sequence of length at most 6. Although this is the first refolding result for the regular dodecahedron, the number 
of refolding steps to other regular polyhedra seems a bit large. Finding a shorter refolding sequence than Theorem 5 is an 
open problem.
10



The notion of refolding sequence raises many open problems.

• What pairs of convex polyhedra are connected by a refolding sequence of finite length?
• Is there any pair of convex polyhedra that are not connected by any refolding sequence?

At the center of our results is that the set of tetramonohedra induces a clique by the binary relation of refoldability.

• Is the regular dodecahedron refoldable to a tetramonohedron?
• Are all Archimedean and Johnson solids refoldable to tetramonohedra?
• Is there any convex polyhedron not refoldable to a tetramonohedron? (If not, we would obtain a 3-step refolding 

sequence between any pair of convex polyhedra.)

Another open problem is the extent to which allowing or forbidding overlap in the common unfoldings affects refold-
ability. While we have defined refoldability to allow overlap, in particular to follow [6] where it may be necessary, most of 
the results in this paper would still apply if we forbade overlap. For example, Appendix A confirms this for our refolding 
sequence from the regular dodecahedron to a tetramonohedron; while the general approach of Theorem 6 is likely harder 
to generalize.

• Are there two polyhedra that have a common unfolding but all such common unfoldings overlap? (If not, the two 
notions of refolding are equivalent.)
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Appendix A. Common unfoldings from regular dodecahedron to tetramonohedron in Theorem 5

Figs. A.1, A.2, A.3, and A.4 show the common unfoldings of each consecutive pair of polyhedra in the refolding sequence 
from the proof of Theorem 5.

Fig. A.1. A common unfolding of D and Q 1.
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Fig. A.2. A common unfolding of Q 1 and Q 2.

Fig. A.3. A common unfolding of Q 2 and Q 3.

Fig. A.4. A common unfolding of Q 3 and Q 4.
12
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