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The present work considers systems whose dynamics are governed by the nonlinear interactions
among groups of 6 nonlinear waves, such as those described by the unforced quintic nonlinear
Schrodinger equation. Specific parameter regimes in which ensemble-averaged dynamics of such
systems with finite size are accurately described by a wave kinetic equation, as used in wave turbu-
lence theory, are theoretically predicted. In addition, the underlying reasons that the wave kinetic
equation may be a poor predictor of wave dynamics outside these regimes are also discussed. These
theoretical predictions are directly verified by comparing ensemble averages of solutions to the dy-
namical equation with corresponding solutions of the wave kinetic equation.

PACS numbers: 47.27.ek, 47.35.-1, 47.35.Jk

The dynamics of large-scale nonlinear systems tend to
be so complex that information gleaned from individ-
ual trajectories is insufficient to characterize the intrinsic
properties of the system. Often such properties are best
revealed through statistical measures from ensembles of
trajectories over long times. For particle, plasma, and
wave systems, both in and out of equilibrium, kinetic
equations have proven to be powerful theoretical tools
for ensemble descriptions [1-10].

For weakly nonlinear wave systems, statistical descrip-
tion using the wave kinetic equation (WKE) is provided
by the wave turbulence theory (WTT) [11, 12], which can
be heuristically derived using perturbation-theoretic ar-
guments [7-10]. (In contrast, descriptions of fully de-
veloped turbulence [13, 14] rely on scaling [13], mod-
els [15-19], numerical simulations [20, 21], or are cur-
rently unattainable.) WKEs in WTT have been quite
successful in explaining various statistical steady states
in systems ranging from surface water waves [9, 22-26]
to semiconductor lasers [27].

Applicability of WKEs to dynamically evolving sys-
tems has been much less explored (cf. Refs. [28-30]).
Moreover, strict physical assumptions must be made for
WKE:s to hold, even in steady state. These include weak
nonlinearity, infinite system size [11, 12], and an appro-
priate moment closure, which is either assumed [11] or
follows from assumed validity of multi-scale perturba-
tion expansions [10, 31-33]. The presence of coherent
structures can lead to violations of these assumptions
and destroy the validity of the WKE [34-37], at times
necessitating additional modeling to ensure agreement of
the WKE with the underlying physics [29, 38-40]. For
dynamically evolving finite size systems yet less is known

(but see Refs. [41-47]). Therefore, delineating physical
parameter regimes where WKEs accurately describe the

dynamics of finite size systems remains a key challenge
in WT'T.

This challenging problem can be solved either via ab-
initio derivation, direct ensemble observation (physical
or numerical), or a combination of the two. The first ap-
proach was employed in Refs. [48-51], where members of
our team and colleagues derived the validity of the WKE
for the cubic Nonlinear Schrodinger equation on a finite
domain in three and more dimensions. While conceptu-
ally important, these results describe dynamics only up
to an infinitesimally small multiple of the characteristic
timescale for the WKE. In addition, the work contains no
clear delineation of specific regimes for which the WKE
holds.

This letter theoretically delineates regimes of WKE ap-
plicability for a one-dimentional, finite-size system, and
confirms the resulting predictions on physically meaning-
ful timescales via numerical simulations, thus remedying
those deficiencies in prior work. In the process, quasi-
resonances are identified as the mechanism underlying
the WKE approximation (cf. Refs. [41-47]), and exact
resonances as a mechanism that possibly destroys this
approximation. Moreover, two sources of coherent struc-
tures are described, and their importance is described
in terms of the system size L: exact resonances, and
focusing- or collapse-like events (cf. Ref. [52]). None of
these properties appear to be true for systems of infinite
size.

Specifically, we determine (in)validity regimes of the
WKE for one dimensional systems described by the defo-
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cusing quintic nonlinear Schrédinger equation (DQNLS),
g+ Ugy — pt|ulu =0, (1)

with finite system size modelled by spatial periodicity,
u(z,t) = u(x + L, t), with period L. Finite systems sub-
ject to other boundary conditions, e.g. Dirichlet or Neu-
mann, are interesting, and the range of applicability of
the wave-kinetic theory could be different. This is the
subject of future investigation. The parameter p > 0
dictates the relative strength of the nonlinearity. Note
that the squared norm |lul|? = fOL |u(x,t)|? dz is a con-
served quantity, and due to scaling symmetries of Eq. (1),
we are free to set |Ju|| = L/? without loss of generality.

Due to the nature of the nonlinearity in Eq. (1), the
dynamics of DQNLS waves are dominated by six-wave
interactions. Therefore, despite its simplicity, the con-
sidered model has direct relevance to physical systems
dominated by six-wave interactions: for example Kelvin
waves in superfluid turbulence [53], and small fluctua-
tions around both the zero electric field and stable pulses
in one-dimensional nonlinear optics [54]; see [55].

The WKE corresponding to Eq. (1) describes the
time evolution of the wave action, nk(t) = (|ax(t)|?),
where ag(t) is the (complex) amplitude of the wave with
wavenumber k, and the angle brackets represent averag-
ing over ensembles of initial waves. Due to this system’s
finite size, each wavenumber k is an integer multiple of
Ak = 27/ L, and the wave amplitudes are defined via the
plane-wave expansion

1 i(kr—w
u@wt) = i S a0, ()
k

where wy, = k? is the linear dispersion relation for Eq. (1).
The factor L='/2 in Eq. (2) is used with an eye on the
large L limit, required for the WKE description.

To showcase a simple, heuristic derivation of WKE
starting from our finite-size system, we assume the phases
of wave amplitudes ax(t) to satisfy the random phase
approximation (RPA); i.e., in the second-order perturba-
tion terms we treat phases as independent variables. (Al-
ternatively, WKE can be obtained using closure, as dis-
cussed above.) Together with the fact that |ju| = L'/,
the RPA implies with a high probability

max |u(z, )| = O(1), mgxnk(t) =0(1). (3)

For waves with finite bandwidth, i.e., those whose
wavenumbers k satisfy |k| < Epax, the plane-wave ex-
pansion in Eq. (2) and the scaling in Eq. (3) imply a
plausible condition of weak nonlinearity, u (max|u|)* =
pO(1) € Wmax = k2, = O(1), so

p< 1, (4)

which is also the formal weak-nonlinearity condition in
Eq. (1). In order to categorize parameter regimes for

which we expect WKE to apply, we link the nonlinearity
parameter u to the spatial period L via the relation p =
L?, which is motivated by the invariance of Eq. (1) to
the power-law scaling x — Az, t — A\, u — u/\, with
A > 0. The weak nonlinearity condition in Eq. (4) thus
becomes

p=LF <1, (5)

implying validity of WKE for p < 0.

With scaling p# = L? and the RPA, the discrete analog
of the WKE describing the evolution of nj over a time
interval At > 1 for the finite-size system is [48],

Anp = 12043 1 sin” (QA1/2)
K=o (Q/2)°

; (6)

where Any = ny(At) — ni(0), and
2 5
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and T is often called the collision term. [The rather
sparse form of ¥ in Eq. (7c) is due to the specific form of
the nonlinearity in Eq. (1), which allows only for the scat-
tering of three waves into three waves and conserves ||u/|?.
Scattering of four waves into two waves, or vice versa,
present in more general systems dominated by six-wave
interactions, is absent from the dynamics of Eq. (1) due
to its form of nonlinearity.] To obtain the correspond-
ing WKE for 6 wave interactions, we take the continuum
limit of Eq. (6) by converting the sum to a Riemann sum,
and recalling the limit

sin?(QAt/2)

Q) — 2r Ato(Q2) for

At>1,  (8)

where §(-) is the Dirac delta. The WKE is thus

C%:/_Zza(ma(m dk, )

where dk = dkl dkg dkg dk4 dk5, T = t/Tkin; and Tkin —
7/6u* = 7/6L?P is the kinetic time scale on which the
wave actions experience O(1) changes. Note that for the
difference Any/At to become the 7-derivative, the in-
equality 7rin > At must hold. This inequality confirms
that ensembles of systems described by Eq. (1) evolve
slowly, and is also consistent with the small-nonlinearity
condition in Eq. (5). Nevertheless, note that Eq. (6)
and the initial RPA only guarantee the validity of WKE



in Eq. (9) on possibly very short 7-scales. On 7-scales
of length O(1), we assume RPA for convenience, or else
WKE can formally be obtained using the appropriate
closure as mentioned above. However, its validity must
be verified by numerical simulations, which we carry out
below.

Importantly, while the limit in Eq. (8) holds for small
Q, it is incorrect at = 0 where the limit is sim-
ply At2. This observation has important consequences
for the validity of WKE in Eq. (9), and implies that
the largest contributions to Eq. (9) are made by quasi-
resonant terms in Eq. (6), i.e., those terms for which
the frequency difference, €2, is small but does not van-
ish (cf. Refs. [41-47]). In fact, the Q-width of the
function described by the ratio on the left-hand side of
Eq. (8) is 1/At. However, because that function has a
point of discontinuity at €2 = 0, terms corresponding to
the exact resonances, where both K and € vanish si-
multaneously, should contribute additional terms of size
O (At*L*~*) to Eq. (6). Their inclusion would indi-
cate the possibility of linearly growing terms in Eq. (9),
whose effect has not been accounted for. To estimate the
cumulative effect of these neglected terms, notice that
each term is of size O (AtLQp*‘l), and a naive count of
their number is O (LQ). [A more accurate count, which
follows from number theoretic arguments described in
Ref. [56], is O (L?InL).] Therefore their cumulative
contribution will be negligible, and thus the WKE in
Eq. (9) will be valid, provided g, L??~2 < 1/7pin, i-e.,
Thin = O(L*QP) <« L'7P, and thus p > —1. Impor-
tantly, this argument implies that WKE in Eq. (9) may
not be valid for all times, but may break down at kinetic
times 7 = O (L), ie., t = O (L'~?) in physical units
of time. This indicates the validity of the WKE before a
breakdown time which increases with L.

The temporal bound discussed above also sets a lower
bound, p > 1/L, on the strength of the nonlinearity
needed for the WKE dynamics to reasonably approx-
imate the ensemble-averaged dynamics of the periodic
system with period L. Smaller nonlinearity implies there
are insufficient quasi-resonances to generate dynamics de-
scribable by WKE. The (perhaps even fewer) exact res-
onances, however, may instead generate growing observ-
able dynamics [such as those shown in Figs. 2 and 3 be-
low with p = —1.2 and p = —1.1, respectively]. These
are known as mesoscopic turbulence [44]. The discussion
in this and the previous paragraph thus appears to be in
contrast with properties of infinite size systems.

We note that a WKE for capillary waves in finite basins
that takes into account quasi-resonances via resonant
broadening was developed in Ref. [47].

We now proceed with a numerical determination of
the regimes for which the WKE gives a valid description
of the dynamics governing ensembles of DQNLS waves
on time intervals spanning several kinetic timescales. We
expect WKE to apply to waves emerging from any initial

X =1

10 10

L

FIG. 1. Mismatch between DQNLS and WKE as a function
of L for the case p = —0.6 at T = Tkin, 2Tkin, and 3Tkin.

conditions whose plane-wave amplitudes ay (0) satisfy the
RPA. Therefore, as a particularly severe test, we choose
discontinuous initial wave amplitudes such that ay(0) =
Ce™* for the wavenumbers k in some range |k| < 1/2
and v drawn from the uniform distribution of angles on
0 <% < 27, and ax(0) = 0 for |k| > 1/2. Here, C' > 0is
a constant selected so that ||Ju| = L/2.

Above, we theoretically determined that average en-
semble dynamics of DQNLS waves should be well ap-
proximated by WKE in Eq. (9) for p satisfying

—-1l<p<o. (10)

Using the intermediate value p = —0.6 [57], we proceed to
show the correspondence between averaged DQNLS wave
ensembles and the corresponding wave actions, ny wkg
in the limit of large L, which is necessary to guarantee
that the weak nonlinearity condition in Eq. (5) is satis-
fied. Wave ensembles, nj pqonrs, are computed by aver-
aging squared wave-amplitude moduli |az(¢)]* from 1000
realizations of the random initial phases v, followed by
evolution via Eq. (1). These ensemble averages are then
compared to wave actions, n, wkg, obtained from WKE
in Eq. (9). The discrepancy between ny ponrs and
ng,wk E 1S measured in the squared norm in wavenumber
space [defined as |[Ang(t)|? = [ |Ang(t)|*dk] and the
results are presented in Fig. 1. Also shown in the figure
are least squares linear fits to the data on log-log scale.
This evidence establishes convergence of wave ensembles
derived form the DQNLS in Eq. (1), and the wave action
defined from the WKE in Eq. (9), in the limit of large L.

Having shown agreement of the WKE and DQNLS for
L > 1, we use the same ensemble averaging process to
probe the validity of the WKE for a set of p using finite
but large L and for predictions on time intervals of du-
rations Trin, 2Tkin, and 3Tg,. In addition to values of p
where good agreement is expected, we include results for
the borderline case p = —1, and the case p = —1.2 which



FIG. 2. Comparison of averaged squared amplitudes of harmonics from simulations of DQNLS and WKE for different values

of parameter p.

lies below the WKE validity range given by Eq. (10),
i.e., in which exactly resonant interactions overwhelm the
system dynamics before weakly turbulent dynamics de-
scribable by WKE in Eq. (9) could emerge. Note that for
larger values of p, it is important to consider large system
size L not only to satisfy the weak nonlinearity condition
in Eq. (5), but also to avoid DQNLS waves that focus
sharply towards a possible singularity. Clearly these fo-
cusing waves cannot be included in ensembles exhibiting
weakly turbulent behavior. Fortunately, for fixed p, the
likelihood of encountering such waves seems to decrease
rapidly with L, and so by choosing a sufficiently large L,
no focusing waves are encountered in our ensembles.

Results for all cases are presented in Fig. 2, which
show that for values of p within the WKE validity range
in Eq. (10), the best agreement between the ensemble
averaged DQNLS wave dynamics and their description
by the WKE in Eq. (9) occurs at moderate values of
the wavenumber k, as expected. At these values, the
agreement is almost perfect, and WKE even captures
the remnants of the initial jump in the amplitudes of
the individual plane-wave components at k = 41/2.
For small wavenumbers k, only excessively large ensem-
ble sizes would improve the agreement. For very large
wavenumbers no quantitative agreement other than van-
ishing smallness of both wave action measures, nr, ponNLs
and ngwkE, is expected or seen. For the borderline
case p = —1 and the invalid case p = —1.2, the ensem-
ble averaged wave system dynamics appear to exhibit an
initial tendency towards fast focusing and later growth
slowdown, neither of which is captured by WKE. In par-
ticular, the case p = —1.2 waves overshoot the WKE
prediction for small wavenumbers k, and both cases un-
dershoot the WKE predictions in the moderate k regime
in which the best agreement is expected.

In order to more closely investigate the transition in
the dynamical behavior of DQNLS wave ensembles and
the approximating WKE dynamics at the parameter
value p = —1, we take a closer look at both for p = —1.1
and p = —0.9, which are located close to this transi-
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FIG. 3. Solutions of DQNLS at different times for p = —1.1,
slightly below the threshold in (10) and for p = —0.9, slightly
above the threshold in (10). In both cases t = Tg, and L =
80.

tion but on the opposite sides of it. Fig. 3 shows that
for the parameter value p = —0.9, which lies just over
the threshold of the WKE validity range in Eq. (10) at
p = —1, the WKE gives an excellent approximation to
the ensemble averaged shape and dynamics of the cor-
responding DQNLS waves. In particular, at the time
t = Tgin, the WKE captures well the diminishing initial
discontinuity of the waves and also accurately approxi-
mates the ensemble averaged squared wave amplitudes.
This accuracy continues at the time t = 27y;,. This is not
the case for the parameter value p = —1.1, which lies just
below the left threshold in Eq. (10). The ensemble aver-
aged wave system dynamics in this case again appear to
exhibit an initial tendency towards fast focusing and later
growth slowdown not captured by WKE. Thus, compar-
ing the behavior of DQNLS wave ensembles and WKE so-
lutions in these two fairly close parameter regimes clearly
illustrates the threshold behavior predicted in Eq. (10).

Simulations of the DQNLS were performed on the pe-



riodic domain x € [-L/2,L/2], with 12th-order accu-
rate central finite differences and 6th-order accurate ex-
plicit Runge-Kutta time stepping. With At ~ h? cho-
sen for stability, the accuracy of the overall method is
O(h'?). The number of discretization points is chosen to
be N = |[5L]| + 2, where |[-]] indicates the next larger
even integer, which is sufficiently fine that the numeri-
cal solutions remain accurate to nearly machine precision
throughout the simulation. For a typical realization, the
relative errors of the conserved squared norm ||u/|? and
Hamiltonian |luy||? + (u/3)||u?||* at 374 are 10711 and
1078, respectively.

The WKE (9) was solved numerically using an al-
gorithm inspired by the Webb-Resio-Tracy [58-60] ap-
proach to simulation of WKE for gravity waves. In short,
the six-dimensional wavenumber space is scanned, and
only those mode sextets which satisfy resonant conditions
are retained. Details of the algorithm will be published
elsewhere. All simulations of WKE were performed using
81 harmonics.

To conclude, in the case of the DQNLS on a finite,
periodic domain, we provided a clear delineation of pa-
rameter regimes for which its corresponding WKE pre-
dicted by WTT is expected to be be an accurate approx-
imation of ensemble-averaged system dynamics. These
predictions are verified directly via numerical simulation.
Furthermore, we laid out straightforward theoretical jus-
tification for our parameter regime predictions, and con-
firmed that quasi-resonances, not exact resonances, ap-
pear to be the mechanism responsible for this accurate
approximation. (Cf. Refs. [41-47].) The influence of ex-
act resonances, in turn, may destroy the validity of WKE.
We also identified focusing-type events as another pos-
sible coherent structure that can destroy the validity of
WKE approximation. A study of phase cross-correlations
to yet further exclude any possible coherent structures
will be presented in a future publication. The arguments
used in this letter are malleable and may be used to infer
parameter regimes of validity for other WKEs predicted
by WTT.
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