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Abstract. Transient signals of instrumental and envirénmental origins (“glitches”)
in gravitational wave data elevate the false'alarm rate of searches for astrophysical
signals and reduce their sensitivity. Glitches that directly overlap astrophysical signals
hinder their detection and worsen parameter estimation errors. As the fraction of
data occupied by detectable astrophysical signals will be higher in next generation
detectors, such problematic overlaps could become more frequent. These adverse effects
of glitches can be mitigated by estimating'and subtracting them out from the data,
but their unpredictable waveforms and large morphological diversity pose a challenge.
Subtraction of glitches usingydata from»auxiliary sensors as predictors works but not
for the majority of cases. Thuspthere is a need for nonparametric glitch mitigation
methods that do nét.require auxiliary data, work for a large variety of glitches, and have
minimal effect on astrophysical signals in the case of overlaps. In order to cope with
the high rate of glitches, it is.also desirable that such methods be computationally fast.
We show that adaptive spline fitting, in which the placement of free knots is optimized
to estimate bothssmoothrand non-smooth curves in noisy data, offers a promising
approach to satisfying\these requirements for broadband short-duration glitches, the
type that appear quite frequently. The method is demonstrated on glitches drawn
from three distinct elasses in the Gravity Spy database as well as on the glitch that
overlapped the binary neutron star signal GW170817. The impact of glitch subtraction
on thé GW170817 signal, or those like it injected into the data, is seen to be negligible.

1. Introduction

In a fairly shorttime since the first direct detection of a gravitational wave (GW) signal
(GW150914).in 2015 [1] by the twin LIGO [2] detectors, GW astronomy has emerged as
an information-rich field that will revolutionize our understanding of compact objects
suchias black holes and neutron stars. By now, the network of LIGO and Virgo [3]
detectors has reported 90 confirmed detections of GW signals from compact binary
coalescences (CBCs) across the first observing run (O1) [4] to the third (O3) [5]. The
majority of these are binary black hole (BBH) mergers but the haul also includes a
binary neutron star (BNS) system (GW170817) [6].
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The rate of detectable GW signals will grow as more detectors, namely KAGRA[7]
and LIGO-India [8], join the network and increase its distance reach for GW sources.
Design studies are already underway for the successors to the current generation of\GW
detectors [9, 10, 11] with the goal of achieving an order of magnitude improvement in
sensitivity across the current operational frequency band. In addition, next-generation
detectors will seek to expand the operational range to lower frequenciesi(a, 1 Hz),
thereby increasing the duration of in-band GW signals across the board: for example, a
BNS signal starting at =~ 10 Hz will last for days compared to the ~ 1 min for GW170817.
Thus, future detectors will not only see a higher rate but also longer signals, raising the
prospect [12] that there will be no data segment free of detectable GW! signals.

The false alarm rate of searches for CBCs as well as generic short duration GW
signals, or bursts, is dominated [13] by transient non-GWisignals of instrumental or
environmental origins, commonly called glitches. This istbecause glitches that populate
the same frequency band as CBC or burst signals andshappen te be transient in duration
can falsely trigger the respective search pipelines. A glitch, has a particularly adverse
effect if it overlaps with a GW signal, as happened in, the case of GW170817 [6], and
triggers the search pipeline to reject the glitch and possibly discard the signal. Even a
non-overlapping glitch can severely degrade,parameter estimation if it is close enough to
a GW signal [14]. In the third observing run of the EIGO and Virgo detectors, ~ 20% of
detected GW signals overlapped with glitches [15] due to the high glitch rate in Virgo.
For future detectors, the frequency of aceidental overlaps will be enhanced by the higher
rate of detectable GW signals,as well as, for/CBC signals, their longer durations.

Glitches have dissimilar and unpredictable waveforms but many of the observed ones
tend to fall into distinct morphological.¢lasses. This has motivated the investigation of
automated glitch classification using machine learning where a range of different methods
have been proposed, such a§ Support Vector Machine [16], t-Sne [17], random forests [16],
S-means [18], and Deep Convolutional Neural Networks [19]. The Gravity Spy [20]
project uses a citizen s¢ience approach to engage the lay public in labeling glitches by
visual inspection of their comstant Q-transform (CQT) [21, 22| time-frequency images.
This has created a high quality training dataset for machine learning methods. By now,
more than 20 namedigliteh classes are available in the Gravity Spy database, collected
over multiple/observing runs of the LIGO detectors [17].

Several different approaches have been developed to mitigate the adverse effects
of glitchés on, GW searches. GW search pipelines typically compute secondary
functionals, called vetoes, of the data besides the primary detection statistic that help
in distinguishing genuine GW signals from glitches. A well-known example is the Chi-
square vetg [23] used in CBC search pipelines. For LIGO-Virgo data, a set of Data
Quality flags have been developed that use information from a large number of auxiliary
sensors.to quantify the safety of analyzing a given segment of GW strain data [24]. For
glitches that overlap a GW signal, the gating [25] method removes the rectangular time-
frequency block, or just the time interval, containing an identified glitch from the data.
Cross-channel regression using data from auxiliary sensors [26, 27, 28, 29] has been
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used to reduce excess broadband noise and a few types of glitches [30].

A relatively recent approach is that of estimating the waveform of a glitch
from the data time series itself and subtracting it out. Glitch subtraction was_of
critical importance in the case of GW170817 and has been shown to be an important
requirement in reducing bias in the estimation of GW signal parameters [31].) The
GW170817 glitch subtraction was carried out using the multi-detector BayesWave
pipeline [32, 33], which has also been used for other types of glit¢hes [15]./ Another
method, Glitschen [34], follows the approach of constructing parametrized waveform
models for identified glitch classes using principal component analysis of training sets.
A strong motivation for developing glitch estimation and subtraction methods is that
one could, in principle, preprocess the data to clean out every sufficiently loud glitch of
a known type. As exemplified by GW170817, where prior'subtraction of the loud glitch
would have kept the search pipeline from discarding thessignal, this would make glitch
rejection in all downstream GW searches safer.

In this paper, we present a method for the estimationiand subtraction of broadband,
short-duration glitches that have appeared frequently in’the observation runs of the
LIGO detectors. The method is computationally cheap, works with single-detector
data, does not require a training set of presidentified glitches, and is not predicated on
auxiliary sensor data. The core component ofithe method is SHAPES (Swarm Heuristics
based Adaptive and Penalized Estimationrof.Splines), an adaptive spline curve fitting
algorithm introduced in [35]f. SHAPESwses splines with free placement of knots to fit
both smooth and non-smoothy,curves in noisy data. In particular, point discontinuities
in the curve or its derivatives (up,to some order) can be accommodated in the fit by
allowing knots to merge. The ability teshandle both sharp and slow changes in a curve
is a built-in form of multiresolution amalysis in SHAPES and a critical requirement for
effective estimation of broadband glitches. We examine the performance of our glitch
subtraction method on thexGW170817 glitch in LIGO-Livingston data and instances of
glitches from three morphologically distinct classes, namely, Blip, Koi Fish, and Tomte,
in the Gravity Spy.databaser In each of the latter three cases, we inject a BNS signal
overlapping with the glitech to mimic the case of GW170817. We find that the impact
of glitch subtractionien the signals, real or injected, is negligible.

The rest/of the, paper._is organized as follows. Sec. 2 reviews SHAPES with the
goal of providing a_self-contained description of the algorithm that is pertinent to this
paper. Burther, details, such as the motivation and justification for certain features of
the algorithm, ¢an be found in [35]. Sec. 3 describes the dataset used in this paper and
the details of how SHAPES is used for glitch subtraction. Sec. 4 presents the results.
Our conclusions and discussion of future work are presented in Sec. 5.

1 The SHAPES code is available from the Github repository mohanty-sd/SHAPES.git.
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2. Adaptive spline fitting: the SHAPES algorithm

SHAPES is derived under the following models for the noisy data, 7, @nd the signal
5(0).

y=5(0)+¢e, (1)

where 7, 5, and € are row vectors with N elements, y; = y(t;) and@s;(0) ="s(t;;0),
i=0,1,...,N —1, are samples taken at t; = i/ f; with f; being the sampling frequency,
and 0 denotes the set of signal parameters that need to be estimated fromthe data. The
noise samples, ¢;, are drawn independently from the zero mean andanit variance normal
(Gaussian) probability density function N(0,1). The white Gaussiantioise assumption
does not entail a loss of generalization since GW data can always be whitened using the
estimated noise power spectral density (PSD).

The signal s(¢; 0) is assumed in SHAPES to be a cubiespline, which is a polynomial
of order 4. The choice of a spline model as well as its‘order i an ad hoc one, with only
an empirical justification, since a rigorous approach requires restricting the class of
functions being estimated but this may b¢ difficult;/ for glitches. A cubic spline can be
represented by a linear combination of B-spline funetions [36],

s(t; 0 ={a,7}) = ZaijA(t;F) , (2)

where @ = (g, 1,...,ap_5), and T =70, T1,-.-,TP_1), Tiz1 > Ti, IS a sequence
of P knots that marks the/ ‘end points of the contiguous intervals containing the
polynomial pieces of the splines” Note that knots are allowed to be equal, leading to
knots with multiplicity higher than one. (The knots 7y and 7p_; are repeated 3 times
each.) The number of B-gplines inEq. 2 corresponds to the number of independent
parameters describing thespline after the continuity and differentiability constraints on
the polynomial piecesyat thesimterior knots are taken into account. Repeating knots
create discontinuity in either jthe value of a B-spline function or its derivatives (up to
order 2). This allows the s(t;6) in Eq. 2 to model signals with point discontinuities
in value or derivatives. Kig. 1 illustrates cubic B-spline functions for an ad hoc knot
sequence.

The best fit spline parameters, & and 7, are those that minimize a penalized least-
squares funetion;

Ly(@,7) = L(@,7) + AR(a) , (3)
Lar) =, (v — 5@ 7)), (4)
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Figure 1. Cubic B-spline functions B, 4(¢;7), j = 0,1y..., 11, for an arbitrary choice
of 16 knots (7) marked by squares. Knots with,multiplicity > 1 result in B-splines
that are discontinuous in value or derivatives.

is found to be useful in the suppression of spurious’ clustering of the knots. These
clusters are observed when the method tries,to minimize L,(@,7) by fitting out outlier
data points arising from the noise alene. The strength of the penalty is controlled by
the gain factor A\, with higher values of A leading to smoother estimates.

The optimization of Ly(@,7) over the,non-linear parameters 7 has been a long-
standing computational barrieri{37, 38, 39, 40] for adaptive spline fitting. At the same
time, the benefits of optimizing” theésplacement of knots have also been demonstrated
extensively [38, 41]. It was showm in [42], and independently in [43], that Particle Swarm
Optimization (PSO) [44, 45]jra widely used nature-inspired metaheuristic for global
optimization, has good performance on the free knot placement problem. Moreover,
being a continuous optimization method, PSO can explore all arrangements of knots,
including the ones where knots are sufficiently close to be merged into a single knot of
higher multiplicity! Thisiallows the fitting of functions that have a mix of smooth and
non-smooth parts.

There aresmany variations [46] among the algorithms that fall under the umbrella
of the PSO metaheuristic but they all share the following common features. (i) They
are continwous optimization methods that seek the global optimum of a function f(7),
7 € D C RE, called the fitness function, on an open subset D, called the search space,
of the-spaceRE of real K-tuples. (In the case of SHAPES, the search space coordinates
T are the knots 7.) The function is sampled at multiple locations, called particles, that
moveiteratively to explore the search space for the global optimum. The set of particles
is called a swarm. (ii) The location of each particle is updated following a dynamical rule
that typically uses the best location found by a particle in its history, called its personal
best, and the best location found by the particles in its neighborhood, called its local best.
Here, the fitness value at a location defines how good it is: for a minimization problem,
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the lower the fitness, the better the location. A common form of the dynamicalrule
computes the displacement of a particle by linearly combining three vectors: its previous
displacement and the two vectors pointing from its current position to the personaband
local best locations. However, the linear combination is performed with an_independent
random weight for each component of the latter two vectors. (iii) Each particle explores
the search space independently but is constantly attracted towards the peérsonal and
local bests. This leads to a form of communication between the particles\that speeds
up convergence to a promising region, followed by refinement of thesolution until the
iterations are terminated. The PSO algorithm can avoid trapping by.local minima due
to both the randomness in the dynamical rule and the parallel exploration of the search
space by the swarm.

The best location among all the particles at termination. is the final solution found
by the swarm for the global optimum. While there is nosguarantee that the final solution
is the true global optimum, the probability of successful comvergence can be boosted
exponentially by running multiple independent runs of PSO and picking the one with
the best final solution. Most of the parameters inyolved/in the PSO algorithm, such
as the number of particles or the weights attached to/the attractive forces, have very
robust values across a wide variety of benchmark optimization problems [47] and rarely
need to be changed. In our experience, there are typically only two quantities that
need tuning: the number of iterations, Nigs-to termination and the hyper-parameter
Nruns, the number of independent PSOwruns. In this paper, we fix N = 2000 and
Nruns = 8 throughout. The number of particles is always set to 40 and the settings for
the remaining parameters, as well as the definition of the neighborhood used for the
local best, are described in [35].

The description above was for the case where the number of knots, P, is fixed. The
complete SHAPES algorithm incerporates model selection using the Akaike Information
Criterion (AIC) [48], where/the optimum number of knots minimizes,

AIC = 4P% L\(a,7) . (6)

While, given sufficient computing resources, model selection could be performed over all
values of P until the minimum value of AIC is found, practical considerations dictate
that the set of knot numbers used be a finite and small one. In this paper, for example,
we use knot numbers in the set starting at 5 and ending at 60 in increments of 5. It is
importantte note that this restriction of knot numbers is not a fundamental limitation
but a technicallone meant to manage the computational burden of model selection.
Thusgthe only significant free parameter that needs to be set by the user in the current
version of SHAPES is \.

Sinece' SHAPES assumes that the noise in the data is white, GW strain data must
be whitened prior to glitch estimation and subtraction. The data conditioning steps
involved are as follows (in sequential order). (a) Suppression of the seismic noise
below 10 Hz, (b) robust estimation of the power spectral density (PSD) noise floor,
(¢) whitening of the noise floor using the estimated PSD [49], and (d) automated
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identification of high-power narrowband noise features (“lines”) and their suppression
using notch filters. These steps are common to all GW search pipelines, so they do not
need to be elaborated further here.

3. Demonstration data

The glitches considered in this paper for demonstrating the performance of SHAPES are
listed in Table 1. The corresponding GW strain data files can be located and/downloaded
from the Gravitational Wave Open Science Center (GWOSC) [50] using the information
provided in this table. We have used the standard 4096 sec long GWOSC data files
sampled at 4 kHz.

The GW170817 glitch presents a particularly interesting example of the deleterious
effect of glitches on GW searches. The GW signal appearediin both LIGO-Hanford
(H1) and LIGO-Livingston (L1) with a combined network signal to noise ratio (SNR)
of 32.4. Such a strong signal would have been detected easily in coincidence across L1
and H1 by the GW search pipelines in operatign atithe time. However, a coincident
detection was prevented by a large overlapping glitch in L1 causing the release of only
an unusual single-detector GW detection alertyto the astronomical community. About
4.5 hours elapsed between the initial alert and the rélease of the first skymap localizing
GW170817 obtained by gating theglitichs

In addition to the GW170817 gliteh, we have taken three representative glitches
from the Blip, Koi Fish, and, Tomte, classés7in the Gravity Spy database [51]. These
glitches were selected by taking the loudest 5 events, in terms of their signal-to-noise
ratio (SNR) as given in the Gravity Spy database, for each class and then picking the
first one in this list for which the corresponding GWOSC file had 100% science data
that was also reasonably stationary. As can be seen from Table 1, this results in the
selected glitches spanning ‘a/wide/range in SNR.

Glitch Name GPS start (sec) | SNR | Detector | run
GW 170817 glitch 1187008880 - L1 02
Blip 1182397347 109.1 H1 02

Koi Fish 1169847108 608.1 H1 02
Tomte 1173086299 19.6 H1 02

Table 1. Glitches considered in this paper along with their GPS start times, SNRs,
the detectors in which they appeared, and the observation runs. For the Blip, Koi Fish,
and Tomte glitches, the start times are taken from the Gravity Spy database. To the
best of our knowledge, there is no SNR available in the literature for the GW170817
glitch.

After conditioning the data, we use the start time of a glitch, recorded in Table 1,
to locate the glitch. Starting from the peak of the glitch, the data time series is scanned
visually in both directions to identify a segment, containing the glitch, that tapers off
at both its boundaries to the general noise level of the conditioned data.
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To mimic the case of GW170817 and to study the effect of glitch subtractionson
an overlapping GW signal, we injected a whitened restricted-2PN circularized binary
inspiral signal with equal 1.4 Mg components in the conditioned data.” The SNR, (in
white noise with unit variance) of the injected signal is set at 37.3, which'is an ad
hoc factor of 4/2 higher than the observed SNR. of 26.4 of GW170817 in L1 [6], The
enhancement in SNR allows clearer visibility of the signal in time-frequency.images
while also posing a stronger challenge to SHAPES in terms how well it igneres the GW
signal when estimating a glitch. The segment containing the glitch, taken from the
conditioned data with the injected signal, is passed to SHAPES for.estimation of the
glitch waveform followed by its subtraction.

4. Results

In common with other papers on glitch estimation, and subtraction, we present our
results in the form of CQT time-frequency images andytime series plots. These are
obtained by taking projections of the data on a sét of windowed sinusoids. The width of
the window decreases with an increase in the carrier frequency, f., such that Q = f./Af,
where Af is the —3 dB bandwidth of the Fourier transform of the window, remains
constant. We use the CQT code provided in‘the 1ibrosa [52] Python package for audio
processing. For each glitch, we show CQTs.of the conditioned data with injected signal
and the residual after subtraction of the.glitch estimate.

Fig. 2 shows the data segments thatytwere processed using SHAPES and the
corresponding estimated glitch waveforms. Except for GW170817, each segment was
processed as a whole to obtain the glitch estimate. In the case of GW170817, SHAPES
was applied independently to three separate but contiguous time intervals to estimate
the complete glitch. This was necessitated by the presence of extended wings, preceding
and trailing the core broadband (and rapidly varying) part in the middle, that dominate
the conditioned data for, ~ 0.5 sec on each side. Applying SHAPES to the complete
segment would have required using a very large number of knots (> 60), making it
unnecessarily expensive eomputationally given that splitting the segment achieves a
good solution.

As mentioned in Seex 2, the penalty gain A controls the smoothness of the estimate
and is a user-specified parameter of the SHAPES algorithm. Typically, when a glitch
is loud and has a complex shape, A = 0.01 allows SHAPES to provide a better fit. For
low SNR.and simple glitch waveforms, or if the data is just plain white noise, A\ = 0.1
doessan adequate job. In general, estimates from SHAPES are not sensitive to small
variations of A\ around these values because the model selection is able to compensate
for a lower value of A by selecting a higher knot number and vice versa. Without much
fine tuning, we found that the values of A listed in Table 2 work well for the glitches
studied in this paper. We have also listed in this table the number of knots for the best
fit models selected by the AIC.

Fig. 3 to Fig. 6 show the CQTs of the conditioned data and residuals after glitch
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Figure 2. The conditioned straim,data and the glitch waveform estimated by SHAPES
for each of the gli this paper. Top row: GW170817 (left) and Blip
(right). Bottom row: Koi Fish (left) and Tomte (right). The X-axis in each plot shows
the time (sec) since/

hes considered

tch Name Penalty gain (\) | Number of knots
GW170817 glitch 0.1, 0.01, 0.1 60,40,50
Blip 0.01 15
Koi Fish 0.01 30
Tomte 0.1 15

Table 2. The penalty gain A used for the glitches and the number of knots in the best
fit model. For the GW170817 glitch, there are three segments with the middle one
containing the principal glitch and adjacent ones containing the wings. The penalty
gains and best fit model are listed for all three segments in sequential order from left
to right.
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subtraction for the glitches in the sequence GW170817, Blip, Koi Fish, and Tomte,
respectively. In all cases, we see that the subtraction of the glitch does not affect the
overlapping GW signal (real or injected) in any significant way. Some overfitting to,the
data, seen as very small CQT values, is visible in the residual for the GW 170817 glitch at
frequencies below ~ 32 Hz but this band has no overlap with the signal.,The overfitted
parts are the two wings of the GW170817 glitch mentioned earlier. The CQTs of the
residuals for the Blip and Tomte glitches show near perfect removal of the,glitch. (For
Tomte, the coalescence time of the GW signal was kept further away from the glitch
in order to create an overlap between the signal track and the glitch.). The residual for
Koi Fish shows effective removal of the glitch with the exception of a transient and low
frequency narrowband component. This leftover component does not overlap with the
signal.

For the GW170817 glitch, it is possible to comparesthe performance of SHAPES
with BayesWave directly since the residual from the latter has’béen provided at GWOSC.
(This is the version 2 data for this event from the Lilndetector.) Fig. 7 shows the
outputs of passing the two residuals through matched filters corresponding to the same
BNS parameters. For this experiment, thexmatched filter templates are from the same
family that we have used for injections but,theparameters are tuned to be close to the
ones estimated for GW170817, namely, the two masses are set at 1.46 M. and 1.3 M.
(Since our conditioning pipeline is/mot identical to that used in LIGO, some tuning of
the template parameter values is required to get a reasonable output SNR.) As can be
seen, the peak values and their arrival timesragree well with each other, demonstrating
that SHAPES has essentially the'same effect on the signal as BayesWave.

The principal computational cost.dn SHAPES is the global optimization of the
fitness function in Eq. 3. The time taken by the current MATLAB [53] code for a single
PSO run on a segment with & 300 samples and knot numbers P € [10,60] (in steps of
5) is < 10 min on an Intel Xeon B5 processor (clock rate 3 GHz). The runtime increases
with the number of knots used, mainly due to an increase in the number of B-spline
functions that need.te,be computed. With a code currently under construction in the
C language, and implementation of further hardware acceleration (e.g., using Graphics
Processing Units), the runtime is expected to decrease substantially. We also note that
the segments/containing glitches can be processed in parallel since SHAPES is a purely
time-domain method: Hence, the computational cost will scale slower than linearly with
the numper of glitches when analyzing data containing multiple glitches.

5. Discussion and Conclusions

We have presented a new approach to glitch subtraction using an adaptive spline fitting
method. called SHAPES. The method was demonstrated on the GW170817 glitch as
well as other representative short duration and broadband glitches. In a single detector
and in the absence of strong prior information about the signal, it is not possible to
distinguish a GW signal from a glitch in the part where they overlap. Hence, it is
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47 Figure 3. Subtraction of the GW170817 Glitch. The top and bottom panels show
the"CQT of the data and residual, respectively. The glitch is the vertical feature at
~10.5 sec. In order to show both the glitch and the signal in the same image, a
threshold has been applied to the CQT as indicated by the maximum value in the
52 colorbar of the top panel.

55 expected that the signal power will be removed in that part along with the glitch when
56 the latter is estimated and subtracted out. Nonetheless, as far as the BNS signal used in

this paper is concerned, we observe very little impact on the signal across a wide range
59 of‘glitch SNRs.
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Figure 4. Subtraction of the Blip Glitch. The top and bottom panels show the CQT
of the data and residual, respectively. The glitch is the vertical feature at = 6 sec. In
order to show both the glitch and the signal in the same image, a threshold has been
applied to the CQT as indicated by the maximum value in the colorbar of the top
panel.

SHAPES is not well adapted to fitting highly oscillatory waveforms since these
are are not represented well by splines without using an inordinate number of knots.
Therefore, the direct use of SHAPES for glitches in the Gravity Spy database such as
whistlers or wandering lines is not viable. However, chirp signals such as these could be
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Figure 5. Subtraction of the Koi Fish glitch. The top and bottom panels show
the"CQT of the data and residual, respectively. The glitch is the vertical feature at
~9.0 sec. In order to show both the glitch and the signal in the same image, a
threshold has been applied to the CQT as indicated by the maximum value in the
52 colorbar of the top panel.

55 estimated using the method proposed in [54, 55], where adaptive splines figure indirectly
56 in a non-linear signal model. This is an interesting direction that will be pursued in
future work.

59 Other current limitations of SHAPES, which are technical in nature, are that the
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Figure 6. Subtraction of the Tomte Glitch. The top and bottom panels show the CQT
of the data and residual, respectively. The glitch is the vertical feature at ~ 8.0 sec.
In order to show both the glitch and the signal in the same image, a threshold has
been applied to the CQT as indicated by the maximum value in the colorbar of the
top panel.

penalty gain parameter A as well as the segment length to be processed must be specified
by the user. The choice of the latter, along with the nature of the data, influences the
number of knots used in the fit and led to the necessity of breaking up the data for the
GW170817 glitch into three ad hoc parts. Work is in progress to address both of these
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Figure 7. SNR time series outputs,of matched filters with identical parameters on the
SHAPES (blue) and BayesWave (red) residuals for the GW170817 L1 data. The peak
values in both time series occur closerto the time at which the instantaneous frequency
of the signal crosses 35 Hz.

limitations.

Our results show that SHAPES"is a promising addition to the toolbox of glitch
subtraction methods that will become increasingly important as GW detectors become
more sensitive. SHAPES is gomputationally inexpensive, taking on the order of a few
minutes for each gliteh,sand,will'be made much faster by planned code improvements.
This could allow, in prineiple; the subtraction of a large number of broadband glitches
of known types as partyof data conditioning and provide significantly cleaner data for
any type of GW gearch.

The data set used.in this paper and codes for plotting glitch data and SHAPES
estimates are provided in‘aspublic data release on Zenodo [56].
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