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By integrating deep neural networks and hashing into cross-modal retrieval, deep
cross-modal hashing (DCMHs) has achieved superior performance and thus has drew
widespread attention. Nevertheless, there still remains two problems for existing D-
CMHs: (1) most existing DCMHs methods simply leverage single labels to compute
the semantic similarity of cross-modal pairwise instances which neglects that many
cross-modal datasets contain abundant semantic information with multi-labels. (2) a
few DCMHs methods have utilized the multi-labels to supervise the learning of hash
functions for DCMHs. Nevertheless, the feature space of multi-labels is too sparse to
supervise the learning of DCMHs, which may lead to a suboptimal performance for
DCMHs. To make full use of the multi-labels in cross-modal datasets and enhance the
performance of DCMHs, we propose a multi-label modality enhanced attention based
self-supervised deep cross-modal hashing (MMACH) method. Specifically, MMACH
defines a multi-label modality enhanced attention module, which utilizes an attention
mechanism to compensate the sparse feature vectors of multi-labels from multi-modal
instances. MMACH also defines a multi-label cross-modal triplet loss to make sure that
cross-modal instances with more common categories have more similar hash represen-
tations and vice versa. Afterwards, MMACH uses the enhanced multi-labels to super-
vise the learning of hash functions of other modalities with a self-supervised learning
scheme, during which the defined multi-label cross-modal triplet loss is used to preserve
the multi-label semantic relevance of cross-modal instances. Extensive experiments on
four multi-label cross-modal datasets demonstrate that our MMACH can achieve promi-
nent performance and outperform several baseline methods.

© 2021 Elsevier B. V. All rights reserved.

*Corresponding author:
e-mail: songwuswu@swu.edu.cn (Song Wu )

1. Introduction

With the advent and prevalence of Internet, more and more
multi-modal data, such as graphics, texts, videos, images and
so on, have been accumulated in social network. As data from
distinct modalities may represent an identical object or event, it
is plausible to bridge semantically relevant but modality differ-
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ent data to implement massive cross-modal instances matching,
fusing and retrieval. Therefore, cross-modal retrieval [1, 2] is
proposed to retrieve semantically related data from one modal-
ity while the query data is from a distinct modality. Because
data in different modalities have different distributions and thus
have dissimilar feature space, how to efficiently and effectively
minimize the semantic gaps between these large-scale yet het-
erogeneous data and accurately calculate semantical similari-
ty of cross-modal data still remains an intractable problem for
cross-modal retrieval.

Generally, a large number of existing cross-modal retrieval
methods, including topic models [3, 4, 5], subspace learning
[6, 7, 8,9, 10, 11], and deep models [12, 13, 14, 15, 16, 17,
18, 19, 20], project original features of cross-modal instances
into a common real-valued subspace and measure the semantic
similarities in the common real-valued subspace. However, due
to the rapid increment of scale of the multi-modal data, real-
valued based cross-modal retrieval methods usually suffer from
high computation cost and low retrieval accuracy. To solve this
issue, hashing based cross-modal retrieval (also called cross-
modal hashing (CMH)) methods would map high-dimensional
original data from each modality into compact binary codes
and calculate the semantic relevance of cross-modal pairwise
instances with a fast XOR operation. As a result, it would
meet low data storage requirement and ensure efficient simi-
larity measurement and thus become a prevalent research topic
in recent years.

Depending on whether category labels are leveraged during
training stage, existing cross-modal hashing methods can be
further divided into unsupervised methods [21, 22, 23, 24, 25,
26, 27] and supervised methods [28, 29, 30, 31, 32, 33, 34, 35].
Unsupervised cross-modal hashing methods transform the o-
riginal cross-modal data to homogeneous binary codes by cal-
culating the similarities of multi-modal data representations to
protect their semantic relevance. By contrast, supervised cross-
modal hashing methods encode the heterogeneous cross-modal
instances into compact hash codes and preserve the cross-modal
semantic similarities with the help of class labels. Compared
to unsupervised ones, supervised cross-modal hashing methods
can make full use of semantic relation of cross-modal instances
by utilizing semantic labels and thus achieve remarkable boost
of performance.

In the past few years, deep neural networks (DNN) are pro-
posed and applied to many tasks such as sentence recognition,
object detection, image caption and so on. Without exception,
deep neural networks based cross-modal hashing are widely in-
vestigated. Due to the remarkable feature learning ability, deep
cross-modal hashing method can capture the correlation across
different modalities more effectively than hand-crafted method-
s.

In most of existing deep cross-modal hashing methods, t-
wo cross-modal pairwise instances are regarded as semanti-
cally similar only if they have at least one common catego-
ry. They usually neglect the fact that if two cross-modal pair-
wise instances have more common labels than another cross-
modal pairwise instances, then the semantic similarity of the
former should be higher than the semantic similarity of the lat-

ter. Therefore, many existing deep cross-modal hashing meth-
ods overlook the abundant semantic information in multiple-
labels of practical cross-modal datasets and thus cannot accu-
rately evaluate the semantic relevance of cross-modal pairwise
instances, leading to the learned cross-modal hash projection
functions suffered from suboptimal performance. To solve this
problem, a few deep cross-modal hashing methods introduce
self-supervised learning into deep cross-modal hashing and re-
gard the multi-labels of original instances as a signal modal-
ity and learn a hash mapping function to supervise the train-
ing of other modalities. This self-supervised based deep cross-
modal hashing can enhance the performance of cross-modal re-
trieval, however, as the original multi-label matrix is severely
sparse, the multi-label based self-supervised learning strategy
can make limited enhancement of performance of the learned
cross-modal hash projection functions.

To further boost the performance of cross-modal hashing,
we propose a multi-label modal enhanced attention based self-
supervised deep cross-modal hashing (MMACH). Specifically,
MMACH firstly defines a multi-label modal enhanced attention
module (MMEA) to enrich the multi-label matrix to overcome
the sparsity of multi-labels in self-supervised learning based
deep cross-modal hashing, which utilizes three encoders to en-
code each original instance (including original image feature,
original text feature and corresponding multi-label) into a com-
mon real-valued space, and then normalizes these real-valued
features. Afterwards, the normalized real-valued features from
the original image and the normalized real-valued features from
the original text are fused into the normalized real-valued fea-
tures by using a attention mechanism. Secondly, MMACH de-
fines a multi-label cross-modal triplet loss (MCTL) to better
evaluate the semantic similarity of multi-label cross-modal in-
stances, i.e., MCTL constructs cross-modal triplets to keep the
similarity of features of cross-modal pairwise instances with
more common categories higher than the similarity of features
of cross-modal pairwise instances with less common categories.
Thirdly, MMACH introduces the multi-label modal enhanced
attention module and the multi-label cross-modal triplet loss
into self-supervised learning based deep cross-modal hashing
to enhance the cross-modal retrieval. Fourthly, experiments on
four standard cross-modal datasets are conducted and the ex-
perimental results demonstrate the enhancement of the perfor-
mance of our proposed MMACH. The main contributions of
our work include four-folds:

1. We propose a multi-label modal enhanced attention mod-
ule. To solve the sparsity of multi-labels in self-supervised
learning based deep cross-modal hashing, three encoders are
pre-trained and transferred to map the original image-text pairs
as well as their multi-labels into a common real-valued feature
space. After normalization , the features of the original image
and the features of the original text are fused into the features
of the original multi-labels to enrich the sparse multi-labels.

2. We propose a multi-label cross-modal triplet loss. In
multi-label learning, suppose that we have a triplet instance
(a,b,c) and each instance has multi-labels, if instance a and
instance b have more common categories than instance a and
instance c, then a and b is more semantically relevant than a
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and c, thus, the learned feature of a and the learned feature of
b is more similar than the learned feature of a and the learned
feature of c. Inspired by this, we define a multi-label cross-
modal triplet loss, i.e,. if two cross-modal instances have more
common categories than the other two cross-modal instances,
then the similarity of the learned features of the former should
be higher than the similarity of the learned features of the latter.
To the best of our knowledge, this is the first time to introduce
multi-label triplet loss into cross-modal retrieval.

3. We cooperate the multi-label modal enhanced attention
module and the multi-label cross-modal triplet loss into cross-
modal hashing and propose a multi-label modal enhanced at-
tention based self-supervised deep cross-modal hashing (M-
MACH) method. MMACH leverages the multi-label modal en-
hanced attention module to generate an enhanced multi-label
modality, with which a hash projection function is learned
and used to supervise the training of hash mapping function-
s of other modalities. To preserve the semantic relevance of
cross-modal instances unchanged during the hash representa-
tion stage, the multi-label cross-modal triplet loss is introduced.

4. We conduct extensive experiments to validate the efficien-
cy of our proposed MMACH. Four well-known cross-modal
benchmark datasets are utilized to conduct experiments to ver-
ify the effectiveness of MMACH and compare MMACH with
several state-of-the-art cross-modal hashing methods.

The rest of the paper is organized as follows. Section 2
depicts the related work. Section 3 presents our multi-label
modal enhanced attention based self-supervised deep cross-
modal hashing (MMACH) method. Section 4 is the learning
details of our MMACH. Section 5 shows the experiments on
several datasets to validate the performance of MMACH. Sec-
tion 6 concludes the paper.

2. Related Work

2.1. Deep Cross-Modal Hashing

Among previous cross-modal hashing methods, shallow ar-
chitecture based methods firstly extract hand-crafted features
and then utilize these hand-crafted features to learn hash func-
tions, which is a two-stage architecture and might not be opti-
mally compatible with each other and may result in suboptimal
performance. By contrast, deep cross-modal hashing methods
make full use of the significant feature extraction capabilities
of deep neural networks and thus can better explore the correla-
tions across different modalities with an end-to-end style, there-
fore, deep cross-modal hashing retrieval has attracted increas-
ing attention. Representative methods are deep cross-modal
hashing (DCMH) [36], pairwise relation guided deep hashing
(PRDH) [37], correlation hashing network (CHN) [38], cross-
modal hamming hashing (CMHH) [39], and self-supervised ad-
versarial hashing (SSAH) [40]. DCMH [36], which effective-
ly projects image-text pairs into corresponding hash codes by
using an end-to-end deep neural network framework. PRDH
[37] exploits intra-modal and inter-modal constraints of differ-
ent pairwise instances to generate accurate hash codes with a
united deep learning framework. CHN [38] defines a cosine
max-margin loss to enhance the quality of the learned hash

codes. CMHH [39] uses an exponential focal loss to penalize
significantly on similar cross-modal pairs with Hamming dis-
tances larger than the Hamming radius threshold. SSAH [40]
introduces self-supervised learning into cross-modal hashing
and trains a hash function (named LabelNet) on the multi-label
modality to supervise the learning of other modalities. Nev-
ertheless, these methods either leverage single labels to calcu-
late the semantic similarity of cross-modal pairwise instances or
simply regard the semantic similarity of cross-modal pairwise
instances with multiple labels as 1 if these two cross-modal in-
stances have at least one common categories, which overlooks
the fact that many practical cross-modal datasets have multiple
labels and there are abundant semantic information in multi-
labels. Namely, if two cross-modal instances have more com-
mon categories than another cross-modal pairwise instances,
then the semantic similarity of the former pairwise is higher
than the semantic similarity of the latter pairwise. Moreover,
the existing self-supervised based deep cross-modal hashing
methods often suffer from inferior performance because hash
function learned on the sparse multi-labels has a weak supervi-
sion capacity to train the hash functions of other modalities.

2.2. Attention Mechanism

Attention mechanism [41, 42, 43, 44] is firstly introduced and
widely applied in natural language process which tries to con-
sider the neighboring words when extracting features from one
word. Subsequently, attention mechanism is introduced into the
field of computer vision which is trained to identify where the
model should concentrate on when performing a special task.
To date, only a few methods combine cross-modal hashing re-
trieval with attention mechanism. Attention-aware deep adver-
sarial hashing (DAH) [45] introduces attention mechanism into
cross-modal hashing and generates the adaptive attention masks
to divide the feature representations into the attended and the u-
nattended feature representations. Different from this, we fuse
the features of the image modality and the features of the text
modality into the sparse multi-labels to train a strong hash func-
tion to supervise the learning of hash functions for the image
modality and the text modality.

2.3. Multi-Label Learning

Multi-label learning pays attention to the issue that an in-
stance is associated with several labels simultaneously [46, 47].
Generally speaking, instances with multi-labels contain more
semantic information than instances with signal labels. How
to adequately mine the semantic information in multi-labels to
accurately calculate the semantic similarities between instances
with multi-labels remains a problem. To this end, [48] pro-
poses a distance metric learning algorithm for multi-label clas-
sification, which integrates a pairwise multi-labels similarity
constraint and a Jaccard Distance into multi-label learning and
achieves competitive performance. To better explore the seman-
tic information in multi-labels and further preserve the multi-
labels similarity, especially preserve the multi-labels similarity
of cross-modal instances, in this paper, we define a multi-label
cross-modal triplet loss.
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3. Proposed Method

In this section, we elaborate our proposed multi-label modal
enhanced attention based self-supervised deep cross-modal
hashing (MMACH) method with the following subsections: no-
tations and problem formulation, modal encoders, multi-label
enhanced attention module, hash representations learning and
hash codes generation. For the sake of clarity, we assume that
each data in our method has three modalities (i.e., an image
modality, a text modality and a multi-label modality). The
framework of MMACH is shown in figure 1.

3.1. Notation and Problem Formulation

To help better understand this section, here we firstly give
a formal definition of notations and problem formulation-
s. We are provided a training set of n instances O =
B AT, ALY, ), where I; € RY, T; € R” and L; € R%
are the original image feature, the original text feature and the
multi-labels of the i-th training instance. If the i-th training in-
stance is assigned to the j-th class, then the j-th component of
L;equals 1 (i.e., L;; = 1), otherwise L;; = 0.

With the provided training set and semantic similarity matri-
ces, the goal of cross-modal hashing is to learn three hash map-
ping functions to project the original images, the original multi-
labels, the original texts into compact hash codes and preserve
semantic similarities of these cross-modal instances unchanged.
To achieve this goal, we first encode the original instances to
c-dimensional feature vectors with pre-trained deep neural net-
works, i.e., {I;}_,, {T:}\_, and {L;}]_, are projected into {FE}I 1>
{GFYL, and {HF}L,, respectively. As the original multi-labels
is pretty sparse, we utilize a multi-label modal enhanced atten-
tion to compensate it. The multi-label enhanced feature vec-
tors are denoted as {HA}” Afterwards, three deep neural
networks are utilized to map the {FF},, {GF}" | and {HYL,
into k-dimensional hash representations {F h’}i . (G
{H"} |, respectively, i.e., FI" = f(FE,0"), GI" =
HI" = h(H?,0%), where f(.,HI), g(.,67) and h(.,8") are hash
representation learning functions for the image-modality, the
text-modality and the multi-label modality, respectively, 6/, 67
and 6" are parameters of the three deep neural networks, respec-
tively. Finally, we use a sign function to generate united hash
codes matrix B € R™* from the learned hash representations.

3.2. Modal Encoders

To extract features from the original instances, three encoders
E;, Er and E| are leveraged to encode each original image I;,
each original text 7}, and each original multi-label Z; into c-
dimensional feature vectors F£, G¥ and HE, respectively.

Ff = E«(I)
GF = Ex(T) 6]
Hf = EL(L)

3.3. Multi-Label Modality Enhanced Attention Module

In cross-modal hashing field, many practical datasets (e. g.,
MIRFLICKR-25K [49] and NUS-WIDE [50]) contain multi-
labels. Nevertheless, most previous methods merely regard t-
wo cross-modal instances as similar pairwise only if they have
at least one common category, which overlooks the abundant
semantic information in multi-labels and thus cannot accurate-
ly evaluate the semantic relevance of cross-modal pairwise in-
stances. As a result, the learned cross-modal hash projection
functions have suboptimal performance. To solve this issue, a
multi-label based self-supervised learning strategy is natural-
ly come up to guide the learning of cross-modal hash projec-
tion functions. Nonetheless, as the original multi-label matrix
is severely sparse, the multi-label based self-supervised learn-
ing strategy can make limited enhancement for the performance
of the learned cross-modal hash projection functions. For this
purpose, in this subsection, a multi-label modal enhanced at-
tention module (MMEA) is proposed to enrich the multi-label
matrix. Specifically, for a given training image-text pair with
multi-labels {/;, T;, L;}, MMEA firstly utilizes the encoders in
subsection 3.2 to encode them into c-dimensional feature vec-
tors F¥, GF and HY, then an attention mechanism is introduced
to fuse relative semantic information of F¥ and G* to HF. The
corresponding formulations are as follows:

E E
I _ FeoHE
attention ——
| F; TR H | )
E E
G, Hi
attention™ — e —
|| G; I 1A R
Where attention'™, attention™ are semantic affinity of F£ and
HE, GF and HE, respectively. || . || is norm of a vector.

H;‘ = Hl.E + attemionlLFlE + attentionTLGiE 3)

Where HIA is the multi-label modal enhanced feature vector for
the original multi-label L;. By equation 2 and 3, we can com-
pensate the sparse multi-label L; with the abundant semantic
information in /; and 7T;, which with a self-supervising learning
style can better guide the training of deep neural networks for
the image modality and the text modality in return.

3.4. Multi-Label Cross-Modal Triplet Loss

Suppose that we have a cross-modal triplet (/;, Tp1, T)2), the
image /; is more semantically similar to the text 7, than to
the text Tj,. Their hash representations F/" G”’l and G”’ can
easily learned with the corresponding hash mapping functlons
ie., Ff” = f(FF,0h, Gﬁ; = g(GEl,GT) and G’” = g(sz,QT).
To preserve the semantic snmlanty unchanged dunng the hash
representation learning procedure, the similarity of F° f” and GZ’I
should be higher than the similarity of F" and G";. Therefore,
inspired by [51, 52, 53], we define the multi-label cross-modal
triplet loss (MCTL) as follows:

T3 Ty, Tpo)
= Y maxOF =Gyl - F =Gl +y @

I.Tp1, T
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Fig. 1. The overall flowchart of our proposed MMACH method. MMACH includes three parts: (1) a modal encoder part (E;, E; and E7), which composes
of three deep neural networks to extract the features from the original instances of the image modality, the text modality, and the multi-label modality,
respectively. (2) a multi-label modal enhanced attention part, which utilizes attention mechanism to extract semantically relevant information from the
image modality and the text modality and then fuse them to the sparse multi-label modality. (3) a hash representation learning and hash codes generation
part, which aims to make sure that semantically similar pairwise cross-modal instances have similar hash codes. The © represents dot product, while the

® represents element product, and the & denotes element add.

Where || - ||, is the L, norm, v is a positive margin. Equation 4
means that the L, distance of a more multi-label semantic sim-
ilar cross-modal pairwise is smaller than the L, distance of a
less multi-label semantic similar cross-modal pairwise with a
margin y. By this way, the multi-label cross-modal semantic
similarity can be adequately protected during hash representa-
tion learning stage.

3.5. Hash Representations Learning

In hash representation learning stage, the learned multi-
label modal enhanced feature vectors {HlA}l |» the feature vec-
tors for the image-modality {F; Eyn }i_,» and the feature vectors
for the text-modality {GE} ', are as input of the deep neu-
ral network for the multi- label modality, deep neural network
for the image-modality, and deep neural network for the text-
modality, respectively. To preserve semantic similarity of cross-
modal instances during hash representation learning procedure,
we introduce the multi-label cross-modal triplet loss in sub-
section 3.4. Namely, for cross-modal triplets (H, F%,, F 2)

L’
(FE, HQI,H ,), (HY, GE GE) and (GF,H? HA) we define

b’ pl’

the following semantic similarity preserving loss functions:
JiL
= JHH L FLLFL) + I (FE HY L HY,)
hr hr
> max(o. || H - Fiy )

H)F} Fr)
4

2
+ Z max(0, | F" — HI' ||

FEHA HY,
P P2

hr hr (2
_“Hi _sz ||2+71) (5)

2
— L F" = Hi5 Il +72)

Where J/T is the cross-modal semantic similarity preserving
loss for the image-modality and the multi-label modality. The
multi-label semantic similarity of H? and F 51 is higher than the
multi-label semantic similarity of H and F 52. The multi-label
semantic similarity of F¥ and HSI is higher than the multi-label
semantic similarity of FZ and HQZ.
margins.

v1 and 7y, are two positive

JTL
— JTL(HA Gpp )+JTL(GE HA ?2)

Y, maxOIHY -G I~ 1 H =Gl I +73) (g

A E E
HAGE| GE,

h hr )2 h hr
£ max(O, G — HI L~ 1| G — HIS I + ya)
GE.HA HA

i p1 )

Where J7F is the cross-modal semantic similarity preserving
loss for the text-modality and the multi-label modality. The
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multi-label semantic similarity of H and G1€1 is higher than the
multi-label semantic similarity of H; and G7,. The multi-label
semantic similarity of G¥ and HQI is higher than the multi-label

semaptic similarity of GlE and Hﬁz. 3 and 4 are two positive
margins.

3.6. Hash Codes Generation

By subsection 3.5, we can acquire the hash representations
{Fh’};’ 15 {G’”}”_ and {H’”}” for original images {[;}!_,, orig-
inal texts {7;}7_,, and orlglnal multi-labels {L;}?_,, respective-
ly. However, the goal of cross-modal hashing is to map multi-
modal data into compact hash codes. To this end, we utilize a
sign function to approximatively generate the hash codes from
the learned hash representations:

FIr + G + HY”
3

Where B; € R* is the hash codes for the i-th instance. To min-
imize the information loss in equation 7, we firstly squeeze the
hash representations from real-valued space into [-1, 1] with the
following tanh function:

B; = sign( ) (7)

h h
F;" = tanh(F;")
h h
G;" = tanh(G") 8)
H!" = tanh(H!")
Moreover, to further decrease the information loss in equa-

tion 7, a quantization loss is introduced as follows:

2 2 2
Syl B = FI3 + 11 Bi = G |l; + 1| B — H |I)
J quantization = 3k

©))
Where n and k are the number of training instances and the
length of hash codes, respectively.
Merging the cross-modal semantic similarity preserving loss-
es and the quantization loss together, the whole loss function is
depicted as follows:

1 1
J:—J1L+—JTL+Q'\]uaniaion 10
H%Lk l’l%Lk qi tizat ( )

Where « is a hyper-parameter to balance the cross-modal se-
mantic similarity preserving losses and the quantization loss.
ny and nyyp are the number of cross-modal triplets between the
image-modality and the multi-label modality, and the number
of cross-modal triplets between the text-modality and the multi-
label modality, respectively.

3.7. Hash Representations Learning Networks

For the image-modality, we fine-tune the TxtNet in SSAH
[40] (c > MS — 4096 — 512 — k) to learn the corresponding
hash representations from the encoded features.

For the text-modality, the TxtNet in SSAH is fine-tuned
(c > MS — 4096 — 512 — k) and also utilized to learn the
corresponding hash representations from the encoded features.

For the multi-label modality, a deep neural network with
three fully-connected layers (¢ — 8192 — k) is introduced
to learn the hash representations from the encoded features.

4. Learning Algorithm of MMACH

To learn the optimized 6’, 67, #* and B, an alternating strate-
gy is introduced to update one of €', 67, 8 and B when keeping
the other three fixed. The detailed execution and optimization
for MMACH are depicted in Algorithm 1.

4.1. Optimize 6* with 6!, 6" and B Unchanged

While we keep 6/, 67 and B unchanged, the parameters 8" of
DNN for the multi-label modality can be learned by stochastic
gradient descent (SGD) and back-propagation (BP). Detailedly,
in each iteration, four batches of training cross-modal triplets
are randomly selected to execute our algorithm, i.e., for each
selected multi-label enhanced feature vector H?, the gradient is
computed as follows:

6‘] 1 hr hr 1 hr hr
=T ), Fp-Fi+—— > (Hy-Hy)
OHY nink et Mk e i,

1 hr hr 1 hr hr
—— > @y G1)+n2k >y - HY)

nTL HA GE GE GE HA HA
p1°p2 i p iy,
2a/ 2y (Bi — Hf")
3nk
(11
Afterwards, the 599{ can be calculated from ,‘;IJ,,, with the chain

91 and the back-

rule. Finally, the 6% can be optimized with T

propagation.

4.2. Optimize 6" with 0%, 0" and B Unchanged

While we keep 67, 8- and B unchanged, the parameters 6’ of
DNN for the image modality can be optimized by SGD and BP.
Concretely, in each epoch, two batches of training cross-modal
triplets are randomly selected to run our method, i.e., for each
selected image feature vector F lE , the gradient is calculated as
follows:

aJ 2 hr hr 2 hr hr
—m = > (Fh - F) — > HYG - H
OF o k HAFE FE k FE HA HA

p1°>" p2 pl>" p2

20y (B - F™)
3nk

12)

with the chain
, and the back-

Further, the 2% can be calculated from 6‘;’,,,
rule. Finally, the 6’ can be optimized Wlth

propagation.

4.3. Optimize 0" with ', 0 and B Unchanged

When we keep @/, 6* and B unchanged, the parameters 7 of
DNN for the text modality can be optimized by SGD and BP.
Concretely, in each epoch, two batches of training cross-modal
triplets are randomly selected to execute our algorithm, i.e., for
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each selected text feature vector GlE , the gradient is calculated
as follows:

aJ 2 hr hr 2 hr hr
9Gh 21 Z (Gp1 = Gpo) + —— Z (H), = Hyp)
oG’ ny k G, ny k Gt W,
20 37, (Bi—GI")
3nk
(13)
Afterwards, the a%’, can be calculated from % with the chain

rule. Finally, the 67 can be optimized with % and the back-
propagation.
4.4. Optimize Bwith @', 07 and 8 Unchanged

When we keep @, 67 and 6 unchanged, the hash codes B
can be optimized with equation 7.

Algorithm 1 MMACH: Multi-Label Modal Enhanced Atten-
tion based Self-Supervised Deep Cross-Modal Hashing.

Input:
training instances: O = ({I;Y | ATV, (L) )
the maximal epoches of the algorithm is max_epoch.
mini-batch size npge, = 128.

Output:

Deep neural networks parameters 6/, 67 and 6% for hash representation learning, and
hash codes matrix B.

1: Encoding the original instances {L}Y., {Ti}l,, {L:}
{FEYL {GE) | and {HE}" | with equation 1.

2: Learning the multi-label enhanced feature vectors {H{‘ Ji, from [H,.E J7, with equation
2 and 3.

3: Generating n; (H?, FlL;l,F,L;'Z (the triplets set is named Triplet;;) and ny

(F,.E,Hﬁl, Hﬁz) (the triplets set is named T'riplet;;) from {H{‘ J, and {F‘.E};':], gener-
ating nyy (H;‘,G[E)I,sz) (the triplets set is named Tripletr;) and nyy (G,.E,H;‘I,Hﬁz)
(the triplets set is named Triplet.r) from {H2}? | and {GF}L .

4: Tnitialize the deep neural network parameters ¢', 67, 6, hash representations {F/"}"

=1’
{Gf"]” {H:”]’Ll, hash codes matrix B, and the epoch numbers batchnum; =

=1’ i=

[(nr, + nrr)/2nparen)1, batchnumy = [nyr[Rparen], batchnumy = nrr, [Rparen]-

n

", to c-dimensional features

5: repeat

6: for j = 1 to batchnum; do

7: Randomly select npq, triplets from Triplet;; to construct a mini-batch and ran-
domly select npqep triplets from T'riplety; to construct a mini-batch. Randomly
select npaen triplets from Tripletry, to construct a mini-batch and randomly se-
lect npgren triplets from Tripletyr to construct a mini-batch.

8: For each feature vector H;' in the mini-batches, calculate H = h(H;',6") by
forward propagation.

9: Update [Hf‘"]j.lzl.

10: Compute the derivative of 6 in equation 11.

11: Utilize back-propagation to update the network parameters 6-.

12: end for

13: for j = 1 to batchnum; do

14: Randomly select npq, triplets from Triplet;; to construct a mini-batch and
randomly select npqp triplets from T'riplet;; to construct a mini-batch.

15: For each feature vector Ff in the mini-batches, calculate F,{” = f(Fl.E, 6') by
forward propagation.

16: Update {FJ"}L .

17: Compute the derivative of 8’ in equation 12.

18: Utilize back-propagation to update the network parameters 6'.

19: end for

20: for j = 1 to batchnumy do

21: Randomly select npgp triplets from Tripletr; to construct a mini-batch and
randomly select npqcp triplets from Triplet;r to construct a mini-batch.

22: For each feature vector G¥ in the mini-batches, calculate G = g(G,6") by
forward propagation.

23: Update {Gf” Y-

24: Compute the derivative of 67 in equation 13.

25: Utilize back-propagation to update the network parameters 67 .

26: end for

27: Optimize B by utilizing equation 7.
28: until the max epoch number max_epoch

4.5. Complexity Analysis

We analyze the algorithm complexity of MMACH in this
part. For the overall loss function (equation 10) of MMACH, its
complexity can be calculated as follows: O(n;.)+O(nyL)+O(nXx
k)~0(n?), as k < n and k, ny, nyy, are of the same magnitude
as n.

5. Experiments

In order to validate the performance of our proposed M-
MACH method and compare it with several state-of-the-art
cross-modal hashing methods, in this section, we implement
experiments on four benchmark datasets.

5.1. Datasets

MIRFLICKR-25K [49]: the original MIRFLICKR-25K
dataset is made up of 25,000 image-text pairs from Flickr web-
site. In our experiment, instances that have at least 20 textual
tags are selected and thus finally 20, 015 image-text pairs with
multi-labels are remained, and each of the selected instances
is assigned to at least one of the 24 given labels. We encode
each textual tag into a 1386-dimensional BOW (bag-of-words)
feature in our experiment.

NUS-WIDE [50]: the original NUS-WIDE dataset contain-
s 269,468 image-text pairs. We first abandon the data without
categories, then choose data classified by the 21 most-frequent
categories to construct a subset, which has 190,421 image-text
pairs. We encode each textual tag into a 1000-dimensional
BOW feature in our experiment.

Microsoft COCQ02014 [54]: the original Microsoft CO-
C02014 dataset comprises two parts: training set with 82,785
images, and validation set with 40,504 images. Each image
contains 5 captions (which is regarded as a text modality). We
first abandon instances that have no captions, then we combine
the training set and validation set together to construct a subset
with 122,218 image-text pairs, and each instance is annotated
with at least one of 80 classes. Moreover, the text of each in-
stance is represented as a 2026-dimensional BOW feature.

IAPRTC-12 [55]: the original IAPRTC-12 dataset is com-
posed of 20,000 image-text pairs. In our experiment, we first
eliminate instances without tags and then construct a subset of
19,999 image-text pairs with 275 categories. The text of each
instance is encoded into a 1251-dimensional BOW feature.

Furthermore, the detailed information, including number of
used instances, number of training set, number of query set,
number of retrieval set, dimension of tags for each instance, and
categories for the four experimental datasets are listed in Table
1. [56] provides more detailed information for experimental
settings.

5.2. Evaluation Metrics

For cross-modal hashing retrieval, two of the most prevalen-
t leveraged retrieval protocols are Hamming ranking and hash
lookup. Specifically, the Hamming ranking protocol ranks the
retrieval results in ascending order of the Hamming distance
when giving a query instance. The hash lookup protocol return-
s retrieval instances within a certain Hamming radius from the
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Table 1. Detailed settings of experimental datasets

Dataset Used Train Query | Retrieve | Tag dimension | Labels
MIRFLICKR-25K | 20,015 | 10,000 | 2,000 18,015 1,386 24
NUS-WIDE 190,421 | 10,500 | 2,100 | 188,321 1,000 21
MS COC02014 122,218 | 10,000 | 5,000 | 117,218 2,026 80
IAPRTC-12 19,999 | 10,000 | 2,000 17,999 1,251 275

query instance. In practical applications, Mean Average Pre-
cision (MAP), topN precision curves (topN Curves) and preci-
sion recall curves are three substitutions of the above two re-
trieval protocols. Thus, Mean Average Precision, Mean Av-
erage Precision and precision-recall curves are used as evalu-
ation metrics to validate the performance of our proposed M-
MACH method and in the comparison with several state-of-the-
art baseline methods.

5.3. Baselines and Implementation Details

Several CMH methods, including hand-crafted based CMH
methods CMSSH [57], SePH [58], SCM [31] and GSPH [20]
and deep feature based CMH methods DCMH [36], PRDH
[37], CMHH [39], CHN [38], SSAH [40] and MLSPH [56]
are chose as baseline methods in our experiment. Concrete-
ly, the source codes of GSPH, SePH, SCM, CMSSH, SSAH,
DCMH and MLSPH have been released and we cautiously im-
plement them. For other methods, we cautiously implement
them by ourselves.

By using the open source deep learning framework pytorch,
our experiments are executing on an NVIDIA GTX Titan X-
P GPU server. During training stage, each multi-label cross-
modal triplet (a, b, ¢) is generated by using the following rule:
a and b are instances from the first modality, while instance ¢
is from another modality. Moreover, a and b have more com-
mon categories than a and c¢. In our experiments, the modal
encoders E; and E; employ the universal sentence encoder
[59] to encode each original text or original multi-label text
into 512-dimensional feature vectors, and the modal encoder
E; utilizes ResNet34 [60] to extract the features of each orig-
inal image and we acquire the output of the global average
pool and resize it to a 512-dimensional feature vector. In our
experiments, the maximum training epoch is set to 200, the
learning rate is initialized to 10™!° and gradually lowered to
1076 in 200 epochs. For all experiments, I — T represents
the cases when using a querying image while returning text,
while T — I represents the cases when using a querying tex-
t while returning an image. Source code will be released at:
https://github.com/SWU-CS-MediaLab/MMACH.

5.4. Performance Comparisons and Discussion

5.4.1. Hyper-Parameters Experiment

In this subsection, experiments are conducted on two dataset-
s, i.e., MIRFLICKR-25K. The length of hash codes is set to 64
to find out the best value of hyper-parameter a. The MAPs of
our proposed MESDCH method under different a are recorded
and then depicted in Figure 2. From this figure, it is obvious that
our proposed MMACH method can achieve better performance
when @ = 0.6. Therefore, in the subsequent experiments, we
set @ = 0.6 for MMACH.

5.4.2. Validation of the Effectiveness of Multi-Label Modality
Enhanced Attention

In this subsection, we conduct the experiment to examine
the effectiveness of our proposed multi-label enhanced atten-
tion module. Concretely, we firstly remove the modal attention
attention in our proposed MMACH (i.e., we set H* = HF in
Figure 1) and keep other parts unchanged, we name this vari-
ation as MLSDCH. Afterwards, we compare MLSDCH with
MMACH on the four datasets MIRFLICKR-25K, NUS-WIDE,
Microsoft COC02014 and IAPRTC-12. The corresponding
MAPs under different hash code lengths of 16, 32 and 64 are
shown in Table 2.

From MAPs in Table 2, it demonstrates that, in most cases,
the MAPs of MMACH is higher than that of MLSDCH, show-
ing that our proposed multi-label enhanced attention module
can enhance the performance of cross-modal hashing retrieval,
which is partly because multi-label enhanced attention module
compensates the sparse feature space. In addition, Figure 3
presents the top 4 cross-modal retrieval results by MMACH and
MLSDCH on four datasets, it can be observed that in most cas-
es, MMACH can retrieve more accurate candidates than MLS-
DCH.

5.4.3. Validation of the effectiveness of Multi-Label Cross-
Modal Triplet Loss

In this part, we conduct experiments to verify the perfor-
mance of our proposed multi-label cross-modal triplet loss.
Specifically, we firstly utilize MSE (Mean Square Error) loss
to replace of our proposed multi-label cross-modal triplet loss
in our proposed MMACH method and keep other parts fixed,
and we name this variation as MMACH-MSE. Subsequently,
we compare MMACH with MMACH-MSE on the four dataset-
s MIRFLICKR-25K, NUS-WIDE, Microsoft CO-CO2014 and
IAPRTC-12. The corresponding MAPs under distinct hash
code lengths 16, 32 and 64 are shown in Table 3.

From Table 3, we can see that the MAPs of MMACH is al-
ways higher than that of MM ACH-MSE. This demonstrates the
effectiveness of our proposed multi-label cross-modal triplet
loss, which is partly because multi-label cross-modal triplet
loss can better preserve the multi-label semantic relevance com-
pare to MSE loss. Furthermore, Figure 4 lists the top 4 cross-
modal retrieval results by MMACH and MMACH-MSE on four
datasets, it can be observed that in most cases, MMACH can re-
trieve more accurate candidates than MMACH-MSE.

5.4.4. Comparison with State-of-the-Art CMH methods

In this subsection, experiments are conducted to further in-
vestigate the performance of our proposed MMACH method.
Specifically, we compare MMACH with several state-of-the-
art cross-modal hashing methods in terms of MAP scores,
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Hyper-parameter « on MIRFLICKR-25K dataset.

MAP

Fig. 2. Sensitivity analysis of the hyper-parameter « on MIRFLICKR25K dataset.

Table 2. Performance of MMACH compared to MLSDCH in terms of MAPs on four datasets: MIRFLICKR-25K, NUS-WIDE, Microsoft COC02014 and

TAPRTC-12. The best MAP scores are shown in boldface.

Task Method MIRFlickr-25K NUS-WIDE . 4 MS COCO IAPRTC-12
16bits 32bits 64bits 16bits 32bits | 64bits 16bits 32bits | 64bits 16bits 32bits 64bits
ST MLSDCH | 0.8024 | 0.8186 | 0.8278 | 0.6330 | 0.6577 | 0.6851 | 0.6826 | 0.7182 | 0.7306 | 0.5218 | 0.5433 | 0.5730
MMACH | 0.8085 | 0.8235 | 0.8348 | 0.6489 | 0.6679 | 0.6847 | 0.6989 | 0.7322 | 0.7540 | 0.5421 | 0.5752 | 0.6031
To] MLSDCH | 0.7796 | 0.8010 | 0.8115 | 0.6371 | 0.6613 | 0.6718 | 0.6989 | 0.7164 | 0.7280 | 0.4962 | 0.5297 | 0.5501
MMACH | 0.7872 | 0.8011 | 0.8162 | 0.6450 | 0.6653 | 0.6758 | 0.6913 | 0.7245 | 0.7515 | 0.5316 | 0.5619 | 0.5866

precision-recall curves and topN-precision curves on four
datasets (i.e., MIRFLICKR-25K, NUS-WIDE, IAPRTC-12,
and Microsoft COC02014).

The MAPs of MMACH and baseline methods under distinct
hash code lengths 16, 32 and 64 are listed in Table 4. Based on
the experimental results, we have the following findings:

(1) Compared to both hand-crafted baseline methods and
deep neural networks based baseline methods, our proposed M-
MACH method can achieve higher MAP values in most cases.
This demonstrates that MMACH can utilize multi-label modal-
ity enhanced attention module, multi-label cross-modal triplet
loss and self-supervised learning strategy to enhance the per-
formance of deep cross-modal hashing retrieval.

(2) Among hand-crafted baseline methods, SePH has the
highest MAP values in most cases, which is partly because
SePH utilizes kernel logistic regression to learn hash projection
functions for each modalities. Among deep neural network-
s based baseline methods, MLSPH has the highest MAP val-
ues in most cases which is partly because MLSPH introduces a
multi-label semantic preserving module and it can compute the
semantic relevance of original data more precisely.

(3) Compared to hand-crafted methods, deep neural networks
based methods usually achieve higher MAP values, which is
partly because deep neural networks based methods make full
use of the superior features learning capability of deep neural
networks.

(4) Both SSAH and MMACH leverage self-supervised learn-
ing to supervise the training of hash projection functions for all
modalities, however, MMACH outperforms SSAH in all cases,
which is partly because MMACH defines a multi-label modal
enhanced attention module to compensate the sparse features
of multi-labels. Moreover, MMACH utilize multi-label cross-
modal triplet loss to select multi-label semantic similar triplets,
while SSAH regards the semantic similarity of two instances
as 1 only if there are at least one common categories, which

neglects the difference of multi-labels.

To further compare MMACH with baseline CMH method-
s, we compare the precision-recall curves of MMACH and all
baseline methods on four experimental datasets with differen-
t hash codes length. Figures 5, 6, 7 and 8 are the precision-
recall curves of all methods with different datasets and hash
code length. From these figures, we can observe that our pro-
posed MMACH outperforms most baseline methods in most
cases. Meanwhile, the precision-recall curves are approximate-
ly identical to our observations on the MAP scores.

Moreover, topN-precision curves of MMACH and base-
line methods on datasets MIRFLICKR-25K, NUS-WIDE, Mi-
crosoft COCO2014 and iaprtc12 with hash codes length of 16,
32 and 64 are drew and presented in Figure 9, 10, 11 and 12.
From these results, we can see that, in most cases, MMACH
can achieve better performance than baseline methods, which is
nearly consistent with the observed MAP values and precision-
recall curves.

5.5. Heatmap Visualization of the Image Modality

To verify the robustness of features extracted by the deep
convolutional neural networks, we utilize the GRAD-CAM [61]
to visualize the heatmaps of input images for our proposed M-
MACH as well as DCMH and SSAH on datasets IAPRTC-
12 and MIRFLICKR-25K. Figure 13 and Figure 14 illustrate
the corresponding heatmaps. From these heatmaps, it is obvi-
ous that our MMACH can more accurately correlate the corre-
sponding semantic categories compared to DCMH and SSAH
in most cases, which demonstrates the powerful multi-label se-
mantic preserving capability of our proposed MMACH.

6. Conclusion

In this paper, we introduce a prominent cross-modal hash-
ing method termed multi-label modal enhanced attention based
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Table 3. Performance of MMACH compared to MMACH-MSE in terms of MAPs on four datasets: MIRFLICKR-25K, NUS-WIDE, Microsoft COC02014

and IAPRTC-12. The best MAP scores are shown in boldface.

Task Method . MIRFIic!(r—ZSK . . NUS-WIDE . 4 MS CQCO . . IAPRTC-]Z .

16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits

MMACH-MSE | 0.8006 | 0.8158 | 0.8282 | 0.6215 | 0.6533 | 0.6692 | 0.6912 | 0.7168 | 0.7364 | 0.5286 | 0.5450 | 0.5795
MMACH 0.8085 | 0.8235 | 0.8348 | 0.6489 | 0.6679 | 0.6847 | 0.6989 | 0.7322 | 0.7540 | 0.5421 | 0.5752 | 0.6031

MMACH-MSE | 0.7714 | 0.7952 | 0.8065 | 0.6362 | 0.6573 | 0.6698 | 0.6531 | 0.6882 | 0.6971 | 0.5026 | 0.5190 | 0.5485
MMACH 0.7872 | 0.8011 | 0.8162 | 0.6450 | 0.6653 | 0.6758 | 0.6913 | 0.7245 | 0.7515 | 0.5316 | 0.5619 | 0.5866

I-T

T-I

Table 4. Comparison to baselines in terms of MAP on four datasets: MIRFLICKR-25K, NUS-WIDE, Microsoft COC02014, IAPRTC-12, respectively.The
best accuracy is shown in boldface.

Task Method

MIRFlickr-25K NUS-WIDE MS COCO IAPR TC-12
16bits | 32bits | 64bits 16bits | 32bits | 64bits | 16bits | 32bits | 64bits 16bits | 32bits | 64bits
CMSSH [57] | 0.5600 | 0.5709 | 0.5836 | 0.3092 | 0.3099 | 0.3396 | 0.5439 | 0.5450 | 0.5410 | 0.3049 | 0.3074 | 0.3130
Hand-Crafted | SePH [58] 0.6740 | 0.6813 | 0.6803 | 0.4797 | 0.4859 | 0.4906 | 0.4295 | 0.4353 | 0.4726 | 0.4186 | 0.4298 | 0.4315
Methods SCM [31] 0.6354 | 0.6407 | 0.6556 | 0.4626 | 0.4792 | 0.4886 | 0.4252 | 0.4344 | 0.4574 | 0.3887 | 0.3945 | 0.4068
GSPH [20] 0.6068 | 0.6191 | 0.6230 | 0.4015 | 0.4151 | 0.4214 | 0.4427 | 04733 | 0.4840 | 0.3716 | 0.3921 | 0.4015
DCMH [36] 0.7316 | 0.7343 | 0.7446 | 0.5445| 0.5597 | 0.5803 | 0.5228 | 0.5438 | 0.5419 | 0.4536 | 0.4727 | 0.4919

1-T PRDH [37] 0.6952 | 0.7072 | 0.7108 | 0.5919 | 0.6059 | 0.6116 | 0.5238 | 0.5521 | 0.5572 | 0.4761 | 0.4883 | 0.4925
Deen Methods CMHH [39] 0.7334 | 0.7281 | 0.7444 | 0.5530 | 0.5698 | 0.5559 | 0.5463 | 0.5676 | 0.5674 | 0.4903 | 0.5074 | 0.5152
P “| CHN [38] 0.7504 | 0.7495 | 0.7461 | 0.5754 | 0.5966 | 0.6015 | 0.5763 | 0.5822 | 0.5805 | 0.4962 | 0.5070 | 0.5241

SSAH [40] 0.7745 | 0.7882 | 0.7990 | 0.6163 | 0.6278 | 0.6140 | 0.5127 | 0.5256 | 0.5067 | 0.5348 | 0.5619 | 0.5781
MLSPH [56] | 0.8076 | 0.8235 | 0.8337 | 0.6405 | 0.6604 | 0.6734 | 0.6557 | 0.7011 | 0.7271 | 0.5342 | 0.5721 | 0.5994
MMACH 0.8085 | 0.8235 | 0.8348 | 0.6489 | 0.6679 | 0.6847 | 0.6989 | 0.7322 | 0.7540 | 0.5421 | 0.5752 | 0.6031
CMSSH [57] | 0.5726 | 0.5776 | 0.5753 | 0.3167 | 0.3171 | 0.3179 | 0.3793 | 0.3876 | 0.3899 | 0.3189 | 0.3282 | 0.3229
Hand-Crafted | SePH [58] 0.7139 | 0.7258 | 0.7294 | 0.6072 | 0.6280 | 0.6291 | 0.4348 | 0.4606 | 0.5195 | 0.4667 | 0.4857 | 0.4936

Methods SCM [31] 0.6340 | 0.6458 | 0.6541 | 0.4261 | 0.4372 | 0.4478 | 0.4118 | 0.4183 | 0.4345 | 0.3824 | 0.3897 | 0.4002
GSPH [20] 0.6282 | 0.6458 | 0.6503 | 0.4995 | 0.5233 | 0.5351 | 0.5435 | 0.6039 | 0.6461 | 0.4177 | 0.4452 | 0.4641
DCMH [36] 0.7607 | 0.7737 | 0.7805 | 0.5793 | 0.5922 | 0.6014 | 0.4883 | 0.4942 | 0.5145 | 0.4851 | 0.4976 | 0.5171

T-I PRDH [37] 0.7626 | 0.7718 | 0.7755 | 0.6155 | 0.6286 | 0.6349 | 0.5122 | 0.5190 | 0.5404 | 0.5112 | 0.5283 | 0.5403
Deen Methods CMHH [39] 0.7320 | 0.7183 | 0.7279 | 0.5739 | 0.5786 | 0.5639 | 0.4884 | 0.4554 | 0.4846 | 0.4790 | 0.4951 | 0.4963
P CHN [38] 0.7776 | 0.7775 | 0.7798 | 0.5816 | 0.5967 | 0.5992 | 0.5198 | 0.5320 | 0.5409 | 0.4994 | 0.5370 | 0.5397

SSAH [40] 0.7860 | 0.7974 | 0.7910 | 0.6204 | 0.6251 | 0.6215 | 0.4832 | 0.4831 | 0.4922 | 0.5265 | 0.5594 | 0.5726
MLSPH [56] | 0.7852 | 0.8041 | 0.8146 | 0.6433 | 0.6633 | 0.6724 | 0.6494 | 0.6955 | 0.7193 | 0.5252 | 0.5624 | 0.5938
MMACH 0.7872 | 0.8011 | 0.8162 | 0.6450 | 0.6653 | 0.6758 | 0.6913 | 0.7245 | 0.7515 | 0.5316 | 0.5619 | 0.5866
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Dataset Query Image MMACH: Retrieval texts MLSDCH: Retrieval texts
1. maldives fuvahmulah kulhi mangrove sunset sunrise atoll 1. maldives fuvahmulah kulhi mangrove sunset sunrise atoll
gnaviyani pond wetland land swim reflation nikon red sky blue gnaviyani pond wetland land swim reflation nikon red sky blue
millzero d300 boy millzero d300 boy
MIRFLICKR- 2. trees sunset naturesfinest 2. trees sunset naturestinest
25K 3. crane gru sunset hdr tramonto eielo sky ray raggi light luci 3. boracay philippines sunset
chdk milano soe flickrsbest 4. roady photo photograph digital jlbrown jumpinjimmyjava
Damniwishidtakenthat canon40d roadart darksky thefunhouse
4. okmulgee oklahoma sunset red drippingspringslake tree water
reflection blueribbonwinner abigfave explore
. fish angelfish 1. fish angel boat ship tank angelfish
. tropicalfish eichlid angelfish 2. tropicalfish cichlid angelfish
NUS-WIDE . fish yellow zoo angelfish 3. 2005 beauty rock mexico angelfish
. fish aquarium blue angelfish 4. pink woman girl lady female bed pattern dress legs polkadots
mauve knees shins angelfish lowcontrast patterned cocktaildress
lowbrightness heartbreaktohate
1. aman on a horse in a flat pasture; a second horse behind him 1. aman on a horse in a flat pasture; a second horse behind him
= .| onthe left; on the left;
2. three people are riding on brown horses in the foreground; 2. agrey statue of a man on a horse on a base made of marmol,
. three red houses with a brown thatched roofand lila flowers with | with a fence in front of it and trees behind it;
Microsoft green leaves behind it; a white sky in the background; 3. four tourists are riding on brown horses on a gravel road; a
coco 3.adark and a light brown horse with red saddles are standing on | green slope with a few bushes in the background;
a path in the foreground; high grass and a wooded hill behind it; 4. four people riding on horses; two foals next to the horses; a
4. a group of people is riding on brown horses on a green creek with a brown rock face and forest in the background;
meadow; grey clouds in the background;
1. a fountain and cobbled walkway in the foreground, a pink and 1. a fountain and cobbled walkway in the foreground, a pink and
white buidling with many arches in the background; trees on the white buidling with many arches in the background; trees on the
right right
2. a white building with lots of columns and arches, a neat lawn 2. a white building with lots of columns and arches, a neat lawn
and neatly cut trees and bushes in the foreground; the flag of and neatly cut trees and bushes in the foreground: the flag of
Paraguay is waving at the top of the building; there is a flower Paraguay is waving at the top of the building; there is a flower
IAPRTC-12 bed on the left; bed on the left;
3. a very modern building; stairs are leading up to the entrance; 3. alarge building on the left, a palm tree in centre of picture,
the walls are entirely made of glass; one red huge column is (mostly) white cars in the street at a junction, some of them
supporting the big roof; rails in the foreground: a green tree on turning left, others going straight; there are red umbrellas in a
the left; park on the right; people are walking through the park, others are
4. Several flagpoles with waving flags on a green lawn in the crossing the road in the foreground;
foreground; a large grey and black building behind it; a huge 4. Front view of a huge dam; water is flowing through one tiny
column with a football on top on the left; a blue sky with white spot; backwater is flowing off on the left; green reed in the
clouds in the background; foreground;
(a) Image-to-text retrieval
Dataset Query Text MMACH: Retrieval images MLSDCH: Retrieval images
maldives fuvahmulah
kulhi mangrove
sunset sunrise atoll
MIRFLICKR | gnaviyani pond
-25K wetland land swim
reflation nikon red
sky blue millzero
d300 boy
NUS-WIDE . fish angelfish
2 a man on a horse in a
Microsoft flat pasture; a second
G0co2014 horse behind him on
the left;
. a fountain and
cobbled walkway in
weRTC12 | o e g
with many arches in
the background; trees
on the right

(b) Text-to-image retrieval

Fig. 3. Examples of top 4 cross-modal retrieval results by MMACH and MLSDCH on four datasets. For (a) using images to retrieve texts, the matching
texts are in blue. For (b) using texts to retrieve images, the purple number in each image is the ranking order, and the blue frame are the matching image.

self-supervised deep cross-modal hashing (MMACH). A novel
multi-label modal enhanced attention module is designed in M-
MACH to compensate the sparse feature vectors of multi-labels
from multi-modal instances and based on this enhanced multi-

labels, self-supervised learning is introduced to train a multi-
label hash function to supervise the training of hash function-
s of other modalities. Furthermore, a multi-label cross-modal
triplet loss is defined in MMACH to ensure that hash repre-
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Dataset Query Image MMACH: Retrieval texts MMACH-MSE: Retrieval texts
1. maldives fuvahmulah kulhi mangrove sunset sunrise atoll 1. contraluz pandorga perico playa puestassol puntaumbria fab
ghaviyani pond wetland land swim reflation nikon red sky blue amazingcolors
MIRFLICKR- millzero d300 boy 2. ravenelle second life torley solo piano kenny bumby sweet
2. trees sunset naturesfinest mermaids romance moonlight craig altman animations dancing
25K 3. crane gru sunset hdr tramonto cielo sky ray raggi light luci cats explore enjoy love youguys areverylucky
chdk milano soe flickrsbest 3. kelowna be canada ubcokanagan
Damniwishidtakenthat 4. aldoaldoz fochi fuochi san giovanni firenze florence italia italy
4. okmulgee oklahoma sunset red drippingspringslake tree water toscana tuscany ialia florencia
reflection blueribbonwinner abigfave explore
1. fish angelfish 1. fish angelfish tropicalfish denmarksaquarium
2. tropicalfish cichlid angelfish 2. fish animal angelfish bermudaaquariumandzoo
NUS-WIDE 3. fish yellow zoo angelfish 3. philippines scuba diving underwater angelfish
4. fish aquarium blue angelfish 4. ocean school sea fish water georgia aquarium scales angelfish
striped
1. aman on a horse in a flat pasture; a second horse behind him L. people is riding on brown horses on a green meadow; grey
[l on the left; clouds in the background;
2. three people are riding on brown horses in the foreground; 2. a woman and other people are riding on horses on a grey, deep
. three red houses with a brown thatched roofand lila flowers with | sandy trail through a forest with green trees
Microsoft green leaves behind it; a white sky in the background; 3. many people are riding on brown horses on a light brown dune
coco 3. adark and a light brown horse with red saddles are standing on | in the shade; dark bushes behind them; a light blue sky in the
a path in the foreground; high grass and a wooded hill behind it; background;
4. a group of people is riding on brown horses on a green 4. a cattle herd on a pasture with mainly white cows and two
meadow; grey clouds in the background; black ones
1. a fountain and cobbled walkway in the foreground, a pink and 1. an immer courtyard with a fountain and flower pots in the
white buidling with many arches in the background:; trees on the centre; several arches surround the courtyard on two levels in
right front of the red building with a blue entrance; more flower pots
2. a white building with lots of columns and arches, a neat lawn below the arches
and neatly cut trees and bushes in the foreground; the flag of 2. . a fountain and cobbled walkway in the foreground, a pink
Paraguay is waving at the top of the building; there is a flower and white building with many arches in the background; trees on
IAPRTC-12 bed on the left; the right
3. avery modern building; stairs are leading up to the entrance; 3. a swimming pool in the foreground; behind it a bar with chairs
the walls are entirely made of glass; one red huge column is and two people, and a bench with one person lying on it; upper
supporting the big roof; rails in the foreground; a green tree on level with doors and a blue rail
the left; 4. a large building on the left, a palm tree in centre of picture,
4. Several flagpoles with waving flags on a green lawn in the (mostly) white cars in the street at a junction, some of them
foreground; a large grey and black building behind it; a huge turning left, others going straight; there are red umbrellas in a
column with a football on top on the left; a blue sky with white park on the right; people are walking through the park, others are
clouds in the background; crossing the road in the foreground
(a) Image-to-text retrieval
Dataset Query Text MMACH: Retrieval images MMACH-MSE: Retrieval images
maldives fuvahmulah
kulhi mangrove
sunset sunrise atoll
MIRFLICKR | gnaviyani pond
-25K wetland land swim
reflation nikon red
sky blue millzero
d300 boy
NUS:WIDE . fish angelfish
3 a man on a horse in a
Micrasaft flat pasture; a second
€OCO2014 horse behind him on
the left;
. a fountain and
cobbled walkway in
weRTC-12 (| SRR e
with many arches in
the background; trees
on the right

(b) Text-to-image retrieval

Fig. 4. Examples of top 4 cross-modal retrieval results by MMACH and MMACH-MSE on four datasets. For (a) using images to retrieve texts, the matching
texts are in blue. For (b) using texts to retrieve images, the purple number in each image is the ranking order, and the blue frame are the matching image.

sentations of pairwise cross-modal instances with more com-
mon labels should be more similar than that of pairwise cross-

modal instances with less common labels. Massive experiments
on several renowned cross-modal benchmark datasets indicated

that MMACH method surpasses baseline methods and acquires
competitive cross-modal retrieval performance.
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Fig. 5. Precision-Recall Curves on MIRFLICKR-25K.
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Fig. 7. Precision-Recall Curves on Microsoft COCO02014.
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Fig. 8. Precision-Recall Curves on IAPRTC-12.
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