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Abstract— This paper proposes a real-time, long short-term
memory (LSTM) based low flow forecast system, while utilizing
historical streamflow to make prediction of the probability of
flows dropping below drought trigger levels for the Potomac River
basin. The proposed recurrent neural network learns to predict
the value of the next time step of the time sequence. We evaluate
the prediction accuracy of the proposed LSTM-based model with
real-world data and compare it to other state-of-the-art baseline
models as well as other LSTM variants. The experimental results
show that the prediction accuracy of the proposed method
outperforms other methods. This design will help improve the
performance of the decision support system for drought
management.
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I. INTRODUCTION

As streamflow quantity problem become increasingly
severe, accurate prediction and effective management of scarcer
water resources will become critical. In addition, river
streamflow prediction is one of most complicated and difficult
hydrological problems because the physical processes that
control it are too complex to allow adequate description by a
system of appropriate equations. It is also because of the
insufficient knowledge on the driving factors and their impact
on streamflow, as well as the lack of reliable prediction and
design methodologies. Noise injected by low quality sensors,
worn out equipment, and changes in the environment also
impact this process. Therefore, understanding and accurate
evaluations of streamflow quantity are critical to enhance the
performance of an assessment operation and develop better
water resources management and plan.

Recently, most research studies have applied some form of
machine learning/deep learning (ML/DL) model to accurately
predict streamflow. With DL approaches at the current state-of-
the-art, research is shifting to further explore the benefits of
hybrid streamflow prediction models. However, new models are
needed to deal with the nonlinearity and noise that affects
streamflow prediction. The main contribution of this paper is a
robust approach to deal with noise in water quantity prediction:
(i) to adopt the Scharr filter to reduce noise in time series
datasets; (ii) to improve robustness in LSTM-based models; (iii)
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to conduct extensive experiments using real-world streamflow
data.

II. METHODOLOGY

The overview of our approach is shown in Fig. 1, and each
component is further detailed in the following sub-sections.
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Fig. 1. Overview of the proposed framework for water quantity prediction.
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A. Time Series Dataset

The real-world dataset consists of monthly adjusted river
streamflow in cubic feet per second collected at the Potomac
Basin above Little Falls, which is near Washington DC, USA
from 1930 to 2021. The values were collected by the National
Water Information System (NWIS) at the U.S. Geological
Survey, Station No. 01646502. On the other hand, the synthetic
noise-augmented data was generated by using an Additive
Gaussian White Noise (AGWN) with a signal-to-noise ratio
(SNR) equal to 20. The noise-augmented dataset is the element-
wise addition of the real-world streamflow values plus the
synthetic noise values.

B. Data Pre-processing

In this subsection, we introduce the Scharr filtering for time
series data. And, we also describe the data partition for learning
and prediction. To filter out noise and outliers in time series
data, we use the complex Scharr operator as defined by the
mask in Eq. (1).

-3-3j 0-10j +3-3j
Gy +jG,=|-10+0j 0+0j +10+0j (1)
-3+3j 0+10j +3+3j
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Where Gx is the horizontal gradient and Gy is the vertical
gradient. This complex operator uses the real part for Gx and
the imaginary part for Gy.

C. Proposed Deep Learning Models

In this subsection, we present six LSTM-based variants for
time series prediction. First, in Fig. 2, we have the vanilla
variants, Single LSTM and Stacked LSTM which consist of
vanilla LSTM Layers. Then, in Fig. 3, we have the bidirectional
variants, Bi+LSTM and Stacked Bi+LSTM which consists of
bidirectional layers. And then, in Fig. 4, we have the
convolutional variants, CNN+LSTM and ConvLSTM models.

All variants take previous x; and predict the next y.
a) Single LSTM model b) Stacked LSTM model
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Fig. 2. LSTM models: The left inset (a) depicts a single LSTM-layer model in
gold while the right inset (b) shows a stacked LSTM model. Both use a dense
layer in grey and a rectified linear (ReLU) activation function.
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a) Single Bidirectional -LSTM model b) Stacked Bidirectional LSTM model

Fig. 3. Bidirectional LSTM models: The left inset (a) depicts a single BILSTM

layer model in maroon while the right inset (b) shows a stacked bidirectional
LSTM model. Both models use a dense layer and a ReLU.

a) CNN+LSTM model b) ConyLSTM model

Fig. 4. Convolutional LSTM models: The left inset (a) depicts a CNN layer in

blue and a LSTM layer in gold while the right inset (b) shows a ConvLSTM
layer in green. Both use a dense layer in grey and a ReLU.
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D. Model Testing

All six variants were tested using 10% of the dataset. To
partition the dataset into training set and test set, we use a 9:1
ratio. Thus, 90% of the input dataset is used for fitting the model
while the remaining 10% is used for prediction. For comparison
purposes, we use root-mean-square error (RMSE) to measure
accuracy.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

To evaluate our proposed framework in terms of accuracy
and resistance to noise, two pipelines are implemented. A
pipeline for original data with and without a filter and another
with augmented data with and without the filter. In all the
experimental settings, the proposed LSTM-variants use the
Adam optimizer and a learning rate of 0.00001 for 200 epochs.
The test bench for all performance experiments was
implemented using Python 3.7. The runtime environment
consists of a 2-core CPU, Intel(R) Xeon(R) @ 2.20GHz, a single
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GPU, Tesla K80, 4992 CUDA, 12GB GDDRS5, 13GB of RAM
and 80GB of HDD on a Linux-based virtual machine.

B. Comparative Analysis

We evaluated out-of-box ARIMA-based models using a
walk-forward validation. Then, we evaluated two least squares
support vector regressor (LSSVR) models, such as, linear
kernel and radial kernel. LSSVR showed comparable
performance to the proposed GA-based model. We also present
direct and hybrid LSTM-based models. Regarding the hybrid
models, Variational Mode Decomposition (VMD) is used to
preprocess the streamflow time series data and deep learning
LSTM-based models to forecast future streamflow values.
Finally, the proposed Scharr+ConvLSTM model is presented.
All the experimental results are compiled into Table 1.

Table 1 RMSE Comparison of Prediction Models.

RMSE

Models Original  Augmented

Data Data
AR order=(2, 1, 0) 0.080 0.085
MA order=(0, 1, 2) 0.081 0.087
ARIMA order=(2,1,2) 0.076 0.081
ceasonal order-(10.1 0089 00%
LSSVR C=200, kernel=linear 0.106 0.111
LSTM hidden layers=200 0.108 0.0052
BiLSTM hidden layers=200 0.118 0.0049
ConvLSTM hidden layers=256 0.106 0.0048
VMD + LSTM modes=18 0.055 0.056
VMD + BiLSTM modes=18 0.059 0.064
VMD + ConvLSTM modes=18 0.056 0.067
Scharr + LSTM 0.0036 0.0038
Scharr + BiLSTM 0.0038 0.0035
Scharr + ConvLSTM 0.0030 0.0031

IV. CONCLUSIONS

Our experiments suggest that the proposed model improves
the overall prediction accuracy on both real-world data and
noise-augmented data when compared to other LSTM-based
models and to other baseline models. In addition, our proposed
model achieves comparable performance in terms of prediction
time. In the future, we will focus on multivariate LSTM-based
models, explore additional filters and employ more performance
metrics such as R-squared.
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