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Abstract— This paper proposes a real-time, long short-term 
memory (LSTM) based low flow forecast system, while utilizing 
historical streamflow to make prediction of the probability of 
flows dropping below drought trigger levels for the Potomac River 
basin. The proposed recurrent neural network learns to predict 
the value of the next time step of the time sequence. We evaluate 
the prediction accuracy of the proposed LSTM-based model with 
real-world data and compare it to other state-of-the-art baseline 
models as well as other LSTM variants. The experimental results 
show that the prediction accuracy of the proposed method 
outperforms other methods. This design will help improve the 
performance of the decision support system for drought 
management. 
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long-short term memory, Scharr filtering 

I. INTRODUCTION 
As streamflow quantity problem become increasingly 

severe, accurate prediction and effective management of scarcer 
water resources will become critical. In addition, river 
streamflow prediction is one of most complicated and difficult 
hydrological problems because the physical processes that 
control it are too complex to allow adequate description by a 
system of appropriate equations. It is also because of the 
insufficient knowledge on the driving factors and their impact 
on streamflow, as well as the lack of reliable prediction and 
design methodologies. Noise injected by low quality sensors, 
worn out equipment, and changes in the environment also 
impact this process. Therefore, understanding and accurate 
evaluations of streamflow quantity are critical to enhance the 
performance of an assessment operation and develop better 
water resources management and plan.  

Recently, most research studies have applied some form of 
machine learning/deep learning (ML/DL) model to accurately 
predict streamflow. With DL approaches at the current state-of-
the-art, research is shifting to further explore the benefits of 
hybrid streamflow prediction models. However, new models are 
needed to deal with the nonlinearity and noise that affects 
streamflow prediction. The main contribution of this paper is a 
robust approach to deal with noise in water quantity prediction: 
(i) to adopt the Scharr filter to reduce noise in time series 
datasets; (ii) to improve robustness in LSTM-based models; (iii) 

to conduct extensive experiments using real-world streamflow 
data. 

II. METHODOLOGY 
The overview of our approach is shown in Fig. 1, and each 

component is further detailed in the following sub-sections. 

    
Fig. 1. Overview of the proposed framework for water quantity prediction. 

A. Time Series Dataset 
The real-world dataset consists of monthly adjusted river 

streamflow in cubic feet per second collected at the Potomac 
Basin above Little Falls, which is near Washington DC, USA 
from 1930 to 2021. The values were collected by the National 
Water Information System (NWIS) at the U.S. Geological 
Survey, Station No. 01646502. On the other hand, the synthetic 
noise-augmented data was generated by using an Additive 
Gaussian White Noise (AGWN) with a signal-to-noise ratio 
(SNR) equal to 20. The noise-augmented dataset is the element-
wise addition of the real-world streamflow values plus the 
synthetic noise values. 

B. Data Pre-processing 
In this subsection, we introduce the Scharr filtering for time 

series data. And, we also describe the data partition for learning 
and prediction. To filter out noise and outliers in time series 
data, we use the complex Scharr operator as defined by the 
mask in Eq. (1). 

௫ܩ + ௬ܩ݆ = ൥ −3 − 3݆ 0 − 10݆ +3 − 3݆−10 + 0݆ 0 + 0݆ +10 + 0݆−3 + 3݆ 0 + 10݆ +3 + 3݆ ൩ (1) 
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Where Gx is the horizontal gradient and Gy is the vertical 
gradient. This complex operator uses the real part for Gx and 
the imaginary part for Gy. 

C. Proposed Deep Learning Models 
In this subsection, we present six LSTM-based variants for 

time series prediction. First, in Fig. 2, we have the vanilla 
variants, Single LSTM and Stacked LSTM which consist of 
vanilla LSTM Layers. Then, in Fig. 3, we have the bidirectional 
variants, Bi+LSTM and Stacked Bi+LSTM which consists of 
bidirectional layers. And then, in Fig. 4, we have the 
convolutional variants, CNN+LSTM and ConvLSTM models. 
All variants take previous xi and predict the next y. 

Fig. 2. LSTM models: The left inset (a) depicts a single LSTM-layer model in 
gold while the right inset (b) shows a stacked LSTM model. Both use a dense 
layer in grey and a rectified linear (ReLU) activation function. 

Fig. 3. Bidirectional LSTM models: The left inset (a) depicts a single BiLSTM 
layer model in maroon while the right inset (b) shows a stacked bidirectional 
LSTM model. Both models use a dense layer and a ReLU. 

Fig. 4. Convolutional LSTM models: The left inset (a) depicts a CNN layer in 
blue and a LSTM layer in gold while the right inset (b) shows a ConvLSTM 
layer in green. Both use a dense layer in grey and a ReLU. 

D. Model Testing 
All six variants were tested using 10% of the dataset. To 

partition the dataset into training set and test set, we use a 9:1 
ratio. Thus, 90% of the input dataset is used for fitting the model 
while the remaining 10% is used for prediction. For comparison 
purposes, we use root-mean-square error (RMSE) to measure 
accuracy. 

III. EXPERIMENTAL RESULTS 

A. Experimental Setup 
To evaluate our proposed framework in terms of accuracy 

and resistance to noise, two pipelines are implemented. A 
pipeline for original data with and without a filter and another 
with augmented data with and without the filter. In all the 
experimental settings, the proposed LSTM-variants use the 
Adam optimizer and a learning rate of 0.00001 for 200 epochs. 
The test bench for all performance experiments was 
implemented using Python 3.7. The runtime environment 
consists of a 2-core CPU, Intel(R) Xeon(R) @ 2.20GHz, a single 

GPU, Tesla K80, 4992 CUDA, 12GB GDDR5, 13GB of RAM 
and 80GB of HDD on a Linux-based virtual machine. 

B. Comparative Analysis 
We evaluated out-of-box ARIMA-based models using a 

walk-forward validation. Then, we evaluated two least squares 
support vector regressor (LSSVR) models, such as, linear 
kernel and radial kernel. LSSVR showed comparable 
performance to the proposed GA-based model. We also present 
direct and hybrid LSTM-based models. Regarding the hybrid 
models, Variational Mode Decomposition (VMD) is used to 
preprocess the streamflow time series data and deep learning 
LSTM-based models to forecast future streamflow values. 
Finally, the proposed Scharr+ConvLSTM model is presented. 
All the experimental results are compiled into Table 1. 

Table 1 RMSE Comparison of Prediction Models. 

Models 
RMSE 

Original 
Data 

Augmented 
Data 

AR order=(2, 1, 0) 0.080 0.085 

MA order=(0, 1, 2) 0.081 0.087 

ARIMA order=(2,1,2) 0.076 0.081 

SARIMAX order=(1,1,1), 
seasonal_order=(1,1,0,12) 0.089 0.094 

LSSVR C=200, kernel=linear 0.106 0.111 

LSSVR C=200, kernel=rbf, 
gamma=0.0625 0.096 0.101 

LSTM hidden layers=200 0.108 0.0052 

BiLSTM hidden layers=200 0.118 0.0049 

ConvLSTM hidden layers=256 0.106 0.0048 

VMD + LSTM modes=18 0.055 0.056 

VMD + BiLSTM modes=18 0.059 0.064 

VMD + ConvLSTM modes=18 0.056 0.067 

Scharr + LSTM 0.0036 0.0038 

Scharr + BiLSTM 0.0038 0.0035 

Scharr + ConvLSTM 0.0030 0.0031 

IV. CONCLUSIONS 
Our experiments suggest that the proposed model improves 

the overall prediction accuracy on both real-world data and 
noise-augmented data when compared to other LSTM-based 
models and to other baseline models. In addition, our proposed 
model achieves comparable performance in terms of prediction 
time. In the future, we will focus on multivariate LSTM-based 
models, explore additional filters and employ more performance 
metrics such as R-squared. 
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