
Fast Particle Swarm Optimization for Balanced
Clustering

1st Meng Zhang
Key Laboratory of Intelligent Information

Processing and Control of
Chongqing Municipal Institutions of Higher Education,

Chongqing Three Gorges University,
Chongqing, 40044 China

mengzhang2000116@163.com

2nd Yao Xiao
Key Laboratory of Intelligent Information

Processing and Control of
Chongqing Municipal Institutions of Higher Education,

Chongqing Three Gorges University,
Chongqing, 40044 China

yaoxiao227192@gmail.com

3rd Xiaoling Song∗
Key Laboratory of Intelligent Information

Processing and Control of
Chongqing Municipal Institutions of Higher Education,

Chongqing Three Gorges University,
Chongqing, 40044 China
20191084@sanxiau.edu.cn

4th Xiangguang Dai
Key Laboratory of Intelligent Information

Processing and Control of
Chongqing Municipal Institutions of Higher Education,

Chongqing Three Gorges University,
Chongqing, 40044 China
daixiangguang@163.com

5th Nian Zhang
Department of Electrical and Computer Engineering

University of the District of Columbia,
Washington, D.C., 20008 USA

nzhang@udc.edu

Abstract—There are balanced priorities in various engineer-
ing fields (e.g. medicine, statistics, artificial intelligence, and
economics, etc.). Some clustering algorithms cannot maintain
the natural balanced structure of data. This paper proposes a
soft-balanced clustering framework, which can achieve a bal-
anced clustering for each cluster. The model can be formulated
d as a mixed-integer optimization problem. We transform the
problem into several subproblems and utilize PSO to search the
global solution. Experiments show that the proposed algorithm
can achieve satisfactory clustering results than other clustering
algorithms.

Index Terms—Clustering, Balanced clustering, Particle
Swarm Optimization, Matrix Factorization

I. Introduction
Clustering [1] is an important research topic of ma-

chine learning, which has a wide range of applications
in computer vision, image segmentation and salience or
target detection [2]–[5]. The clustering algorithms aim to
divide the unlabeled dataset into groups which consist
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of similar data points [6], such as K-means [7], Graph
clustering (GC) [8] and Spectral clustering (SC) [9],
[10]. Unfortunately, these algorithms may lead to poor
solutions when each cluster comprises few data points.
Therefore, some researchers proposed generative or dis-
criminative algorithms [10]–[14]. Generative algorithms
[11], [12] combine prior knowledge of data distribution
and clustering model. Discriminative algorithms [10], [13],
[14] directly parameterize the clustering boundary, so as to
achieve more clear clustering. Malinen et al. [15] imposed
a constraint of the cluster size into K-means, which leads
to the equivalent cluster size for each cluster. Bradley et
al. [16] proposed k constraints for the clustering problem,
and each cluster should contain a minimum number of
data points at least.

In the real-world, most datasets contain the property
of the balanced structure. In other words, each category
may contain an equal number of data points. For these
datasets, we want to design an algorithm and reflect
the balance structure of the clustering results. Due to
the different optimization goals, balanced clustering al-
gorithms can be divided into hard-balanced and soft-
balanced algorithms [15]–[19]. Hard-balanced approaches
[15], [16] consider the cluster size to be the main goal of
the clustering algorithm. Soft-balanced algorithms [17]–
[19] aim to reduce the clustering errors. Recently, Han
et al. [20] introduced a method called global balanced
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clustering (GBC), which can adjust the balance degree by
parameters. GBC can capture both local and global data,
but it converges slowly and tends to fall into the local
minima. Recently, the particle swarm optimization (PSO)
[21], [22] was proposed as a genetic algorithm. Compared
with other genetic algorithms, PSO is enriched with the
features of the simple concept, easy implementation, and
computational efficiency.

Combining GBC and PSO, we propose a new balanced
clustering method that can quickly converge and try the
best to find the global optimal solution. In this article, we
propose Fast Particle Swarm Optimization for Balanced
Clustering (FPSOBC), a fast balanced clustering method
that regresses each unknown clustering label to the cor-
responding data sample. In other words, we decompose
the label matrix into the original high-dimensional data
matrix and the weighted matrix. Moreover, we try our
best to reduce the error between the label matrix and the
product of the decomposed matrices. To achieve the goal
of balanced clustering, we imposed the balance constraint
into the label matrix. In summary, the main contributions
of our work include the following aspects.

• A soft-balanced clustering framework is proposed to
achieve balanced clustering solution and reduce the
clustering error.

• The framework can be formulated as a mixed-integer
optimization problem (MIOP). To solve the MIOP
effectively, the MIOP is divided into a convex prob-
lem and an integer optimization problem. We alter-
natively solve the two subproblems and change the
solution by PSO until a global solution is achieved.

• Extensive experiments and evaluations on several
datasets show that our proposed method achieves
superior performance in comparison to other state-
of-the-art methods.

II. Related Works
A. Augmented Lagrange Multipliers

Augmented Lagrangian methods [24] are usually utilized
to solve optimization problems with equality constraints.
For a convex optimization problem with linear equality
constraints, we can rewrite it into the following form:

min F (X)

s.t. h(X) = 0,
(1)

The Lagrange Multiplier method for problem (1) is defined
by

L(X,µ) = F (X) + µh(X). (2)

For problem (2), we rewrite it by the Augmented Lagrange
Multipliers (ALM) as follows:

L(X,Λ, µ) = F (X) + Λh(X) +
µ

2
∥h(X)∥2F , (3)

where Λ is Lagrange multiplier and µ is the step size.
The penalized Lagrangian method is used to transform a
constrained problem into an unconstrained problem. The

augmented Lagrange multiplier method can be shown in
Algorithm 1.

Algorithm 1 Augmented Lagrange Multipliers (ALM)
Input: ρ > 0
Output: X

Initializing µ, and set Λ = 0
while not converge do

1) Solve X(t+1) = argminX L
(
X(t),Λ(t), µ(t)

)
in

Eq. (3);
2) Update Λ : Λ(t+1) = Λ(t) + µ(t)I

(
X(t+1)

)
3) Update µ : µ(t+1) = ρµ(t).

end while
Return X

B. Particle Swarm Optimization
The particle swarm optimization simulates the bird in

the bird swarm by designing a kind of massless particle.
The particle has only two attributes: speed and position.
Speed and position denote the speed and direction of
movement, respectively. Each particle searches the opti-
mal solution separately in the search space, and records
it as the current individual extremum, and shares the
individual extremum with other particles in the whole
particle swarm to find the optimal individual extremum as
the current global optimal solution of the whole particle
swarm. All particles in the particle swarm adjust their
speed and location according to the current individual ex-
tremum they find and the current global optimal solution
shared by the whole particle swarm.

Firstly, each particle searches the optimal solution
separately in the searching space, and records it as the
current individual extremum.

pBestnew
i =

{
pBestold

i , if fit(pBestold
i ) < fit(xi)

xi , otherwise,
(4)

where pBesti is the historical optimal position of the
particle i, and fit(·) is an evaluation function.

Secondly, the global optimal individual extremum is
found according to the individual optimal extremum of
each particle

gBest = min{pBest1, pBest2, · · ·, pBesti}, (5)

where gBest is the global optimal location.
Thirdly, each particle adjusts the speed and location

according to the current individual extremum and the
current global optimal solution.

vi = vi+ci×rand()×(pBesti−xi)+c2×rand()×(gBesti−xi),
(6)

and
xi = xi + vi, (7)

where vi is the speed of particles i, rand(·) is a random
function which can generate a random number between
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0 and 1, xi is the current position of the particle i and
c1 and c2 are the learning factors. The particle swarm
optimization can be shown as Algorithm 2.

Algorithm 2 Particle Swarm Optimization (PSO)
for each particle i do

Initializing velocity vi, and position xi for each
particle i

Evaluate particle i and set pBest = xi

end for
gBest = min{pBesti}
while not stop do

for i = 1 to N do
Update velocity and position of particle i
Evaluate particle i
if fit(xi)<fit(pBesti) then

pBesti = xi

end if
if fit(pBesti)<fit(gBest) then

gBest = pBesti
end if

end for
end while
Return gBest

III. Fast Particle Swarm Optimization for Balanced
Clustering

In this section, we propose Fast Particle Swarm Op-
timization for Balanced Clustering (FPSOBC). A fast
balanced clustering method that regresses each unknown
clustering label to the corresponding data sample. In
order to achieve the goal of balanced clustering, we apply
balance constraints to the label matrix.
A. Clustering optimization

Supposed that there are n samples for the dataset and
each sample contains m-dimensional features. We hope to
group the dataset denoted by X = [x1, · · · , xn] ∈ Rn×m

into c classes and find a label assignment matrix (in-
dicator matrix) B = [b1, b2, · · · , bn]⊤ ∈ {−1, 1}n×c for
the clustering results. Thus, these assumptions can be
mathematically denoted by

B ≈ XW, (8)

where W is a projection matrix, and B can be defined as

Bik =

{
1 , xi ∈ cluster k
−1 , otherwise. (9)

Generally, the Frobenius norm is utilized to measure the
error between B and XW . Moreover, the L2-regularization
of each projection vector is proposed to avoid the over-
fitting case. In summary, we can transform (8) into an
optimization problem as follows:

min
W,B

∥B −XW∥2F + λ∥W∥2F

s.t. B ∈ {−1, 1}n×c.
(10)

The optimization problem can be solved by updating two
variables alternatively.

B. Balanced Constraints
We supposed a vector S = [s1, s2, · · · , sc] that the size

of cluster i denoted by si. Thus, there are c balanced
constraints, where si = n/c, (i = 1, · · · , c). We have

c∑
k=1

(
sk − n

c

)2

=
c∑

k=1

s2k − 2
n

c

c∑
k=1

sk +
n2

c2

=∥S∥2 − n2

c
=∥S∥2 − const.

(11)

Balance constraints can be described by the following
problem:

min
S

∥S∥22. (12)

It is obvious that S can be represented by the product of
B⊤ and a column vector which entries are all equal to 1,
we can transform S into the following form

S = B⊤1. (13)

By replacing S with (13), we can rewrite (12) as follows:

min
B

tr(B⊤11⊤B). (14)

C. Problem Formulation
Combining (10) and (14) leads to our problem as follows:
min
B,W

∥B −XW∥2F + λ∥W∥2F + βtr(B⊤11⊤B)

s.t. X ∈ Rn×m,W ∈ Rm×c, B ∈ {−1, 1}n×c
(15)

where α and β are hyper-parameters.
Normally, the objective function of problem (15) can be

transformed into the following optimization problems:

min
W

∥B −XW∥2F + λ∥W∥2F (16)

and
min
B

∥B −XW∥2F + βtr(B⊤11⊤B). (17)

For problem (16), its solution can be

W = (X⊤X + λI)−1X⊤B = AX⊤B, (18)

where A = (X⊤X + λI)−1. Substituting (18) into (15),
we have

min
B

∥B −XAX⊤B∥2F + λ∥AX⊤B∥2F + βtr(B⊤11⊤B).

(19)
For problem (19), we can transform the first term as
follows

∥B −XAX⊤B∥2F
=tr((B −XAX⊤B)⊤(B −XAX⊤B))

=tr(B⊤InB − 2B⊤XA⊤X⊤B +B⊤XA⊤X⊤XAX⊤B),
(20)
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Similarly to the second term of (19), we have
∥AX⊤B∥2F

=tr(B⊤XA⊤AX⊤B).
(21)

In summary, problem (19) can be rewritten by
min
B

tr(B⊤MB)

s.t. B ∈ {−1, 1}n×c.
(22)

where M = In − 2XA⊤X⊤ + XA⊤X⊤XAX⊤ +
λXA⊤AX⊤ + β11⊤.
D. Optimization With ALM

Due to the discrete constraint, it is not easy to solve
problem (22). Firstly, we propose an auxiliary matrix
Z ∈ Rn×c to substitute B. Secondly, we utilize ALM and
transform problem (22) as follows:

L(Z,B, µ,Λ) = tr(Z⊤MZ) +
µ

2
∥B − Z +

1

µ
Λ∥2F . (23)

Finally, we mainly discuss how to solve problem (23).
Problem (23) can be transformed into the following two
optimization problems:

min
Z

tr(Z⊤MZ) +
µ

2
∥B − Z +

1

µ
Λ∥2F (24)

and
min
B

µ

2
∥B − Z +

1

µ
Λ∥2F . (25)

For problem (24), we have
Z = (µIn + 2M)

−1
(µB + Λ). (26)

For problem (25), we transform it as follows:
min
B

∥B − V ∥2F , (27)

where V = Z − 1
µΛ and

Bik =

{
1 , if k = argmax{Vik}ck=1

−1 , otherwise. (28)

Combining (18) and (28), we can alternately solve W and
B until the local optimum solution searched [27], [28]. Our
algorithm which is called Fast Balanced Clustering (FBC)
can be shown as Algorithm 3.

Algorithm 3 Fast Balanced Clustering (FBC)
Input: X, c, λ and β
Output: B

Initializing B ∈ {−1, 1}n×c and W ∈ Rm×c

while not converge do
Solve W by Eq.(18);
while not converge do

Solve Z by Eq.(26);
Solve B by Eq.(28);
Update Λ : Λ(t+1) = Λ(t) + µ(t) (B − Z);
Update µ : µ(t+1) = ρµ(t).

end while
end while
Return B

E. Optimization With PSO
Since the optimization problem is a non-convex opti-

mization problem, which makes our algorithm trapped in
a local optima. To address this problem, we change the
solution by PSO until a global solution is achieved. Our
algorithm can be shown in Algorithm 4.

Algorithm 4 Fast Particle Swarm Optimization for Bal-
anced Clustering (FPSOBC)
Input: X, c, λ and β
Output: B

for each particle i do
Initializing velocity Vi, and position Bi by FBC

for each particle i
Evaluate particle i and set pBest = Bi

end for
gBest = min{pBesti}
while not stop do

for i = 1 to N do
Update velocity and position of particle i
Update position Bi by FBC
Evaluate particle i
if fit(Xi)<fit(pBesti) then

pBesti = Bi

end if
if fit(pBesti)<fit(gBest) then

gBest = pBesti
end if

end for
end while
B = gBest
Return B

IV. Experimental examples
In this section, five methods (i.e. CKmeans, BKmeans,

Kmeans, FBC and FPSOBC) are proposed to sustain the
performance of clustering on the three different image
datasets (i.e. Yale, Wine, Iris, Seeds) and we use Accuracy
(ACC) and Normalized Mutual Information (NMI) to
measure the clustering utility.

A. Compared Methods
We compare FBC and FPSOBC with classical bal-

anced clustering algorithms Kmeans, CKmeans and non-
balanced algorithm Kmeans.

• FBC: a soft-balanced clustering framework can
achieve balanced clustering solution and reduce the
clustering error, which we introduced in Section III-D.

• FPSOBC: a fast balanced clustering method that
regresses each unknown clustering label to the corre-
sponding data sample, which we introduced in Section
III-E

• Kmeans:a traditional unsupervised clustering algo-
rithm.
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• CKmeans: a clustering algorithm with k constraints,
and each cluster should contain a minimum number
of data points at least.

• BKmeans: a K-mean method with constraint of the
cluster size, which can lead to the equivalent cluster
size for each cluster.

B. Compared Datasets
• Yale: The dataset contains 165 facial images, each

measuring 32 × 32 pixels. The images are from 15
different people, each with 11 photos.

• Wine: The dataset contains 178 wine components,
each wine has 13 different components. The wines can
be divided into 3 categories. For balance clustering,
we organize the dataset into balanced.

• Iris: The dataset contains 150 characteristics of iris
flower, each iris flower has 4 characteristics. The iris
flowers can be divided into 3 categories.

• Seeds: The dataset contains 210 geometrical proper-
ties of seeds, each seeds has 7 geometrical properties.
The seeds can be divided into 3 categories.

For balanced clustering, we balanced unbalanced datasets
in Table. I. In Fig. I, it shows that Properties of each
dataset.

TABLE I
Properties of datasets

DATASET Samples Features Classes
YALE 165 1024 15
Wine 144 13 3
Iris 150 4 3

Seeds 210 7 3

C. Clustering Evaluation Index

Clustering ACC can be written as

ACC =

∑n
i=1 δ (pi,map (qi))

n
, (29)

where δ(a, b) = 1 when a = b, or δ(a, b) = 0, function
map(qi) is a mapping function which can map clustering
label qi to ground truth labels, n is the sample number.

Clustering NMI can be written as

NMI(Ω, C) =
I(Ω;C)

(H(Ω) +H(C)/2)
, (30)

where Mutual Information function I() can be defined as
follows:

I(Ω;C) =
∑
k

∑
j

P (wk ∩ cj) log
P (wk ∩ cj)

P (wk)P (cj)

=
∑
k

∑
j

|wk ∩ cj |
N

log
N |wk ∩ cj |
|wk| |cj |

(31)

and entropy function H() can be defined as follows:

H(Ω) = −
∑
k

P (wk) logP (wk)

= −
∑
k

|wk|
N

log
|wk|
N

(32)

where P (wk) and P (cj) can be seen as the probabilities of
samples belonging to cluster wk, category cj , P (wk ∩ cj)
is the joint probability that can be seen as belonging to
both cluster wk and category cj .

Remarks: We can find codes of ACC
and NMI on the homepage of Deng Cai
(http://www.cad.zju.edu.cn/home/dengcai).

D. Parameter Settings
λ and β are two important parameters of the model (15)

in this paper. It is necessary to select feasible parameters
for clustering performance. Since the model is sensitive to
penalty terms, they need to adjust carefully, but there is
no theory and effective method to adjust λ and β. We get
the best clustering results by exhaustively combining λ ∈
{10−2, 10−1, 1, 101, 102} and β ∈ {10−2, 10−1, 1, 101, 102}.
From Fig. 1 we can obtain: 1)The bigger λ and β bring
the worse clustering performance. 2)For the Iris dataset, λ
and β tend to 0 for better results. For the Wine and Yale
datasets, λ and β tend to 1 for better results. For seeds
dataset, λ and β < 0 can always obtain a satisfactory
result.

The ALM parameters are set as Tabel II.

TABLE II
parameter for ALM

µ 0.1 or 1
ρ 1.005

iters 50

In the optimization with PSO, we set the population to
50 and learning factors c1 and c2 to 2 for all datasets.

Since the variable optimization problem of this model is
non-convex, we repeat each algorithm 10 times and present
the minimum / minimum / average result.

E. Performance Comparison
To show the effectiveness of our proposed method, we

present the clustering performance in Table III, IV. In
order to show the balanced performance of the clustering
method, we take yale as an example. Fig. 3 shows the
distribution of samples of each method in the cluster.

By analyzing the comparison results, we can draw the
following conclusions.

• Fig. 3 indicates that a soft-balanced clustering frame-
work can well gain balanced clustering.

• It is obvious that the model using the ALM approach
can converge on each dataset in Fig. 2. The oscilla-
tions in the figure are partly caused by the discrete
label matrix B.
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(a) Clustering MIs from Iris (b) Clustering ACs from Iris

(c) Clustering MIs from Wine (d) Clustering ACs from Iris

(e) Clustering MIs from Seeds (f) Clustering ACs from Iris

(g) Clustering MIs from Yale (h) Clustering ACs from Iris

Fig. 1. Clustering NMIs and ACs from Iris, Wine, Seeds and Yale with different λ and β. The x-axis and y-axis are lgλ and lgβ.
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(a) The convergence curve of Iris (b) The convergence curve of Wine

(c) The convergence curve of Seeds (d) The convergence curve of Yale

Fig. 2. Iterations vs. objective values for FBC.

TABLE III
Clustering Performance (Evaluated by NMI) under The Optimal Parameter Settings for CKmeans, BKmeans, Kmeans and our methods

on Yale, Wine, Iris, Seeds.

NMI
Normalized Mutual Information (MIN/MAX/Avg.%)

DATASET FBC FPSOBC CKmeans BKmeans Kmeans
Yale 56.71/69.62/62.98 56.33/72.93/63.24 44.74/50.85/47.34 42.32/55.30/49.13 44.37/51.97/48.39
Wine 93.85/93.85/93.85 93.85/93.85/93.85 83.37/83.37/83.37 83.37/83.37/83.37 89.70/89.70/89.70
Iris 2.57/90.09/67.68 88.01/88.01/88.01 77.73/77.73/77.73 77.73/77.73/77.73 73.64/73.64/73.64

Seeds 84.51/88.40/87.76 88.40/88.40/88.40 64.90/64.90/64.90 64.90/64.90/64.90 69.35/69.35/69.35

TABLE IV
Clustering Performance (Evaluated by ACC) under The Optimal Parameter Settings for CKmeans, BKmeans, Kmeans and our methods

on Yale, Wine, Iris, Seeds.

Accuracy (MAX/MIN/Avg.%)
DATASET FBC FPSOBC CKmeans BKmeans Kmeans

Yale 50.91/66.67/59.21 51.52/70.91/59.64 38.18/44.85/41.15 35.76/52.73/43.94 38.18/46.06/42.42
Wine 98.61/98.61/98.61 98.61/98.61/98.61 98.83/95.83/95.83 98.83/95.83/95.83 97.22/97.22/97.22
Iris 36.00/97.33/82.20 96.67/96.67/96.67 92.00/92.00/92.00 92.00/92.00/92.00 88.67/88.67/88.67

Seeds 96.19/97.14/97.00 97.14/97.14/97.14 88.57/88.57/88.57 88.57/88.57/88.57 89.52/89.52/89.52
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(a) Kmeans (b) BKmeans

(c) CKmeans (d) FBC

Fig. 3. Distribution of samples in clusters on Yale.

• Our soft-balanced clustering framework obtains bet-
ter results than other algorithms.This phenomenon
indicates that our method can use the sample data
for better classification.

• Regardless of the dataset, FPSOBC always obtains a
satisfactory and stable solution, which shows that it
is significant to change the solution by PSO until a
global solution is achieved.

V. Conclusion
In this paper, a fast balanced clustering framework is

proposed, and PSO is effective to search for the optimal
solution in a search space of feasible solution. The pro-
posed method FPSOBC change the solution by PSO until
a global solution is achieved. Experiments show that the
soft-balanced clustering framework has better clustering
performance than other balanced clustering algorithms.
The satisfactory performance indicates that the proposed
algorithm can search the global solution.
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