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ABSTRACT: Rapid detection of volatile organic compounds
(VOCs) is growing in importance in many sectors. Noninvasive
medical diagnoses may be based upon particular combinations
of VOCs in human breath; detecting VOCs emitted from
environmental hazards such as fungal growth could prevent
illness; and waste could be reduced through monitoring of gases
produced during food storage. Electronic noses have been
applied to such problems, however, a common limitation is in
improving selectivity. Graphene is an adaptable material that
can be functionalized with many chemical receptors. Here, we
use this versatility to demonstrate selective and rapid detection
of multiple VOCs at varying concentrations with graphene-based variable capacitor (varactor) arrays. Each array contains 108
sensors functionalized with 36 chemical receptors for cross-selectivity. Multiplexer data acquisition from 108 sensors is
accomplished in tens of seconds. While this rapid measurement reduces the signal magnitude, classification using supervised
machine learning (Bootstrap Aggregated Random Forest) shows excellent results of 98% accuracy between S analytes
(ethanol, hexanal, methyl ethyl ketone, toluene, and octane) at 4 concentrations each. With the addition of 1-octene, an
analyte highly similar in structure to octane, an accuracy of 89% is achieved. These results demonstrate the important role of
the choice of analysis method, particularly in the presence of noisy data. This is an important step toward fully utilizing
graphene-based sensor arrays for rapid gas sensing applications from environmental monitoring to disease detection in human
breath.
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nologies for early diagnosis of a variety of diseases.' ™
Most e-nose systems utilized for this purpose detect
VOCs found in exhaled human breath. Thousands of VOCs
can be found in breath and provide useful VOC concentration
patterns that reflect the body’s metabolism.”” Their concen-
trations can range from hundredths of ppb to thousands of

E lectronic-nose (e-nose) systems are promising tech-

ppb, depending on the VOC.® As such, they are potentially
useful in screening for abnormalities ranging from cancers to
cardiovascular and respiratory diseases.””” However, because
VOC patterns may be similar between diseases states, e-nose
systems must be capable of distinguishing pattern profiles of
multiple analytes, and if such systems can be realized, they
could play an important role in future clinical healthcare
applications.
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The most common e-nose technologies described in the
literature are based upon chemiresistive sensors such as metal-

. . 110 o1 11
oxide (MOX) devices,”"” polymer composites, nanotubes,

2,13
> These sensors

and tunneling-based metal nanoparticles.’
are typically resistance-based devices that use a thin conducting
channel of either oxidizing or reducing compounds. Upon
exposure to VOCs, their resistance can reversibly change in
proportion to the concentration of the target gas molecule. If

several different chemiresistors with sensitivities to different
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VOCs are used in combination, their responses form a
“breathprint” that is associated with a particular disease.'™'?
These sensors have several advantages, including having a fairly
wide range of sensor materials that can be used, sub-ppb-level
sensitivity, relatively short response times, long lifetime, and
small sensor dimensions.'® Chemiresistive e-noses have been
studied for numerous diagnostic or screening applications
including detection of lung cancer'”'® and other diseases.'”

Despite the attributes listed above, chemiresistor e-noses
have several limitations. For instance, some MOX-based
sensors require operation at high temperatures, increasing
their power consumption and overall system complexity. They
are also limited in the number of different types of sensors that
can easily be used, and as such, a very high level of multiplexing
(many 10s of sensors) is difficult to achieve in practice.

In light of the limitations of current e-nose technologies,
graphene emerges as an attractive alternative.””"~>* Graphene,
while chemically inert itself, can be functionalized with a wide
variety of chemical receptors self-assembled onto the graphene
surface.” ™ Such functionalizations include derivatives of
pyrenes and cyclodextrins as well as porphyrins and numerous
other receptors. The functionalizations interact with different
VOCs through a range of different mono- and multi-topic
interactions, including hydrogen-bond acceptance and dona-
tion, ion—dipole interactions, metal center ligation, inclusion
complexation, steric repulsion, and covalent bond formation.**
The self-assembly of monolayers of these compounds on
graphene is driven by noncovalent interactions between the
receptors and graphene (such as 7—7 stacking)’”***® and,
importantly, does not compromise graphene’s hi%h con-
ductivity or significantly alter its band structure.”” This
functionalization capability allows graphene sensors to easily
be adapted to various sensing applications, since the underlying
graphene platform is unchanged while the functionalizations
can be replaced readily. This is simpler than in chemiresistive
sensors, where adding an additional sensor type could require
extensive process development or optimization.

Graphene-based sensors have extremely fast responses since
the gas interaction is surface driven, and so gas diffusion into a
bulk sensing material is not necessary (though slower effects
can still be present due to intercalation and interaction with
adjacent materials). The interaction of test gases with the
surface changes the free carrier concentration of the graphene,
altering measurable electrical characteristics. These alterations
are detected by tracking various features extracted from sensor
response curves. Multiple features that describe varying aspects
of the graphene-gas interactions may be extracted from a single
curve.

A major step in gas sensing research is the ability to
distinguish between many gas species and even concentrations.
Nallon et al. presented work with a single, unmodified
graphene gas sensor that demonstrated clear separability
between 11 different chemically diverse gas species and
between 9 different chemically similar species with principle
component analysis (PCA), albeit at only one concentration
each.®® Their classification algorithms (including Random
Forest) were also able to predict the identity of these gases
with >92% and >88% accuracy in chemically more diverse and
similar gas sets, respectively. Nallon et al. point to the potential
of graphene as a modifiable sensing material for use in sensor
arrays, where chemical cross-reactivity between functionaliza-
tions and gases will be instrumental to distinguishing between
similar gases and for sensing complex gas mixtures.

However, graphene-based sensors still have some of their
own limitations. The first of these is the difficulty in producing
a large number of devices with consistent characteristics. This
is due to the relative immaturity of graphene device fabrication
technology within commercial fabrication environments,
though progress is being made rapidly.*”*’ Currently, one of
the largest reported arrays of graphene chemical gas sensors
was reported by Kybert et al., which consisted of a 56-device
array. However, in that work, only 10 devices were measured
simultaneously, and only 4 functionalization receptors were
used.”" Another study reported a sensor array based on single-
layer graphene consisting of 100 individual devices, which were
probed simultaneously.”* However, the devices in that array
were functionalized with only 4 different receptors, and further,
this study took electrical measurements of the devices only
after applying the target analyte as a liquid and did not record
real-time data. Finally, in Mackin et al, chemiresistive
graphene sensor arrays were fabricated and used to detect
ammonia s, but only a single Co-porphyrin functionalization
was used.” These studies point to a limitation of graphene
sensors to date, which is a lack of chemical diversity in
functionalizations. Such diversity may be important, since
distinguishing between complex gas mixtures such as human
breath may require a large number of receptors. Arrays of
sensors with a large number of receptors are still not common
in the current literature—in the graphene array studies
mentioned above, at most, only 4 different receptors were
used.

Large sensor arrays will necessarily collect large amounts of
data, and an especially difficult aspect of this is the large
number of possible data features. A considerable amount of
machine learning research focuses on finding optimal ways of
extracting scalar features to represent response data, and this
task is different for every sensor system."* One option is to
extract an extensive list of many features and then reduce or
compress any redundant, noisy, or otherwise uninformative
features through dimensionality reduction techniques such as
PCA." While this may improve classification accuracies, these
exhaustive, brute force feature extraction methods do not
always provide clear insights into which of the extracted
features are truly important. Such information could provide a
deeper understanding of sensor mechanisms which could in
turn help to fine-tune their design for better gas detection.

Finally, many sensing applications benefit from or require
rapid measurement speeds. Because gas sensors need time to
respond to the analytes, there is a relationship between
measurement speed and signal magnitude—typically, the faster
the measurement, the smaller the signal. Even sensor materials
with theoretically rapid response time such as graphene are
limited in how quickly they can respond to brief exposures to
the analyte: It has been suggested that adsorption barriers
prevent some gas molecules from landing directly on
graphene’s defect sites, causing the responses to be diffusion
limited.** Indeed, long response times are seen in the
graphene-based gas sensor array literature, where response
times can vary between 30 s and 20 min.***"***”*¢ Improving
this even further could enhance graphene’s utility in sensing.

In this work, we show the successful implementation of a
graphene gas sensor array system that incorporates fast, real-
time measurements, a large number of individual devices, and
an extremely diverse set of chemical functionalizations. This is
accomplished using 4 identical arrays of 108 graphene variable
capacitor (varactor) sensors each with 36 distinct functional-
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Figure 1. Schematic of the sensor array system. Gas molecules flow past the sensing array, which contains 120 sensors functionalized with 36
chemical receptors (depicted by the differently colored varactor sets). A schematic of one varactor is shown in the upper inset. The devices
are wire bonded to a printed circuit board and probed from underneath. A high-speed circuit rapidly sweeps the voltage of each varactor
between —1.5 and +1.5 V while their capacitance responses are recorded. Each varactor produces capacitance versus voltage curves as shown
in the lower left. These curves shift upon exposure to the gas molecules, creating the responses used in machine learning algorithms to

classify the analytes.

izations. We also report the necessary conditions for applying
each of these functionalizations to graphene. With so many
devices available for simultaneous probing on a single array,
this greater chemical diversity in functionalizations improves
the cross-reactivity with target analytes. We show discrim-
ination between six different VOCs including an alcohol,
ketone, aldehyde, and several hydrocarbons. Each of these was
tested at four concentrations to help assess the array sensitivity
and differentiation limitations. Our results show that even an
unsupervised machine learning algorithm (PCA) produces
data clusters with good visual separation between most gases
and concentrations. The trade-off for such a highly parallel,
rapid measurement process is signal-to-noise ratio. However, in
this work, we show that a supervised algorithm based upon
Random Forest classification achieves good separation with up
to 89% accuracy for the tested system and with accuracy over
97% when omitting one gas with high chemical similarity to
another in the data set. Machine learning allows us to reduce
the time that the sensors are exposed to the analytes, despite
the associated reduction in signal magnitude. These results are
a promising start to utilizing large-scale arrays of graphene
devices for gas sensing in complex, multi-gas environments
where fast detection is required.

19569

RESULTS AND DISCUSSION

Description of Varactors and Measurement System.
A diagram of the e-nose design and testing setup is shown in
Figure 1. The individual sensors are composed of graphene
varactors configured in a multi-finger geometry to ensure high-
speed operation.”” The varactors consist of a tungsten (W)
local bottom gate electrode, a composite dielectric stack
consisting of an Al,O; and HfO, layer, and a graphene layer on
top. The equivalent oxide thickness of the dielectric stack is
~3.3 nm. Contacts to the graphene were made using
interdigitated electrodes configured such that the graphene
above the W electrode was exposed to the environment. The
local gate electrode and HfO, dielectric layer were fabricated
on 150 mm wafers in a commercial fabrication facility, while
the remaining fabrication steps were performed on smaller
samples in the Minnesota Nano Center. After fabrication and
dicing, 36 chips containing three varactors each were
functionalized with one of the 36 different chemical receptors
listed in Table 1, and these functionalized chips were wire-
bonded to a printed circuit board (PCB) that was probed from
underneath. Details of the fabrication and functionalization
procedure are provided in the Methods section.

https://doi.org/10.1021/acsnano.2c10240
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Table 1. List of Receptors Used to Functionalize the Graphene Varactors, Sorted by Their Average Vpr Across the Entire 4
Array Dataset”

no.
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12

13

14
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20
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22
23

24
25

26
27
28

29
30

31

32

33
34
3S
36

Receptor

Dimethoxypillar[SJarene
Heptakis(2,3,6-tri-O-methyl-f-
cyclodextrin
1,4-Diethoxypillar[7]arene
Octakis(2,3,6-tri-O-methyl)-y-
cyclodextrin
Pyrene
1,4-Diethoxypillar[6]arene
1,4-Diethoxypillar[4]arene[1]
quinone
1,4-Diethoxypillar[S]arene
Bare graphene
6A,6D-dihydroxyl-perbenzyl-f-
cyclodextrin
Gallium(III) S,15-bis(4-
dodecyloxyphenyl)porphyrin
chloride
Chromium(III) 5,15-bis(4-
dodecyloxyphenyl)porphyrin
chloride
Cobalt(IT) 5,15-bis(4-
dodecyloxyphenyl)porphyrin
Zn(II) 5,15-bis(4-
octadecyloxyphenyl)-porphyrin
Hexakis(2,3,6-tri-O-methyl)-a-
cyclodextrin
Perbenzylated f-cyclodextrin
Iron(III) 5,15-bis(4-
dodecyloxyphenyl)-porphyrin
chloride
Zinc(II) S,15-bis(4-
dodecyloxyphenyl)-porphyrin
1-Pyrenemethanol
Nickel(TI) 5,15-bis(4-
dodecyloxyphenyl)porphyrin
5,10,15,20-Tetraphenyl-21H,23H-
porphine manganese(III) chloride
Perbenzylated y-cyclodextrin
N,N-diethyl-1-pyrenemethylamine
Platinum(II) S,15-bis(4-
dodecyloxyphenyl)-porphyrin
1-Pyreneacetic acid methyl ester
Palladium(II) 5,15-bis(4-
dodecyloxyphenyl)porphyrin
1-Pyreneboronic acid
1-Pyrenemethylamine hydrochloride
Copper(II) S,15-bis(4-
dodecyloxyphenyl)-porphyrin
Coronene
Ruthenium(II) carbonyl S,15-bis(4-
dodecyloxyphenyl)-porphyrin
5,15-bis(4-octadecyloxyphenyl)-
porphyrin
5,15-bis(4-dodecyloxyphenyl)-
porphyrin
Perbenzylated a-cyclodextrin
1-Pyrenemethylamine
1-Pyreneacetic acid

1-Pyrenesulfonic acid
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“Bare graphene is included to note its average Vpy relationship with the others. bSuch as amines, alcohols, and carbonyl compounds, including
ketones, esters, amides, carboxylic acids, and alclehydes.’0 “Such as primary and secondary amines, alcohols, and carboxylic acids.>® ¥Such as olefins,
amines, hetereoaromatics, and carbonyl compounds, including ketones, esters, amides, carboxylic acids, and aldehydes.51 “Such as compounds with
2 fo . . 3
phenyl and short alkyl groups.”” /Such as compounds with aromatic and long alkyl groups.
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We have previously reported a method for pyrene- and
cyclodextrin-based functionalization,”” reported on the sources
of disorder in graphene,”* and have also shown that pyrene-
based functionalization does not degrade the quantum
capacitance of graphene.” Raman mapping and spectra of
bare graphene used in this study are shown in Figure S1 of the
Supporting Information, and generally show that the graphene
has good quality, with only a slight D peak typical of graphene
grown by chemical vapor deposition (CVD).

A custom-designed high-speed capacitance-measurement
circuit applied voltage biases to each varactor in the array
and recorded the capacitance responses in rapid succession.
Four identical arrays with 108 varactors each were used in this
study, for a total of 432 individual varactors tested. The
measurements were performed as follows: A DC voltage of
—1.5 V was applied to the bottom electrode of all varactors in
an array simultaneously, and then the capacitance of each
varactor was measured by sequentially applying a 250 kHz
square-wave voltage with a peak-to-peak amplitude of 100 mV
to each device. Then, the bottom electrode DC voltage was
increased by 0.05 V, and the process repeated up to a
maximum DC voltage of +1.5 V, after which, the DC voltage
was swept back to —1.5 V. We refer to the capacitance—voltage
(C—V) curve determined from DC voltages going from —1.5V
to +1.5 V as the forward sweep, and those from +1.5 V to —1.5
V as the reverse sweep. Capacitance measurements for the
entire array at each DC voltage step took approximately 38 ms,
and a complete forward or reverse sweep took approximately
2.3 s. Images of the measurement circuit and fabricated
varactor chips are shown in Figures S2 and S3 of the
Supporting Information, respectively.

A total of 36 distinct functionalizations were used for this
study. They include compounds from four main chemical
groups: pillararenes, porphyrins, pyrenes, and cyclodextrins.
These were selected for the wide range of receptor—analyte
interactions that they provide, including hydrogen-bond
donation and acceptance, dipole—dipole interactions, ligation
to metal centers, and steric repulsion. Of these functionaliza-
tions, we have previously shown the application of 10 on
graphene monolayers.”® In this work, we demonstrate the
application of an additional 26 functionalizations. High-density
monolayers of these compounds on graphene were obtained by
self-assembly. Confirmation of receptor adsorption onto the
graphene and information on the surface concentration of the
receptors was performed using contact angle’®”” and X-ray
photoelectron spectroscopy (XPS) measurements,30 making it
possible to determine the optimum concentration of the
receptors in the functionalization solutions in order to obtain
dense monolayers but avoid multilayer formation. A full list of
the 36 receptors used and their expected chemical interactions
with analyte gases is provided in Table 1, while Langmuir
adsorption isotherms for each receptor can be found in Figures
54—S86. It should be noted that while we only used 4 arrays in
this study, each of the 36 functionalizations were represented
by 3 duplicate sensors per array, for a total of 12 sensors per
functionalization across the whole system. Furthermore, each
of these 12 replicates was used to test 25 distinct gas and
concentration pairs, which collectively provides a great deal of
information for examining device consistency.

Feature Extraction. Several methods have been used
previously to extract features from response curves in gas
sensors.”” These include coefficients from curve fitting and
transformations with different types of functions as well as

geometric values or slopes at certain points, ranges, or areas of
the curve. One advantage to geometric features is their
inherent interpretability if the values are chosen judiciously.
Previous work on graphene varactors has already described a
set of geometric features that have well-understood physical
interpretations that _helg us to explain the underlying
mechanism of sensing.”>

In this work, the main geometric features that were chosen
to describe the C—V curves were the Dirac point, Vp, the
minimum capacitance, C,;,, and maximum capacitance, C,,.
From the latter two of these values, an additional feature, the
tuning range, TR = C,,/C,, was also defined. Finally,
because both forward and reverse sweeps were performed,
additional information conveyed by the hysteresis could be
determined. Therefore, Vp, C. Chew and TR were all
recorded for both sweep directions, and the Dirac point
hysteresis, AV, was also recorded for a total of 9 features: Vi,
Vory CoinFr Coninky Crnaxty Cmaxy TRp, TRy, and AV, A detailed
description of the sweep parameters and definitions of the
extracted features are provided in Figures S7 and S8 of the
Supporting Information. Figure S7 visually depicts how each
feature is calculated from a typical C—V curve, and also
includes a description of how each feature relates to the
underlying physics of the graphene varactors and their
interaction with the gas analytes. Figure S8 demonstrates
how the shape of the C—V curves may change under gas
exposure.

Device Consistency and Effect of Functionalizations
in Pretest. Before each gas sensing run, a set of initial pretest
curves were taken in N,. These curves are useful to show how
the functionalizations themselves affected the features
described above and are also used as the reference baseline
value from which the sensor response is determined. Five
forward and reverse sweep cycles were recorded during the
pretest phases. An example comparison of pretest C—V curves
is shown in Figure 2a, where the curve shown for each device is
that of the final pretest sweep. This sweep was chosen to show
the C—V characteristics after the device response to N, had
settled, but before the introduction of the gases, to best
represent the initial condition of the device before the testing
phase. Here, a pretest C—V curve for a bare (unfunctionalized)
graphene varactor is shown in blue, and the curve for a
functionalized varactor is shown in red. Arrows on each curve
denote the forward and reverse voltage sweeps. Three of the
features are indicated on the forward sweep of the bare device
(Vbe Cuingy @and Cpip)- In the case represented here, it is clear
that the functionalization increases both the overall capacitance
and shifts the Dirac point to more positive values when
compared to a bare device.

The functionalization-dependent change in device behavior
is further demonstrated in Figure S9, where a pretest C—V
curve of every varactor on each sensor array card has been
plotted. Each subplot of Figure S9 includes data from all 120
varactors on a single sensor array. Each of the 3 varactors on a
single array that have been functionalized with the same
chemical receptor are grouped together in the figure, and the
36 functionalization groups have been sorted by their average
Vbr across all 4 arrays as in Table 1. The 12 bare devices on
each array are also shown, and they are highlighted by a pink
box to help the reader to compare them to the functionalized
devices. This representation is intended to demonstrate that on
each array, (1) the three duplicate varactors of the same
functionalization type produce similar pretest C—V curves, and
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Figure 2. (a) Two representative C—V curves showing measured
capacitance versus applied gate voltage from a bare graphene
device and a functionalized device under pretest conditions. Scalar
features used to describe the curves are labeled on the blue curve,
and arrows indicate the sweep direction. (b) Vpr and (c) Cpynr
response curves of a bare device throughout pretest, exposure, and
posttest for 100% concentration hexanal and ethanol. Response
values were calculated for each curve by subtracting the last pretest
sweep from the minimum or maximum of exposure for negative
and positive responses, respectively. The points used to calculate
responses for these curves are shown in red. The measurements in
each took approximately 94 s total, with each sweep taking just
under $ s to complete.

(2) pretest C—V curves from different functionalization types
vary in shape and location on the voltage and capacitance axes.
While not every curve is unique, there is a gradient in C—V
curve behavior across functionalizations that is consistent
within groups. This does not show how each functionalization
responds to gas exposure; however, it does show that at least
the pretest C—V curves have been altered in varying ways by
the functionalizations. All four sensor arrays show very similar
Vpg trends.

Figure S10 shows a forward pretest curve from a sample of
varactors in all four sensor array cards, normalized by their
minimum capacitances. This demonstrates that devices
functionalized with different receptors produce distinct C—V
curve shapes that are consistent between replicate varactors of
the same functionalization and across all four sensor arrays.
Scatter plots showing the means and standard deviations of
one forward pretest sweep of the 12 devices of each
functionalization group across the 4 arrays are shown in
Figure S11. Forward sweep pretest feature values of every
varactor on all arrays are shown in Figure S12, and histograms
of pretest Vi values from every varactor in each functionaliza-
tion group are shown in Figure S13. These results provide a
strong indication of the high yield of the graphene varactors, as

well as the consistency of the changes in the C—V curves
induced by the functionalization. For example, while some
groups of functionalizations share similar Dirac point values as
evidenced by their overlapping standard deviations in Figure
S11 (e.g, functionalizations 1—10), other groups do not
overlap with the first group. Similarly, distinct capacitance
values are seen from each functionalization in the C, C,.0
and TR features. Similar shapes in the scatter plots of Figure
S12 suggest that devices of the same functionalization type
across all four arrays are producing similar pretest values. The
histograms in Figure S13 also show a shift in the distribution of
each functionalization.

We note that it is not necessary that each functionalization
produces a distinct pretest response, as their specific response
patterns to the set of gas analytes tested produces the
information necessary for the classification algorithms to
distinguish between the gases. However, these figures
demonstrate that even within the pretest response the devices
have been consistently altered by the functionalization type.

Measurement Procedure and Gas Responses. The gas
sensing measurements proceeded as follows. VOC mixtures
produced by flowing N, carrier gas through a gas bubbler
containing neat liquid were flowed through the chamber, and
as the gas molecules flow over the arrays, they interact with the
functionalized sensor surfaces. These interactions alter the
capacitance of the graphene and result in a shifting of the
recorded C—V curves compared to the pretest period. This
shift will vary depending on the functionalization and the gas
molecules, and so the different functionalization/gas combi-
nations produced specific response patterns that were input
into machine learning algorithms. Six gas species were chosen
for testing at four concentrations each. These gases are listed in
Table S1, along with their associated concentrations in ppm.
These correspond to 1, 10, 50, and 100% of the saturated
vapor concentration for each gas. The concentrations tested
range from approximately 145 to 103,000 ppm (depending on
the gas), and so are not especially low compared to the
concentrations that these gases might be found at in a real-
world context. However, as a sensing array may be used to
produce signals in response to the entire chemical content of a
given sample using the cross-reactivity of every sensor on the
array, extremely high sensitivity to single analytes may not be
required to detect specific diseases. In total, 25 combinations
of gases and concentrations were tested. The gas flow and
measurement setup are shown in Figure S14, and results of a
computational fluid dynamics simulation of the gas flow
through the sensor array card chamber are shown in Figure
S1S. This shows that the sensors are located in areas of
uniform flow.

As an additional indicator of the device yield and the long-
term stability over multiple measurements, Figure S16 shows
the averaged forward sweep pretest values for each of the 25
measurements of one representative bare device. Between each
measurement, the sensor was vacuum baked to desorb gas
molecules and reset the electrical characteristics. The lack of
trends in this figure demonstrates that the sensor behavior is
not being altered or degraded throughout repeated use. To
show that the functionalization itself is not being degraded,
Figure S17 shows the difference in forward sweep pretest
values for each of the 25 measurements between two
representative devices, one functionalized with 1-pyrenesul-
fonic acid and the other a bare device. A similar lack of trends
in this figure demonstrates that the functionalization is not
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changing throughout repeated use. To demonstrate the device
behavior and drift during repeated exposures to varying
concentrations of the analyte within one measurement, we
have also included data gathered from a single bare graphene
device throughout repeated exposure to ethanol at vapor
concentrations corresponding to 1% — 10% in Figure S18. The
gas exposures were longer than in the sensor array data (340 s
instead of 40 s), and so the drift in some features is more
significant. Despite this, even after multiple exposures to the
VOC the sensor responses show a tendency to return to the
same baseline value during the N, flow in most features.

The 6 VOCs tested produced varying response types in each
feature, as exemplified by Figure 2b,c, which show the ethanol
and hexanal responses in Vi and C,;,p, respectively. In each of
the pretest, exposure, and posttest measurement phases, S, 8,
and 6 complete forward—reverse sweep pairs were completed,
respectively. Each measurement set was completed in
approximately 94 s (pretest: 24 s; exposure: 40 s; posttest:
30 s). The baseline values for the various features were all
determined from the final sweep in the pretest period, as the
final sweep was the most representative of the initial condition
before the introduction of the gases. Two types of responses
were found based upon the exposure period behavior relative
to the baseline. A positive response was defined as one in
which the value of the feature in question increased relative to
baseline during gas exposure, and a negative response was one
in which the value of the feature in question decreased relative
to baseline during gas exposure. For example, in the case of Vp,
a positive response would result in the C—V curve shifting to
the right during gas exposure. Similarly, a negative response
would result in the C—V curve shifting to the left during gas
exposure. Another example is in the case of C,;, where the
curves would shift up during gas exposure for a positive
response and shift down for a negative response. The behavior
of a C—V curve undergoing a positive and negative response in
each feature is shown schematically in Figure S8. Response
values were calculated as the difference between the maximum
(minimum) value of the exposure period for a positive
(negative) response curve and the final sweep of pretest. The
data points used to calculate responses for each curve in Figure
2b,c are highlighted in red. The ethanol curve in Figure 2b is
an example of a positive response, and the hexanal curve in the
same subfigure is an example of a negative response. Response
data were calculated from each of the nine features for each
particular gas-concentration response curve recorded from
every sensor on the four sensor array cards. Further examples
of the response data similar to Figure 2b,c are shown in Figures
S§19—S24: representative bare device response curves for each
analyte at 100% concentration (Figures S19 and $20) and 1%
concentration (Figures S21 and S22) as well as representative
saturated ethanol vapor response curves for 1 bare device and 4
functionalized devices (Figure $23 and S24). Figures S25 and
S26 show scatter plots of the means and standard deviations of
each functionalization’s response values across the entire data
set (similar to Figure S11, which shows only the baseline
values). Additionally, every calculated response value in the
data set is shown in Figure S27. Machine learning algorithms
are needed to discriminate more finely between gases;
however, different patterns can still be seen by eye in Figure
§27. For example, ethanol and hexanal responses have opposite
signs and varying magnitudes in different features.

Average estimates of the Vpy limit of detection (LOD) for
each functionalization in the sensor array under exposure to

each of the 6 gases are provided in Figure S28. The Vpz LODs
estimated in this way are large, and differential sensitivities of
the functionalizations between each gas are subtle. This is due
to the fast measurement speed and short gas exposure time.
However, as will be shown later, machine learning can still
detect these subtle differences and successfully differentiate
between gas and concentration classes with high accuracy,
correctly classifying 6 gases at concentrations as low as 145
ppm.

In this work, we have opted for rapid sweeping to
demonstrate the varactor capabilities for applications requiring
short gas exposure and fast results. However, the sensitivity of
the graphene varactors is directly related to the speed of the
data acquisition—the varactors need time to respond to the
presence of gas molecules, and so the shorter the gas exposure,
the smaller the response signal. To illustrate this point, Figures
S$29 and S30 include comparisons between the rapidly
measured sensor arrays and data collected from single (not
multiplexed) varactors at slower measurement speeds. Whereas
each voltage sweep of the sensor array data was completed in
approximately 5 s, each sweep of the slower, single-sensor data
of these figures was completed in approximately 17 s. In Figure
S29, the single-sensor measurements were performed using 20
sweeps, so that the total gas exposure times were 40 s (arrays)
and 340 s (single sensors). The single sensors were exposed to
ethanol at 1%, 4%, 7%, and 10% saturated vapor concen-
trations (as compared to the 1%, 10%, 50%, and 100%
saturated vapor concentrations that the array sensors were
exposed to). Over the matching concentration range between
1% and 10%, the single sensors exhibit approximately 1.6 times
the sensitivity of the sensor arrays, and at 10% concentration,
the average signal magnitudes of the single sensors are
approximately 4 times larger than the sensor arrays. While
the difference in sensitivities between the bare device and the
devices functionalized with Receptors 2 and 26 are very subtle
in the sensor arrays, the trend matches that seen in the single
sensors: Receptor 26 > bare > Receptor 2.

In Figure S30, the slower, single-sensor measurements have
varied exposure periods of S, 10, and 20 sweeps (compared to
the 8 sweeps in the faster array data) to demonstrate the
change in sensitivity due to exposure duration. The total
exposure time for each case is as follows: 40 s (fast array
measurements), 85 s (single-sensor measurements —5 sweeps),
170 s (single—sensor measurements —10 sweeps), and 340 s
(single-sensor measurements —20 sweeps). The single sensors
were also tested at much lower concentrations of ethanol (20—
180 ppm) to get a more accurate estimate for their LOD. The
lowest estimated LOD is 19 ppm for the 10-sweep measure-
ments in Vpg. This shows that the varactors are highly sensitive
when measured at slower speeds, and so optimization between
rapid detection and high sensitivity is possible. This figure also
directly illustrates the trade-off between measurement speed
and sensitivity. Within the slower, single-sensor measurements,
the average LOD is larger in the S-sweep version than in the
10- and 20-sweep versions in all features except Ciry Craxps
and C,,x- These three features typically produce much noisier
signals, and so their responses are more variable. The
difference between the 10- and 20-sweep versions is less
clear, suggesting a saturation in sensitivity improvement with
increase in exposure time.

Parameter Selection. The responses relative to the
baseline represent the changes in the device behavior after
gas exposure. These distinct changes allow machine learning
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Figure 3. (a, b) The frequency of how many of the top (a) or bottom (b) 33% of parameters were derived from each feature in the PCA
predictor ranking. A weighted summation of the first two principal components was used to rank the predictors. Influential features include
Vory AVp, Craxes Cnaxwy and TRy, whereas Vi, Cuings Cingy and TRy do not appear highly influential. (c, d) The frequency of each parameter
appearing in the top (c) or bottom (d) 33% of parameters for high accuracy RF models only (accuracy >86%). In contrast to PCA, C,..x
Caxy TRy, and TRy, are not highly favored by the algorithm. This suggests that the C,,,,- and TR-derived parameters help to explain data
variation other than gas type (such as variations between sensor array cards).

algorithms to discriminate between both gas species and
concentrations. Two algorithms were chosen for this purpose:
PCA and Random Forest classification (RF). PCA demon-
strates the inherent discrimination between gas species and
concentrations with no model supervision, while the
supervised RF technique can classify with greater accuracy.
The number of parameters relative to data points was quite
large: with 9 features for each of the 36 functionalizations,
there were 324 possible recorded parameters per measurement
(although we note that 73 parameters were excluded due to
missing data as explained in the Methods section, and so only
251 parameters were considered). With 25 tested gases, 4
arrays, and each functionalization triplicate regarded as a
different observation, we had 300 data points. Because of this
high parameter-to-data point ratio, we risked model overfitting,
and the data set needed to be reduced for model efficiency.
This reduction could be done by eliminating parameters or by
using dimensionality reduction methods, such as PCA. An
additional desired outcome from this analysis was to better
understand how each parameter is altered by gas exposure, and
so eliminating parameters arbitrarily was not an ideal method.
Likewise, compressing parameters with PCA would lose more
detailed information about the importance of each. On the
other hand, the RF algorithm can handle many parameters
since it effectively performs an informed predictor selection
during training, and so this algorithm was chosen as the main
classification method. Additionally, we utilized bootstrap
aggregating to train 200 ensembles of Random Forest trees,
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in which each tree used different, randomly sampled training
and testing data sets. This method is commonly used to reduce
overfitting. Further details on this procedure are provided in
the Methods section.

A ranking of the most influential parameters in a data set can
also be extracted from the RF analysis. This can be used to
reduce the parameter set, and it provides information about
which parameters contribute the most to distinguishing
between the different data classes. Before training the
classification models to evaluate the sensor arrays, we first
performed a broad parameter selection process to narrow
down the list. Upon training an RF model, information can be
extracted regarding the importance of each of the input
parameters. By permuting the response values of one
parameter, the relationship is broken between it and the data
classes. Measuring the resulting changes in model accuracy
produces a permutation importance score for that parameter; a
reduction in model accuracy after permutation indicates that
the parameter did in fact contribute to explaining the data
pattern. No change or even an improvement in model accuracy
after permutation indicates that the parameter is not
informative; it may be too much affected by noise, or the
information it conveys may be unrelated to the data classes.
This permutation process is performed for each parameter in
turn, yielding an importance score for each. Parameters may be
ranked by their scores to show their relative influence in the
model. A similar ranking may also be obtained from PCA by
using the magnitude of each parameter’s loading coeflicient in
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Figure 4. PCA score plot without C_,- or TR-derived parameters, showing the projection of the measured responses onto principal
components (a, b) 1 and 2 and (c, d) 1 and 3, which all together explain 89.5% of the variation in the data. Marker symbols indicate gas
concentration (circles: 100%; triangles: 50%; diamonds: 10%; squares: 1% saturated vapor concentration), and the colors indicate gas
species as labeled. Arrows indicate the direction of concentration increase within a gas species. The ethanol and MEK groups are somewhat
overlapped in PC 1 and PC 2; however, they are distinct in the much weaker PC 3. The plots in (b) and (d) are magnified versions of (a) and
(c), respectively, to show the details of the tight cluster containing octane, 1-octene, toluene, nitrogen, and the low concentration
measurements of the other three gases. The varying concentrations of octane and 1-octene form slightly distinct groups; however, the two

species are indistinguishable within those groups.

the most explanatory principal components (PCs). The larger
a parameter’s coefficient, the more influential it is in describing
the data.

The entire data set of 25 analyte gas/concentration
combinations and all parameters was input into both PCA
and RF, and importance scores were calculated from both.
These scores were ranked for each algorithm from most to
least influential. For the PCA, the top and bottom 33% of the
ranked parameters were recorded, and the number of
parameters in each top/bottom group corresponding to each
feature was tallied. These feature frequencies are plotted in
Figure 3a (top 33%) and Figure 3b (bottom 33%). In the case
of the RF, 200 models were trained on different randomly
selected subsets of the data to improve stability, and
importance scores were calculated for each model. For each
RF run, these were ranked and divided into the top and
bottom 33%, as with PCA. After all 200 RF runs were trained,
the number of times that each feature-functionalization
parameter appeared in the top or bottom 33% of a “good”
model’s importance scores was tallied. A “good” model was
defined as a model that achieved a prediction accuracy >86%.
These tallies are plotted in Figure 3c,d.

The PCA importance scores indicate that parameters
derived from the Vpg, Chum Chawy and TRy features are
frequently found in the most influential parameters for PCA,
whereas parameters derived from the Vpg, Civp Chinp, and
TRy features are frequently found in the least influential
parameters for PCA. However, neither the C_, nor TR
features (both forward and reverse sweep versions) are clearly
influential in the RF models. This disparity between the PCA
and RF rankings is likely due to the blind nature of the PCA; as
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an unsupervised method, PCA finds patterns in the data
without any prior information about the true classes. However,
RF is supervised, meaning that a priori knowledge is employed
to identify the parameters that best discriminate between
known classes. These results not only explain which features
best describe the variations in sensor behavior between gas
samples but also explain which features are perhaps describing
confounding factors such as fabrication variations between
arrays. Based on these rankings of parameter importance, those
derived from the C,,,, and TR features were omitted from most
further analyses.

Gas and Concentration Distinctions with Unsuper-
vised Learning. While we chose to not use PCA as a
dimensionality reduction technique, it can still be used to
examine what inherent patterns are present in the data. If
patterns were found, we can then check if they match our
expectations based on the background knowledge of what
gases and concentrations were tested. We performed PCA on a
data set containing all 25 gas-concentration classes, and all
feature-functionalization parameters except those derived from
the C,,, and TR features. Figure 4 shows the PCA score plots
from various perspectives. Figure 4a,b shows the projection of
the responses onto PCs 1 and 2, and Figure 4c,d shows the
projection onto PCs 1 and 3. To show the tight cluster of
points in more detail, Figure 4b,d is the magnified version of
Figure 4a,c, respectively. Together, PCs 1, 2, and 3 explain
89.5% of the variation in the data. Each gas type has been
indicated with a different color, and marker shapes indicate the
gas concentrations (circles: 100%; triangles: 50%; diamonds:
10%; squares: 1% of the respective saturated vapor
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Figure 5. (a) Summary of each classification model’s accuracies, showing each model’s best accuracy (gray bars) and average accuracy and
standard deviation of accuracy across all bagging runs (blue). Each bar also shows the accuracy expected from a random chance model (red).
(b) Confusion matrix demonstrating the false classifications from an 89% accuracy RF classification model with no C,,,, or TR predictors
(Model 3). The red box surrounds the octane/l-octene rows and columns. There are some misclassifications between toluene
concentrations and between low concentrations of toluene and MEK. 1-Octene and octane observations within concentration groups are
also often confused with each other. These class overlaps are also seen in the PCA score plots (Figure 4).

concentration. Table S1 provides a complete list of the
corresponding concentrations in ppm of each gas).

Colored ellipses have been drawn around groups of points to
emphasize the relationships between classes. Ethanol (dark
blue), MEK (light green), and hexanal (orange) form lobes
radiating outward from the center cluster. Arrows indicate an
increase in gas concentration away from the center cluster,
which is consistent with all gas species. The tight center cluster
is comprised of the lowest concentrations of ethanol, MEK,
and hexanal as well as the nitrogen control and all
concentrations of toluene (light blue) and octane and 1-
octene (red and purple). Some overlap exists in the center
cluster, namely, between toluene and the lowest concentrations
of ethanol and MEK. Additionally, the lowest concentration of
hexanal is nearly overlapping with the octane/1-octene cluster.
These overlaps are likely due in part to the low response values
obtained from those overlapping classes (see Figures S19—S22,
which show the relative response magnitudes of all gases).
However, nitrogen, toluene, and the octane/l-octene cluster
are all well separated from each other.

Another interesting aspect of the results involves a
comparison of the octane and Il-octene responses. While
octane and 1-octene responses overlap with each other, it is
interesting to note that each concentration group is somewhat
separated. For instance, octane/l-octene at 1% (squares) is
distinct from octane/l-octene at 10% (diamonds). Both of
these are also somewhat distinct from 50% (triangles), which is

19576

in turn somewhat distinct from 100% (circles). This is not
surprising given that these two hydrocarbons have the same
number and connectivity of carbons and differ only by two
hydrogens, as also evident from the very similar boiling points
of 126 and 121 °C for octane and l-octene, respectively.
Nevertheless, most classes are well separated in the PCA,
which demonstrates that even an unsupervised algorithm,
given no prior knowledge of the class labels, can find distinct
differences between most gas species and concentrations.
Random Forest Classification Models. Subsequently, six
RF models were trained, using different combinations of the
data classes and parameters to examine different aspects of the
data, described as follows and summarized in Table S2: Model
1 was trained on the full data set, including all gases and
concentrations, and all parameters. To examine how much the
octane/1-octene confusion seen in the PCA analysis reduced
the RF classification accuracy in Model 1, Model 2 was trained
on a data set that excluded the I-octene classes. Model 3
included all gases and concentrations, but excluded any
parameters derived from C, and TR, to emphasize that
these two features are not necessary for classification. Model 4
was trained on the same data set and reduced parameter set as
Model 3; however, the labels of the training set were shuffled
prior to model training. This method, referred to as Y-
scrambling, seeks to verify that the model is not producing
high prediction accuracy by random chance. Shufiling the
training labels breaks any relationships between the classes and
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the associated values in the input parameters. If the model
trained on the shuffled labels achieves a similar accuracy as
before shuffling, then the input parameters are likely very
affected by noise or are otherwise unrelated to the data classes,
and the model has evidently succeeded in classifying the data
through random guessing. If, however, the accuracy from the
shuffled-label model is much worse, this result would suggest a
real relationship between the class labels and the input
parameters. Model S was trained on the reduced-parameter
data set (without parameters derived from C,, or TR),
including all gases, but only the two lowest concentrations of
each (1% and 10%). This was to demonstrate that even when
tasked with the most difficult challenge of classifying the
classes with the smallest signals, the RF algorithm still
produces a high accuracy. Finally, Model 6 was trained on
all gases and concentrations and the reduced-parameter set
(without C,,.- or TR-derived features), but the parameter set
was further reduced to only include bare devices. This is to
demonstrate the effect of the functionalizations on the
classification accuracy. A summary of the data classes and
parameters used in each of these models is provided in Table
S2.

The prediction accuracies of each of the six models are
shown in Figure Sa and Table S2. To improve the stability of
the results, 200 RF models were trained using different training
and testing data sets chosen at random from each data set. The
best accuracy of each model type is given by the bar chart, and
the mean and standard deviations of all 200 models are shown
in blue. To provide a baseline for success, the accuracy of a
random chance model is shown in red for each model (see the
Methods section for a description of their calculation). A
confusion matrix from a successful Model 3 run (accuracy =
89%) is shown in Figure Sb to illustrate the octane/l-octene
confusion that is still present even in the supervised RF
models.

All of the RF models (excluding the Y-scrambled Model 4)
performed much better than their respective calculated random
chance accuracy, giving confidence in the robustness of these
models. The full Model 1 (full data set, full parameter set)
produced an accuracy of 89%. When 1-octene was removed
(Model 2), the accuracy was 97.6%. The cause of this
improvement is evident in the confusion matrix in Figure Sb,
where the octane/1-octene classes have been highlighted. Even
in the best model shown in the confusion matrix, the octane
and l-octene are frequently confused; however, only three
misclassifications between other gases are observed. These
confusions occur between two different concentrations of
toluene (toluene 50% is misclassified as toluene 100%), and
one misclassification between MEK 10% and toluene 50%.

By examining only the highlighted portion of Figure Sb, we
can calculate a 75% accuracy in discriminating between the 4
concentrations of octane and 1-octene. While this is not ideal,
to our knowledge, few other studies using graphene gas sensors
in this way have tested such chemically similar compounds
with this level of success. Nallon et al. tested a group of
chemically similar analytes consisting of 9 monosubstituted
benzene compounds with a single graphene sensor and
achieved a classification accuracy of 88% when using the RF
algorithm as in our study. Considering that each analyte in
Nallon et al. was tested at only one concentration, whereas we
have tested each of our analytes at 4 concentrations each, we
believe our accuracy of 75% is reasonable.

Kybert et al. tested four carboxylic acids differing only in the
lengths of their carbon chains and two structural isomers of
pinene differing only in the location of a double bond.
Through visual examination of response versus concentration
curves, they were able to differentiate between each of these
compounds. In their study, their analyte exposure periods were
200 s long each. In our case, we have opted for faster sensing
(~40 s per exposure period), which has reduced our sensitivity
and likely made the discrimination of octane and l-octene
more difficult. Despite this, we have still demonstrated
moderately successful discrimination ability between two
highly similar chemical compounds.

Finally, we note that octane and 1-octene are chemically
much more similar than the compounds tested in either of the
two studies mentioned above. Octane and 1-octene differ by
only two hydrogen atoms, a similarity also reflected by their
very similar boiling points (121 °C for 1-octene and 126 °C for
octane). In contrast, the boiling points for the benzene
compounds tested by Nallon et al. range between 111 and 210
°C, and the boiling points of the 4 carboxylic acids tested by
Kybert et al. range between 141 and 237 °C. Further
improvements to our system are needed; however, we believe
this level of discrimination between octane and 1-octene shows
excellent progress toward a highly selective sensing array.

When the parameter set was reduced by removing those
suggested by the broad selection in Figure 3, the best possible
accuracy in Models 1 and 3 is the same (89%), while the
average accuracy is slightly improved in the reduced model
(80% for Model 1, 82% for Model 3). The standard deviation
also decreased in the reduced model (3.3 for Model 1, 2.9 for
Model 3). These results further support the removal of the
Crac and TR-derived parameters, since if those parameters
were contributing useful information, we would expect the
classification accuracy to decrease upon their removal. Next,
Model 4 shows that Y-scrambling the training labels produces,
on average, the same accuracy as expected from random
chance. This indicates that the other models are not achieving
high accuracy simply due to random chance.

Model S achieved an accuracy of 94%, slightly better than
Model 3, which was trained on the same data and parameter
set, except that Model S only included the lowest 2
concentrations of each gas (1% and 10%). As the lowest
concentrations have the smallest response signals, this
classification success indicates that the RF algorithm is effective
for classifying gases even with indistinct signals. We note that
these signals are not readily distinguishable upon visual
inspection, as seen in Figures $21—S22 and Figure S27, and
yet the machine learning algorithm was still successful at
classifying them with high success.

Finally, Model 6 achieved an accuracy of 63%. This is much
better than this model’s random chance of 4%; however, it is
much lower than Model 3 (89%). The difference between
these two models is that Model 3 uses data from the
functionalized sensors, while Model 6 uses only data from the
bare sensors. The reduced accuracy when using only bare
devices demonstrates that the functionalizations have provided
improved classification ability by increasing the selectivity to
different analytes.

We note that in all of our machine learning algorithms, we
have treated each concentration of each gas as an individual
class for a total of 25 classes, rather than grouping all
concentrations of one gas together into one class for a total of
7 classes. In this case, we are differentiating between larger and
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smaller amounts of an analyte, rather than the presence or
absence of it. This would be helpful in a possible application
such as disease diagnosis in breath; while certain analytes may
be markers for some diseases, they are often still present in the
breath of healthy patients, simply in larger or smaller amounts.
For example, ethanol may be present in the breath of lung
cancer patients in concentrations between 64 and 2160 ppb,
but it may also appear in concentrations between 27 and 216
ppb in the breath of healthy subjects.” Similarly, octane and
hexanal may be present at 0.57—2.87 ppb (octane) and 0.68—
1.47 ppb (hexanal) in lung cancer patients, but also appear in
healthy subjects at 0.1—1.29 ppb and 0.18—0.35 ppb,
respectively. Other applications, such as environmental
monitoring for toxic chemicals, may have less of a need for
detecting a wide range of concentrations (e.g., detecting NO,).

Both the raw data and classification results described here
demonstrate that we have achieved a high yield of graphene
sensors and that the wide range of functionalizations applied
have produced consistent alterations to the inherent electrical
characteristics of the sensors. When including the 12
unfunctionalized devices per sensor card array (which were
not included in the PCA and RF analyses), there were a total
of 480 varactors tested across the 4 sensor array cards.
Throughout the sequence of 25 measurement trials reported
here, each using all 480 varactors, only 3.6% of response data
points calculated are missing due to malfunctioning or
damaged devices. This value encompasses device loss
throughout 49 total measurement trials with these 4 sensor
card arrays over the course of 7 months (including 24
additional measurement trials not reported here), and this level
of loss is within the triplicated redundancy of each set of
varactors on each array. This >96% yield across many device
uses is an improvement to other graphene array studies, which
have shown >90% vyields across their sets of fabricated
devices."""*

Rather than using an exhaustive feature selection followed by
dimensionality reduction as is common, we have first started
with a short list of features, intuitively selected based on
previously described physical characteristics.”>>® Even so, the
large number of functionalizations combined with the 9
extracted features creates a set of over 300 parameters, and
some narrowing down was necessary. We have opted to reduce
the number of parameters by examining feature importance in
a supervised model. The broad parameter selection procedure
performed here (Figure 3) indicates that those derived from
the C,,, and TR features are not informative when trying to
discriminate between the gas species and concentrations
tested. The nonimportance of these features could be related
to their correlation with minor fabrication differences between
devices and cards, such as lithographic variations or HfO,
thickness. For instance, thinner HfO, would tend to increase
both C_,, and TR, and changes in these features would also
tend to be amplified upon gas exposure.

Limitations and Optimization. While our sensing system
provided high accuracy, further improvements in the sensor
array understanding are needed. For instance, a detailed
comparison of the importance of each functionalization was
not made here. Due to the complexity of the system, this study
was focused on demonstrating the feasibility of the graphene
arrays for rapid gas sensing, demonstrating the usefulness of
machine learning at pulling information from low-magnitude
signals that the human eye cannot see, and exploring the
importance of each feature. Further experiments might include

measurements of single gases with single sensors to carefully
characterize the relationship between each receptor and each
gas. This would enable fine-tuning of the functionalization
selection for arrays intended to detect varying target analytes.

Future application of the graphene varactor arrays to real-
world detection will of course require experiments with more
complex and realistic gaseous environments. Here, we have
shown the arrays can discriminate between single gases;
however, they must be able to detect target analytes in a variety
of backgrounds. Human breath, for example, contains many
interfering compounds not relevant to the diagnosis of diseases
(e.g., water vapor, oxygen). As such, binary mixtures of a target
analyte plus water vapor are a very appropriate test for gas
sensor arrays, especially those intended for lung cancer or
other breath-related diagnoses.””** Further relevant steps
might include testing binary mixtures with varying background
gas compositions or mixtures that imitate specific environ-
ments, such as simplified “human breath” mixtures. Ultimately,
it will be crucial to understand the underlying sensor
mechanisms between O,, H,0, and VOCs. However, for this
study, we felt that sensing in the presence of O, and H,0O
added an unnecessary level of complexity and could also
introduce additional unintentional biases in the classification
analysis. We chose to focus on the pure VOC analytes before
adding interfering environments; however, future work should
include water and oxygen. Additionally, experiments at lower
VOC concentrations may be useful as disease-indicating
analytes such as those tested here may be present in breath
at levels ranging from 10° to 10° ppb,” whereas the lowest
levels we have tested here are around 10* ppm. However, one
advantage of an array-based approach is that each sensor
responds to the entire chemical content of the sample, and
therefore highly sensitive detection of any individual analyte
may not be necessary.

Future work will need to be done to more fully explain the
relationships between the analyte/receptor binding and the
resulting sensor responses. Although we have sought to
describe the expected response behaviors in Table 1, these
analyte binding/response interactions are quite complex.
Figure S28 also provides some information regarding the
differences in Vpy functionalization response to each of the six
gases. There are some variations between how each function-
alized sensor responds to each gas; however, the signal
magnitudes in this data set are quite low, and therefore the
differences are not particularly distinct. While the machine
learning methods described in this work are effective at pulling
information from noisy data, this still means that a careful
examination of these analyte binding/response interactions
must be pursued with data collected at slower speeds. Some
preliminary work on this is seen in Figure S29, where the
slower measurement speed allows us to see the difference in
sensitivities between each functionalization more clearly.
Future work will explore these relationships with additional
gases. In the present work, however, we have opted to explore
the sensor arrays’ capabilities for rapid data collection.

Additional future studies will also involve investigating the
time response of the sensor arrays. Our current sensor system
was specifically designed for fast readout; however, investigat-
ing the sensor response over a longer time could allow
additional time for weak sensor responses to emerge above the
noise level, though at the expense of rapid identification.
Figures S29 and S30 show preliminary work on this,
demonstrating that when measured more slowly, the sensitivity
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of the varactors is improved, and they can achieve an LOD of
19 ppm when exposed to ethanol over a time period of 170 s.
In previous studies, we have observed that sensor responses
can occur over the course of several tens of minutes and that
these longer measurement times could be used to improve
sensitivity to lower concentration gases or further improve
detection accuracy at fixed concentration. At 5 s per sweep, our
8 exposure sweeps took a total of 40 s, whereas others have
used 30 5,°% 60 s, 200 s,*" 10 min,*® and 10—20 min.*” In all
of these examples, the total exposure time was approximately
equal or much greater than ours. Furthermore, our sensor
system provides a full C—V sweep for each of the 108 sensors
within this S s time frame. This is a massively parallel
measurement configuration, and such a system demonstrating
rapid, near-simultaneous measurement of such a large number
of graphene devices is not common in the literature. However,
improvements in the response time are possible with our
system, as this platform offers numerous possible ways that the
parallelism could be traded off for speed, and vice versa. In
addition to changing the total sweeping time, the C-V
measurement voltage step size could be decreased from 50 mV
to improve V measurement accuracy, or the capacitance
measurement integration time could also be increased to
reduce noise in the measurement system. An example of the
trade-off between measurement time and sensitivity is shown
in Figures S18, S29, and S30.

CONCLUSION

This work has shown the successful classification of VOC
species and concentrations with a 108-device graphene-based
sensor array swept at rapid speeds. The array was function-
alized with 36 distinct chemical receptors to improve
selectivity, and all devices were probed virtually simultaneously
to collect a cross-reactive data set for input into machine
learning algorithms. These are among the largest graphene
sensor arrays of this size and functionalization diversity. Of the
36 receptors utilized, 26 have not previously been applied to
graphene sensors. We have also reported the parameters
necessary for applying each functionalization to graphene
layers with high surface coverage. Despite a reduction in signal
magnitudes due to the rapid measurement, these large-scale
arrays have successfully produced signal patterns distinct
enough to discriminate between gas analytes with machine
learning algorithms, and we have demonstrated consistent
behavior of 400 individual devices. Nine data features were
studied for their influence in machine learning algorithms, and
a parameter selection process was performed to determine
which of these was not important for discriminating gas
species. Two features were deemed unimportant, likely due to
the influence of fabrication variations on their values. After
omitting parameters derived from these features, gas
discrimination was still highly successful between nearly all
classes (prediction accuracy = 89%), although the classification
algorithm had more difficulty in distinguishing two highly
similar gases (octane and 1-octene). By omitting the 1-octene,
this confusion was eliminated, and the resulting model
achieved 98% prediction accuracy. However, discrimination
between octane and 1-octene with an accuracy of 75% was still
possible between 4 concentrations of these two gases, despite
their extreme chemical similarity. By comparing model results
to a Y-scrambled classification model, we found strong support
that the models are robust and are in fact identifying true
patterns in the data. We emphasize the importance of selecting

an appropriate analysis method that can utilize signals that
cannot readily be distinguished by visual inspection. Further
optimization of these sensors is possible to balance speed with
sensitivity. These results are an important step toward
developing large arrays of graphene-based chemical gas sensors
for use in health care and environmental monitoring
applications.

METHODS

Sensor Fabrication and Functionalization. Sensors were
fabricated on 150 mm-diameter silicon wafers using a hybrid process
that started in a commercial fabrication facility. The process began by
first growing a 1 pm-thick SiO, layer by wet thermal oxidation. The
local gate electrode was created next by first patterning and etching
the SiO, to form 300 nm-deep trenches. Tungsten was deposited by
CVD then planarized using chemical-mechanical polishing. Next, 9.9
nm of a composite dielectric stack consisting of Al,O; and HfO, were
deposited by ALD. The composite stack was used to suppress
crystallization of the HfO,, thus minimizing gate leakage current. After
dielectric deposition, unless otherwise noted, the remaining process
steps were performed at the Minnesota Nano Center. Via openings
were patterned and etched through the dielectric to the tungsten local
gate using a BCl; reactive-ion etch. Next, single-layer CVD graphene
was transferred onto the substrate by an outside vendor using an
aqueous transfer process. Next, the graphene regions were patterned
and etched using an O, plasma. Contact electrodes consisting of Cr/
Au (10/80 nm) were then patterned and lifted off. Finally, additional
layers of Cr/Al (10/1000 nm) were deposited onto the contact pads
for subsequent wire bonding. Completed wafers were diced by an
external vendor using a laser-based dicing process that did not require
an additional surface protection layer to be deposited.

Functionalization of each sensor chip was performed as follows:
For each receptor, at least 3 mL of the functionalization solution was
prepared in 20 mL glass vial. Ten chips were immersed in the solution
at a time, and the vial was covered with aluminum foil and left at
room temperature overnight for self-assembly. After immersion, the
functionalized chips were dipped into 3 mL of receptor-free self-
assembly solvent twice to rinse off any residual functionalization
solution and then transferred into a S0 mL solvent bath in a
crystallizing dish. The solvent bath was placed onto an orbital shaker
set to 90 rpm and shaken for 1 min to wash off any excess self-
assembly solution. Afterward, the chips were removed from the bath
and dried with nitrogen flow. It was confirmed for several
functionalizations with contact angle measurements and XPS that
this process did not compromise the monolayer quality. Function-
alized sensor chips were attached to PCBAs using EPO-TEK H70E
epoxy and ball bonded with 0.001” Au wire for testing.

Sensor Testing. Sensor arrays were vacuum baked at 100 °C and
~107® Torr overnight to remove any adsorbed gases. Once cooled,
the sensors were purged for at least 10 min with N, prior to testing.
To test an array, the sensor card was loaded into the test stand and
attached to a gas flow of 1 L/min N,, and pretest C—V curves were
measured. After the pretest measurements were complete, part of the
N, gas flow was directed through a bubbler containing the neat liquid
of the desired test gas. This generated a saturated vapor, which was
then diluted to the desired concentration in N,. Once the exposure
measurements were complete, the gas flow was changed to pure N,
for the posttest measurements. The total flow rate remained constant
at 1 L/min throughout the experiment. Measurement data were
automatically transferred to the PC for offline analysis.

Data Preparation. To extract the Dirac point (V) for each C—V
curve, first the numerical derivative of the curve was calculated and
smoothed with a 5-point moving average. V7, is the voltage at which
this derivative is equal to zero. A linear polynomial was fitted across
the two data points on either side of the zero crossing of the
derivative, and Vj, was calculated as the root of this line. The
minimum capacitance (Cp) is the capacitance at V, and was
calculated using a second degree polynomial fit to a S-point window
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on either side of the zero crossing of the derivative. The minimum
value of this polynomial fit is taken as C,.

The maximum capacitance (C,,,,) was not calculated at a fixed
voltage, since both lateral and vertical movement of the C—V curves
would influence the value. Instead, C,, was defined as the
capacitance 1.3 V to the left of V}, for a given curve. Next, the
tuning range was the ratio of the maximum and minimum
capacitances, TR = C,,,/C,;, Finally, the lateral hysteresis of the
C—V curve was calculated by taking the difference of the forward and
reverse Dirac points, AV = Vpg — Vpp.

For a positive response, the response value was calculated as the
difference between the maximum value of exposure and the last data
point of pretest, or max(exposure) — last(pretest). Similarly, negative
responses were calculated as the difference between the minimum
value of exposure and the last data point of pretest, or min(exposure)
— last(pretest). Signals were inspected by eye to determine the
appropriate response type for each of the nine features and for each of
the seven gases (six VOCs plus the nitrogen control). A total of 63
gas-feature combinations were used, and all but 8 of these were
determined to have positive responses. The eight negative responses
were: forward and reverse C,,, (ethanol, MEK, and toluene), Vpp
(hexanal), and AVp, (nitrogen).

To input the data into machine learning algorithms, it was arranged
into an N X p matrix, where N is the number of observations and p is
the number of predictors, or parameters. The number of observations
was N = 300: There were 6 gases at 4 concentrations each, plus the
nitrogen control. Each of these conditions was measured using four
sensor array cards, and the three replicate varactors per functionaliza-
tion on each array were considered as distinct observations. The total
number of possible parameters was p = 324: A parameter was defined
as a specific feature-functionalization pair, and there were 9 features
and 36 functionalizations. However, some varactors across the four
arrays did not produce viable data—reasons for this include varactors
that were physically damaged, and damaged or missing wire bonds
connecting the varactors to the probes. The number of missing data
points due to this damage was 3.6% of the entire calculated response
data set. To retain as many parameters as possible while reducing the
number of response observations with missing data, parameters with
24 or more missing data points were removed from the data set. The
final remaining number of parameters was p = 251.

Normalization was applied to the data set before any analysis was
done. A Z-score normalization was used to normalize groups of
parameters derived from the same feature: All Vpp-derived parameters
were normalized as a group, all Vpg-derived parameters were
normalized as a group, and so on. The Z-score was calculated as
Z= %, where « is the raw response value, y is the sample mean of
the feature group (e.g., the mean of all Vp-derived parameters), and
o is the sample standard deviation of the feature group.

Machine Learning Models. PCA analysis was done using the pca
function in the Statistics and Machine Learning Toolbox of MATLAB
(version R2021a). To rank the parameters by influence, a weighted
summation of each parameter’s coefficients from the first two
principal components (PCs) was calculated. Each PC was first
weighted by its respective percentage explained (how much of the
data’s variance each PC explains), and then the absolute values of the
corresponding coeflicients from the two weighted PCs were summed
together. The sums for each coeflicient were sorted from largest to
smallest, and the top 33% and bottom 33% of coefficients (84
coefficients, respectively) were selected. Finally, the number of the top
and bottom coefficients that corresponded to each feature were
tallied.

RF classification was done using MATLAB'’s TreeBagger function in
the Statistics and Machine Learning Toolbox. This function creates a
bootstrap aggregated (“bagged”) ensemble of decision trees. Each
ensemble of decision trees was grown using 200 trees, and node splits
were calculated using an interaction test (inferaction-curvature in
MATLAB). Surrogate splits were not used. To further improve the
stability of the results, 200 of these bagged tree ensembles were fitted,
each with different training and test data sets. Each training set was
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randomly sampled without replacement, and the remaining data
points were held out as the test set. The ratio of training set to test set
was 66.7%:33.3%. For the complete data set of 25 classes, this ratio
resulted in 200:100 data points. For the reduced data set of 21 classes
(excluding 1-octene), this ratio resulted in 168:84 data points. In both
cases, this meant that each class was represented by 8 data points in
the training set and by 4 data points in the test set. After training each
decision tree ensemble, the labels of the test set were predicted with
MATLAB’s predict function. The predicted labels were compared to
the true test set labels, and the prediction accuracy was calculated as
the number of labels that were correctly predicted divided by the total
number of data points.

To test the Y-scrambled prediction accuracy, the same process was
followed, but the training labels were randomly shuffled for each tree
ensemble before model training. Random chance accuracies were
calculated for each of the reported models by assuming that a classifier
predicting labels randomly would be correct at a rate of 1/C, where C
is the number of classes in the data set. For example, a random
classifier is expected to correctly predict the labels of a 2-class
balanced data set approximately 50% of the time. In this study, all
reported models used balanced data sets.

To rank the RF parameters by influence, out-of-bag permutation
importance values were calculated from each tree ensemble using the
ComputeOOBPredictorImportance feature of MATLAB’s TreeBagger
function. This method measures how much the prediction accuracy of
a single parameter changes when that parameter’s out-of-bag values
are permuted. These importance values are calculated for each tree in
the ensemble, and the results for each parameter are averaged across
the entire ensemble. After this was calculated for a given ensemble,
the parameters were ranked by importance, and the top and bottom
33% of parameters were recorded. After training all 200 ensembles,
the frequency of each parameter appearing in the top or bottom 33%
of importance was tallied for only the ensembles with high prediction
accuracies (accuracy 286%).
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