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ABSTRACT

Spatial transcriptomics (ST) technologies are rapidly becoming the extension of single-cell RNA sequencing (scRNAseq), holding the potential of
profiling gene expression at a single-cell resolution while maintaining cellular compositions within a tissue. Having both expression profiles and
tissue organization enables researchers to better understand cellular interactions and heterogeneity, providing insight into complex biological pro-
cesses that would not be possible with traditional sequencing technologies. Data generated by ST technologies are inherently noisy, high-
dimensional, sparse, and multi-modal (including histological images, count matrices, etc.), thus requiring specialized computational tools for
accurate and robust analysis. However, many ST studies currently utilize traditional scRNAseq tools, which are inadequate for analyzing complex
ST datasets. On the other hand, many of the existing ST-specific methods are built upon traditional statistical or machine learning frameworks,
which have shown to be sub-optimal in many applications due to the scale, multi-modality, and limitations of spatially resolved data (such as spa-
tial resolution, sensitivity, and gene coverage). Given these intricacies, researchers have developed deep learning (DL)-based models to alleviate
ST-specific challenges. These methods include new state-of-the-art models in alignment, spatial reconstruction, and spatial clustering, among
others. However, DL models for ST analysis are nascent and remain largely underexplored. In this review, we provide an overview of existing
state-of-the-art tools for analyzing spatially resolved transcriptomics while delving deeper into the DL-based approaches. We discuss the new
frontiers and the open questions in this field and highlight domains in which we anticipate transformational DL applications.
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I. INTRODUCTION

Although multicellular organisms contain a common genome
within their cells, the morphology and gene expression patterns of cells
are largely distinct and dynamic. These differences arise from internal
gene regulatory systems and external environmental signals. Cells
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proliferate, differentiate, and function in tissues while sending and
receiving signals from their surroundings. These environmental factors
cause cell fate to be highly dependent on the environment in which it
exists. Therefore, monitoring a cell’s behavior in the residing tissue is
crucial to understanding cell function, as well as its past and future
fate.1

Advancements in single-cell sequencing have transformed the
genomics and bioinformatics fields. The advent of single-cell RNA
sequencing (scRNAseq) has enabled researchers to profile gene expres-
sion levels of various tissues and organs, allowing them to create com-
prehensive atlases in different species.2–6 Moreover, scRNAseq enables
the detection of distinct subpopulations present within a tissue, which
has been paramount in discovering new biological processes, the inner
workings of diseases, and effectiveness of treatments.7–14 However,
high-throughput sequencing of solid tissues requires tissue dissocia-
tion, resulting in the loss of spatial information.15,16 To fully under-
stand cellular interactions, data on tissue morphology and spatial
information are needed, which scRNAseq alone cannot provide. The
placement of cells within a tissue is crucial from the developmental
stages (e.g., asymmetric cell fate of mother and daughter cells17) and
beyond cell differentiation (such as cellular functions, response to
stimuli, and tissue homeostasis18). These limitations would be allevi-
ated by technologies that could preserve spatial information while
measuring gene expression at the single-cell level.

Spatial transcriptomics (ST) provide an unbiased view of tissue
organization crucial in understanding cell fate, delineating heterogene-
ity, and other applications.19 However, many current ST technologies
suffer from lower sensitivities as compared to scRNAseq while lacking
the single-cell resolution that scRNAseq provides.20 Targeted in situ
technologies have tried to solve the issue of resolution and sensitivity
but are limited in gene throughput and often require a priori knowledge
of target genes.20 More specifically, in situ technologies [such as in situ
sequencing (ISS),21 single-molecule fluorescence in situ hybridization
(smFISH),22–24 targeted expansion sequencing,25 cyclic-ouroboros
smFISH (osmFISH),26 multiplexed error-robust fluorescence in situ
hybridization (MERFISH),27 sequential FISH (seqFISHþ),28 and spa-
tially resolved transcript amplicon readout mapping (STARmap)29] are
typically limited to pre-selected genes that are on the order of hundreds,
with the accuracy potentially dropping as more probes are added.29 We
will refer to these methods as image-based techniques.

On the other hand, next generation sequencing (NGS)-based tech-
nologies [such as 10� Genomics’ Visium and its predecessor,30,31 Slide-
Seq,32 and high-definition spatial transcriptomics (HDST33)] barcode
entire transcriptomes but have limited capture rates, and resolutions that
are larger than a single cell34 (50–100lm for Visium and 10lm for
Slide-Seq). Moreover, unlike image-based technologies, NGS-based
methods allow for unbiased profiling of large tissue sections without
necessitating a set of target genes.35,36 However, NGS-based technologies
do not have a single-cell resolution, requiring cellular features to be
inferred or related to the histological scale using computational
approaches. Many current algorithms use traditional statistical or medi-
cal image processing frameworks that require human supervision,34,37,38

which is not ideal for large-scale analyses. Additionally, many algorithms
are not generalizable across different sequencing platforms, which limits
their utility and restricts multi-omics integration efforts.

Deep learning (DL) methods can use raw data to extract useful
representations (or information) needed for performing a task, such as

classification or detection.39 This quality makes this class of Machine
Learning (ML) algorithms ideal for applications where the available
data are large, higher-dimensional, and noisy, such as single-cell
omics. DL models have been extensively used in scRNAseq studies
(e.g., preprocessing,40,41 clustering,42,43 cell-type identification,44,45 and
data augmentation46,47) and have shown to significantly improve
upon traditional methods,10 suggesting the potential of such methods
in ST analysis. Moreover, DL models can leverage multiple data sour-
ces, such as images and text data, to learn a set of tasks.48 Given that
spatially resolved transcriptomics are inherently multi-modal (i.e.,
they consist of images and gene expression count data) and that down-
stream analysis consists of multiple tasks (e.g., clustering and cell-type
detection), researchers have sought to develop ST-specific DL
algorithms.

Spatially resolved transcriptomics have been utilized to unravel
complex biological processes in many diseases (e.g., COVID-19,49,50

arthritis,51,52 cancer,31,33,53–55 Alzheimer’s,56 diabetes,57,58 etc.).
Continuous improvements and commercialization of ST technologies
(such as 10�’s Visium) are resulting in wider use across individual
labs. Therefore, scalable and platform-agnostic computational
approaches are needed for the accurate and robust analysis of ST data.
So far, DL methods have shown promising results in handling the
scale and multi-modality of spatially resolved transcriptomics; how-
ever, DL-based models in this space remain nascent. Similar to
scRNAseq analysis, we anticipate a suite of DL models to be developed
in the near future to address many of the pressing challenges in the
spatial omics field. This review aims to provide an overview of the cur-
rent state-of-the-art (SOTA) DL models developed for ST analysis.
Due to the potential and accessibility of NGS-based ST technologies,
we primarily focus on methods and techniques developed for these
technologies.

The remainder of this manuscript is organized as follows: We
provide an overview of common scRNAseq and ST technologies in
Sec. II, followed by a general description of common DL architectures
used for ST analysis in Sec. III. Section IV is dedicated to the current
DL methods developed for analyzing spatially resolved transcriptom-
ics. In Sec. V, we conclude by discussing our outlook on the current
challenges and future research directions in the ST domain. We pro-
vide an illustration of the main methods reviewed in this paper in Fig.
1 and provide the reader with a list of current SOTA methods for ST
analysis in Table I. Given the pace of advancements in this field, the
authors have compiled an online list of current DL methods for ST
analysis on a dedicated repository (https://github.com/SindiLab/Deep-
Learning-in-Spatial-Transcriptomics-Analysis), which will be main-
tained and continuously updated.

II. BIOLOGICAL BACKGROUND
A. Single-cell RNA sequencing (scRNAseq)

RNA sequencing (RNA-seq) provides comprehensive insight on
cellular processes (such as identifying genes that are upregulated or
downregulated, etc.). However, traditional bulk RNA-seq is limited to
revealing the average expression from a collection of cells, and not dis-
ambiguation single-cell behavior. Thus, it is difficult to delineate cellu-
lar heterogeneity with traditional RNA-seq, which is a disadvantage
since cellular heterogeneity has been shown to play a crucial role in
understanding many diseases.83 Therefore, researchers have turned to
single-cell RNA-seq (scRNAseq) in order to identify cellular
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heterogeneity within tissues. ScRNAseq technologies have been instru-
mental in the study of key biological processes in many diseases, such
as cancer,84 Alzheimer’s,85 cardiovascular diseases,86 etc. (see Ref. 83
for more details). RNA sequencing of cells at a single-cell resolution,
scRNAseq, generally consists of four stages:

(i) Isolation of single-cells and lysing: Cells are selected
through laser microdissection, fluorescence-activated cell
sorting (FACS), microfluidic/microplate technology (MT),
or a combination of these methods,87 with MT being highly
complementary to NGS-based technologies.88 MT encapsu-
lates each single-cell into an independent microdroplet con-
taining unique molecular identifiers (UMI), lysis buffer for
cell lysis (to increase the capturing of as many RNA mole-
cules as possible), oligonucleotide primers, and deoxynu-
cleotide triphosphates (dNTPs) in addition to the cells
themselves. Due to MT’s higher isolation capacity, thou-
sands of cells can be simultaneously tagged and analyzed,
which is beneficial for large-scale scRNAseq studies.

(ii) Reverse transcription: One challenge in RNA sequencing is
that RNA cannot be directly sequenced from cells, and thus,
RNA must first be converted to complementary DNA
(cDNA).89 Although various technologies employ different
techniques, the reverse transcription phase generally
involves capturing mRNA using poly[T] sequence primers

that bind to mRNA ploy[A] tail prior to cDNA conversion.
Based on the sequencing platform, other nucleotide sequen-
ces are added to the reverse transcription; for example, in
NGS protocols, UMIs are added to tag unique mRNA mole-
cules so that it could be traced back to their originating cells,
enabling the combination of different cells for sequencing.

(iii) cDNA amplification: Given that RNA cannot be directly
sequenced from cells, single-stranded RNAs must first be
reverse transcribed to cDNA. However, due to the small
amount of mRNA in cells, limited cDNA is produced,
which is not optimal for sequencing. Therefore, the limited
quantity of cDNA must be amplified prior to library prepa-
ration and sequencing.90 The amplification is often done by
either PCR (an exponential amplification process with its
efficiency being sequence dependent) or IVT (a linear
amplification method that requires an additional round of
reverse transcription of the amplified RNA) before sequenc-
ing.89,91 The final cDNA library consists of an adaptor-
ligated sequencing library attached to each end.

(iv) Sequencing library construction: Finally, every cell’s
tagged and amplified cDNA is combined for library prepa-
ration and sequencing similar to bulk RNA sequencing
methods, followed by computational pipelines for process-
ing and analysis.92

FIG. 1. An overview of deep learning (and machine learning) methods for spatial transcriptomics presented in this review. In this work, we provide a brief background on
related biological concepts, such as single-cell RNA sequencing (scRNAseq) and spatial transcriptomic (ST) technologies (Sec. II), followed by an overview of common deep
learning architectures in Sec. III. We then dive deeper into specific machine learning techniques for spatial reconstruction (Sec. IVA), scRNAseq and ST alignment (Sec. IV B),
ST spot deconvolution (Sec. IV C), spatial clustering (Sec. IV D), and cell–cell interaction (Sec. IV E). A more comprehensive list of the state-of-the-art methods for spatial tran-
scriptomics is provided in Table I.
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Figure 2(A) illustrates an example of the workflow for scRNAseq.
For more details of each stage and various scRNAseq workflows, we
refer the reader to Refs. 91 and 93–95.

B. Spatial transcriptomics technologies

More recently, technologies that profile gene expression while
retaining spatial information have emerged. These technologies are
collectively known as spatial transcriptomics (ST). The various ST
technologies provide different advantages and are chosen based on
experimental factors, such as the size of tissue to be assayed, the num-
ber of genes to be probed, a priori knowledge of target genes, cost, etc.
In general, ST technologies can be divided into two broad categories:
imaging-based and next-generation sequencing (NSG)-based technol-
ogies. In this section, we provide an overview of popular techniques,
with more emphasis on NGS-based approaches. For a more compre-
hensive and technical review of ST technologies, we refer the reader to
Asp et al.,96 Rao et al.,20 and Moses and Pachter.97

1. Imaging-based technologies

Imaging-based technologies are broadly subdivided into in situ
hybridization (ISH)-based methods, in situ sequencing (ISS)-based

methods, or methods that borrow elements from both approaches.
Unlike RNAseq methods described above, ISH and most ISS-based
techniques require labeled probes. This means that the target genes
must be known in advance, and, moreover, the number of genes that
can be measured is limited.20

a. In situ hybridization (ISH)-based approaches. ISH-based meth-
ods aim to detect the absence or presence of target RNA (or DNA)
sequences while localizing the information of the desired sequences to
specific cells or chromosomal sites.98,99 ISH-based techniques use the
labeled probes (usually made with DNA or RNA) that bind to desired
sequences in fixed cells or tissue, therefore detecting the desired
sequence through the hybridization of a complementary probe. The
hybridized probes are then visualized through isotopic and noniso-
topic (fluorescent and nonfluorescent) approaches.99 ISH-based tech-
niques have been limited by the number of distinguishable transcripts;
however, recent innovations have resulted in ample multiplexing
capabilities.20

b. In situ sequencing (ISS)-based approaches. ISS-based approaches
aim to sequence the RNA content of a cell in situ using DNA balls that
amplify the RNA signals: RNA is first reverse transcribed to cDNA,

TABLE I. A list of relevant methods for the analysis of spatial transcriptomics data. The italicized boldfaced methods are the ones that utilize deep learning (or elements closely
aligned). We review these methods in depth in this paper.

Category Method Year Framework Language Software availability

Spatial reconstruction Seurat59 2015 Statistical R https://github.com/satijalab/seurat
novoSpaRc60 2019 Optimization/statistical Python https://github.com/rajewsky-lab/novosparc
DEEPsc61 2021 Machine learning MATLAB https://github.com/fmaseda/DEEPsc

Alignment and
integration

Spatial
backmapping62

2015 Scoring scheme R https://github.com/jbogp/nbt_spatial_backmapping

Tangram34 2021 Machine learning Python https://github.com/broadinstitute/Tangram
GLUER63 2021 Machine learning Python https://github.com/software-github/GLUER

Spot deconvolution Stereoscope64 2020 Statistical Python https://github.com/almaan/stereoscope
DSTG65 2021 Machine learning Python, R https://github.com/Su-informatics-lab/DSTG

SPOTlight66 2021 Machine learning R https://github.com/MarcElosua/SPOTlight
RTCD67 2021 Statistical R https://github.com/dmcable/RCTD

SpatialDWLS68 2021 Optimization/statistical R https://github.com/RubD/Giotto
DestVI69 2021 Machine learning Python https://github.com/YosefLab/scvi-tools

Cell2location70 2022 Statistical Python https://github.com/BayraktarLab/cell2location
CARD71 2022 Machine learning R, Cþþ https://github.com/YingMa0107/CARD

Spatial clustering HMRF72 2018 Statistical R, Python, C https://bitbucket.org/qzhudfci/smfishhmrf-py/
SpaCell73 2019 Machine learning Python https://github.com/BiomedicalMachineLearning/SpaCell
StLearn74 2020 Machine learning Python https://github.com/BiomedicalMachineLearning/stLearn

BayesSpace75 2021 Statistical R, Cþþ https://github.com/edward130603/BayesSpace
SpaGCN76 2021 Machine learning Python https://github.com/jianhuupenn/SpaGCN

Spatially variable
genes identification

Trendsceek77 2018 Statistial R https://github.com/edsgard/trendsceek
SpatialDE78 2018 Statistical Python https://github.com/Teichlab/SpatialDE
Spark79 2020 Statistical R, Cþþ https://github.com/xzhoulab/SPARK

Cell–cell communication SpaOTsc80 2020 Machine learning Python https://github.com/zcang/SpaOTsc
MISTy81 2020 Machine learning R https://github.com/saezlab/mistyR
Giotto82 2021 Statistical R https://github.com/RubD/Giotto
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followed by circular amplification (to generate a long single-stranded
DNA that contains repeats of the target sequence) and sequencing.100

Although the transcript can be localized at subcellular resolution,
micrometer- or nanometer-sized DNA balls are often used to amplify
the signals to reach sufficient signal for imaging.96 Initially, the first
ISS-based method101 used targeted padlock probes (a single-stranded
DNA molecule containing regions complementary to the target
cDNA) followed by sequence-by-ligation21 to detect desired genes.
This method provided a subcellular resolution and an ability to detect
single-nucleotide variants (SNVs). This ISS protocol is targeted and
yields a detection efficiency of approximately 30%.102 Several recent
ISS techniques build upon this approach and improve traditional ISS
by introducing novel modifications to the experimental aspect of the
protocol, as well as ways to mitigate the number of cells that can be

discriminated simultaneously.103–105 For example, barcode in situ tar-
geted sequencing (BaristaSeq)104 uses sequencing-by-synthesis and has
led to increased read lengths and enabled higher throughput and cellu-
lar barcoding with improved detection efficiency compared to the ini-
tial ISS approach.104 Another ISS-based technique is spatially resolved
transcript amplicon readout mapping (STARmap)29 that reduces noise
and avoids the cDNA conversion complications by utilizing the
improved padlock-probe and primer design; STARmap adds a second
primer to target the site next to the padlock probe in order to circum-
vent the reverse transcription step. STARmap also uses advanced
hydrogel chemistry and takes advantage of an error-robust sequenc-
ing-by-ligation method, resulting in detection efficiency that is compa-
rable to scRNAseq methods (around 40%).29,96 Although most ISS
approaches (including the ones mentioned here) are targeted,

FIG. 2. Example of single-cell RNA sequencing and spatial transcriptomics workflows. (A) An illustration of droplet-based microfluidics single-cell RNA sequencing that consists
of (1) dissociating a tissue or biological sample, (2) isolating single cells, unique molecular identifiers, and lysis buffer, (3) cell lysis, (4) mRNA capture and reverse transcription,
(5) cDNA amplification, and (6) library construction. We describe this process in more detail in Sec. II A). (B) A visualization of the steps for next-generation sequencing-based
spatial transcriptomic (as described in Sec. II B), which include (1) tissue preparation, staining, and imaging, (2) permeabilizing the tissue, (3) cDNA synthesis, amplification,
and library construction, followed by (5) sequencing.
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ISS-based methods could also be untargeted,25,106 but this typically
leads to much lower sensitivity (around 0.005%) and molecular
crowding, affecting the rolling-circle amplification bias.106,107

In imaging-based approaches, the generated image is segmented
and processed to produce a cell-level gene-expression matrix. The
gene-expression matrix is generated through processing the generated
image(s), which can be done manually or automatically. However,
given the biased and laborious nature of manual segmentation, there
has been a shift toward designing general and automated techni-
ques.108,109 The accurate and general automation of this process
still remains a challenge, therefore motivating the application of
recent machine learning and computer vision approaches to this
field,108–111 which have shown improvements compared to the tradi-
tional methods.112 Although this manuscript focuses on methods for
NGS-based technologies, many of those techniques (including the
ones in Secs. IVC and IVD) can be extended to image-based technol-
ogies as well.

C. Next generation sequencing (NGS)-based
technologies

Due to the unbiased capture of mRNA, NGS-based technologies
can shed light on the known and unknown morphological features
using only the molecular characterization of tissues.1 This unbiased
and untargeted nature of NGS technologies makes them ideal for
studying and exploring new systems,20 a major advantage compared
to most image-based technologies that require target genes a priori.
While NGS-based approaches differ in the specifics of the protocols,
they all build on the idea of adding spatial barcodes before library
preparation, which are then used to map transcripts back to the appro-
priate positions (known as spots or voxels). An example workflow of
NGS-based spatial sequencing is depicted in Fig. 2(B). In this section,
we provide a general overview of the four most common spatial tran-
scriptomics technologies. For a more complete review of these technol-
ogies, we refer the readers to Refs. 20 and 96.

Ståhl et al.31 were the first to successfully demonstrate the feasi-
bility of using NGS for spatial transcriptomics (this initial approach is
often referred to as spatial transcriptomics). Their innovation was to
add spatial barcodes prior to library preparation, enabling the map-
ping of expressions to appropriate spatial spots. More specifically,
Ståhl et al. positioned oligo(dT) probes and unique spatial barcodes as
microarrays of spots on the surface of slides. Next, fresh frozen tissue
slices were placed on the microarray and processed to release mRNA
(using enzymatic permeabilization), which was then hybridized with
the probes on the surface of the slides. This approach consists of (i)
collecting histological imaging [using standard fixation and staining
techniques, including hematoxylin and eosin (H and E) staining] for
investigating the morphological characteristics and (ii) sequencing the
spatially barcoded cDNA to profile gene expressions. In the initial
experiments, each slide consisted of approximately 1000 spots, each
having a diameter of 100lm with 200lm center-to-center distance.1

This approach provides researchers with an unbiased technique for
analyzing large tissue areas without the need for selecting target genes
in advance.20,35,112

After the initial success of spatial transcriptomics, 10� Genomics
subsequently improved the resolution (shrinking the spot diameters to
55lm with 100lm center-to-center distance) and sensitivity (captur-
ing more than 104 transcripts per spot) of the approach and eventually

commercializing it as Visium30,113) The development and commercial-
ization of the spatial transcriptomics resulted in relatively rapid adop-
tion across fields, such as cancer biology,55,114 developmental
biology,115,116 and neuroscience.117,118 The histological imaging and
gene expression profiling of Visium are similar to the initial approach:
the staining and imaging of the tissues are through traditional staining
techniques, including H and E staining for visualizing the tissue sec-
tions using a brightfield microscope and immunofluorescence staining
to visualize protein detection in the tissue sections through a fluores-
cent microscope. Visium protocol allows for both fresh frozen (FF) or
formalin-fixed paraffin-embedded (FFPE) tissues. For FF tissues, simi-
lar to Ståhl et al.,31 the tissue is permeabilized, allowing the release of
mRNA, which hybridizes to the spatially barcoded oligonucleotides
present on the spots. The captured mRNA then goes through a reverse
transcription process that results in cDNA, which is then barcoded
and pooled for generating a library.119 For FFPE tissues, tissue is per-
meabilized to release ligated probe pairs from the cells that bind to the
spatial barcodes on the slide, and the barcoded molecules are pooled
for downstream processing to library generation.119

Building on the spatial transcriptomics, Vickovic et al.33 proposed
high-definition spatial transcriptomics (HDST) that improved the res-
olution to about 2lm. Similar to the other approaches, HDST also
employs specific barcodes ligated to beads that are coupled to a spot
(prior to lysis), so that expressions are mapped to the tissue image.
However, the innovation of HDST includes the use of 2lm beads
placed in hexagonal wells, enabling accurate compartmentalization
and grouping of the biological materials in the experiment.33

Simultaneously, Rodriques et al.32 introduced SlideSeq that utilizes
slides with randomly barcoded beads to capture mRNA, also increas-
ing the resolution (to 10lm) and sensitivity (500 transcripts per 54
bead) spatial-resolved sequencing compared to Ståhl et al.31 However,
SlideSeq placed the barcoded beads in rubber and onto glass slides, as
opposed to HDST’s hexagonal beads, and determines the position of
each random barcode by in situ-indexing.20,32

Despite the differences, all NGS-based technologies use spatial
barcodes to tag released RNAs, which then go through conventional
processes for sequencing similar to scRNAseq. After sequencing, the
data are processed to construct the spatial location of each read (using
the spatial barcode) and to construct a gene-expression matrix (map-
ping the reads to the genome to identify the transcript of origin).
Given that most technologies have resolutions larger than a single cell
(commonly having expression for 3–30 cells in each spot), the data
processing and analysis procedures are relatively similar.

III. MACHINE LEARNING AND DEEP LEARNING
BACKGROUND

With the technologies now defined, we next describe common
Machine Learning (ML) methods used to analyze the ST data. In this
section, we first provide a discussion of the algorithmic development
of ML and deep learning (DL) models and then discuss common
architectures used for spatially resolved transcriptomics (and
scRNAseq data).

ML refers to a computer algorithm’s ability to acquire knowledge
by extracting patterns and features from the raw data.120 All ML algo-
rithms depend on the data, which must be available before the meth-
ods can be used, and a defined mathematical objective. ML models’
lifecycle consists of two phases, namely, training and evaluation.
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During training, ML algorithms analyze the data to extract patterns
and adjust their internal parameters based on optimizing their objec-
tives (known as loss function). In the evaluation (or inference) stage,
the trained model makes predictions (or performs the task it was
trained to do) on unseen data.

There are two main types of ML algorithms: supervised and unsu-
pervised. AnML algorithm is considered to be unsupervised if it utilizes
raw inputs without any labels to optimize its objective function (an
example would be the K-Means clustering algorithm121). Conversely,
if an algorithm uses both raw data and the associated labels (or targets)
in training, then it is a supervised learning algorithm. Supervised learn-
ing is the most common form of ML.39 An example of supervised
learning in scRNAseq analysis would be classifying cell subpopulations
using prior annotations: this requires a labeled set of cell types for
training (the available annotations), an objective function for calculat-
ing learning statistics (“teaching” the model), and testing data for mea-
suring how well the model can predict the cell type (label) on data it
has not seen before (i.e., generalizability of the model). Another com-
mon example of supervised learning is regression, where a model pre-
dicts continuous values as opposed to outputting labels or categorical
values in classification. For supervised tasks, a model is trained on the
majority of the data (known as training set) and then evaluated on
held-out data (test set). Depending on the size of our dataset, there can
also be a third data split known as a validation set, which is used to
measure the performance of the model throughout training to deter-
mine early stopping:122 Early stopping is when we decide to stop the
training of a model due to overfitting (or over-optimization) on the
training set. Overfitting training data worsens the generalizability of
the model on unseen data, which early stopping aims to avoid.122 In
addition to supervised and unsupervised algorithms, there are also
semi-supervised learning, where a model uses a mix of both supervised
and unsupervised tasks, and self-supervised, where the computer algo-
rithm generates new or additional labels to improve its training or to
learn a new task.

Raw experimental data typically contains noise or other
unwanted features, which present many challenges for ML algorithms.
Therefore, it is often necessary to carefully preprocess data or to rely
on domain-specific expertise in order to transform the raw data into
some internal representation from which ML models can learn.39

Deep learning (DL) algorithms, however, aim to use only raw data to
automatically extract and construct useful representations required for
learning the tasks at hand. In a broad sense, DL models are able to
learn from observations through constructing a hierarchy of concepts,
where each concept is defined by its relation to simpler concepts. A
graphical representation of the hierarchy of concepts (and learning)
will consist of many layers, with many nodes and edges connecting the
vertices, somewhat resembling humans’ neural network. This graph is
referred to as an artificial neural network (ANN). ANNs are composed
of interconnected nodes (“artificial neurons”) that resemble and
mimic our brains’ neuronal functions. An ANN is considered to be a
DL model if it consists of many layers—often more than three, hence
being called deep.

Many tasks that humans perform can be viewed as mappings
between sets of inputs and outputs. For example, humans can take a
snapshot image of their surroundings (input) and detect the relevant
objects (the outputs). DL, and more generally, Artificial Intelligence,
aims to learn such mappings in order to model human-level

intelligence. Mathematically, ANNs are universal function approxima-
tors, meaning that, theoretically, they can approximate any (continu-
ous) function.123–125 Cybenko123 proved this result for a one-layer
neural network with an arbitrary number of neurons (nodes) and a
sigmoid activation function by showing that such architecture is dense
within the space of continuous functions (this result has now been
extended to ANNs with multiple layers124). While constructing
arbitrarily-long single-layer ANNs is not possible, it has been
shown that ANNs with many layers (deeper) generally learn faster
and more reliably than ANNs with few wide (many neurons)
layers.126 This has allowed researchers to employ deep networks
for learning very complex functions through constructing simple
non-linear layers that can transform the representation of each
module (starting with the raw input) into a representation at a
higher, slightly more abstract level.39

DL models’ ability to approximate highly non-linear functions
has revolutionized many domains of science, including computer
vision,127–129 natural language processing,130–132 and bioinformat-
ics.133–135 DL is becoming increasingly incorporated in many compu-
tational pipelines and studies, especially in genomics and
bioinformatics, including scRNAseq and spatial transcriptomics analy-
sis. In Secs. IIIA–III F, we provide a brief overview of essential deep
learning architectures that have been used in spatial transcriptomics
and scRNAseq analysis. In Fig. 3, we present illustrations of the archi-
tectures discussed in Secs. IIIA–III F. Note that for simplicity, we have
categorized all graph convolution networks (GCNs)136 as DL models;
this is because (i) GCNs can easily be extended to include more layers
(deeper networks) and (ii) lack of other existing methods that incorpo-
rate some elements of DL. A more comprehensive description of each
architecture can be found in the seminal textbook by Goodfellow
et al.120

A. Feed forward neural network (FFNN)

FFNNs, the quintessential example of Artificial Neural Networks
(ANNs), aim to approximate a function mapping a set of inputs to
their corresponding targets [see Fig. 3(a)]. More specifically, given an
input x 2 Rn and a target y 2 Rm, where n;m 2 R, FFNNs aim to
learn the optimal parameters h such that y ¼ f ðx; hÞ. FFNNs are the
building blocks of many more advanced architectures (e.g., convolu-
tional neural networks) and, therefore, are of paramount importance
in the field of ML.120 As mentioned previously, ANNs are universal
function approximators, and they represent a directed acyclic graph of
function compositions hierarchy within the network. Each layer of an
FFNN, f ðiÞðx; hÞ (i 2 N being the ith layer), is often a simple linear
function: For example, we can have a linear function for outputting
y 2 R of the form Eq. (1), with weight parameters w 2 Rn and a bias
b 2 R

y ¼ f ð1Þðx; hÞ ¼ f ð1Þðx;w; bÞ ¼ xTw þ b: (1)

However, a model composed of only linear functions can only
approximate linear mappings. As such, we must consider non-lin-
ear activation functions to increase model capacity, enabling the
approximation of complex non-linear functions. In the simplest
case, neural networks (NNs) use an affine transform (controlled by
learned parameters) followed by a non-linear activation function,
which, theoretically, enables them to approximate any non-linear
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function.137 Moreover, we could compose many of such non-linear
transformations to avoid infinitely wide-neural networks when
approximating complex functions. However, in this context, find-
ing a set of optimal functions f ðiÞ : Rqi ! Rdi (qi; di 2 R) is a
practically impossible task. As such, we restrict the class of func-
tion that we use for f ðiÞ to the following form in Eq. (2):

f ðiÞðxði�1Þ; hðiÞÞ ¼ rðiÞðWðiÞxði�1Þ þ bðiÞÞ; (2)

where superscript i enumerates the layers, rð�Þ is a non-linear activa-
tion function (usually a Rectified Linear Unit138), xði�1Þ 2 Rqi denotes
the output of the layer ði� 1Þ (with xð0Þ indicating the input data),
weights W 2 Rdi�qi , and biases bðiÞ 2 Rdi . Note that because of the
dimensionality of the mapping,WðiÞXði�1Þ 2 Rdi , and we must have a
vector of biases bðiÞ 2 Rdi . FFNNs are composed of such functions in
chains; to illustrate, consider a three-layer neural network

y ¼ f ðx; hÞ; (3a)

¼ f ð3Þðf ð2Þðf ð1Þðx; hð1ÞÞ; hð2ÞÞ; hð3ÞÞ (3b)

¼ f ð3Þ hð2Þ hð1Þ x;wð1Þ; bð1Þ
� �

;wð2Þ; bð2Þ
� �

;wð3Þ; bð3Þ
� �

(3c)

with h representing the hidden states or hidden layers.
FFNNs find the optimal contribution of each parameter (i.e.,

weights and biases) by minimizing the desired objective. The goal is to
generalize the task to data the model has never seen before (testing
data). Although the non-linearity increases the capacity of FFNNs, it
causes most objective functions to become non-convex. In contrast to
convex optimization, non-convex loss functions do not have global
convergence guarantees and are sensitive to the initial starting point
(parameters of the network).139 Therefore, such optimization is often
done through stochastic gradient descent (SGD) (or some variant
of it). Moreover, given the sensitivity to initial values, weights are

FIG. 3. Examples of deep learning architectures. Models depicted in (a), (b), (c), and (d) are examples of supervised learning, and networks shown in (e) and (f) are unsuper-
vised. (a) An example of an FFNN architecture with gene expression count as its input. (b) An example of CNN architecture, where the model passes the inputs through the
three stages of a CNN (with non-linear activation not depicted) to extract features. Then, outputs are flattened and fed into a fully connected layer (or layers). (c) The general
training flow of an RNN, with the unrolled version showing the time step-dependent inputs, hidden state, and outputs. The inputs to RNNs need to have a sequential structure
(e.g., time-series data). (d) An illustration of an ResNet. In traditional ResNets, there are identity mappings (or skip connections) that pass the input of a residual block to its out-
put (often through addition). (e) Here, we show the general architecture of a trained denoising AE in the inference stage, with a noisy histology slide as its input, yielding a
denoised version of the input image. (6) A depiction of a traditional VAE in the inference stage. VAE’s aim is to generate synthetic data that closely resembles the original input.
This is done through regularizing the latent space of an AE with the use of a probabilistic encoder and decoder.
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typically chosen to be small random values, with biases initialized to
zero or small positive values.120,140,141

Almost all neural networks use iterative gradient descent (GD)-
based optimizers to train. GD has three main variants, which differ in
the amount of data utilized to calculate the gradients for updating the
parameters. The classic GD variant, referred to as batch GD, uses all
data points to make the updates to the parameters in one iteration.
However, this approach is generally not feasible, since the amount of
data required for training DL models almost never fit in memory.142

The second variant of GD is stochastic gradient descent (SGD)
where the parameters are updated for every training datum.
Computationally, it has been shown that the noise in SGD accelerates
its convergence compared to batch GD, but SGD also has the possibil-
ity of overshooting, especially for highly non-convex optimization
functions.142,143 The third variant, and the most frequently used one
for deep learning, is mini-batch GD that updates the parameters for
every batch of training data—if the batch size is one, then this variant
is just SGD, and if batch size is the entire dataset, then it is equivalent
to batch GD. Conventionally, optimization of NNs is done through
gradient descent performed backward in the network, which itself
consists of two components: a numerical algorithm for efficient com-
putation of the chain rule for derivatives (backpropagation144) and a
GD-based optimizer (e.g., Adam145 or AdaGrad146). The optimizer is
an algorithm that performs gradient descent, while backpropagation is
an algorithm for computing the expression for gradients during the
backward pass of the model.

B. Convolutional neural network (CNN)

Learning from images, such as detecting edges and identifying
objects, has been of interest for some time in computer science.147

Images contain a lot of information; however, only a small amount of
that information is often relevant to the task at hand. For example, an
image of a stained tissue contains both important information,
namely, the tissue itself, and irrelevant pixels, such as the background.
Prior to DL, researchers would hand-design a feature extractor to learn
relevant information from the input. Much of the work had focused
on the appropriate feature extractors for desired tasks (e.g., see the
seminal work by Marr and Hildreth148). However, one of the main
goals in ML is to extract features from raw inputs without hand-tuned
kernels for feature extraction. CNNs149,150 are a specialized subset of
ANNs that use the convolution operation (in at least one of their
layers) to learn appropriate kernels for extracting important features
beneficial to the task at hand. Mathematically, convolution between
two functions f and w is defined as a commutative operation shown in
the following equation:

ðf � wÞðxÞ¢
ð1
�1

f ðsÞwðs� xÞds: (4)

Using our notation, we intuitively view convolution as the area under
f(s) weighted by wð�sÞ and shifted by x. In most applications, discrete
functions are used. As an example, assume we have a 2D kernel K that
can detect edges in a 2D image I with dimension m� n. Since I is dis-
crete, we can use the discrete form of Eq. (4) for the convolution of I
and K over all pixels

Eði; jÞ ¼ ðI � KÞði; jÞ ¼
X
m

X
n

Iðm; nÞKði�m; j� nÞ: (5)

However, since there is less variation in the valid range of m and n
(the dimensions of the image) and the operation is commutative, most
algorithms implement Eq. (5) equivalently

Eði; jÞ ¼ ðK � IÞði; jÞ ¼
X
m

X
n

Iði�m; j� nÞKðm; nÞ: (6)

Typical CNNs consist of a sequence of layers (usually three)
which include a layer performing convolution, hence called a convolu-
tional layer (affine transform), a detector stage (non-linear transforma-
tion), and a pooling layer. The learning unit of a convolutional layer is
called a filter or kernel. Each convolutional filter is a matrix, typically
of small dimensions (e.g., 3 � 3 pixels), composed of a set of weights
that acts as an object detector, with the weights being continuously cal-
ibrated during the learning process. CNNs’ objective is to learn an
optimal set of filters (weights) that can detect the needed features for
specific tasks (e.g., image classification). The result of convolution
between the input data and the filter’s weights is often referred to as a
feature map [as shown in Fig. 3(b)]. Once a feature map is available,
each value of this map is passed through a non-linearity (e.g., ReLU).
The output of a convolutional layer consists of as many stacked feature
maps as the number of filters present within the layer.

There are two key ideas behind the design of CNNs: First, in data
with grid-like topology, local neighbors have highly correlated infor-
mation. Second, equivariance to translation can be obtained if units at
different locations share weights. In other words, sharing parameters
in CNNs enabled the detection of features regardless of the locations
where they appear in. An example of this would be detecting a car. In
a dataset, a car could appear at any position in a 2D image, but the net-
work should be able to detect it regardless of the specific coordi-
nates.147 These design choices provide CNNs with three main benefits
compared to other ANNs: (i) sparse interactions, (ii) shared weights,
and (iii) equivariant representations.149

Another way of achieving equivariance to translation is to utilize
pooling layers. Pooling decreases the dimension of learned representa-
tions and makes the model insensitive to small shifts and distortions.39

In the pooling layers, we use the outputs of the detector stage (at cer-
tain locations) to calculate a summary statistic for a rectangular win-
dow of values (e.g., calculating the mean of a 3 � 3 patch). There are
many pooling operations, with common choices being max-pooling
(taking the maximum value of a rectangular neighborhood), mean-
pooling (taking the average), and L2 norm (taking the norm). In all
cases, rectangular patches from one or several feature maps are input-
ted to the pooling layer, where semantically similar features are
merged into one. CNNs typically have an ensemble of stacked convo-
lution layers, non-linearity, and pooling layers, followed by fully con-
nected layers that produce the final output of the network. The
backpropagation of gradients through CNNs is analogous to FFNNs,
enabling the model to learn an optimal set of filters for the task(s) at
hand. CNNs have been effectively used in many applications in com-
puter vision and time-series analysis and are being increasingly utilized
for analysis of the ST data, since spatial-omics are multi-modal, with
one of the modalities being images (as we discuss in Sec. IV).

C. Recurrent neural network (RNN)

Just as CNNs are specialized to process data with a grid-like
topology, RNNs’144 special characteristics make them ideal for proc-
essing sequential data X ¼ fxð1Þ; xð2Þ;…; xðnÞ}, where xðiÞ denotes the
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ith element in the ordered sequence X. Examples of such sequence-
like structures include time series and natural language. RNNs process
sequential inputs one at a time and implicitly maintain a history of
previous elements of the input sequence. We present an illustration of
the conventional RNN architecture in Fig. 3(c). Similar to FFNNs or
CNNs, RNNs can be composed of many layers, with each layer
depending on the previous hidden state, hðt�1Þ, and a shared set of
parameters, h. A deep RNN with n hidden states can be expressed as
follows:

hðnÞ ¼ f ðxðnÞ; hðn�1Þ; hÞ; hÞ; (7a)

¼ f ðxðnÞ; f ðxðn�1Þ; hðn�2Þ; hÞ; hÞ (7b)

¼ f ðf ð� � � f ðxð2Þ; hð1Þðxð1Þ; hÞ; hÞ � � � ; hÞ; hÞ: (7c)

The idea behind sharing h in RNN states is similar to CNNs:
parameter sharing across different time points allows RNNs to gener-
alize the model to sequences of variable lengths and share statistical
strengths at different positions in time.120,151 Similar to FFNNs, RNNs
learn by propagating the gradients of each hidden state’s inputs at dis-
crete times. This process becomes more intuitive if we consider the
outputs of hidden units at various time iterations as if they were the
outputs of different neurons in a deep multi-layer network. However,
due to the sequential nature of RNNs, the backpropagation of gra-
dients shrinks or grows at each time step, causing the gradients to
potentially vanish or blow up. This fact and the inability to parallelize
training at different hidden states (due to the sequential nature of
RNNs) makes RNNs notoriously hard to train, especially for longer
sequences.130,152 However, when these issues are averted (via gradient
clipping or other techniques), RNNs are powerful models and gain
state-of-the-art capabilities in many domains, such as natural language
processing. The training challenges combined with the nature of
scRNAseq data have resulted in fewer developments of RNNs for
single-cell analysis. However, recently, some studies have used RNNs
and long short-term memory153 (a variant of RNNs) for predicting
cell types and cell motility (e.g., see Kimmel et al.154).

D. Residual neural network (RestNet)

As mentioned above, deep RNNs may suffer from vanishing or
exploding gradients. Such issues can also arise in other deep neural
networks as well, where gradient information could diminish as the
depth increases (through approaches, such as batch normalization,155

aim to help with gradient issues). One way to alleviate vanishing gra-
dients in very deep networks is to allow gradient information from
successive layers to pass through, helping with maintaining informa-
tion propagation even as networks become deeper. ResNets156 achieve
this by skip (or residual) connections that add the input to a block (a
collection of sequential layers) to its output. For an FFNN, consider
function f in Eq. (2). Using the same notation as in Eq. (2), ResNet’s
inner layers take the form shown in the following equation:

f ðiÞðxði�1ÞÞ ¼ xði�1Þ þ rðiÞðWðiÞxði�1Þ þ bÞ: (8)

The addition of xði�1Þ, the input of the current layer [or the output of
the ði� 1Þ th layer], to the current ith layer output is the skip or resid-
ual connection helps flow the information from the input deeper in
the network, thus stabilizing training and avoiding vanishing gradient
in many cases.156,157 Indeed, this approach can be contextualized

within the traditional time integration framework for dynamical sys-
tems. For example, consider the following equation:

_xðtÞ ¼ dx
dt

¼ fðt; xðtÞÞ; xðt0Þ ¼ x0: (9)

In the simplest case, this system can be discretized and advanced using
xðtnÞ and some scaled value of fðtn; xðtnÞÞ, or a combination of
scaled values of _xðtnÞ. Forward Euler, perhaps the simplest time inte-
grator, advances the solution as shown through the scheme in the fol-
lowing equation:

xnþ1 ¼ xn þ hfðtn; ynÞ; (10)

where h is a sufficiently small real positive value. ResNets use this idea
to propose a different way of calculating the transformations in each
layer, as shown in Eq. (8).

ResNets consist of residual blocks (also called modules), each of
which contains a series of layers. For visual tasks, these blocks often con-
sist of convolutional layers, followed by activation functions, with the
skip connection adding the input information to the output of the resid-
ual blocks (as opposed to the individual layers inside). ResNets have dif-
ferent depths and architectures, with a number usually describing the
depth of the model [e.g., ResNet50 means there are 50 layers (there are
48 convolution layers, one MaxPool, and one AveragePool layer)].

ResNets have transformed DL by enabling the training of very
deep neural networks, setting the state-of-the-art performance in
many areas, particularly in computer vision.156 The pre-trained
ResNets on ImageNet dataset158 are widely used for transfer learning,
where the network is either used as is or further fine-tuned on the spe-
cific dataset. Pre-trained ResNet models have also been used in spatial
transcriptomics analysis, as we discuss later in this manuscript.
(ImageNet is the standard dataset for benchmarking performance of
machine learning algorithms in classification and object recognition.
ImageNet contains more than 14 million hand-annotated images).

E. Autoencoder (AE)

AEs159,160 are neural networks that aim to reconstruct (or
copy) the original input via a non-trivial mapping. Conventional
AEs have an “hour-glass” architecture [see Fig. 3(e)] consisting of
two networks: (i) an encoder network, Encð�Þ, which maps an input
x 2 Rn to a latent vector z 2 Rd where, ideally, z contains the
most important information from x in a reduced space (i.e.,
d � n), (ii) the decoder network, Decð�Þ, which takes z as the input
and maps it back to Rn, ideally, reconstructing x exactly; i.e.,
x ¼ AEðxÞ ¼ DecðEncðxÞÞ. AEs were traditionally used for dimen-
sionality reduction and denoising, trained by minimizing a mean
squared error (MSE) objective between the input data and the
reconstructed samples (outputs of the decoder).

Over time, the AE framework has been generalized to stochas-
tic mappings, i.e., probabilistic encoder–decoder mappings,
pEncðzjxÞ and pDecðxjzÞ. A well-known example of such generaliza-
tion is variational autoencoders (VAEs),161 where by using the
same hour-glass architecture, one can use probabilistic encoders
and decoders to generate new samples drawn from an approxi-
mated posterior. Both traditional AEs and VAEs have practical
applications in many biological fields, have been used extensively
in scRNAseq (see Ref. 10 for an overview of these models), and are
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becoming more frequently employed in spatial transcriptomics
analysis, which we overview later in this work.

F. Variational autoencoder (VAE)

One can describe VAEs161 as AEs that regularize the encoding
distribution, enabling the model to generate new synthetic data. The
general idea behind VAEs is to encode the inputs as a distribution over
the latent space, as opposed to a single point (which is done by AEs).
More specifically, VAEs draw samples z from an encoding distribu-
tion, pmodelðzÞ, and subsequently feed the sample through a differentia-
ble generator network, obtaining GenðzÞ. Then, x is sampled from a
distribution pmodelðx;GenðzÞÞ ¼ pmodelðxjzÞ. Moreover, VAEs utilize
an approximate inference network qðzjxÞ (i.e., the encoder) to obtain
z. With this approach, pmodelðxjzÞ now is considered a decoder net-
work, decoding z that comes from qðzjxÞ. VAEs can take advantage of
gradient-based optimization for training throughmaximizing the vari-
ational lower bound, l, associated with x. Figure 3(f) depicts the
architecture of traditional VAEs.

Mathematically, we can express the objective function as in Eq. (11)

lðqÞ ¼ Ez�qðzjxÞ log pmodelðz; xÞ þHðqðzjxÞÞ; (11a)

¼ Ez�qðzjxÞ log pmodelðxjzÞ �KL qðzjxÞjjpmodelðzÞð Þ (11b)

� log pmodelðxÞ; (11c)

where hð�Þ denotes the entropy, and KL is the Kullback–Leibler
divergence. The first term in Eq. (11a) is the joint log-likelihood of the
hidden and visible variables under the approximate posteriors over
the latent variables. The second term of Eq. (11a) is the entropy of the
approximate posterior. This entropy term encourages the variational
posterior to increase the probability mass on a range of z which could
have produced x, as opposed to mapping to a one-point estimate of
the most likely value.120

Compared to other generative models [e.g., generative adversarial
networks (GANs)162], VAEs have desirable mathematical properties
and training stability.120 However, they suffer from two major weak-
nesses: (i) classic VAEs create “blurry” samples (those that adhere to
an average of the data points), rather than the sharp samples that
GANs generate due to GANs’ adversarial training. (ii) The other major
issue with VAEs is posterior collapse: when the variational posterior
and actual posterior are nearly identical to the prior (or collapse to the
prior), which results in poor data generation quality.163 To alleviate
these issues, different algorithms have been developed, which have
been shown to significantly improve the quality of data genera-
tion.163–169 VAEs are used extensively for the analysis of single-cell
RNA sequencing (see Erfanian et al.10), and we anticipate them to be
applied to a wide range of spatial transcriptomics analyses as well.

IV. DEEP LEARNING MODELS FOR SPATIALLY
RESOLVED TRANSCRIPTOMICS ANALYSIS

In Secs. IVA–IVE, we describe the use of ML and DL to prob-
lems emerging from spatial transcriptomics.

A. Spatial reconstruction

Prior to the advancement of spatial transcriptomics, several stud-
ies aimed to reconstruct spatial information using gene expression
data, with most of these works using a statistical framework. As

perhaps one of the most influential models in this space, Satija et al.59

introduced Seurat: a tool that utilized spatial reference maps con-
structed from a few landmark in situ patterns to infer the spatial loca-
tion of cells from corresponding gene expression profiles (i.e.,
scRNAseq data). This approach showed promising results: Satija et al.
tested Seurat’s capabilities and performance on developing zebrafish
embryo dataset (containing 851 cells) and a reference atlas constructed
from colorigenic in situ data for 47 genes,59 confirming Seurat’s accu-
racy with several experimental assays. Additionally, they showed that
Seurat can accurately identify and localize rare cell populations. Satija
et al. also demonstrated that Seurat was a feasible computational solu-
tion for handling stochastic noise in omics data and finding a corre-
spondence between ST and scRNAseq data.

Although Seurat proved to be successful in some applications, it
had the limitation of requiring spatial patterns of marker genes expres-
sion.60 To alleviate Seurat’s limitations, newer methods that did not
require spatial reference atlases were developed. A more recent and an
influential model in this space is novoSpaRc,60 with the ability to infer
spatial mappings of single cells de novo. For novoSpaRc, Nitzan et al.60

assume that cells that are closer to one another physically have similar
gene expressions as well, therefore searching for spatial arrangement
possibilities that place cells with similar expressions closer in space.
Nitzan et al. formulate this search through a generalized optimal-
transport problem for probabilistic embedding.

NovoSpaRc shows very promising results when it is applied to
spatially reconstruct mammalian liver and intestinal epithelium, and
embryos from fly and zebrafish from gene expression data.60

However, novoSpaRc (and similar models) use a generic framework
and cannot be easily adapted to specific biological systems, which may
be required given the vast diversity of biological processes and organ-
isms. For this reason, many have utilized ML algorithms to specifically
adapt to the biological system by learning from the data, as opposed to
using pre-defined algorithms that remain unchanged. Indeed, we
anticipate that DL models will soon play a salient role in spatial recon-
struction of scRNAseq, given their ability to extract features from the
raw data while remaining flexible across different applications. In this
section, we review DEEPsc,61 a system-adaptive ML model that aims
to impute spatial information onto non-spatial scRNAseq data.

DEEPsc is a spatial reconstruction method that requires a refer-
ence atlas (see Fig. 4). This reference map can be expressed as a matrix
Mspatial 2 Rnpositions�ngenes , where npositions 2 N is the number of spatial
locations, and ngenes 2 N is the number of genes. Maseda et al. start by
selecting common genes between Mspatial and the gene expression
matrix, Mexpression 2 Rmcells�mgenes (where mcells 2 N is the number of
cells, and mgenes 2 N is the number of genes), resulting in a spatial
matrix S 2 Rnpositions�g and an expression matrix E 2 Rmcells�g , where
g 2 N is the common genes between the two matrices. Next, S is pro-
jected into a lower dimension using principal component analysis
(PCA), and the same PCA coefficients are used to project E into these
principal components. In the last step of processing, both matrices are
normalized by their largest elements, resulting all elements of the matri-
ces E and S to be in [0, 1]. Let us denote the normalized and PCA-
reduced spatial and gene expression matrices as ~S and ~E , respectively.

DEEPsc requires known spatial expression to learn the correct
spatial positions, given the gene expression. More specifically, Maseda
et al. construct training vectors of size Inpij ¼ ½posi; posj	 2 R2N (with
N being the number of features preserved in the reduced matrix ~S).
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FIG. 4. An overview of DEEPsc training and inference. (a) Maseda et al. find the common genes in both spatial and scRNAseq data and perform dimensionality reduction on
each data modality (with the final matrices having the same number of features). (b) During the training, DEEPsc uses spatial expression to “simulate” single-cell gene expres-
sion vectors. More specifically, every feature vector from the spatial expression is concatenated with all other vectors (labeled as “non-match”) and also itself (labeled as
“match”) to form the input data to the neural network. (c) During inference, the scRNAseq feature vectors are concatenated with all spatial feature vectors, where the model
should place a high probability for locations where the gene expression could have originated from. This figure was obtained from Maseda et al.61 [Front. Genet. 12, 348
(2021). Copyright 2021 Authors; licensed under a Creative Commons Attribution [CC-BY] license).

Biophysics Reviews REVIEW scitation.org/journal/bpr

Biophysics Rev. 4, 011306 (2023); doi: 10.1063/5.0091135 4, 011306-12

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/bpr/article-pdf/doi/10.1063/5.0091135/16774321/011306_1_online.pdf

https://scitation.org/journal/bpr


The first N elements of Inpij correspond to the spatial expression at the
ith position, and the last N elements correspond to some position j in
the reference atlas, including the position j¼ i. During training,
DEEPsc’s goal is produce the highest likelihood when j ¼ i (meaning
that Inpij ¼ ½posi; posi	) and assign low likelihood when j 6¼ i. DEEPsc
also adds Gaussian noise to posi (the first N elements of Inpij), which
aims to preserve robustness and avoid overfitting. The addition of
noise can lead to DEEPsc learning a complex non-linear mapping
between the spatial positions in the reference atlas rather than a simple
step-like function that activates when an exact match is inputted.
During inference stage (i.e., after DEEPsc is trained), posi is replaced
with the gene expression feature vector, which are the elements of ~E ,
and the goal is to predict the likelihood of the expression vector being
originated from all possible positions j.

DEEPsc’s network is an FFNN with two hidden layers, with each
hð1Þ;ð2Þ 2 RN , mapping to an y 2 ½0; 1	, where y can be viewed as a
likelihood that the input cell originated from the input spatial posi-
tion.170 Given that for each training data Inpij there will be npositions � 1
non-matches (labels of zero) and only one match for when j¼ i, the
training labels will have many more zeros than ones. Therefore,
Maseda et al. propose a nontraditional objective function that accounts
for the imbalance between zeros and ones in the training data. This
objective function is shown in the following equation:

lðYtrue;YpredÞ ¼
Xp
i¼1

ðytruei � ypredi Þ
1:001� ytruei

; (12)

where ypredi is the networks predicted outputs, and ytruei is the true tar-
get (ytruei ¼ 1 if it exactly matches, and ytruei ¼ 0 otherwise). This
allows DEEPsc to avoid producing trivially zero outputs, which is
important given the sparsity of the data. Maseda et al. also employ
strategies in data splitting which helps to account for the inherent
sparsity in the targets.61 It is important to note that Maseda et al. also
formulate a novel system-adaptive scoring scheme to evaluate the per-
formance of DEEPsc using the spatial reference. However, the scoring
scheme does not fall within the scope of this manuscript.

Maseda et al. apply DEEPsc for spatial imputation of four differ-
ent biological systems (Zebrafish,59 Drosophila,171 Cortex,172 and
Follicle173) achieving accuracy comparable to several existing models
while having higher precision and robustness.61 DEEPsc also shows
better consistency across the different biological systems tested, which
can be attributed to its system-adaptive design. In addition, the
authors attribute the performance and generalizability of DEEPsc to
the use of FFNN (which have been noted before in other biological
applications as well45,47) and the various strategies for robustness used
during the training of DEEPsc. On the other hand, a weakness of
DEEPsc is its training time, which depends non-linearly on the num-
ber of locations available. However, this issue can be potentially miti-
gated by considering a small subset of possible locations, or a more
optimized design when training the model.

B. Alignment

Alignment in ST analysis refers to the process of mapping
scRNAseq data to a physical domain while aiming to match the geom-
etry with the available spatial data. As previously stated, NGS-based
technologies suffer from limited capture rates and significant drop-
out174 (especially at higher resolutions). Before the use of DL in ST

analysis, many computational approaches aimed to spatially recon-
struct key marker genes scRNAseq data by assuming continuity in the
gene space,60 or by leveraging local alignment information.59

Moreover, most techniques for alignment or deconvolution of spatial
data either learned a program dictionary32 or estimated a probabilistic
distribution of the data64 for the cell types at each spot. However, such
approaches are not generalizable to all experimental settings, since
finding the mapping of sparse or sporadically distributed genes to the
spots is difficult and is error-prone due to dropouts.34

DL frameworks have the potential of providing robust models
that can adapt to specific species or technologies while being generaliz-
able to other datasets and platforms. The potential application of DL
in the alignment of spatially resolved transcriptomics came to fruition
recently through the work of Biancalani et al., called Tangram.34

Tangram is a framework that, amongmany of its capabilities, can align
scRNAseq or single-nucleus(sn) RNAseq profiles to spatial data; for
the sake of simplicity, we refer to both data types as scRNAseq,
although there are differences between the two methods (see Ref. 175
for a systematic comparison of scRNAseq and snRNAseq approaches).
Tangram aims to: (i) learn the transcriptome-wide spatial gene expres-
sion map at a single-cell resolution and (ii) relate the spatial informa-
tion back to histological and anatomical data obtained from the same
samples. Tangram’s general workflow is to learn a mapping between
the data modalities and then construct specific models for the down-
stream tasks (such as deconvolution, correcting low-quality data, etc.).
We first summarize Tangram’s alignment algorithm and then provide
the applications in which DL models are utilized.

Tangram’s general objective is to learn a spatial matrix S 2
Rncells�ngenes describing the spatial alignments for the cells, with ncells and
ngenes denoting the number of single-cells and the number of genes,
respectively. Let the expression of gene k in cell i be denoted by
Sik 2 R½0;1Þ, a non-negative value. Next, Tangram partitions
(“voxelizes”) the spatial volume at the finest possible resolution (depend-
ing on the spatial technology) as a one-dimensional array. This allows
Tangram to construct (1) a matrix G 2 R

nvoxels�ngenes
½0;1Þ , where Gjk is a non-

negative value denoting the expression of gene k in voxel j, and (2) a cell-
density vector v ¼ fv1; v2;…; vnvoxelsg, where 0 � vj � 1 is the cell den-
sity in voxel j (with the total density for each voxel summing to 1).

The learning of transcriptome-wide spatial gene expression map
at a single-resolution happens through learning a mapping operator
M 2 R

ncells�nvoxels
½0;1	 , where Mij denotes the probability of cell i being in

voxel j. Moreover, given any matrix ~M 2 Rncells�nvoxels , each element of
the operatorM is assigned according the following equation:

Mij ¼
e ~Mi;jXnvoxels

q¼0

e
~Mq;j

(13)

ensuring that
Pnvoxels

j¼1 Mij ¼ 1, i.e., assigning a probability distribution
along the voxels using the well-known softmaxð�Þ function. Biancalani
et al. define an additional quantity, MTS, which denotes the spatial
gene expression as predicted by the operator M, and a vector m

¼ fm1;…;mncellsg where mj ¼
Pnvoxels

i
Mij

ncells
is the predicted cell density

for each voxel j.
Given the preliminary quantities, we can now write Tangram’s

generic objective function as shown in the following equation:
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lðS;MÞ ¼
Xngenes
k¼1

cossim ðMTSÞ :½ 	;k;G :½ 	;k
� �

; (14)

where “½:	” denotes the matrix slicing, and cossim is the cosine similar-
ity, defined as follows:

cossimða; bÞ¢
a � b

jjajjjjbjj : (15)

The objective function, Eq. (14), learns a proportional mapping of the
genes to the voxels. Additionally, this loss function can be further
modified to incorporate prior knowledge. Indeed, Biancalani et al.
modify this to regularize for the learned density distributions and the
cells contained within each voxel, as shown in the following equation:

lðS;MÞ ¼ KLðm; vÞ �
Xngenes
k¼1

cossim ðMTSÞ :½ 	;k;G :½ 	;k
� �

�
Xnvoxels
j¼1

cossim ðMTSÞj; :½ 	;Gj; :½ 	
� �

; (16)

where minimizing the divergence (first term) enforces that the learned
density distribution and the expected distribution are similar, and the
additional loss over the voxels (third term) penalizes the model if the
predicted gene expression is not proportional to the expected gene
expression. Biancalani et al. minimize the objective shown in Eq. (16)
through gradient-based optimizers implemented in PyTorch.176,177

After optimizing Eq. (16), Tangram is able to map all scRNAseq pro-
files onto the physical space, thus performing the alignment. It is
important to note that although Tangram learns a linear operator M,
this mapping could be replaced with a deep neural network as well.

Tangram utilizes DL to integrate anatomical and molecular fea-
tures, specifically for mouse brain images. To do so, the authors use an
image segmentation network (U-Net178) in combination with a
“Twin” network179 to produce segmentation masks of anatomical
images, with both networks being CNNs. We present a general over-
view of these architectures in Fig. 5. The twin network uses
DenseNet:180 a deep NNs that concatenates the outputs at each layer
to propagate salient information to deeper layers in the network (refer
to Sec. IIID for the motivation behind such approaches). More specifi-
cally, Tangram uses a pre-trained DenseNet encoder (trained on
ImageNet) to encode images and remove technical noise and artifacts.
Biancalani et al. also add two additional layers to the pre-trained
encoder, which map the outputs to a smaller latent space. The encoder
of the twin network is fine-tuned on learning the prediction of spatial
depth difference between two images: Two random images are input-
ted to the twin network with their spatial difference depth being the
desired target output, dtrue. The network then tries to predict
the depth, dpred, for all N inputs, ultimately comparing them against
the corresponding true depth differences, dtrue (as shown in the follow-
ing equation):

MSEðdpred ; dtrueÞ ¼ 1
N

XN
i¼1

dpredi � dtruei

� �2

: (17)

The segmentation model of Tangram generates five custom seg-
mentation masks (background, cortex, cerebellum, white matter, and
other gray matter) that are compatible with the existing Allen ontology

atlas. The segmentation model is a U-Net, which uses a pre-trained
ResNet50 (Ref. 156) as its core. Finally, for each pixel in input images,
the model’s last layer (a softmax function) assigns a probability of
belonging to one of the five segmentation classes. Tangram’s segmen-
tation model aims to optimize the superposition of the cross entropy
and Jaccard index, as presented in the following equation:

lðg; pÞ ¼ �g � log ðpÞ � p \ g
p [ g

(18)

with p denoting the model prediction and g referring to the ground
truth image.

Biancalani et al. demonstrate that Tangram learns an accurate
mapping between the spatial data and scRNAseq gene expression
when applied to fine- or coarse-grained spatial atlases. The authors
show that their approach works well across different technologies
(namely, ISH, smFISH, Visium, STARmap, and MERFISH) at differ-
ent resolutions and gene coverage and is able to learn a robust and
accurate alignment mapping for the isocortex of the adult healthy
mouse brain.34 While Tangram can offer different advantages based
on spatial technology, it can produce consistent spatial mappings and
overcome limitations in resolution or throughput, which is beneficial
in many ST experiments and studies.

C. Spot deconvolution

One downside of using NGS-based technologies remains to be
their resolution: Despite the recent technological advancements, most
ST platforms (e.g., spatial transcriptomics, Visium, DBiT-seq,181

Nanostring GeoMx,182 and SlideSeq) do not have a single-cell resolu-
tion. The number of cells captured in each spot still varies based on
the tissues [about 1–10 (Ref. 183)] and the technology used. On the
other hand, we cannot assume that all cells within a spot are the same,
due to the heterogeneity of the cells. Therefore, it is necessary to use
computational approaches for inferring the cell types in each spot or
voxel. Such estimations would be possible if there were a complemen-
tary scRNAseq dataset. The process of inferring the cellular composi-
tion of each spot is known as cell-type deconvolution. Deconvolution
has been at the forefront of computational efforts, and it is important
in building organ atlases.20,118,184 In fact, cell-type deconvolution is an
existing procedure for inferring cell-type composition in RNAseq data
using scRNAseq. However, methods developed for bulk RNAseq do
not account for the spatial components of ST datasets and are there-
fore generally inadequate. Given that deconvolution is an existing
practice in RNAseq studies, we will refer to the spatial deconvolution
problem as spot deconvolution to distinguish between the traditional
methods and the ones developed for ST analysis.

We divide spot deconvolution methods into three categories: (i)
statistical methods, (ii) machine learning, and (iii) deep learning, with
many of the current models falling into the first two categories. We
now dive deeper into the two existing models that use DL for perform-
ing spot deconvolution.

1. DestVI

DestVI (deconvolution of spatial transcriptomics profiles using
variation inference) is a Bayesian model for spot deconvolution.
DestVI employs a conditional deep generative model (similar to
scVI,185 a popular model for scRNAseq analysis) to learn cell-type

Biophysics Reviews REVIEW scitation.org/journal/bpr

Biophysics Rev. 4, 011306 (2023); doi: 10.1063/5.0091135 4, 011306-14

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/bpr/article-pdf/doi/10.1063/5.0091135/16774321/011306_1_online.pdf

https://scitation.org/journal/bpr


profiles and continuous sub-cell-type variations, aiming to recover the
cell-type frequency and the average transcriptions state of cell types at
each spot. To do so, DestVI takes a pair of transcriptomics datasets as
inputs: (i) a reference scRNA-seq data and (ii) a query spatial tran-
scriptomics data (from the same samples). DestVI then outputs the
expected proportion of cell types for every spot and continuous esti-
mation of cell state for the cell types present in each spot, which can be
viewed as the average state of the cell types in each spot, which Lopez
et al. suggest as useful for downstream analysis and formulation of bio-
logical hypotheses.69

DestVI uses two different latent variable models (LVMs) for
distinguishing cell-type proportions and delineating cell-type-spe-
cific sub-states (shown in Fig. 6). The first LVM is for single-cell
data (therefore named scLVM) which assumes the counts follow a
negative binomial (NB) distribution, which has shown to model
RNAseq count data well.185–187 Specifically, Lopez et al. assume
that for each gene g and cell n, the count of observed transcripts,
xng, follows an NB distribution parameterized with ðrng ; pgÞ: rng
¼ ln � f ðcn; cn; hÞ is a parameter that depends on the type assigned
to the cell cn, the total number of detected molecules ln, and a

low-dimensional latent vector cn (which Lopez et al. set cn ¼ 5)
that describes the variability of cell-type assignment to cell cn, and
a neural network f parameters h (in this case, a two-layer NN). The
second parameter of the NB, pg, is optimized using variational
Bayesian inference. We can summarize the assumptions for
scLVM as shown in the following equation:

xng � NBðlnf ðcn; cnÞ; pgÞ (19)

with the latent variable cn � nð0; IÞ. Each cn (the annotations)
are represented by a one-hot encoded vector, which is
concatenated with c to serve as the input of the NN f. Lopez
et al. use a VAE to optimize for the marginal conditional likeli-
hood log phðxnjln; cnÞ.

Finally, for scLVM, a mean-field Gaussian distribution
q/ðcjcn; xnÞ, parameterized by another two-layer NN g, is inferred for
each cell which quantifies the cell state and the associated uncertainty.
The NN g takes a concatenation of (i) the gene expression vector xn
and (ii) the one-hot encoded cell annotations as its inputs. The net-
work g outputs the mean and variance of the variational distribution
for cn, obtained through optimizing Eq. (20)

FIG. 5. Tangram’s DL framework for aligning/integrating histology and anatomical data with molecular data. Tangram’s model for this task is a combination of encoding (using
a twin network) and segmentation modules. The twin network learns a similarity metric for brain sections based on anatomical features in images, while the U-Net model is
trained to segment five different classes on mouse brain images. This figure was recreated for this manuscript based on illustrations from Biancalani et al.34
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Eq/ðcnjxn;cnÞ log phðxn; cnjln; cnÞ �KLðq/ðcnjxn; cnÞjjphðcnÞÞ
� log phðxnjln; cnÞ; (20)

where phðcnÞ is the prior likelihood for cn. Similar to training any
other VAE, the observations are split into mini-batches, and sampling
from the variational distribution is done using the reparameterization

trick described in Kingma and Welling.161 The computational work-
flow for scLVM is visualized in Fig. 6(b).

The second LVM aims to model the spatial transcriptomics data
(hence called stLVM) with the assumption that the number of
observed transcripts xsg at each spot s for each gene g follows an NB
distribution. Additionally, Lopez et al. also assume that each spot has

FIG. 6. Visualization of DestVI’s computation workflow for spot deconvolution. DestVI uses information from both data modalities of the ST data (coordinates and scRNAseq).
DestVI defines two latent variable models (LVMs) for each data modality: an LVM for modeling scRNAseq data (scLVM, shown at the top) and one that aims to model the ST
data (stLVM, shown at the bottom). We describe each one in Sec. IV C. This figure was recreated for this manuscript based on illustrations from Lopez et al.69
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C(s) cells, with each cell n in a spot s being generated from the latent
variables ðcns; cnsÞ. For stLVM’s NB distribution, the rate parameter
rsg ¼ ag lsfgðcns; cns; hgÞ, where ag is a correction factor for the gene-
specific bias between spatial and scRNAseq data, lg is the overall num-
ber of molecules observed in each spot, and fg is an NN network with
parameters hg . These assumptions and quantities allow Lopez et al. to
formulate the total gene expression xsg as shown in the following
equation:

xst � NBðlsag fgðcns; cnsÞ; pgÞ: (21)

Moreover, using a parameter to designate the abundance of every cell
type in every spot, bsc, and NB’s rate-shape parameterization property
(see Arag�on et al.188), Eq. (21) can be rewritten as follows:

xst � NB lsag
XCðsÞ
n¼1

bscfgðcns; cnsÞ; pg

0
@

1
A (22)

supposing that cells from a given cell type c in a spot s must come
from the same covariate ccs .

The covariate ccs in DestVI allows for the model to account for ST
technology discrepancies by assuming various empirical priors (refer
to Fig. 6). Lopez et al. simplify the problem of identifying every cell
type in each spot to determine the density cell types, i.e., assuming that
there cannot be significantly different cell states of the same cell types
within a spot. Lopez et al. use a penalized likelihood method to infer
point estimates for cc, a, and b. With the additional two strategies to
stabilize the training of DestVI, the final objective function for stLVM
consists of (i) the negative binomial likelihood, (ii) the likelihood of
the empirical prior, and (iii) the variance penalization for a.

Lopez et al. use simulations to present DestVI’s ability to provide
higher resolution compared to the existing methods and estimate gene
expression by every cell type in all spots. Furthermore, they show that
DestVI is able to accurately deconvolute spatial organization when
applied mouse tumor model. In the cases tested, Lopez et al. demon-
strate that DestVI is capable of identifying important cell-type-specific
changes in gene expression between different tissue regions or between
conditions and that it can provide a high resolution and accurate spa-
tial characterization of the cellular organization of tissues.

2. DSTG

Deconvoluting spatial transcriptomics data through the graph-
based convolutional network (DSTG)65 is a recent semi-supervised
model that employs graph convolutional networks (GCN)136 for spot
deconvolution. DSTG utilizes scRNAseq to construct pseudo-ST data
and then build a link graph that represents the similarity between all
spots in both real and pseudo-ST data. The pseudo-ST is generated by
combining scRNAseq transcriptomics of multiple cells to mimic the
expression profiles at each spot; while the real ST data are unlabeled,
the pseudo-ST has labels. To construct the link graph, DSTG first
reduces the dimensionality of both real and pseudo data using canoni-
cal correlation analysis189 and then identifies mutual nearest neigh-
bors.190 Next, a GCN is used on the link graph to propagate the real
and pseudo-ST data into a latent space that is turned into a probability
distribution of the cell compositions for each spot.

Song et al. form the link graph by taking the number of spots as
the number of vertices, resulting in a graph G ¼ ðV; EÞ, where jV j

denotes the number of spots, and E represents the edges between
them. DSTG takes two inputs: (i) the adjacency matrix of graph G,
represented by A, and (ii) a combination of both real and pseudo data-
sets X ¼ ½xpseudo; xreal	 2 Rm�N , where m is the number of variable
genes, and N ¼ Spseudo þ Sreal (the total number of spots in both data-
sets) with Spseudo and Sreal indicating the number of spots in the pseudo
and real ST datasets, respectively. Next, Song et al. normalize the adja-
cency matrix (for efficient training of DSTG) using the diagonal degree
of A, denoted by D, as shown in the following equation:

Â ¼ D�1
2AID

�1
2; (23)

where AI ¼ Aþ I (with I denoting the identity matrix). Given the
two inputs, DSTG’s graph convolution layers take the following form:

hðiþ1Þ ¼ rðÂXTWðiÞÞ; i ¼ 0;

rðÂhðiÞWðiÞÞ; i > 0

(
(24)

with hðiÞ denoting the ith hidden layer of DSTG, and rð�Þ being a non-
linear activation function [in this case, rð�Þ ¼ ReLUð�Þ]. The output of
DSTG is denoted by ys;t , the proportion of cell type t ¼ f0;…;Tg at
each spot s ¼ f0;…;Ng. Song et al. design DSTG’s architecture as
shown in the following equation:

Ypred ¼ softmaxðÂrð� � � ðÂrðÂXTWð0ÞÞWð1ÞÞ � � �WðkÞÞ; (25)

where k is the last layer, and Ypred ¼ ½Ypred
pseudo;Y

pred
real 	 2 RN�T is the

predicted proportions at each spot in the pseudo and real data,
denoted by Ypseudo and Yreal, respectively. It is important to note that
Song et al. chose a GCN with three layers after performing an ablation
study on the number of layers. Finally, DSTG is trained by optimizing
the cross entropy loss

lðYpred
pseudo;Y

true
pseudoÞ ¼ �

XSpseudo
s¼0

XT
t¼1

ytrues;t log ðypreds;t Þ (26)

with yftrue;predgs;t denoting the label for true/predicted cell type t at spot
s. Note that this constitutes a semi-supervised training for DSTG since
only labels for the pseudo-ST are used in training, but the model
will also learn to predict labels for the real dataset as well [refer to
Eq. (25)].

Song et al. note that, compared to traditional approaches, DSTG
provides three key advantages: (i) given that DSTG uses variable genes
and a non-linear GCN, it allows for learning complex deconvolution
mappings from the ST data. (ii) The weights assigned to the different
cell types in the pseudo-ST and the semi-supervised scheme allow
DSTG to identify key features that allow the model to learn the cellular
composition in real data. (iii) DSTG’s scalability and adaptability will
be beneficial in ST analysis, given that the sequencing depth of the ST
data is expected to increase. Song et al. show that DSTG consistently
outperforms the benchmarked state-of-the-art model (SPOTlight) on
both synthetic data and real data. More specifically, DSTG is evaluated
on simulated data generated from PBMC where it shows high accu-
racy between the predicted cell compositions and the true proportions.
Song et al. also find that DSTG’s deconvolution of the ST data from
complex tissues, including mouse cortex, hippocampus, and human
pancreatic tumor slices, is consistent with the underlying cellular
mixtures.65
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D. Spatial clustering

Clustering allows the aggregation of data into subpopulations
based on some shared metric of distance or “closeness.” In RNA
sequencing studies, clustering is the first step of identifying cell clus-
ters, often followed by laborious manual annotation (e.g., through
identifying differentially expressed genes) or some automated work-
flows.191 Clustering has been a crucial step in many scRNAseq studies,
often performed using graph-based community detection algorithms
(such as Louvain192 or Leiden193) or more traditional methods (such
as K-Means121). Although the scRNAseq techniques can be used in
some ST studies (e.g., for multiplexed FISH data where a single-cell
resolution is available), the result may be discontinuous or erroneous
since the spatial coordinates have not been taken into account.76

Therefore, there is a need for ST-specific methods that can utilize both
gene expression and histology data to produce clusters that are coher-
ent, both in gene expression and physical space.

Recently, new frameworks for spatial clustering of the ST data
have emerged which utilize both spatial and expression information
available. Zhu et al.72 introduced a hidden-Markov random field
(HMRF)-based method to model the spatial dependency of gene
expression using both the sequencing and imaging-based single-cell
transcriptomic profiling technologies. HMRF is a graph-based model
used to model the spatial distribution of signals. Using the ST data,
Zhu et al. create a grid where neighboring nodes are connected to each
other. However, the spatial pattern cannot be observed directly (since
it is “hidden”), and it must be inferred through observations that
depend on the hidden states probabilistically. Similar to Zhu et al.,
BayesSpace75 employs a Bayesian formulation of HMRF and uses the
Markov chain Monte Carlo (MCMC) algorithm to estimate the model
parameters. Despite the ability of these methods to cluster voxels (or
cells) into distinct subpopulations, these approaches suffer from the
lack of versatility required to handle different modalities present in the
ST data.76

With the emergence of newer technologies, the scale and variabil-
ity within datasets are increasing, requiring more general and flexible
models for accurate and robust analysis of these studies. A few ML-
based approaches have been proposed to combat some of these men-
tioned challenges. Below, we review the ML-based methods that offer
scalability and are generally more applicable to various experimental
settings.

1. SpaCell

SpaCell73 is a double-stream DL framework that utilizes both his-
tology images and the associated spot gene counts. For the histology
data, Tan et al. first preprocess the images (removing low-quality
images, stain normalization, normalizing the pixels using a z-
transform, and removing background noise). Next, they split each his-
tology image into tiles that contain one spot each (sub-images of
299� 299 pixels). For the preprocessing of the count matrix (which
contains the reads at each spot), Tan et al. follow traditional
scRNAseq preprocessing workflows, including count normalization,
removal of outlier genes, and cells with too few genes. After the pre-
processing stage, each tile (containing the image of a spot) corresponds
to a column in the count matrix (reads from the same spot). At this
point, each image Xi 2 R299�299, and the count matrix M will be in a
Rnspots�ngenes space. However, Tan et al. reduce the count matrix to only

contain 2048 most variable genes at each spot, therefore resulting in a
new count matrix M̂ 2 Rnspots�2048. Let us denote the ith spot of M̂ as
m̂i 2 R2048, which has a corresponding image xi.

In order to spatially cluster cells of the same type, both image and
count data must be used. The first step in SpaCell is to pass on the spot
images, xi, to a pre-trained ResNet50 (trained on ImageNet data) in
order to output feature vectors, x̂ i 2 R2048 (each having the same
dimensionality as columns of M̂). Next, to extract features from both
modalities, SpaCell uses two separate AEs for the image feature vectors,
X̂ 2 Rnspots�2048, and the most-variable-genes counts, M̂ , with both AEs
having the same latent dimension (we discuss the reason behind this
later). Let us denote the AE for images as AEIð�Þ ¼ DecIðEncIð�ÞÞ, and
the gene counts AE as AEGð�Þ ¼ DecGðEncGð�ÞÞ, with EncfI;Ggð�Þ and
DecfI;Ggð�Þ indicating the encoder and decoders, respectively.

Given N spots, each AE in SpaCell aims to minimize three objec-
tive functions for their respective inputs [i.e., x̂ i for AEIð�Þ and m̂i for
AEGð�Þ]: (i) the mean squared error (MSE) between the input and the
output [shown in Eq. (27)], (ii) the KL divergence between the proba-
bility distributions for the input and constructed output of all N spots
[denoted by p and q in Eq. (28), respectively], and (iii) binary cross
entropy (BCE), shown in Eq. (29)

MSEfI;Ggðvi;~viÞ ¼
1
N

XN
i¼1

ðvi � AEfI;GgðviÞÞ2; (27)

KLðpjjqÞ ¼
XN
i¼1

pðviÞ
log pðviÞ
log qðviÞ

; (28)

BCEðqÞ ¼ � 1
N

XN
i¼1

vi log ðpÞ þ ð1� viÞ log ð1� pÞ½ 	: (29)

Once training has concluded, SpaCell encodes both images and
gene counts, i.e., EncIðx̂ iÞ and EncGðm̂iÞ, to be used for clustering.
More specifically, clustering is performed on a matrix that is the con-
catenation of the latent vectors produced by each AE,
C ¼ ½EncIðx̂ iÞ; EncGðm̂iÞ	. This is why the latent spaces of AEI;Gð�Þ
have the same dimension. After obtaining the concatenated matrix,
the downstream clustering is performed using K-Means (which can be
substituted for other algorithms as well). Through this procedure,
SpaCell uses both data modalities and can produce clusters that are
highly accurate when compared to the true clusters (annotated by
pathologists).

2. StLearn

StLearn74 is a DL model that, among many of its capabilities, can
perform segment (cluster) spatial regions based on their function and
expression. StLearn’s DL component lies within its spatial morpholog-
ical gene expression (SME) normalization. The SME normalization
aims to combine critical information from Hematoxylin and Eosin
stained (H and E) tissue images and transcriptome-wide gene expres-
sion profiles to then take advantage of in downstream analysis, such as
clustering, spatial trajectory inference, and cell–cell interaction.

The SME normalization procedure includes (i) spatial location:
In order to use the spatial positions for selecting neighboring
spot pairs, Pham et al. consider two spots si and sj as neighbors if
the center-to-center Euclidean distance between the two spots,

Biophysics Reviews REVIEW scitation.org/journal/bpr

Biophysics Rev. 4, 011306 (2023); doi: 10.1063/5.0091135 4, 011306-18

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/bpr/article-pdf/doi/10.1063/5.0091135/16774321/011306_1_online.pdf

https://scitation.org/journal/bpr


jCðsiÞ � CðsjÞj, is less than a specified distance r, i.e.,
jCðsiÞ � CðsjÞj < r. Pham et al. include all paired spots si and sj as the
input to adjust for the gene expression of the center spot si. The next
step in SME normalization is (ii) Morphological similarity: stLearn cal-
culates the morphological similarity between spots using feature vec-
tors produced by an ImageNet-pre-trained ResNet50. More
specifically, all H&E images corresponding to each spot si are inputted
to the ResNet50 model, producing a feature vector xi 2 R2048.
Subsequently, stLearn performs PCA on each feature vector xi, result-
ing in reduced-dimension feature vectors x̂ i 2 R50. To calculate the
morphological distance (MD) between two neighboring spots si and sj
[according to the criterion defined in (i)], Pham et al. measure the
cosine similarity between two reduced feature vectors [refer to Eq. (15)
for the definition of cosine similarity]; this MD is shown in the follow-
ing equation:

MDðsi; sjÞ¢ cossimðx̂ i; x̂ jÞ: (30)

As the last step in SME normalization, the gene expression at each
spot si is normalized using the MD distance, as shown in the following
equation:

ĜEi ¼ GEi þ

Xn
j¼1

GEj �MDðsi; sjÞ
� �

n
; (31)

where GEi denotes raw gene expression counts at spot si, and n is the
total number of neighbors identified for spot si. StLearn’s SME nor-
malization enables a smoothing of the expression data based on mor-
phological similarity with the goal of improving clustering through
grouping morphologically similar sections of the tissue together.

After the SME normalization step, stLearn’s clustering algorithm
consists of two steps: First, finding general global clusters (utilizing tra-
ditional clustering techniques) using SME-normalized data as its
input, followed by local clustering that aims to identify spatially sepa-
rated sub-clusters and merge spots that are collocated, resulting in spa-
tially contiguous clusters. Pham et al. note that stLearn constitutes the
first-of-its-kind method to use tissue morphology in normalizing gene
expression, outperforming two competing approaches on two tested
data (Seurat on Allen Mouse Brain Atlas194 and SpatialLIBD195 on
human brain tissue sections196).74

3. SpaGCN

SpaGCN76 is a graph convolution network (GCN) that integrates
both spatial information and histology images to perform spatial clus-
tering. Using each spot as vertices, Hu et al. create a weighted undi-
rected graph,G ¼ ðV ;EÞ, where jV j is the total number of spots, and E
is the set of edges with prescribed weights representing the similarity
between the nodes. The weight of each of these edges is determined by
(i) the distance between the two spots (nodes) that the edge connects
and (ii) the associated histology information (in this case, pixel inten-
sity). This means that two spots are deemed similar if they are physi-
cally close to one another, and they seem similar in the histology image.

In order to attribute the pixel information to each spot, Hu et al.
use the mean RGB pixel intensity of each spot within a window of size
50� 50 pixels. That is, given a spot s with physical coordinates (xs, ys)
and pixel coordinates ðxps; ypsÞ, SpaGCN calculates the mean and

variance of all the pixels present within a 50� 50 pixels centered at
ðxps; ypsÞ. Let psr, psg and psb denote the means, and varrðpsÞ;
vargðpsÞ; varbðpsÞ refer to the variance for the red, green, and blue chan-
nels, respectively. SpaGAN then summarizes the pixel mean and vari-
ance information as a unified value, as shown in the following equation:

zs ¼
ðpsr � varrðpsÞÞ þ ðpsg � vargðpsÞÞ þ ðpsb � varbðpsÞÞ

varrðpsÞ þ vargðpsÞ þ varbðpsÞ
: (32)

Furthermore, zs is rescaled using the mean and standard deviation of
each coordinate (including the newly created z axis), with an addi-
tional scaling factor that can put more emphasis on histology data
when needed. Let lz denote the mean of zs, and let rx;y;z be the stan-
dard deviation of xs; ys; zs with s 2 V ; then, we can formulate the
rescaling as the following:

~zs ¼ a
ðzs � lzÞðmaxfrx; rygÞ

rz
; (33)

where a denotes the scaling factor described previously (a ¼ 1 by
default).

Using the rescaled value in Eq. (33), the weight of each edge
between two vertices s and k is calculated as shown in the following
equation:

wðs; kÞ ¼ e�dðs;kÞ2=ð2l2Þ; (34)

where l denotes the characteristic length scale, and d(s, k) is the tradi-
tional Euclidean distance, as shown in the following equation:

dðs; kÞ ¼ ðxs � xkÞ2 þ ðys � ykÞ2 þ ð~zs � ~zkÞ2
� �1

2: (35)

SpaGCN’s network construction (and backpropagation) is simi-
lar to other GCNs, inspired by Kipf and Welling136 (for an overview of
GCNs, refer to Sec. IVC2). The network intakes the adjacency matrix
A to represent the graph G, and a reduced-dimension representation
of the gene expression matrix, which Hu et al. achieve using PCA with
50 principal components. The output of the GCN network is a matrix
that includes combined information on histology, gene expression,
and spatial position. SpaGCN then uses the output of the GCN to per-
form unsupervised clustering of the spatial data.

SpaGCN uses the Louvain algorithm (an iterative unsupervised
clustering algorithm) on the output of GCN to initialize cluster cent-
roids, with the number of clusters (controlled by Louvain’s resolution
parameter) being optimized on maximizing the Silhouette score197).
The iterative updates are based on optimizing a metric that defines the
distance between each spot and all cluster centroids using the t-
distribution as a kernel. For a centroid cj, a total of N clusters, and the
embedded point hi for spot i, this metric can be defined as the proba-
bility of assigning cell i to cluster j, as shown in the following equation:

qij ¼
ð1þ hi � l2j Þ

�1

XN
c¼1

ð1þ hi � l2c Þ
�1

: (36)

Hu et al. further refine the clusters using an auxiliary target distribu-
tion [shown in Eq. (37)] that prefers spots assignments with the high-
est confidence and normalizes the centroid contribution to the overall
loss function as the following:
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pij ¼
q2ijXS
i

qij

�
XN
c¼1

q2icXS
i

qic

0
BB@

1
CCA

0
BB@

1
CCA

�1

: (37)

Finally, spaGCN is trained by optimizing the KL divergence between
the p and q distributions, as shown in the following equation:

l ¼ KLðPjjQÞ ¼
XS
i¼1

XN
j¼0

pij log
pij
qij

: (38)

Hu et al. demonstrate that SpaGCN can accurately identify
spatial clusters that are consistent with manual annotations since
SpaGCN utilizes information from both gene expression and his-
tology. The authors perform spatial clustering with SpaGCN on
the human dorsolateral prefrontal cortex, human primary pancre-
atic cancer, and multiple mouse tissue data, showing that SpaGCN
performs consistently well, outperforming other state-of-the-art
models (stLearn, BayesSpace, and Louvain). These results show the
feasibility and potential of SpaGCN for clustering spatial-resolved
transcriptomics.

E. Cell–cell interactions

Multicellular organisms depend on intricate cell–cell interactions
(CCIs) which dictate cellular development, homeostasis, and single-
cell functions.198 Unraveling such interaction within tissues can
present unique insight on complex biological processes and disease
pathogenesis.198–201 CCI has been investigated using both scRNAseq
and RNAseq, wherein most approaches test for enrichment in ligand–
receptor profiles in the expression data.202–204 However, the ST data
can offer a more comprehensive view of CCI, since the distance trav-
eled by ligand signal is crucial in determining the type of cell–cell sig-
naling.183 Given the importance of CCI and the advantages that the
ST data provide, several computational approaches for inferring cellu-
lar interactions using the ST data have been developed, such as
SpaOTsc,80 Giotto,82 MISTy.81

SpaOTsc is a model that can be used in integrating scRNAseq
data with spatial measurements, and in inferring cellular interactions
in spatial-resolved transcriptomics data. SpaOTsc aims to estimate
cellular interactions by analyzing the relationships between ligand–
receptor pairs and their downstream genes. SpaOTsc formulates a spa-
tial metric using the optimal transport algorithm, returning a mapping
that contains the probability distribution of each scRNA-seq cell over
a spatial region. SpaOTsc also utilizes a random forest in order to infer
the spatial range of ligand–receptor signaling and subsequently
remove the long-distance connections. Another approach is Giotto:82

Giotto is an extended and comprehensive toolbox designed for ST
analysis and visualization, which includes a CCI model that calculates
an enrichment score (the weighted mean expression of a ligand and
the corresponding receptor in the two neighboring cells). Giotto then
constructs an empirical null distribution by moving the locations for
each cell type, subsequently calculating the corresponding statistical
significance (P-value), and ordering the ligand–receptors pair-wise for
all neighboring cells. Although the mentioned models have shown to
discover simple cellular interactions, such approaches often fail to
detect complex gene–gene interactions, which is essential in under-
standing many diseases. Though DL models for CCI are nascent, we

anticipate such models to better learn complex interactions from the
raw data.

V. CONCLUSIONS AND OUTLOOK

The ST field is rapidly growing, with new datasets and analysis
pipelines released weekly. The innovations in biological methods will
continue to spur creativity in algorithm development, with an empha-
sis on ML-based frameworks. Although the space of DL models for ST
analysis is currently small, we anticipate the field to experience a para-
digm shift toward deep-learned models. In this review, our goal was to
provide readers with the necessary biological, mathematical, and com-
putational background for understanding the existing approaches and
expanding upon the current models to address the challenges posed
by the ST domain.

In this manuscript, we provided an overview of current DL-based
techniques for alignment and integration of the ST data, spatial clus-
tering, spot deconvolution, inferring cell–cell communication, and
approaches for reconstructing spatial coordinates using scRNAseq
data (with limited or no spatial reference atlas). The DL methods we
presented, in comparison to their conventional counterparts, offer
accuracy and scalability advantages. However, DL methods are not
always the preferred choice as they are computationally expensive and
may lack biological interpretability. As more methods for ST analysis
are developed, we believe that standard datasets for benchmarking
new models as well as comprehensive accuracy and efficiency analysis
of existing techniques will be of significant value to the field. Though
the existing methods set the new state-of-the-art in their respective
categories, room for improvements remains large. Among the ST
downstream analyses, applications of DL algorithms for studying
cell–cell communication and identification of spatially variable genes
remain mostly underexplored. Given DL models’ ability to extract
sophisticated patterns from the raw data, we anticipate that DL
approaches will prove useful in unraveling complex biological pro-
cesses, aiding the efforts in identifying cellular interactions and highly
variable genes in a spatial context.

Recent technological advancements have enabled researchers to
utilize various single-cell omics sources to construct multi-omics data-
sets, providing comprehensive view of many diseases [e.g., COVID19
(Refs. 205 and 206) and cancer207] and developmental processes.208,209

As single-cell analysis enters the multi-omics age, the need for inte-
grating the ST data with other single-cell sources will increase.
Therefore, we expect an increase in ML-based frameworks for data
integration and alignment, spearheaded by DL-based approaches.
Additionally, due to the noise and multi-modality of the ST data, there
exists an unmet need for methods that account for batch effects in spa-
tial and gene expression data. Given the success of DL techniques for
batch effect removal in scRNAseq, we foresee DL models being widely
used for batch effect correction of spatially resolved transcriptomics
data.

Despite the recentness of ST technologies, researchers have suc-
cessfully used these technologies to generate spatially resolved cell
atlases, providing new insight on a wide range of biological processes
and organs.118,210–213 Such studies not only show the tremendous
potential that ST technologies hold but also highlight the need for scal-
able and efficient analysis tools. The application of DL to ST analysis
remains a rapidly evolving nascent domain, demonstrating promising
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great prospects in advancing the field of ST, and the integration of ST
datasets with other omics data.
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T. Aijo, R. Bonneau, L. Bergenstråhle, J. Navarro, J. Gould, G. K. Griffin, Å.
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Malmstrom, “Exploring inflammatory signatures in arthritic joint biopsies
with spatial transcriptomics,” Sci. Rep. 9, 18975 (2019).

53E. Berglund, J. Maaskola, N. Schultz, S. Friedrich, M. Marklund, J.
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