

Correction to “Thin Films and Bulk Phases Conucleate at the Interfaces of Pentacene Thin Films”

Thorn A. Dramstad, Zhihao Wu, Grace M. Gretz, Greg Haugstad, and Aaron M. Massari*
J. Phys. Chem. C 2021, 125 (30), 16803–16809. DOI: 10.1021/acs.jpcc.1c04432

Cite This: *J. Phys. Chem. C* 2022, 126, 8964–8964

Read Online

ACCESS |

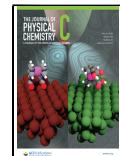
Metrics & More

Article Recommendations

This correction enumerates the following changes to the original publication:

1. An additional author (Greg Haugstad) is added to the original author list.
2. The description of the Atomic Force Microscopy section of the Experimental Section should read as follows:

■ ATOMIC FORCE MICROSCOPY (AFM)


A Keysight 5500 scanning probe microscope was operated in contact mode using a model 9524B $90 \times 90 \times 8 \mu\text{m}$ scanner. The latter was freshly Z-recalibrated 3–4 days prior to this work (both Z scanner and Z sensor) using a model TGZ03 511 nm-step calibration grating from MikroMasch. The instrument was operated in closed loop X-Y. Z sensor images were processed to obtain all height information reported. A cantilever/tip (type FORT from Applied Nanostructures) was used for all images reported. Surface tracking was actuated at $\sim 10\text{--}20 \text{ nN}$ of the applied load. Height images were subsequently leveled by subtracting a fitted plane function. Z sensor measurements on subregions on film and bare substrate (two terraces) were processed into two-peak height histograms. Mean and standard deviation film thickness measurements were produced from this analysis as demonstrated in the Supporting Information.

3. The Acknowledgment should read as corrected here.

■ ACKNOWLEDGMENTS

The authors gratefully acknowledge partial support from the National Science Foundation under DMR-1611047. Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from the NSF through the MRSEC (Award Number DMR-2011401) and the NNCI (Award Number ECCS-2025124) programs. The authors acknowledge the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for providing resources that contributed to the research results reported within this paper. URL: <http://www.msi.umn.edu>.

Published: May 11, 2022

