

1 Effect of Solutionizing Heat Treatment on Microstructure and
2 Mechanical Behavior of Additively Manufactured Medium Gamma Prime
3 Nickel Superalloy

4 Colleen Hilla¹, Andrew Wessman², Ron Aman³, Michael Eff³, Robert Hayes⁴, Ben DiMarco¹, Edward
5 Herderik¹, Wei Zhang¹, Michael Mills¹

6 ¹The Ohio State University, Columbus, OH, 43210

7 ²University of Arizona, Tucson, AZ, 85721

8 ³Edison Welding Institute, Columbus, OH, 43221

9 ⁴Metals Technology Inc., Northridge, CA, 91324

10

11 Corresponding Author:

12 Michael Mills

13 Mills.108@osu.edu

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31 Abstract

32 Additive manufacturing (AM) of γ' strengthened Ni-based superalloys is appealing for use in fabrication
33 of high temperature structural components. As AM produces unique microstructures and mechanical
34 behaviors, a better understanding of microstructure development during post-printing heat treatment is
35 important. An extensive set of experimental data of Rene65 printed by powder bed fusion-laser beam is
36 reported. Effects of heat treatment on microstructure are characterized by scanning electron microscopy
37 and electron backscattered diffraction. Elevated temperature tensile testing, tension creep, and
38 compression creep are conducted with samples loaded parallel and transverse to the build direction.
39 Recrystallization occurs, resulting in an equiaxed grain structure, only with supersolvus heat treatments.
40 There is no effect of supersolvus hold time on grain growth, a behavior different from that of wrought
41 Rene65. Subsolvus heat treatments result in a coarse bimodal precipitate structure, while rapid cooling
42 from supersolvus results in a fine homogenous structure. Comparable tensile behavior is seen regardless
43 of heat treatment, apart from differences in elongation to failure due to loading direction. Creep behavior
44 is improved with supersolvus heat treatment, although increased hold time has a detrimental effect. Based
45 on the experimental results, the relation of microstructures to mechanical behaviors for additively
46 manufactured Rene65 is discussed.

47

48 Keywords

49 Nickel based superalloys; powder bed fusion; laser beam; heat treatments; texture; precipitates; gamma
50 prime; creep

51

52 1. Introduction

53 Rene65 is a gamma prime (γ') strengthened nickel-based alloy originally designed for turbine rotating
54 parts as a cast/wrought alternative to powder metallurgy alloys. As a medium γ' nickel superalloy with up
55 to 40 vol% γ' , it has superior high temperature strength and creep performance to other nickel alloys such
56 as Nickel Alloy 718. [1-2] Cast/wrought Rene65 is characterized by a multimodal precipitate structure
57 and fine grain size. [1-2] Traditionally, it is heat treated using a two-step heat treatment process. The first
58 step is a subsolvus solutionizing treatment at 1066°C for 1 hour. [2] A subsolvus treatment is required for
59 the cast/wrought alloy to avoid rapid grain growth in the supersolvus condition. This is because while
60 increased grain sizes from supersolvus heat treatment may have mild benefit on the creep performance,
61 the deleterious effect of larger grains on strength outweighs this benefit. The second step is an aging
62 process at 760°C for 8 hours, which results in the formation of a fully developed precipitate structure. [2]

63 Powder Bed Fusion-Laser Beam (PBF-LB) is an additive manufacturing process which utilizes a powder
64 bed and a high energy density laser source to selectively melt each powder layer. [3] It is utilized to print
65 complex geometries and internal features not feasible through traditional manufacturing. The ability to
66 create lighter weight parts and the ability to produce one-off parts more cost-effectively make PBF-LB a
67 competitive process in manufacturing turbine discs made of nickel superalloys such as Rene65. However,
68 for successful implementation of these parts, an improved understanding of the microstructure developed
69 during printing and post-processing is needed. [4-7] PBF-LB produces microstructures that differ from
70 traditional manufacturing methods due to a unique thermal history characterized by a series of localized,
71 rapid heating, melting, solidification, cooling, reheating and re-cooling cycles. [5] The thermal cycles
72 during PBF-LB effect the development of the microstructure and texture. PBF-LB builds are frequently
73 characterized by long columnar grains parallel to the build direction (BD) as well as fine primary dendrite
74 arm spacing owing to a combination of high temperature gradient and high solidification velocity. [8]

75 Various microstructural features including texture, grain structure, precipitate structure and dislocation
76 structure effect an additively manufactured (AM'ed) material's mechanical properties especially the creep
77 behavior. Much of the data available for creep behavior of AM'ed nickel-based superalloys is for
78 Inconel® IN718 or IN625. [9-24] There have been only a small number of studies aiming at
79 understanding the creep behavior of medium to high γ' alloys, and much of such work is on Alloy 738.
80 [25-26]

81 The available creep data for AM'ed nickel-based alloys is split among electron beam melting, laser
82 powder bed fusion, and direct energy deposition. [11-17, 22, 25] These printing methods produce various
83 microstructures with varying effects on creep behavior. The general results are mixed among those that
84 observe inferior creep behavior in AM compared to the wrought alloy, those that see similar behavior to
85 wrought, and those that observe superior behavior to wrought. [9-17, 19, 21-24] These mixed results lead
86 to a need for better understanding of the factors that are impacting the creep performance. There seems to
87 be a correlation between creep behavior and processing conditions. In cases where AM had a better creep
88 behavior than wrought, it is often attributed to sub-grain structures which are strongly affected by
89 processing parameters. [9,15,26] Additionally, McLouth et al. showed that the use of a defocused beam
90 improved the creep behavior of IN718 which was correlated to increased grain size and different
91 precipitate orientation. [12] There is also some evidence that the percentage of overlap between beam
92 passes may have an effect on the creep behavior due to detrimental grain structures that can form with
93 certain beam overlaps. [18]

94 Post printing heat treatments play a major role in creep behavior. [9-11,13,18,21-22] For example, some
95 studies have reported benefits of solutionizing and aging of IN718, while other studies have shown
96 additional improvement can be obtained with direct aging of IN718 or homogenization and aging. [10-
97 11,13,18]

98 It is also important to take into consideration the loading direction of the test in relation to the build
99 direction. [9,17-18,25] Generally, improved creep behavior is observed when loading parallel to the build
100 direction than loading transversely, attributed to differences in grain size and texture. Columnar grains
101 lead to a larger effective grain size parallel to the build direction which improves creep behavior. [12]
102 There may also be a preference of $<001>$ grains parallel to the build direction, for which there is evidence
103 of improved creep behavior. [25] Reduced creep ductility due to grain boundary decohesion and
104 intergranular cracking are seen when loading transversely or perpendicularly to the build direction for
105 many AM'ed samples. [24-26]

106 A better understanding of the effect of processing on creep behavior is needed across all alloy systems
107 particularly for medium to high volume fraction γ' nickel alloys where there is minimal data available.
108 The aim of this study is to provide a comprehensive set of experimental data on the effect of variations in
109 heat treatment on texture, precipitates and creep behaviors (i.e., tension vs compression) in Rene65
110 printed by PBF-LB. Moreover, the relation of microstructures to mechanical behaviors is discussed for
111 the AM'ed Rene65.

112 2. Material and Processing

113 Gas atomized Rene65 powder with a particle size in the range of 15 to 45 μm was used, and the powder
114 chemical composition is shown in Table I.

115 Table I: Rene65 powder composition

	Ni	Co	Cr	Ti	Al	Mo	W	Fe	Nb	Zr	B	C
Wt%	Bal.	13	16	3.7	2.1	4	4	1	0.7	0.05	0.016	0

116

117 Mechanical and microstructure test specimens were printed on a Concept Laser M2 Series 3 machine. A
118 spot size of 120 μm , a power of 200 W, a hatch spacing of 90 μm , and a travel speed of 1000 mm/s were
119 used for all samples. For printing, a hatch-strip scan strategy with 10mm strip lengths and 90° hatch
120 rotations between layers was employed.

121 Samples were post-processed in a two-step heat treatment process. In the first step, samples were
122 solutionized at varying temperatures, times, and cooling rates, as shown in Table II. For better
123 temperature control, the heating process was divided into three segments: 100°C/min until 1000°C, then
124 20°C/min up to 10°C below target temperature, and finally 10°C/min until target temperature.
125 Solutionizing temperatures of 1066°C, 1100°C, 1150°C, and 1200°C were used with a standard hold time
126 of 1 hour and a cooling rate of 200°C /min. Note that the solvus temperature for Rene65 is 1111°C. [36]
127 The subsolvus heat treatment used in this study mimics the heat treatment optimized for the wrought
128 alloy. Longer hold times of 4 and 8 hours were also used for the supersolvus temperature of 1150°C.
129 Shorter hold times of 15 and 30 minutes were used for near subsolvus temperature of 1100°C. Since there
130 is a strong dependence of creep behavior on cooling rate of the solutionizing treatment for wrought
131 Rene65, another cooling rate was tested in this study. Specifically, a slower cooling rate of 50°C/min was
132 used for 1066°C and 1150°C. In the second step, all solutionized samples were aged at 760°C for 8 hours.

133 Table II: Heat treatment conditions for solutionizing. All solutionized samples were then aged at 760°C
134 for 8 hours.

Temperature	Cooling Rate	Hold Time				
		15 mins	30 mins	1 hour	4 hours	8 hours
1066°C	200°C /min			X		
	50°C /min			X		
1100°C	200°C /min	X	X	X		
1150°C	200°C /min			X	X	X
	50°C /min			X		
1200°C	200°C /min			X		

135

136 An FEI Apreo scanning electron microscope (SEM) was used for microstructure characterization.
137 Specifically, grain size and structure were analyzed through electron backscatter diffraction (EBSD) at a
138 voltage of 20 kV, a current of 26 nA and a working distance of 20 mm. The reference direction for all
139 EBSD maps is the surface normal. Precipitate size, morphology, and distribution were imaged in
140 backscattered electron (BSE) mode with a voltage of 5 kV, a current of 0.4 nA and a working distance of
141 7.5 mm. Area fraction measurements were performed using Fiji, an open-source image analysis software,
142 where a threshold was applied to estimate the area fraction of precipitates. Thresholding was completed
143 manually for area fraction measurements and particle size measurements. The measurements were done
144 by analyzing different regions on the sample with a minimum of 70 particles analyzed.

145 Hot tension testing was done in an MTS machine. The samples were loaded in tension at 704°C until
146 complete fracture according to ASTM E21. As shown in Table III, the materials tested included as-built,
147 solutionized at 1066°C (subsolvus) then aged, solutionized at 1150°C (supersolvus) then aged, and heat-
148 treated conventionally wrought material used for comparison. The AM'ed materials were also loaded
149 both along and transverse to the build direction. Due to testing issue, the data for subsolvus loaded
150 transversely was not successfully collected, and this test was not repeated due to limited material
151 availability.

152 Table III: Conditions used for hot tension testing. All tests were at 704°C

Material		Testing direction to the build direction	
		Transverse	Parallel
Wrought: Solutionized at 1066°C for 1hr and aged		N/A	
Printed by PBF-LB	As-built	X	X
	Solutionized at 1066°C for 1hr with cooling rate of 200°C /min and aged	X	X
	Solutionized at 1150°C for 1hr with cooling rate of 200°C/min and aged	X	X

153

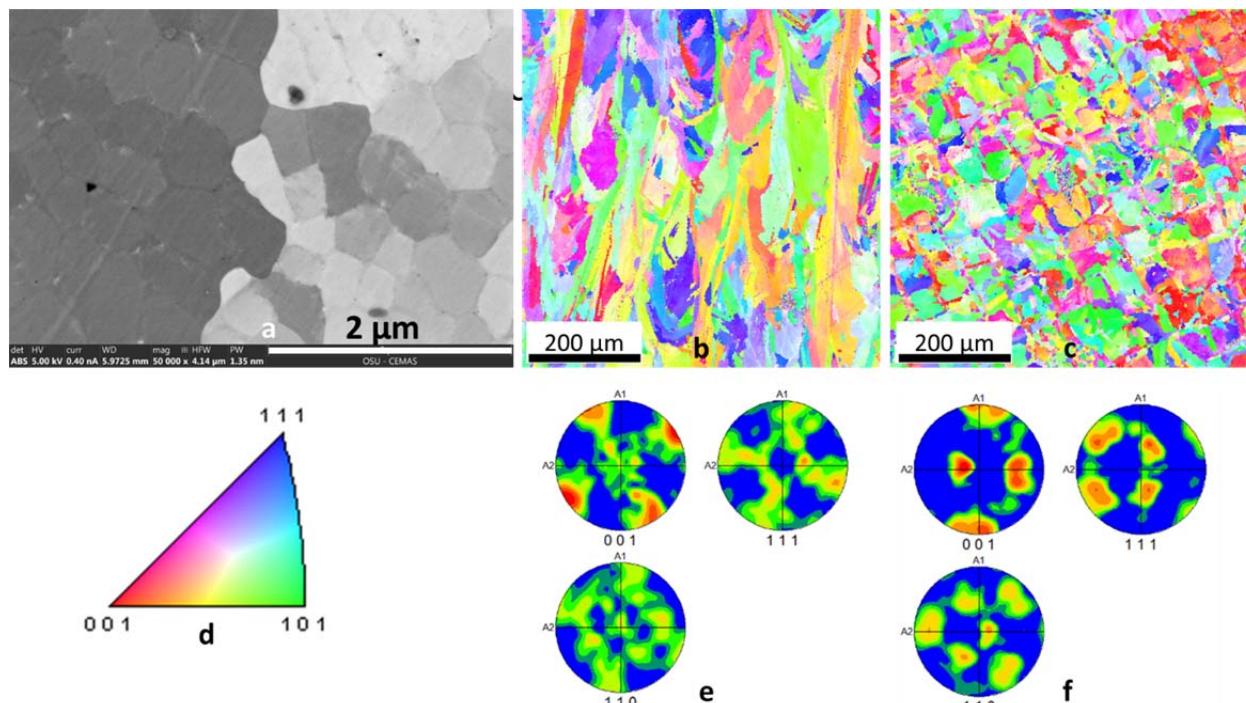
154 Table IV summarizes the creep testing conditions. Tension creep testing was completed for wrought, as-built, subsolvus 1066°C, and supersolvus 1150°C loaded both along and transverse to the build direction.
 155 Tension creep was done at 704°C and 690 MPa, and samples were strained to 0.5% creep strain. Due to
 156 anisotropy between tension and compression creep, a higher load was utilized in the latter to better match
 157 the strain rate achieved in tension creep for the as-built condition. Specifically, compression creep tests
 158 were performed at 704°C and 950 MPa with samples loaded in both parallel and perpendicular to the
 159 build direction. To save testing time, the tests were stopped when samples were strained to 1% creep
 160 strain. Additional compression creep tests of different heat-treated samples were completed parallel to the
 161 build direction at 690 MPa for a direct comparison to the tension creep; these samples were also tested to
 162 1% strain.

164 Compression creep samples were 7-mm-long blocks with square cross section of 2.8 mm × 2.8 mm and
 165 were loaded along the length side. Tension creep and tensile samples were threaded round ones with
 166 diameter of 6.35 mm and gauge length of 25 mm. All mechanical testing was completed in air.

167 Table IV: Conditions used for creep testing where C indicates a compression creep and T a tension creep.
 168 All tests were performed at 704°C

Load (MPa)				690		950	
Loading direction with respect to build direction				Transverse	Parallel	Transverse	Parallel
Material: Wrought				T			
Material: As-built				C, T		C	C
Material: Solutionized and aged	Temp. (°C)	Time (mins)	Cooling rate (°C /min)				
	1066	60	200		C, T	C	C
			50			C	C
	1100	15				C	C
						C	C
						C	C
						C	C
	1150	60	50			C	C
					C, T	C	C
						C	C
						C	C
	1200	60	200			C	C

169


170 3. Results

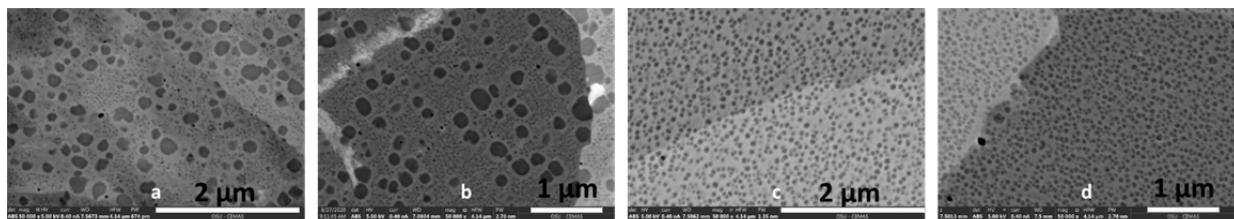
171 3.1 Effect of Post-Processing Parameters on Microstructure

172 3.1.1 As-Built Microstructure

173 First, the as-built microstructure is briefly described which provides the basis to understand the
174 development of the structure with varying post-processing heat treatment parameters. The as-built
175 condition has no discernable precipitates at the length scale observed in SEM. Figure 1a shows the lack of
176 precipitates as well as the cellular solidification structure. A directionally solidified microstructure is
177 present, with long columnar grains parallel to the build direction (Figure 1b) and an irregular square
178 lattice of grains observed transverse to the build direction (Figure 1c); the latter correlates with the
179 rastered laser beam path. [6,7,27] The grain size transverse to the build direction ranges from
180 approximately 25 to 40 μm and that parallel to the build direction ranges from approximately 40 to 80
181 μm . The aspect ratio ranges between 1.6 to 1.9. Texture parallel and transverse to the build direction are
182 outlined in Figures 1 e and f respectively. A stronger $<001>$ type texture is seen parallel to the build
183 direction as well as a small preference for the $<110>$ type direction. This is expected as $<001>$ is the
184 preferred growth direction for cubic materials. [28]

185

186


187 Figure 1: As-built microstructure (a) BSE image transverse to build direction, (b) grain structure based on
188 EBSD analysis parallel to build direction (BD), and (c) grain structure based on EBSD analysis
189 perpendicular to BD. The color correspondence to grain orientation for the inverse pole figure maps is
190 shown in (d), texture along the build direction shown in (e), and texture transverse to build direction
191 shown in (f)

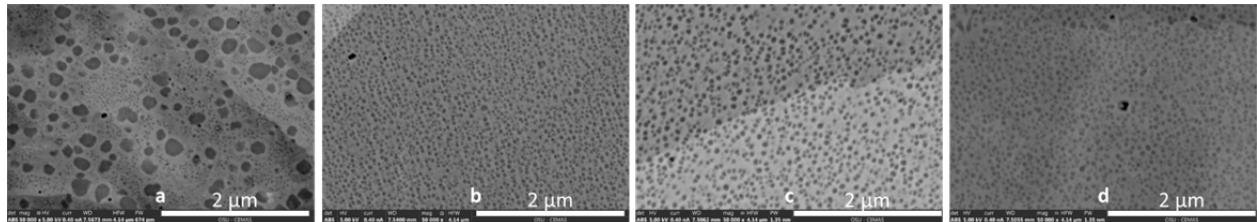
192 3.1.2 Effect of Aging Heat Treatment

193 To characterize the precipitate evolution during heat treatment, the microstructure in the as-solutionized
194 condition is compared to that in the solutionized and aged condition. This will form a baseline as

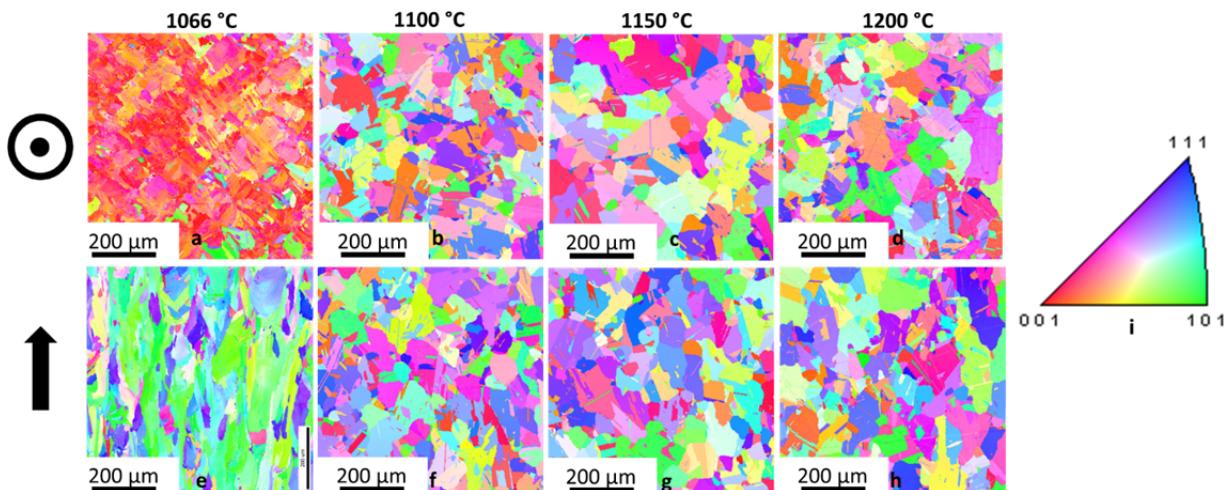
195 subsequent results will show the as-aged material. As shown in Figure 2, a bimodal precipitate structure is
196 obtained after the subsolvus heat treatment at 1066°C for 1 hour, while a fine uniform precipitate
197 structure is obtained after the supersolvus heat treatment. Moreover, there is minimal precipitate growth
198 due to aging in either the subsolvus or supersolvus conditions.

199 Specifically, for the 1066°C (subsolvus) condition with bimodal precipitate structure, prior to aging the
200 average secondary precipitate size is 178 nm, and the average tertiary precipitate size is 28 nm. After
201 aging the average secondary precipitate size is 167 nm, and the average tertiary precipitate size is 24 nm.
202 Note the standard deviation of large secondary γ' was approximately 70 nm, and that of tertiary γ' was
203 approximately 7 nm. For the 1150°C (supersolvus) condition with uniform fine precipitate structure, the
204 average precipitate size prior to and after aging is 67 nm and 53 nm, respectively, with standard deviation
205 of 8 nm. Given that the average grain sizes are well within the standard deviation of the measurements,
206 aging does not have an appreciable effect on precipitate coarsening.

207
208 Figure 2: BSE of γ' precipitates (a) subsolvus 1066°C/1hr with no aging, (b) 1066°C/1hr and aged, (c)
209 supersolvus 1150°C/1hr with no aging, and (d) 1150°C/1hr and aged. Cooling rate of 200°C/min used for
210 each sample


211 Aging is expected to have minimal effect on grain structure as it is completed well below the solvus
212 temperature and γ' is present in the microstructure to produce pinning. Figure 3 shows similar grain
213 structures before and after aging for both supersolvus and subsolvus conditions.

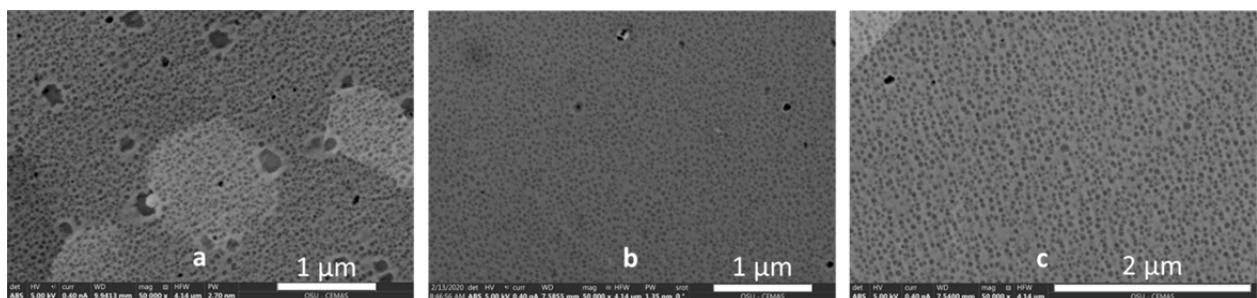
214
215 Figure 3: EBSD of grain structure transverse to BD (a) subsolvus 1066°C/1hr without aging, (b)
216 1066°C/1hr and aged, (c) supersolvus 1150°C/1hr without aging, and (d) 1150°C/1hr and aged. Cooling
217 rate of 200°C/min used for each sample


218 3.1.3 Effect of Sub/Supersolvus Temperature

219 Various effects of solutionizing temperature are seen with respect to both the precipitate and grain
220 structures. As reported earlier, a coarse bimodal precipitate structure is seen at the subsolvus solutionizing
221 temperature of 1066°C. For ease of comparison, this microstructure is also shown in Figure 4a. For
222 temperatures at 1100°C, 1150°C, and 1200°C, a fine homogenous precipitate structure developed, as
223 shown in Figure 4b, c and d, respectively.

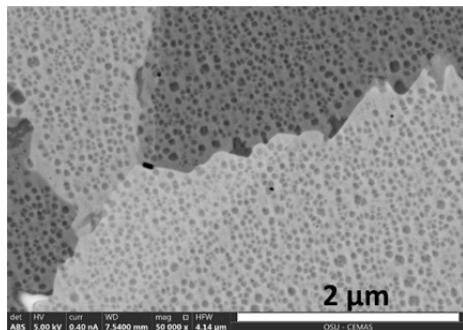
225

226 Figure 4: BSE of γ' precipitates (a) 1066°C, (b) 1100°C, (c) 1150°C, and (d) 1200°C.
 227 Hold time of 1 hour and cooling rate of 200°C/min used for each sample



228

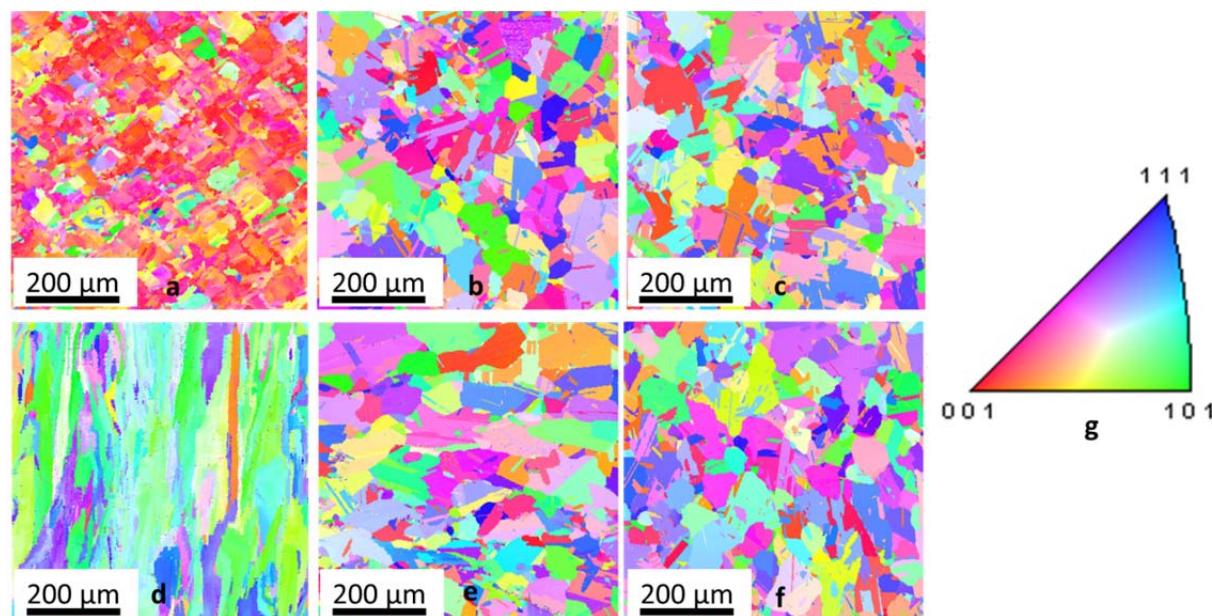
229 Figure 5: EBSD images showing the grain structure (a, b, c, d) transverse to BD, (e, f, g, h) parallel to
 230 BD, after hold time of 1 hour at the following temperatures (a,e) 1066°C, (b,f) 1100°C, (c,g) 1150°C,
 231 (d,h) 1200°C. Cooling rate of 200°C/min used for each sample


232 3.1.4 Effect of Sub/Supersolvus Hold Time

233 As precipitate dissolution depends on diffusion kinetics and thus time at temperature, a pronounced effect
 234 of hold time on the precipitate and grain structures is expected near and below the solvus temperature. A
 235 bimodal precipitate structure is seen with a 15-minute hold time at 1100°C, as shown in Figure 6a.
 236 Moreover, the large precipitates are located preferentially at the prior cell boundaries, which is likely due
 237 to micro-segregation of γ' formers during rapid solidification in PBF-LB. [29] There is some evidence of
 238 these large precipitates retained at the grain boundaries for longer hold times. This can be seen for 1 hour
 239 hold time in Figure 7, which is likely due to the precipitates not fully solutionizing and continuing to pin
 240 the grain boundaries.

241

242 Figure 6: BSE of γ' precipitates for heat treatments at 1100°C+ aging, cooling rate 200°C/min, and hold
243 time (a) 15 min (b) 30 min (c) 1 hour

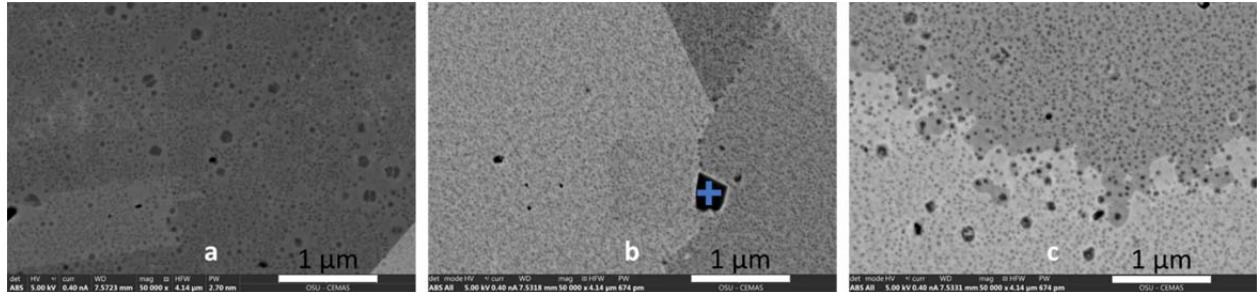


244

245 Figure 7: BSE of large precipitates retained at the grain boundaries at 1100°C/1hour hold time

246 The directionally solidified grain structure was maintained for the 15-minute hold time at 1100°C, as
247 shown in Figure 8a and d. On the other hand, for longer hold times (i.e., 0.5 and 1 hr), recrystallization
248 occurred, resulting in an equiaxed grain structure. This can be seen below in Figure 8b and e for 0.5 hr
249 hold time, and Figure 8c and f for 1 hr hold time.

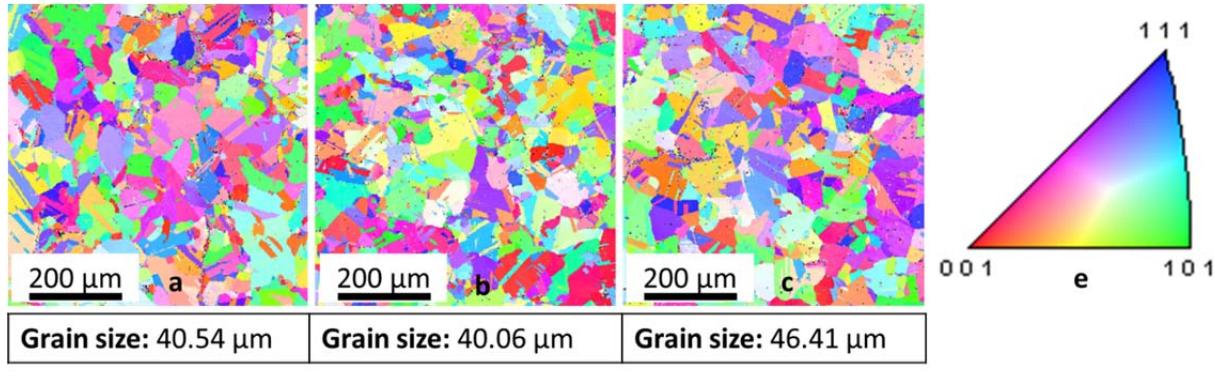
250


251

252 Figure 8: EBSD grain structure for heat treatments at 1100°C + aging, cooling rate 200°C/min (a) 15 min
253 transverse to BD, (b) 30 min transverse to BD, (c) 60 min transverse to BD, (d) 15 min parallel to BD, (e)
254 30 min parallel to BD, and (f) 60 min parallel to BD

255 As shown in Table II, in addition to 1 and 4 hours, an extended hold time of up to 8 hours was performed
256 in the supersolvus at 1150°C in an attempt to determine the “equilibrium” microstructure at this
257 temperature. As shown in Figure 9, a fine, homogenous precipitate structure characterizes all three hold
258 times, with some evidence of slightly coarser precipitates at longer hold time. While the homogenous
259 structure is expected from a supersolvus heat treatment where full solutionizing is able to occur, larger
260 precipitates may form due segregation of Ti and Al during printing leading to preferential nucleation of

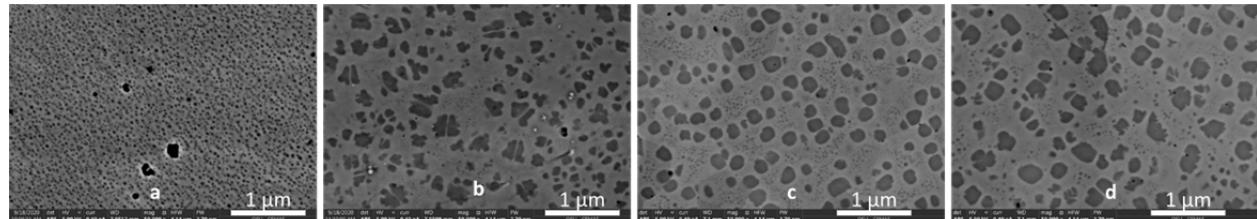
261 particles near prior cell boundaries. [29] A large second phase particle is seen with the 4 hour-hold time
 262 marked with a cross in Figure 9b. This type of particle is not unique to this heat treatment but may be
 263 more prominent with longer hold times. Due to low volume fraction of these secondary particles, further
 264 investigation such as EDS was not completed. However, the backscatter contrast suggests it likely to be a
 265 nitride, a type of particle observed in the wrought alloy.


266

268 Figure 9: BSE images of γ' precipitates for heat treatments at 1150°C + aging, cooling rate 200°C/min: (a)
 269 1 hour hold time, (b) 4 hours hold time, and (c) 8 hour hold time.

270 Increasing the hold time at supersolvus condition does not lead to an increase in the grain size. This can
 271 be seen in Figure 10. The stable grain structure is not likely caused by γ' precipitate pinning as the sample
 272 was held well above the γ' solvus temperature at 1150°C.

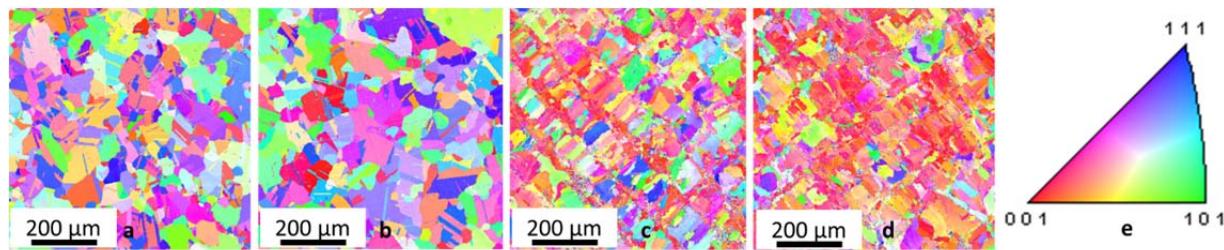
273


275 Figure 10: EBSD grain structure and grain size for heat treatments at 1150°C + aging, cooling rate
 276 200°C/min (a) 1 hour hold time, (b) 4 hour hold time, and (c) 8 hour hold time

277 3.1.5 Effect of Cooling Rate

278 Based on data for wrought Rene65, the cooling rate after solutionization is expected to have a large
 279 impact on the precipitate structure. Following supersolvus heat treatment (1150°C), more rapid cooling
 280 rate (Figure 11a) results in a fine γ' distribution formed during cooling. Conversely, at slower cooling
 281 rate (Figure 11b), there is a large increase in the size of secondary precipitates, as well as the development
 282 of tertiary precipitates. It is noted that the measured area fraction of γ' precipitates stays consistently from
 283 29.84% for the slower cooling rate to 31.38% for the faster cooling rate in the supersolvus condition.

284 In the subsolvus heat treatment (1066°C) there is a minor increase in precipitate size and small decrease
285 in the volume fraction of tertiary γ' for the slower cooling rate, as shown in Figure 11c and d.

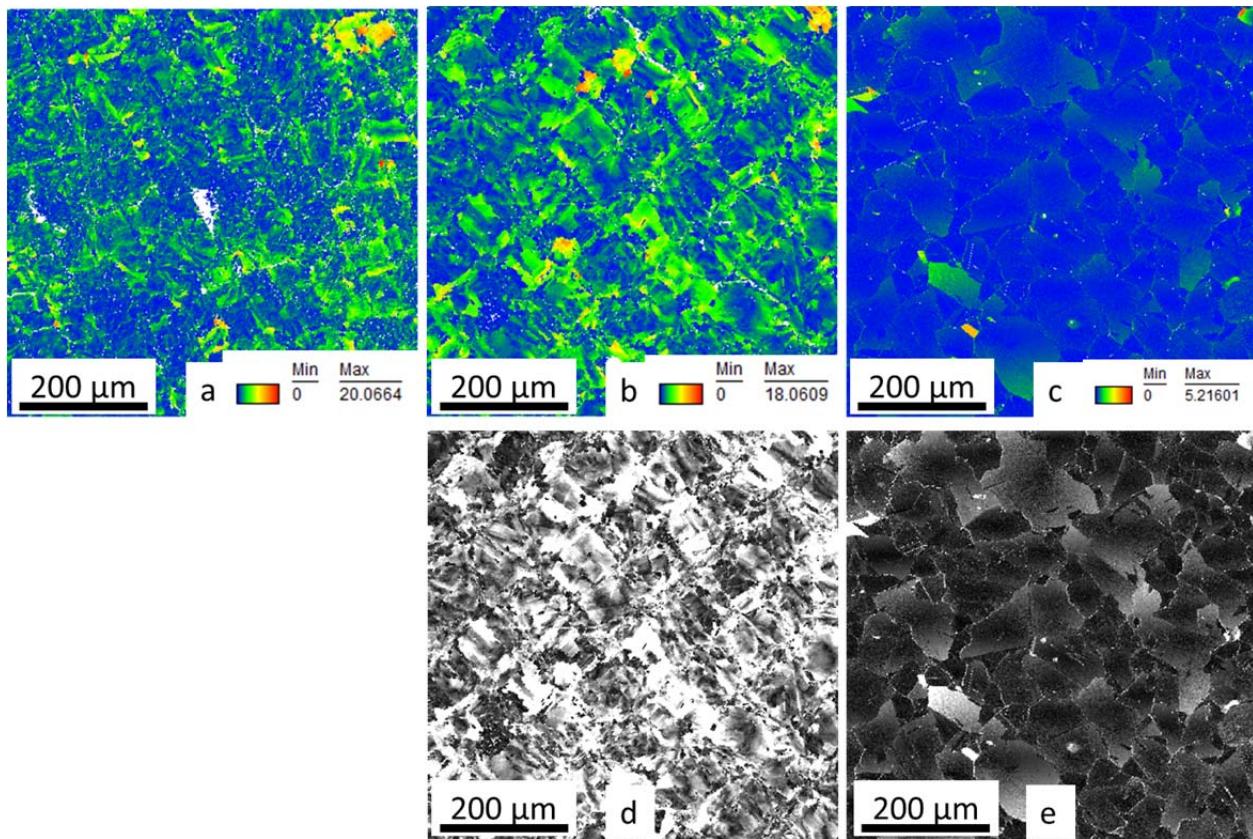

286

287

288 Figure 11: BSE of γ' precipitates (a) 1150°C, 100°C/min, (b) 1150°C, 50°C/min, (c) 1066°C, 100°C/min,
289 and (d) 1066°C, 50°C/min. All samples are in the aged condition

290 In both the subsolvus and supersolvus conditions, there is little to no effect on the grain size or structure
291 with different cooling rates, as shown in Figure 12.

292


293 Figure 12: EBSD of grain structure imaged transverse to the BD (a) 1150°C, 100°C/min, (b) 1150°C,
294 50°C/min, (c) 1066°C, 100°C/min, and (d) 1066°C, 50°C/min

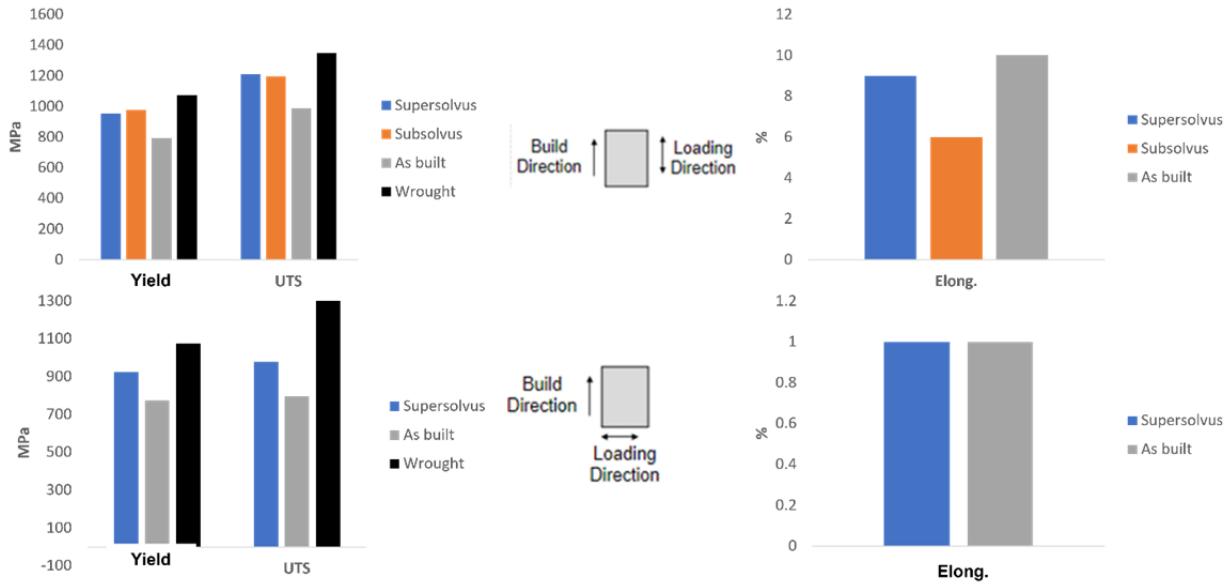
295 3.1.6 Grain Rotation Orientation Deviation

296 The grain rotation orientation deviation (GROD) parameter can provide insight into geometrically
297 necessary dislocation content and stored strain energy in deformed microstructures [30]. The GROD for
298 the as-built, subsolvus, and supersolvus are presented in Figure 13. High maximum grain rotation is seen
299 in the as-built (Figure 13a) and subsolvus heat treated conditions (Figure 13b): 20 and 18 degrees
300 respectively. A much lower maximum rotation of 5 degrees is seen in the supersolvus heat treated
301 condition (Figure 13c). For a more direct comparison, Figure 13 d and e plot the relative rotation for
302 subsolvus and supersolvus conditions on the same grey scale where lighter color indicates higher relative
303 rotation. A significant decrease in geometrically necessary dislocation content and inferred strain energy
304 is seen in the supersolvus condition with a recrystallized microstructure.

305

306

307

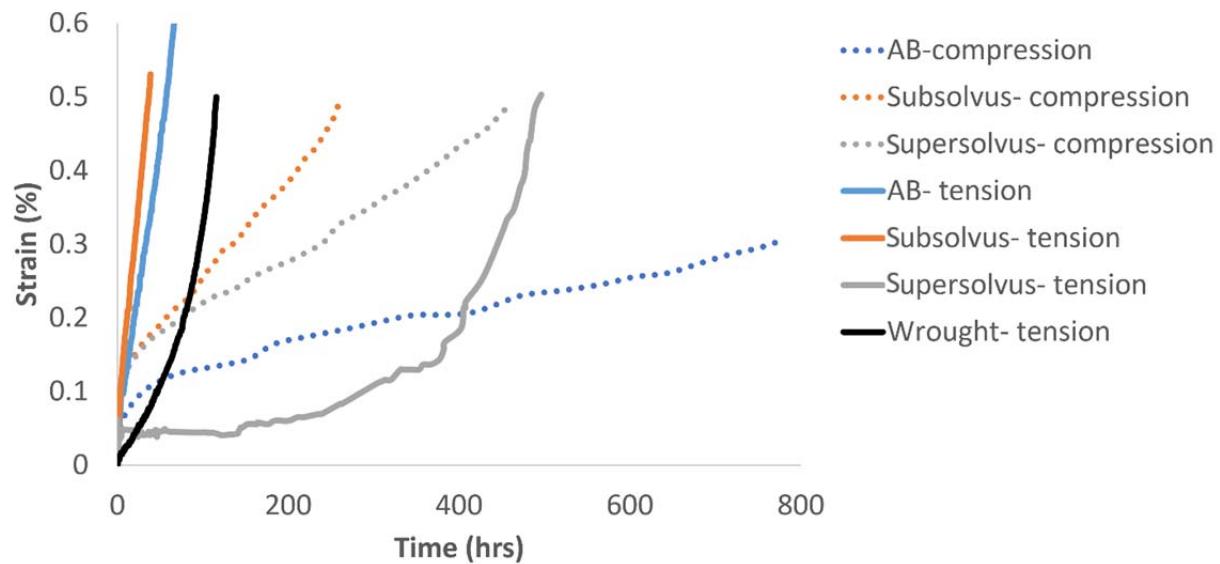

308 Figure 13: Grain rotation orientation deviation (a) as-built maximum rotation of 20 degrees, (b)
 309 1066°C/1hr maximum rotation of 18 degrees, (c) 1150°C/1hr maximum rotation of 5 degrees, (d)
 310 1066°C/1hr relative rotation, and (e) 1150°C/1hr relative rotation

311 3.2 Mechanical Behaviors

312 Microstructures formed due to various heat treatment parameters have significant impact on the
 313 mechanical behaviors of the material, as described in the following. Unless otherwise noted, supersolvus
 314 samples for mechanical testing were heat treated at 1150°C for 1 hour with a cooling rate of 200°C/min
 315 and subsolvus samples for mechanical testing treated at 1066°C for 1 hour with a cooling rate of
 316 200°C/min. All samples for mechanical testing were aged at 760°C for 8 hours.

317 3.2.1 Tensile Deformation

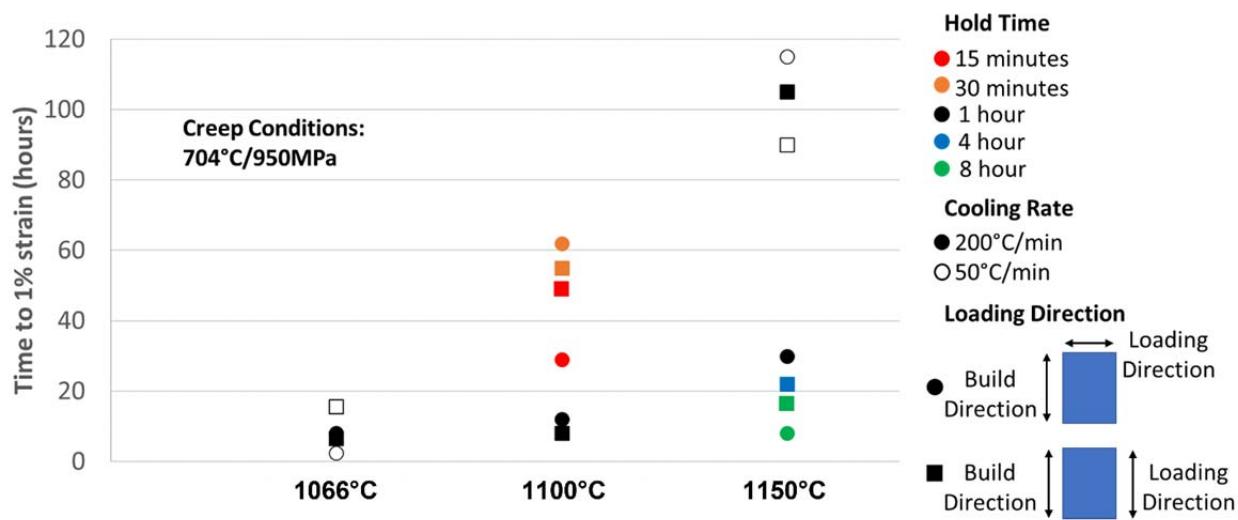
318 Figure 14 shows the effect of heat treatment condition on yield strength, ultimate tensile strength (UTS)
 319 and elongation at failure when tested at 704 °C. Due to the limited sample availability, each condition was
 320 only tested once. In general, the yield and UTS of AM'ed Rene65 are lower than those of the wrought
 321 condition, especially when the AM'ed material was loaded perpendicularly to the build direction. A large
 322 discrepancy is also observed when the AM'ed material was loaded parallel versus perpendicular to the
 323 build direction. Specifically, the elongation was poor (only 1%) in the latter. Elongation was much
 324 improved when tested parallelly to the build direction with the subsolvus heat treated condition having the
 325 lowest elongation (6%) and supersolvus having the highest elongation (10%).



326

327 Figure 14: Tensile behavior at elevated temperature of 704°C. Wrought data taken from Ref. [36]

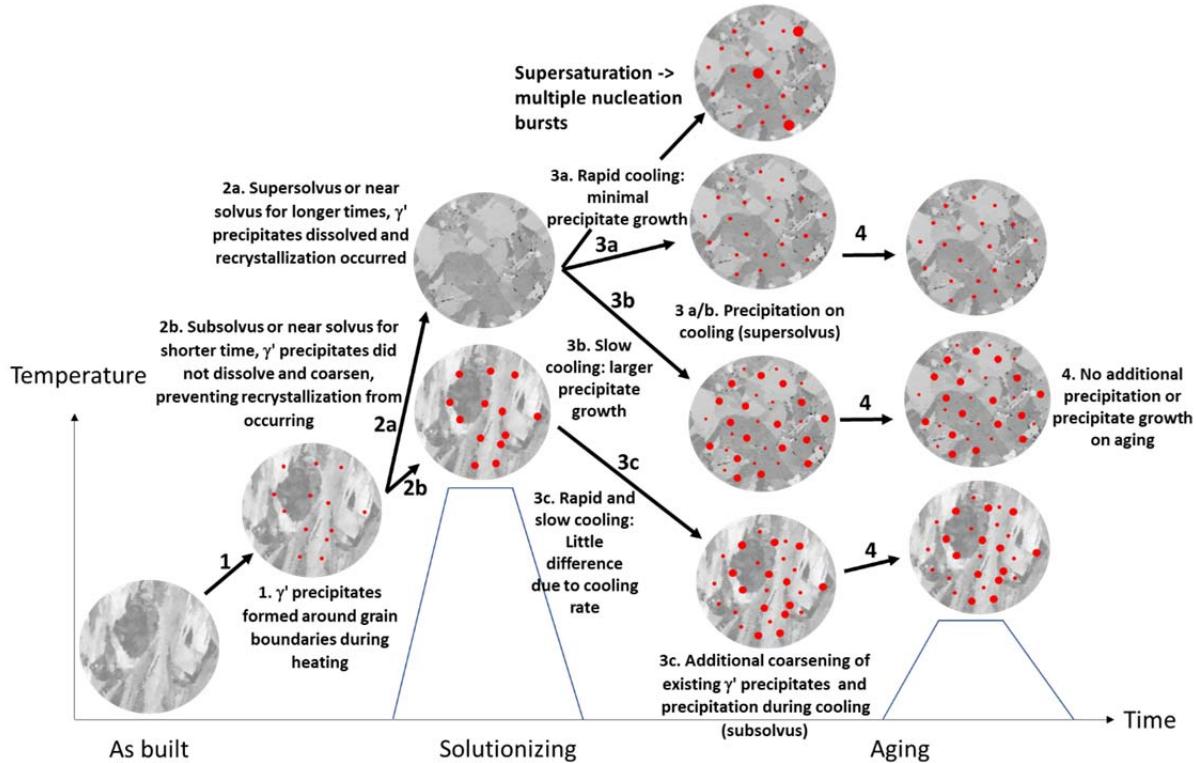
328 *3.2.2 Tension and Compression Creep*


329 As there can exist an asymmetry between tension and compression creep, it is important to understand
 330 both behaviors as many parts can be subjected to complex loading conditions. The behavior in tension
 331 creep in the subsolvus AM, supersolvus AM, as-built AM, and wrought alloy is shown in Figure 15 along
 332 with the compression creep of the matching AM conditions. It is noted that as-built and heat-treated
 333 AM'ed samples were also tension loaded perpendicular to the build direction but they all failed
 334 prematurely at low strain values. As the premature failure of these transverse-loaded samples were likely
 335 dominated by printing defects, their results are not further discussed, and all AM'ed samples in Figure 15
 336 were loaded parallel to the build direction.

337

338 Figure 15: Tension vs compression creep behaviors at 704°C and 690 MPa. AB stands for as-built. All
 339 AM'ed samples were loaded parallel to the build direction.

340 3.2.3 Compression Creep at High Stress
 341 As shown in Figure 15, the compression creep samples loaded at 690 MPa took at least 300 hours to
 342 reach just 0.5% strain. To more efficiently test samples with various heat treatments, a high stress of 950
 343 MPa was used to test additional compression creep samples. As stated earlier, this high stress was
 344 selected to match the strain rate achieved in tension creep of the as-built sample.
 345 A summary of the creep response (time to 1% strain) for various subsolvus and supersolvus heat treated
 346 samples loaded at the high stress of 950 MPa is shown in Figure 16. With a hold time of 1 hour,
 347 supersolvus heat treated material (1150°C) exhibits superior behavior to subsolvus (1066°C, and 1100°C)
 348 heat treated condition in compression creep. For supersolvus, an increased hold time above 30 minutes
 349 (i.e., 1 hour or higher) has a detrimental effect on the compression creep behavior. There is no clear
 350 impact of cooling rate or loading direction on compression creep behavior, as shown in Figure 16.


351
 352 Figure 16: Compression creep time to 1% strain where color indicates hold time, opened or closed shape
 353 indicates cooling rate, and shape indicates loading direction for each sample. For example, the open black
 354 square at 1066 °C designates a sample solutionized at this temperature for 1 hour, cooled at 50 °C/min,
 355 and then aged at 760°C for 8 hours. It was tested parallelly to the build direction.

356 4. Discussion
 357 4.1. Processing Effects on Microstructure
 358 4.1.1. Precipitation
 359 The as-built microstructure has no discernable precipitates as shown in Figure 1. This indicates that either
 360 no precipitates are present, or nanoscale precipitates are present. This question is the subject of more
 361 detailed transmission electron microscopy (TEM) investigation and will be reported elsewhere. In either
 362 case, this is due to rapid cooling common in the PBF-LB process. [31] In general, if sufficiently high
 363 cooling rates are achieved, precipitation is prevented as there is not sufficient time for the necessary
 364 diffusion for precipitation. In the case of nano-scale precipitation, nucleation is able to occur, but there is
 365 insufficient time for growth.
 366 Upon heat treatment, there are two primary precipitate structures that are formed: a coarse bimodal
 367 precipitate structure and a fine homogenous structure seen in Figures 2, 4, 6, 9, and 11. These precipitate
 368 distributions can be explained on the basis of whether sufficient temperature and time are available for

369 full dissolution. [32] Specifically, the precipitate development is schematically shown in Figure 17 and
370 described in the following.

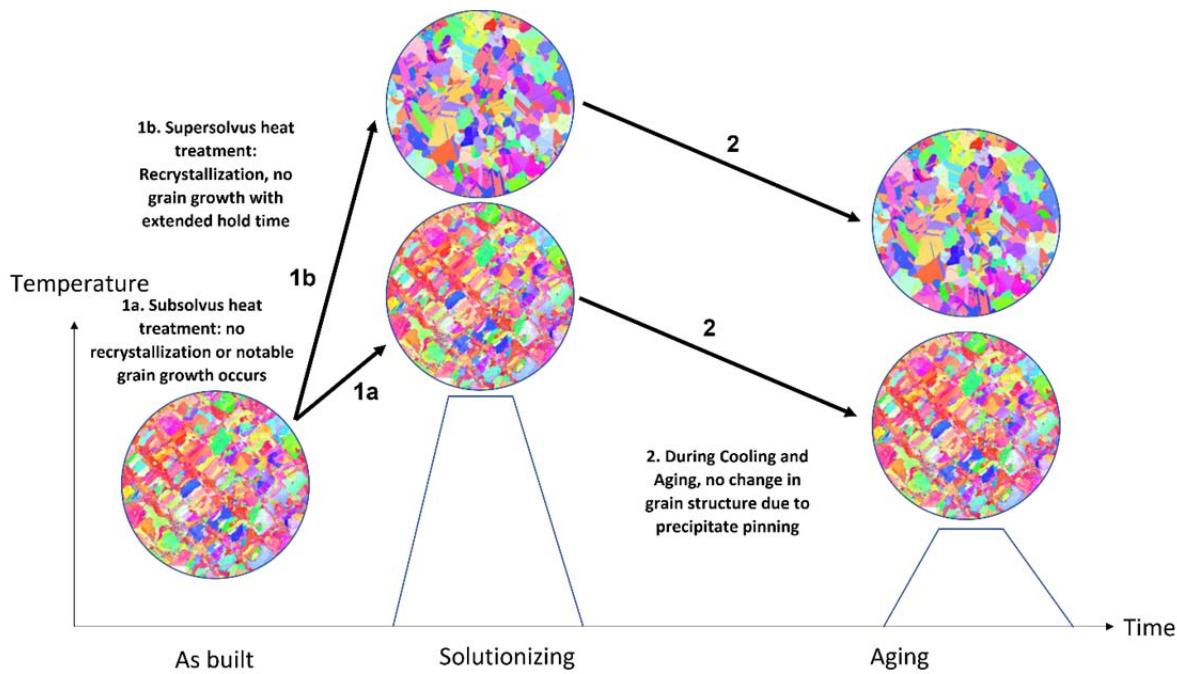
371 Due to capacity to form a high volume fraction of γ' , a low lattice mismatch between γ' and γ , and
372 segregation of γ' forming elements to interdendritic regions, there is a large driving force for both γ'
373 nucleation and growth in this alloy. [33] Hence, it is anticipated γ' precipitates quickly formed around
374 grain boundaries and interdendritic regions when the as-built microstructure is heated up during heat
375 treatment, as shown by the inset image 1 in Figure 17. In the case of subsolvus or short hold times near
376 solvus, the hold temperature and/or time are insufficient to fully dissolve those γ' precipitates formed
377 during heating. Therefore, precipitates nucleate and coarsen at elevated temperature (as shown by 2b).
378 [34] On the contrary, for supersolvus and long hold times near solvus, precipitates fully dissolve during
379 the hold (as shown by 2a). On cooling with subsolvus, the precipitate coarsening is largely independent of
380 cooling rate and tertiary γ' develops (as shown by 3c). In supersolvus all precipitates form on cooling
381 therefore with fast cooling precipitates have little time to coarsen (as shown by 3a). [35] However, it is
382 noted that γ' precipitation can involve multiple bursts during cooling. When heat treated at 1150°C
383 (supersolvus), there is a high degree of supersaturation of γ' formers in the γ matrix due to the full
384 dissolution of precipitates and homogenization. Upon cooling, such supersaturation likely promoted a
385 first burst of γ' nucleation at relatively high temperature. Despite the fast cooling rate (200°C/min), these
386 particles were able to coarsen, resulting in a small population of large γ' precipitates (see Figure 9a).
387 Upon further cooling, a second burst took place uniformly across the grains, resulting in the formation of
388 small γ' precipitates although nucleation was suppressed around those existing large precipitates. When
389 heat treated at 1100°C (near solvus), the degree of supersaturation was lower compared to 1150°C, and
390 more undercooling was thus required to nucleate γ' precipitates. These precipitates had less time to
391 coarsen due to sluggish diffusion kinetics at lower temperatures, resulting in homogenously dispersed fine
392 precipitates after cooling (see Figure 6c).

393 Finally, there is minimal additional precipitate development during aging of the AM'ed Rene65. This
394 differs from the wrought alloy which shows growth of the tertiary γ' during aging. [36] The reason for
395 this is likely due to the precipitate size on cooling. Specifically, in the subsolvus condition prior to aging,
396 which is designed after the standard wrought treatment, the average size of tertiary γ' is 28 nm. This is
397 already larger than the tertiary γ' in the wrought aged condition which has an average size under 20 nm.
398 [36] One hypothesis for tertiary γ' precipitates in AM'ed material being larger than those in the wrought
399 material is the fine dendritic structure and consequently shorter diffusion distance that facilitates γ'
400 growth in the former. Further investigation into this mechanism is required. The above results indicate
401 aging process may not be necessary for processing of AM'ed Rene65 which will reduce processing time.

402

403 Figure 17: Schematic plot showing precipitate development through heat treatment process where
 404 supersolvus temperature is 1150 °C, near solvus is 1100 °C and subsolvus is 1066 °C

405 4.1.2. Recrystallization


406 Due to rapid cooling and extensive micro-segregation, the formation of non-equilibrium microstructures
 407 is common in AM'ed materials. [37-38] Segregation has been shown to affect diffusion and
 408 recrystallization behavior in various materials. [39-41] Additionally, extensive thermal cycling occurs
 409 during additive manufacturing, leading to a large accumulation of residual stress/strain. Coupling these
 410 factors leads to a high driving force for recrystallization. [42] This can be seen with the change in grain
 411 rotation and stored strain energy in Figure 13. Below the solvus temperature, the high volume fraction of
 412 γ' present in the microstructure pins the grain boundaries preventing recrystallization from occurring.
 413 [1,2] When recrystallization is prevented, residual strain is maintained in structure as shown in Figure
 414 13d. In the case of a heat treatment with adequate temperature/time to allow for dissolution of γ' the
 415 pinning force is decreased, and recrystallization is able to occur. [43] For this reason, there is a strong
 416 correlation between a homogenous precipitate structure and a recrystallized grain structure, as shown
 417 previously in Figures 3, 5, 8, 10, and 12.

418 4.1.3. Grain Growth

419 One of the major findings of this work is the lack of rapid grain growth in the supersolvus condition
 420 outlined in Figure 10. Wrought Rene65 is processed in the subsolvus condition due to rapid grain growth
 421 which has deleterious effects on mechanical behavior. [43] The rapid grain growth in the wrought alloy is
 422 not found to occur in AM'ed Rene65. As illustrated in Figure 10, the grain size increased only marginally
 423 from 40.54 μm after 1 hour hold to 46.41 μm after 8 hour hold at 1150°C. For comparison, wrought Rene
 424 65 begins coarsening at 1106°C (just below solvus) and shows significant grain growth at 1117°C (just
 425 above solvus). [36] Another independent study showed a 350% grain size increase within 1 hour at

426 1150°C for wrought Rene 65. [44] This feature of AM'ed Rene 65 can potentially expand the heat
 427 treatment window for the alloy and allow for more control over precipitate size and distribution.
 428 The lack of grain growth is hypothesized to be caused by the following two factors. First, pinning is
 429 evidenced by tortuous grain boundaries shown in Figures 2d, 4c-d, 7 and 9c. This can be indicative of
 430 some segments of the grain boundaries being pinned while other segments continue to advance. As
 431 described previously, γ' precipitates that formed during heating completely dissolved during the
 432 supersolvus hold and would not pin the recrystallized grains at this temperature. It is common that very
 433 fine oxides or carbides can exist in the AM'ed microstructure that are too small to be detected in SEM.
 434 However, these oxides or carbides that cannot be detected by SEM, if present, would be below the typical
 435 length scale for conventional Zener pinning mechanism. [45] Nevertheless, if the oxides or carbides are
 436 the primary source for pinning force, they would exist in such a low volume that would allow for
 437 recrystallization to occur while preventing subsequent grain growth. The nature of the pinning by oxides
 438 or carbides is presently the subject of more detailed TEM investigation. Second, the lack of grain growth
 439 may result from a lack of driving force. Much of the strain energy present in the as-built condition is
 440 reduced by recrystallization in the supersolvus condition as seen in Figure 13 which may lead to a
 441 reduced driving force for grain growth. In the literature, the effect of strain energy on grain growth of
 442 wrought Rene65 is not extensively studied. Hence, a future comparison study of between wrought versus
 443 AM'ed material is needed to understand the role of the strain energy on grain growth.

444 Grain growth and recrystallization behavior are shown schematically in Figure 18. With sufficient
 445 temperature and time, recrystallization occurs during solutionizing, as shown by the inset image 1b in this
 446 figure. Without sufficient temperature and time, no recrystallization occurs, and the directionally
 447 solidified microstructure is maintained due to precipitate pinning (as shown by 1a). There is no effect of
 448 hold time on grain size at supersolvus as previously discussed. Due to rapid reprecipitation in the case of
 449 supersolvus and retained precipitates in the case of subsolvus, no additional changes are seen to grain
 450 structure during cooling. Aging occurs well below the solvus temperature and therefore has no effect on
 451 the grain structure as well (as shown by 2).

453 Figure 18: Schematic plot showing grain structure development through heat treatment process

454 4.2 Mechanical Behavior

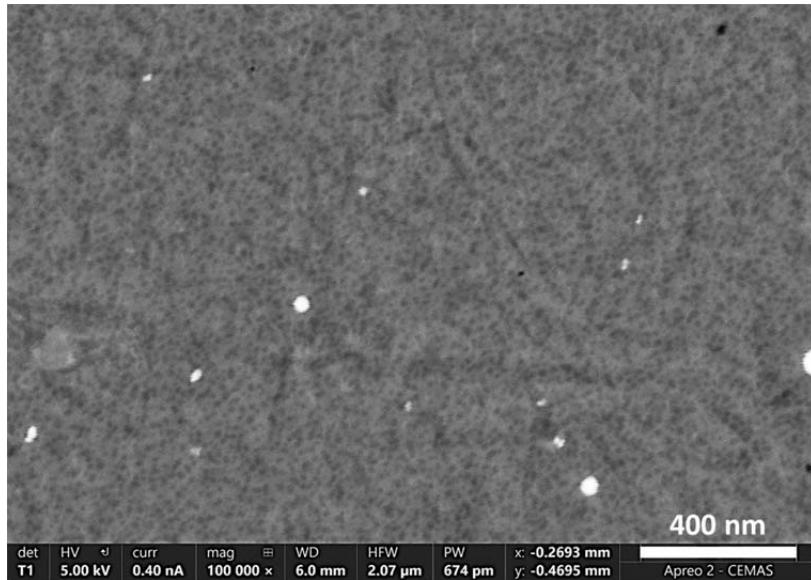
455 4.2.1 *Hot Tension and Loading Direction*

456 Being a precipitation strengthened alloy, Rene65 derives much of its strength from precipitates. [46] It is
457 designed as a fine-grained material and derives additional strength from grain boundary area. As shown in
458 Figure 14, the lowest UTS and yield strength are seen in the as-built condition in both loading directions.
459 This is due to the lack of precipitates present in the as-built condition prior to testing. Moreover, not
460 enough time is spent at elevated temperature during hot tensile testing to develop the precipitation
461 structure. The lower yield strength and UTS of heat-treated AM compared to wrought (Figure 14) is
462 likely due to a larger grain size (e.g., wrought about 10 μm versus AM'ed about 40 μm). In other words,
463 the decrease in grain boundary area with the increased grain size leads to the decreased tensile strength in
464 AM'ed Rene65. [47,48]

465 Despite similar strength, there is reduced elongation to failure when loading transverse to the build
466 direction. One possible explanation for this behavior is aligned defects formed during the printing
467 process. [9] There is minimal to no visible cracking in the microstructure prior to testing in the samples
468 observed in microscopes. However, there is still a possibility of microcracks or pores being present in the
469 microstructure due to low sample size observed compared to total build height. Defects aligned along the
470 build direction become planar defects when loading transverse to the build direction, causing loss of
471 ductility in the material.

472 4.2.2 *Tension Creep*

473 As shown in Table IV, all tension creep tests were performed parallel to the build direction. As the defects
474 from printing are expected to have a minimal effect on creep in the parallel direction, these tests would
475 show the effect of microstructure on creep.


476 As shown in Figure 15, among the four conditions tested, the supersolvus heat treated AM'ed Rene65 has
477 the longest life, exhibiting superior performance to the wrought material. The microstructural factors that
478 are likely responsible for this improvement are summarized as follows. The first factor is an increase in
479 average grain size. Specifically, the average grain size of the AM'ed supersolvus sample is 40.54 μm
480 while the tested wrought grain size is on the order of 10 μm . Increased grain size can improve creep
481 behavior as it decreases grain boundary assisted creep processes and reduces dislocation movement along
482 the grain boundaries. [49] Grain boundary tortuosity, as previously shown to be present in the supersolvus
483 microstructure seen in Figure 7 and 9c, can also improve creep behavior by limiting grain boundary
484 sliding. [50] The second factor is a difference in precipitate size and precipitate distribution. As
485 previously mentioned, in order to avoid rapid grain growth in the supersolvus regime, the wrought
486 material undergoes a subsolvus heat treatment. This leads to a multimodal precipitate distribution with
487 coarse primary γ' and fine secondary and tertiary γ' particles. On the other hand, supersolvus AM'ed
488 material had finer homogenous γ' particles, as shown in Figure 4c and d.

489 To further examine the relative importance of the above two microstructure factors on creep, another
490 interesting comparison can be made in the data for subsolvus AM'ed sample versus wrought sample
491 (Figure 15). Both conditions resulted in similar coarse bimodal precipitate structure as both underwent the
492 same heat treatment schedule. The main microstructure difference between the two is the grain structure.
493 Specifically, as shown in Figure 5, the subsolvus samples show long columnar grains parallel to the build
494 direction while varied grain sizes are seen transverse to the build direction. This can have an impact on
495 the effective grain size; for example, for subsolvus at 1066°C, the grain size transverse to the build
496 direction ranges 25-40 μm compared to grain size ranging from 40-80 μm parallel to the build direction.

497 The subsolvus AM'ed sample has an effective grain size that is much larger than the wrought sample,
498 which is expected to be beneficial for creep. Hence, the fact that subsolvus AM'ed sample
499 underperformed in creep than the wrought sample indicates that the larger grains in AM'ed samples did
500 not likely have a predominant role on creep behavior. Instead, fine homogenous precipitate structures
501 seem to be crucial to creep performance of AM'ed material. Effect of γ' precipitate distribution (e.g., size
502 and spacing) on dislocation motion at elevated temperature is complex [51,52], and further study thus is
503 necessary to better understand the mechanism for superior creep strength due to fine homogenous over
504 bimodal precipitate structures in AM'ed material.

505 A final comparison can be made in the data for subsolvus AM'ed sample versus as-built sample with the
506 latter outperforming the former in tension creep. Similar grain structure is seen between the as-built
507 material and the subsolvus heat treated condition, as shown in Figures 1 and 5, respectively. Hence, what
508 makes this comparison interesting is that the as-built microstructure does not contain discernable
509 precipitate structure while the subsolvus AM'ed sample contains a coarse bimodal precipitate structure.
510 The potential microstructural factors responsible for improved creep in as-built over subsolvus conditions
511 are discussed as follows. First, the as-built microstructure contains a dislocation cell structure with high
512 dislocation density, which has often been attributed to improved mechanical properties in the literature.
513 [5,52] As shown in Figure 13, despite precipitates pinning grain boundary motion during subsolvus heat
514 treatment, there is a small but noticeable amount of dislocation reduction, which likely has a negative
515 effect on creep behavior. Second, while there are no discernable precipitates in the as-built condition, γ'
516 precipitates likely formed in-situ during the early stages of testing, which had a beneficial effect on creep
517 similar to the fine homogenous precipitates in the supersolvus condition.

518 Figure 19 is a SEM image of as-built sample after creep testing. This microstructure contains a high
519 fraction of small dark particles which are expected to be γ' precipitates formed in-situ during testing.

520 521 Figure 19: SEM image of post-creep-test as-built sample where fine dark particles are expected to be γ'
522 precipitates formed in-situ during testing

523 524 However, unlike the supersolvus condition, the precipitates formed in-situ during creep testing (see figure
19) are likely “under-developed” and their beneficial effect is thus limited. It is noted that such precipitate

525 strengthening effect was not observed during the hot tension testing of as-built sample since there was
526 insufficient time for precipitates to form.

527 *4.2.3 Compression Creep*

528 As shown in Figure 16, the recrystallized equiaxed microstructure with fine homogenous precipitates
529 generally demonstrates superior compression creep behavior, a trend consistent with that in tension creep
530 described in the previous section. However, this is not always the case. Longer hold times near solvus
531 (1100°C), despite allowing for recrystallization, is detrimental to compression creep behavior. A similar
532 detriment to creep behavior is observed with increased hold times at supersolvus (1150°C). There is no
533 obvious difference in grain size, grain structure, precipitate size, or precipitate distribution due to hold
534 time, as shown in Figures 6 through 8 for near solvus (1100°C) and in Figures 9 and 10 for supersolvus
535 (1150°C).

536 Two hypotheses are described below for the detrimental effect of extended hold time on creep behavior.
537 The first is the growth of brittle oxide particles. There is some evidence in the literature that nanoscale
538 oxides are present in the as-built microstructure. [45,54,55] With extended hold times at 1066°C and
539 1150°C these oxides are likely to coarsen. These large brittle particles particularly when they are aligned
540 can greatly impact ductility and lead to failure at lower strain. [55,56] The second is the homogenization
541 of boron. Rene65 contains a small amount of boron which is added to improve creep behavior in the form
542 of discrete boride particles along the grain boundaries. For example, boride particles of approximately 1
543 μm in size have been observed to locate preferentially on grain boundaries in wrought Rene65. [58]
544 During printing, the rapid cooling may result in boron segregation into the inter-dendritic regions. The
545 fine dendrite arm spacing in the AM'ed material may decrease the homogenization time. [57] The
546 literature has shown that the back diffusion of boron away from the grain boundaries to the grain interior
547 can occur during heat treatment of some materials. [58] Hence, it is possible that extended hold time at
548 the supersolvus temperature aids in boron homogenization, resulting in a decrease of boron content
549 around the grain boundaries and subsequently a reduced creep property. The heat-treated AM'ed
550 microstructure comprises nano-scale secondary particles (which can include borides) that were uniformly
551 dispersed with no clear preferential nucleation between grain boundaries and grain interiors, which is in
552 stark contrast to wrought microstructure with micro-scale borides along grain boundaries. Future
553 characterization in TEM is needed to determine the mechanism(s) for the detrimental effect of extended
554 supersolvus hold time on creep behavior. Although compression creep test is expected to be less sensitive
555 to printing defects than tensile creep test, the small sample size (i.e., 7mm×2.8mm×2.8 mm) may
556 introduce variability in the observed creep results. In particular, Figure 16 shows that among the three
557 samples supersolvus-solutioned at 1150°C and then tested perpendicular to the build direction (designated
558 by the three circles), the sample with slow cooling and bimodal precipitate structure significantly
559 outperformed the two samples with fast cooling and uniform precipitate structure. Such superior
560 performance of bimodal precipitate structure is unexpected and could be caused by the small specimen
561 happening to sample a region containing few defects and brittle oxides.

562 *4.2.4 Anisotropy in Tension Versus Compression Creep*

563 There is a distinct anisotropy in the creep behavior for tension loading versus compression loading. In the
564 literature, this has been attributed to the development of defects and cracks over the course of testing.
565 Specifically, the primary difference between compression and tension creep is thought to occur in the
566 tertiary creep stage where cavitation, void formation and cracking take place. In tension these defects will
567 be opened further leading to continued decrease of the effective cross section. In the case of compression,
568 these defects will be “closed” and are less likely to continue to decrease the cross-sectional area. In cases

569 where defects are already present, which may be the case in many additively manufactured parts include
570 the Rene65 studied here, the tertiary creep stage is initiated more rapidly and a larger anisotropy between
571 tension and compression is observed. There is also seen to be variations in deformation modes between
572 tension and compression creep such as twinning. [59-62]

573 **5. Summary and Conclusions**

574 In summary, an extensive set of microstructure and mechanical property data for Rene65, a medium γ'
575 nickel superalloy printed by powder bed fusion-laser additive manufacturing, is reported in this study.
576 The results show that the standard heat treatments developed for traditional cast or wrought alloys need to
577 be modified for additively manufactured materials to utilize their unique microstructure for sound
578 mechanical properties. The specific conclusions are as follows:

579 The solutionizing heat treatment temperature and cooling rate had a large effect on the grain and
580 precipitate structures. For subsolvus or near solvus and short hold time, no recrystallization took place,
581 and the as-built grain structure was maintained with a bimodal precipitate structure for either slow or fast
582 cooling rate. For supersolvus heat treatment or near solvus and long hold time, equiaxed grain structure
583 formed, greatly reducing the dislocation content in the as-built structure. Moreover, the fast cooling rate
584 resulted in fine γ' precipitates while the slow cooling rate formed bimodal distribution of γ' precipitates.
585 These results indicate that γ' precipitates can rapidly form during the heating portion of the solutionizing
586 heat treatment and can pin the grain boundary if not dissolved at the solutionizing temperature.

587 Additively manufactured Rene65 can be supersolvus heat treated without the detrimental effects seen in
588 the cast/wrought alloy. This is due to a notable lack of rapid grain growth seen in the additively
589 manufactured material. Possible factors for the lack of grain growth include nanoscale oxide or carbide
590 particles pinning the grain boundary as well as a lower driving force for grain growth compared to the
591 wrought material. However, supersolvus hold time needs to be carefully controlled as extended hold time
592 can significantly degrade the creep property, a behavior hypothesized to be caused by excess coarsening
593 of oxides and homogenization of boron for long hold time.

594 The as-built alloy behaved better in creep than the additively manufactured alloy that was subjected to
595 subsolvus heat treatment, which is the standard method for traditional cast or wrought alloy. This has
596 been attributed to strengthening based on the dislocation cell structure and rapid precipitation during
597 testing. The supersolvus heat treated material outperformed the wrought material in creep, which has been
598 attributed to a finer homogenous precipitate structure in the former.

599 Finally, the additively manufactured alloy exhibited large anisotropy in the hot tension behavior with
600 respect to the parallel versus transverse loading direction and in the creep behavior with respect to tension
601 versus compression loading. This has been primarily attributed to existence of defects in the additively
602 manufactured alloy. Future work involving hot isostatic pressing will be used to better understand the
603 effect of defects on mechanical behaviors.

604 **Acknowledgements**

605 The authors wish to acknowledge the financial support from the U.S. National Science Foundation NSF
606 I/UCRC Manufacturing and Materials Joining Innovation Center (Ma2JIC) under Grant No. 1822144.

607 **Conflict of Interest**

608 On behalf of all authors, the corresponding author states that there is no conflict of interest.

609

610 References

611 [1] C.M. Katsari, S. Katnagallu, and S. Yue: Materials Characterization, 2020, vol. 169, p. 110542.

612 [2] J. Heaney, M. Lasonde, A. Powell, B. Bond, C. O'Brien: 8th International Symposium on Superalloy
613 718 and Derivatives, 2014, pp. 67-77.

614 [3] ISO/ASTM: 52900:2021 €.

615 [4] M. Cheng, X. Xiao, G. Luo, L. Song: Optics and Laser Technology, 2021, vol. 142, p. 107137.

616 [5] H.E. Sabzi, N.T. Aboulkhair, X. Liang, X.H. Li, M. Simonelli, H. Fu, and P.E.J. Rivera-Diaz-del-
617 Castillo: Materials and Design, 2020, vol. 196, p. 109181.

618 [6] S.H. Sun, K. Hagihara, and T. Nakano: Materials and Design, 2018, vol. 140, pp. 307-316.

619 [7] T. Ishimoto, K. Hagihara, K. Hisamoto, S.H. Sun, and T. Nakano: Scripta Materialia, 2017, vol. 132,
620 pp. 34-38.

621 [8] P. Karimi, E. Sadeghi, J. Algardh, A. Kedhavarzkermani, R. Esmaeilizadeh, E. Toyserkani, and J.
622 Andersson: Additive Manufacturing, 2021, vol. 46, p. 102086.

623 [9] E. Hosseini, and V.A. Popovich: Additive Manufacturing, 2019, Vol. 30, p. 100877.

624 [10] Y.L. Kuo, S. Horikawa, and K. Kakehi: Scripta Materialia, 2017, vol. 129, pp. 74-78.

625 [11] Y.L. Kuo, A. Kamigaichi, and K. Kakehi: Metallurgical and Materials Transactions A: Physical
626 Metallurgy and Materials Science, 2018, vol. 49, pp. 3831-3837.

627 [12] T.D. McLouth, D.B. Witkin, G.E. Bean, S.D. Sitzman, P.M. Adams, J.R. Lohser, J.M. Yang, and
628 R.J. Zaldivar: Materials Science and Engineering A, 2020, vol. 780, p. 139184.

629 [13] A.C. Hautfenne, S. Nardone, E. de Bruycker, and C. Hautfenne: 4th international ECCC conference,
630 2017, p. 321267580.

631 [14] S. Pratheesh Kumar, S. Elangovan, R. Mohanraj, and J.R. Ramakrishna: Materials Today:
632 Proceedings, 2021, vol. 46, pp. 7892-7906.

633 [15] M. Probstle, S. Neumeier, J. Hopfenmuller, L.P. Freund, T. Niendorf, D. Schwarze, and M. Goken:
634 Materials Science and Engineering A, 2016, vol. 674, pp. 299-307.

635 [16] B. Rogers, A. Tasooji, B. Rogers, and W. Petuskey: thesis presentation, Arizona State University,
636 2017.

637 [17] B. Shassere, D. Greeley, A. Okello, M. Kirka, P. Nandwana, and R. Dehoff: Metallurgical and
638 Materials Transactions A: Physical Metallurgy and Materials Science, 2018, vol. 49, pp. 5107-5117.

639 [18] L.Y. Wang, Y.C. Wang, Z.J. Zhou, H.Y. Wan, C.P. Li, G.F. Chen, and G.P. Zhang: Materials and
640 Design, 2020, vol. 195, p. 109042.

641 [19] D.B. Witkin, R.W. Hayes, T.D. McLouth, and G.E. Bean: Metallurgical and Materials Transactions
642 A: Physical Metallurgy and Materials Science, 2019, vol. 50, pp. 3458-3465.

643 [20] Z. Xu, C.J. Hyde, A. Thompson, R.K. Leach, I. Maskery, C. Tuck, A.T. Clare: Materials and Design,
644 2017, vol. 133, pp. 520-527.

645 [21] Z. Xu, C.J. Hyde, C. Tuck, and A.T Clare: Journal of Materials Processing Technology, 2018, vol.
646 256, pp. 13-24.

647 [22] Z. Xu, J.W. Murray, C.J. Hyde, and A.T. Clare: Additive Manufacturing, 2018, vol. 24, pp. 486-497.

648 [23] A. Kreitberg, K. Inaekyan, S. Turenne, and V. Brailovski: Journal of Manufacturing and Materials
649 Processing, 2019, vol. 3, p. 75.

650 [24] K.T. Son, T.Q. Phan, L.E. Levine, K.S. Kim, K.A. Lee, M. Ahlfors, and M.E. Kassner: Materialia,
651 2021, vol. 12, p. 101021.

652 [25] P. Fernandez-Zelaia, Y. Lee, S. Dryepondt, and M.M. Kirka: International Journal of Plasticity,
653 2022, vol. 151, p. 103177.

654 [26] J. Xu, H. Gruber, D. Deng, R.L. Peng, and J.J. Moverare: Acta Materialia, vol. 179, pp. 142-157.

655 [27] N.S. Moghaddam, S. Saedi, A. Amerinatanzi, A. Hinojos, A. Ramanzi, J. Kundin, M.J. Mills, H.
656 Karaca, M. Elahinia: Nature Scientific Reports, 2019, Vol 9(41), p. 30631084.

657 [28] S. Lampman: Weld integrity and performance, ASM International, Materials Park, OH, 1997, pp. 3-
658 5.

659 [29] M. Haines, V.V. Rielli, S. Primig, N. Haghadi: Journal of Material Science, 2022, vol 57, pp.
660 14135-14187.

661 [31] I. Gutierrez-Urrutia, F. Archie, D. Raabe, F. Yan, N. Tao, K. Lu: Science and Technology of
662 Advanced Materials, 2016, Vol.17(1), pp. 29-36.

663 [31] S.L. Semiatin, D.W. Mahaffey, N.C. Levkulich, O.N. Senkov, and J.S. Tiley: Metallurgical and
664 Materials Transactions A: Physical Metallurgy and Materials Science, 2018, vol. 48, pp. 6265-6276.

665 [32] T. Grosdidier, A. Hazotte, and A. Simon: Scripta Metallurgica et Materialia, 1994, vol. 30, pp. 1257-
666 1262.

667 [33] C.M. Katsari: thesis presentation, McGill University, 2021.

668 [34] G. Muralidharan, and H. Chen: Science and Technology of Advanced Materials, 2000, vol. 1, pp. 51-
669 62.

670 [35] C. Papadaki, W. Li, and A.M. Korsunsky: Materials, 2018, vol. 11, p. 1528.

671 [36] A. Wessman, Dissertation, University of Cincinnati, 2016.

672 [37] M. Yang, L. Wang, and W. Yan: Npj Computational Materials, 2021, vol. 7, p. 56.

673 [38] N. Sargent, M. Jones, R. Otis, A.A. Shapiro, J.P. Delplanque, and W. Xiong: Metals, 2021, vol.
674 11(4), p. 570.

675 [39] H. Liu, Z. Cheng, W. Yu, Q. Cai: Materials Research Express, 2021, Vol. 8, p. 046539.

676 [40] N. Mavrikakis, P.R. Calvillo, W. Saikaly, M. Descoins, D. Mangelinck, M. Dumont: IOP Conf.
677 Series: Materials Science and Engineering, 2018, p. 012016.

678 [41] C. Slater, A. Mandal, C. Davis: Metallurgical and Materials Transactions B, 2019, Vol. 50B, pp.
679 1627-1636.

680 [42] Y. Cao, P. Bai, F. Liu, X. Hou, and Y. Guo: Materials, 2020, vol. 13, p. 340.

681 [43] K. Alvarado, I. Janeiro, S. Florez, B. Flipon, J.M. Frachet, D. Locq, C. Dumont, N. Bozzolo, and M.
682 Bernacki: Metals, 2021, vol. 11, p. 1921.

683 [44] M.A. Charpagne, Unpublished Work, University of Illinois, 2021.

684 [45] F. Yan, W. Xiong, E. Faierson, G.B. Olson: Scripta Materialia, 2018, vol. 155, pp. 104-108.

685 [46] E.I. Galindo-Nava, L.D. Connor, C.M.F. Rae: Acta Materialia, 2015, vol. 98, pp. 377-390.

686 [47] G. Malakondaiah, and P.R. Rao: Def Sci J, 1985, vol. 35, pp. 201-217.

687 [48] H. Zhang, Z. Xu, L.J. Kecske, S. Yarmolenko, and J. Sankar: Crystals, 2021, vol. 11(10), p. 1128.

688 [49] R. Raj, and M.F. Ashby: Metallurgical Transactions, 1971, vol. 2, pp. 1113-1127.

689 [50] M.A. Ali, I. Lopez-Galilea, S. Gao, B. Ruttert, W. Amin, O. Shchyglo, A. Hartmaier, W. Theisen,
690 and I. Steinbach: Materialia, 2020, vol. 12, p. 100692.

691 [51] D. Seidman, E. Marquis, D. Dunand: Acta Materialia, 2002, vol. 50, pp. 4021-4035.

692 [52] T. Gallmeyer, S. Moorthy, B. Kappes, M. Mills, B. Amin-Ahmadi, A. Stebner: Additive
693 Manufacturing, 2020, Vol. 31, p. 100977.

694 [53] P. Deng, M. Song, J. Yang, Q. Pan, S. McAllister, L. Li, B. Prorok, X. Lou: Material Science and
695 Engineering A, 2022, vol. 835, p. 142690.

696 [54] X. Zhang, H. Cao, X. Yang, Y. Zhao, H. Wang, X. Mao, Y. Zhai: Fusion Engineering and Design,
697 2021, vol. 164, p. 112213.

698 [55] O. Adegoke, J. Andersson, H. Brodin, R. Pederson: Metals, 2022, vol. 10(8), p. 996.

699 [56] J. Campbell: Complete Casting, 2nd Edition, Butterworth-Heinemann, Oxford, UK, 2015, pp. 821-
700 882.

701 [57] X.L. He, Y.Y. Chu, J.J. Jonas: Acta Metallurgica, 1989, Vol. 37(11), pp. 2905-2916.

702 [59] T. Wojcik, M. Rath, E. Kozeschnik: Materials and Technology, 2018, Vol. 24(13) pp. 1558-1564.

703 [59] G.P. Tilly, and G.F. Harrison: Journal of strain analysis, 1972, vol. 7(3), pp. 163-169.

704 [60] H. Wang, Q.D. Wang, C.J. Boehlert, D.D. Yin, and J. Yuan: Materials Characterization, 2015, vol.
705 99, pp. 25-37.

706 [61] K. Kakehi: Scripta Materialia, 1999, Vol. 41, pp. 461-465.

707 [62] N. Tsuno, S. Shimabayashi, K. Kakehi, C.M.F. Rae, and R.C. Reed: 11th international symposium on
708 superalloys, TMS, 2008, pp. 433-442.

709

710

711