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Abstract

We show that Hölder continuous incompressible Euler flows that satisfy the lo-
cal energy inequality (“globally dissipative” solutions) exhibit nonuniqueness and
contain examples that strictly dissipate kinetic energy. The collection of such so-
lutions emanating from a fixed initial data may have positive Hausdorff dimension
in the energy space even if the local energy equality is imposed, and the set of
initial data giving rise to such an infinite family of solutions is C0 dense in the
space of continuous, divergence free vector fields on the torus T

3. The construction
of these solutions involves a new and explicit convex integration approach mir-
roring Kraichnan’s LDIA theory of turbulent energy cascades that overcomes the
limitations of previous schemes, which had been restricted to bounded measurable
solutions or to continuous solutions that dissipate total kinetic energy.

1. Introduction

In this work we consider weak solutions to the incompressible Euler equations,
which take the form

∂tv
� + ∇ j (v

jv�) +∇� p = 0

∇ jv
j = 0,

(1)

where we use the summation convention to indicate a sum over the repeated spatial
index j .

Wewillmainly consider solutions defined on a spatially periodic domain Ĩ×T
d ,

Ĩ an open interval and T
d = (R/Z)d a d-dimensional torus with d ≥ 3. A weak
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solution (v, p) to (1) may be defined as a locally square-integrable vector field
v : Ĩ × T

d → R
d (the velocity field) and a scalar field p ∈ D′( Ĩ × T

d) (the
pressure) that together satisfy (1) in the sense of distributions.

A weak solution (v, p) to (1) here will be called globally dissipative if it is of
class v ∈ L3

t,x and satisfies the following local energy inequality, which is always
interpreted in the sense of distributions1:

∂t

( |v|2
2

)
+ ∇ j

[( |v|2
2

+ p

)
v j
]
≤ 0. (2)

Globally dissipative weak solutions include all sufficiently regular solutions to (1)
including all solutions of class (v, p) ∈ C1( Ĩ × T

d), which satisfy the stronger
condition of the local energy equality

∂t

( |v|2
2

)
+∇ j

[( |v|2
2

+ p

)
v j
]
= 0. (3)

Solutions obeying the local energy equality also conserve total kinetic energy in
the sense that their total kinetic energy

∫
Td |v|2/2(t, x)dx is equal to a constant as

a distribution in t .
The physical meaning of the local energy inequality (2) is that kinetic energy

cannot be created locally, although itmaybe allowed to dissipate. This interpretation
is most easily seen for solutions (v, p) that are continuous, in which case inequality
(2) is equivalent to the requirement that the change in kinetic energy contained in a
given region� during a time interval [t1, t2] cannot exceed the flux of energy carried
by the incoming and outgoing fluid plus the work done by pressure. Namely, for
any open � ⊆ T

d with smooth boundary, inward unit normal vector n, and t1 ≤ t2,
one has

∫
�

|v|2
2

(t2, x)dx −
∫

�

|v|2
2

(t1, x)dx ≤
∫ t2

t1

∫
∂�

|v|2
2

(t, x)(v · n)dS dt

+
∫ t2

t1

∫
∂�

p(t, x)(v · n)dS dt.

In particular, taking � = T
d , ∂� = ∅, the total kinetic energy of a globally

dissipative weak solution must be nonincreasing in time.
There has been significant motivation from both physical and mathematical

points of view to determine whether continuous, globally dissipative Euler flows
are uniquely determined by their initial data and whether there exist examples that
strictly dissipate kinetic energy. Sections 1.1–1.2 below describe these motivations
in detail. However, the known approaches to addressing such existence and unique-
ness questions, which all implement the method known as “convex integration”,

1 Note that v ∈ L3
t,x implies, byCalderón-Zygmund theory, that p ∈ L3/2

t,x , making the left
hand side of (2) a well-defined distribution. Inequality (2) is defined by formally integrating
against an arbitrary non-negative, smooth function of compact support, and implies that the
left hand side acts on such test functions as a Radon measure.
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have faced limitations either to constructing continuous solutions that dissipate to-
tal kinetic energy but do not satisfy the local energy inequality (2) on any open ball
[1,5,22,23,34] or to constructing bounded and measurable solutions that satisfy
the local energy inequality or equality but are nowhere continuous [19].

The present work provides the first construction of continuous, globally dis-
sipative Euler flows. The construction is achieved using a new convex integration
approach for constructing solutions satisfying the local energy inequality, which
overcomes the limitations of the previous approaches. Among the new results, we
obtain are the following:

Theorem 1. On (0,∞)×T
d , for d ≥ 3, there exist Hölder-continuous weak solu-

tions (v, p) that satisfy the local energy inequality (2) with strict inequality holding
everywhere on an open interval of time.

Theorem 2. On R × T
d , d ≥ 3, there exists α > 0 and an uncountable family

(vβ, pβ) of solutions of class v ∈ Cα
t,x (R × T

d) having no isolated points in Cα
t,x

that all satisfy the local energy equality (3) and all achieve the same initial data
vβ(0, x) = v0(x) at time 0.

Stronger forms of Theorems 1 and 2 are stated in Theorems 4–5 of Sect. 1.3
below, which include a stronger nonuniqueness result than stated above and are
accompanied by an additional theorem on the density of “wild” initial data, Theo-
rem 6. The nonuniqueness results in these theorems are all proven by incorporating
a use of randomness in the construction of the solutions, which represents the first
use of a probabilistic method in the context of convex integration. See Sect. 1.3
below for a more detailed discussion.

We now explain in greater detail the general physical and mathematical moti-
vations surrounding the study of continuous, globally dissipative Euler flows and
the local energy inequality.

1.1. Motivation

The importance of the local energy inequality arises from several contextswhere
the inequality (2) is imposed as a criterion towards isolating the most physically
relevant weak solutions to the incompressible Euler equations among solutions that
may be singular. Of particular importance is the zero viscosity limit of the incom-
pressible Navier–Stokes equations2 which has a substantial interest as it relates to
the description of turbulence in fluidmotion at highReynolds numbers. It is known3

that every divergence free initial datum in L2 admits a global in time “suitable”
weak solution to the 3D Navier–Stokes equations that obeys the corresponding
local energy inequality for Navier–Stokes. This inequality, which generalizes (2),

2 These generalize the incompressible Euler equations (1) to include a forcing term ν�v�

on the right hand side of (1) that describes the internal friction in the fluid, with ν > 0 the
viscosity parameter. For simplicity we will maintain focus in the discussion that follows on
the incompressible Euler and Navier–Stokes equations without external forcing terms.
3 See [48] and [11, Appendix].
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plays a fundamental role in the partial regularity theory of suitable weak solutions
to Navier–Stokes [11,48]. Furthermore, one can show that every vector field that
arises as a limit in L3

t,x of suitable weak solutions to Navier–Stokes with viscosity
tending to zero must be a weak solution to incompressible Euler that satisfies the
local energy inequality (2). We will discuss such limits further in connection with
Conjecture 2 below.

A closely related context where conditions such as (2) play a primary role is
the theory of hyperbolic conservation laws. The theory is most successful in the
setting of scalar conservation laws, where the class of “admissible weak solutions”,
which are bounded weak solutions that satisfy an entropy condition akin to (2) for
every convex function of the unknown scalar field, provides the appropriate setting
for well-posedness of the initial value problem despite the presence of inevitable
singularities in the solutions. The simplest example in this theory is the Burgers’
equation in one spatial dimension

∂t u + ∂x (u
2/2) = 0. (4)

For scalar conservation laws in one spatial dimension, a weak solution is admissible
if and only if it satisfies an entropy condition for at least one strictly convex entropy
[47] (see also [17,43]). For (4) a sufficient entropy condition is given by the local
energy inequality

∂t (u
2/2) + ∂x (u

3/3) ≤ 0 (5)

analogous to (2). These entropy conditions impose an arrow of time on solutions to
the conservation laws, which would otherwise be time-reversible, and are viewed
in this context as mathematical expressions of the second law of thermodynamics.
For scalar conservation laws the class of admissible solutions also coincides with
the class of weak solutions that arise as zero viscosity limits. However, the theory
for general systems of conservation laws faces great challenges towards obtaining
results as strong as those described above. As a general reference for these subjects
we refer to [13].

Further motivation for studying the existence and uniqueness of globally dissi-
pative weak solutions to the incompressible Euler equations arises from the study of
turbulence in fluid motion and the zero viscosity limit, which in addition motivates
the problem of determining the maximal regularity for there can exist a weak solu-
tion that satisfies the local energy inequality and strictly dissipates kinetic energy.
The well known foundational theory of Kolmogorov [40] postulates that the mean
rate of kinetic energy dissipation in fully developed turbulence should be nonvan-
ishing in the limit of zero viscosity, and predicts that mean fluctuations in velocity
of nearby fluid elements scale in the bulk of the fluid as distance to the power 1/3 in
the inertial range of length scales. Onsager [46] gave an independent derivation of
this scaling law applied to the energy spectrum, and he proposed that the dissipation
of energy independent of viscosity can be explained as the result of cascades of
energy from lower to higher wavenumbers (or coarser to finer length scales) that are
modeled by the nonlinear advective term of the incompressible Navier–Stokes and
Euler equations. Onsager observed that this mechanism for dissipation by energy
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cascades could in principle take place even without viscosity for the incompress-
ible Euler equations (1), but that the notion of solution to the inviscid equations
could not be interpreted in the classical sense, stating that an Euler solution with
spatial Hölder regularity greater than 1/3 must satisfy the conservation of kinetic
energy. The idea that the Hölder exponent 1/3 marks the threshold regularity for
conservation of energy in the incompressible Euler equations has been known in
the mathematical literature as the Onsager conjecture and has inspired a surge of
mathematical activity in recent years. These works, to be surveyed further below,
have led most recently to a positive resolution of Onsager’s conjecture. We refer to
[21,26,28,30] for more detailed discussions of Onsager’s ideas above.

Analogous to the Onsager conjecture for the 3D incompressible Euler equa-
tions, we present here the following well known conjecture on the existence of
globally dissipative incompressible Euler flows this conjecture and the question of
uniqueness for the conjectured solutions are the primary focus of the paper:

Conjecture 1. (Strong Onsager Conjecture) There exists an open interval I , and
a weak solution (v, p) to the incompressible Euler equations on I × T

3 that is of
class v ∈ L∞

t C1/3
x and satisfies the local energy inequality (2) with the left hand

side not identically zero.

It is known from the results on the conservative direction of Onsager’s conjecture
[9,25,29] that the Hölder exponent 1/3 cannot be replaced by any greater value,
and more generally that every weak solution to Euler of Besov class L3

t Bα
3,∞ with

α > 1/3 satisfies the local energy equality (3).
A notable motivation for the above conjecture arises from the following state-

ment concerning smooth solutions to the the incompressible Navier–Stokes equa-
tions, which serves as a mathematical interpretation of some conclusions that may
be drawn from Kolmogorov and Onsager’s seminal papers:

Conjecture 2. (K41-Onsager Conjecture for Navier–Stokes) There exists a finite
open interval I , and a sequence of suitable weak solutions to the Navier–Stokes
equations vν j on I × T

3 with viscosity parameters ν j > 0 tending to 0 that is

uniformly bounded in the L∞
t C1/3

x norm, and that dissipates kinetic energy at an
average rate that is uniform in viscosity:

lim sup
j→∞

1

|I |
∫

I

[
− d

dt

∫
T3

|vν j |2
2

(t, x)dx

]
dt ≥ ε > 0, ε ∈ R+. (6)

The existence of dissipative Euler flows stated in the inviscid Conjecture 1 is in fact
a direct consequence of Conjecture 2 for the Navier–Stokes equations. A globally
dissipative weak solution to the Euler equations as described in the inviscid conjec-
ture arises as a limit from the viscous conjecture by passing to a subsequence that
converges strongly inCt L2

x ∩L3
t,x . The existence of such a convergent subsequence

can be easily shown using the Aubin–Lions–Simon lemma and the compactness
of C1/3 in L3(T3). By the same argument, the regularity exponent 1/3 in the con-
jecture cannot be replaced by any value greater than 1/3, as the conservation of
energy would then have to be satisfied by any limiting Euler flow.
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Note that neither of the above conjectures makes assumptions on initial data for
the sequence vν j or for the Euler flow v, and consequently the conjectures do not
imply the existence of blowup for classical solutions to the incompressible Euler
equations. Rather, in the conjectural picture the initial data for the Navier–Stokes
solutions may be smooth but developing a Kolmogorov type energy spectrum, and
thus converging to a rough vector field in the 0 viscosity limit. More generally,
if vν ∈ L2

t,x is any weak solution to the Navier–Stokes or Euler equations on
I ×T

d , I an open interval, one does have the existence4 of uniquely defined initial
data vν(t0, ·) ∈ D′(T3), which converge weakly when the vν converge strongly in
L2

t,x . The convergence takes place in stronger norms when the vν satisfy stronger
assumptions. The convergence of initial data in Conjecture 2 would be uniform as
implied for bounded sequences in C1/3(T3).

These conjectures may be generalized to other function space norms that reflect
the regularity that is most appropriate, or to other viscous regularizations of Euler.
In the present formulation, theNavier–Stokes solutions in questionmust be smooth,
classical solutions to the equations as they satisfy the Ladyzhenskaya-Prodi-Serrin
criterion. Bounds in weaker function spaces, including the Besov space L3

t Bσ
3,∞ for

any σ > 0, are sufficient to guarantee the compactness in L3
t,x and, using the same

argument, the existence of a subsequence converging to a weak solution to Euler
obeying the local energy inequality. For the existence of an incompressible Euler
flow that dissipates total kinetic energy, it suffices to have a uniform, pointwise
lower bound on the energy dissipation rate and strong convergence in L2

t,x along
a subsequence, which would follow from a uniform in viscosity bound in L2

t Bσ
2,∞

for some σ > 0. In particular, the 5/3-law for the energy spectrum of Kolmogorov,
which corresponds to a regularity slightly stronger than the Besov space B1/3

2,∞, is
more than sufficient for this compactness if it were to hold at least as an upper
bound in the inviscid limit in the preceding sense. It is an open question, however,
to determine if general a priori estimates such as those above could be proven
rigorously for weak solutions to the 3D Navier Stokes equations, and the known
mathematical frameworks for establishing compactness in the zero viscosity limit
based on the available a priori energy estimates (which include the dissipative
solutions of [44, Chapter 4.4] and the measure-valued solutions of [24]) are not
known to give rise to Euler flows.

4 This fact is usually discussed in the context of L∞
t L2

x solutions, in which case the initial
data are also in L2

x . One may see this point by defining vν(t0, ·) for each t0 in the closure of
I to be the unique element of D′(T3) for which

v�
ν(t, x) = v�

ν(t0, x) +
∫ t

t0

[
−P∇ j (v

j
ν (τ, x)v�

ν(τ, x)) + ν�v�
ν(τ, x)

]
dτ (7)

holds as a distribution in (t, x) on I × T
3, where P is the Leray-projection to divergence

free vector fields. The definition of a weak solution guarantees that the v�
ν(t0, ·) defined

implicitly by (7) is independent of t (i.e., ∂t [v�
ν(t0, ·)] = 0 weakly) and therefore may be

identified with a unique distribution vν(t0, ·) ∈ D′(T3) in the x variable for each fixed t0.
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Remark. The direct relationship between the energy spectrum of Kolmogorov and
compactness in the inviscid limit discussed above was first observed in Theorem
5.1 of [10], which contains further results that may be obtained under a weak
Kolmogorov hypothesis, Assumption (K41W). The approach via theAubin–Lions–
Simon lemma outlined above provides an alternative approach to their Theorem
5.1, as their Assumption (K41W) implies boundedness in L2

t Hα
x for some α > 0

by [10, Prop 3.1].
More recent papers addressing the relationship between turbulent statistics and

energy dissipation in the inviscid limit are [12,15]. The work [12] considers impor-
tant issues related to enstrophy and vorticity production at boundaries, and gives a
convergence result under hypotheses imposed only in the inertial range of length
scales. In [15], it is shown that “quasi-singularities” must arise in the inviscid limit
for Leray-Hopf solutions to Navier–Stokes even if the rate of kinetic energy dis-
sipation does not tend to a positive value as in (6) but rather tends to zero slowly
as ν → 0+. The authors review the existing numerical and experimental evidence
for dissipation of energy in the inviscid limit in [15, Remark 3]. They prove also
further results on convergence in the inviscid limit including details of the Aubin–
Lions–Simon lemma argument noted here; see also [53] for further review of the
empirical literature on the energy dissipation rate.

The problem of proving or disproving the existence of kinetic energy dissi-
pation independent of viscosity as in (6) for 3D Navier–Stokes is a well known
open problem. This situation is in stark contrast to the analogous statements for
scalar conservation laws such as the Burgers’ equation (4), where analogues of
Conjectures 1 and 2 are well understood. In this context, zero viscosity limits of
bounded solutions are admissible solutions that typically exhibit strict dissipation
of energy due to shocks, and their viscous approximations exhibit dissipation of
energy independent of viscosity. The energy dissipating, admissible, inviscid solu-
tions have the regularity L∞

t B1/3
3,∞,5 which is the maximal possible regularity for

energy dissipation in the scale of L3 based Besov spaces (similarly to the Euler
equations), and their viscous approximations remain bounded in L∞

t B1/3
3,∞ in the

inviscid limit. Inviscid limits in this setting are known to both exist and to be unique
even for fixed initial data in L∞.

1.2. Previous related results and difficulties of previous approaches

Although little progress has been made towards approaching Conjecture 2 for
Navier–Stokes directly, developments in the method of convex integration based
on pioneering work of De Lellis and Székelyhidi [18,19,22,23] have yielded great

5 We thank R. Shvydkoy for first pointing this out to us. The regularity may be seen, as
noted in [31], by interpolating themaximum principle ‖u‖L∞

t,x
≤ ‖u0‖L∞ and the BV bound

‖u‖L∞
t T Vx

≤ ‖u0‖T V . The samemay be stated for the viscous solutions (see [13, Theorems
6.2.3, 6.3.2] and the proof of [13, Theorem 6.2.6]). The dissipation of energy independent
of viscosity follows from the compactness of the viscous approximations in L2

t,x whenever
the limiting entropy solution to Burgers exhibits strict dissipation of energy.
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advances in understanding energy non-conserving solutions to the incompressible
Euler equations that are directly relevant to Conjecture 1. The initial work of [18]
produced L∞

t,x solutions to the incompressible Euler equations with compact sup-
port, which improved and turned out to yield a more systematic approach to earlier
breakthrough results of [49,50]. Themethodwas extended in [19] to address admis-
sibility criteria for the Euler equations, which included a proof of nonuniqueness of
weak Euler flows of class L∞

t,x obeying the local energy equality (3), and examples
demonstrating that the inequality may be sharp for bounded solutions, before which
only the dissipation of total kinetic energy for solutions in L∞

t L2
x was known due to

[51]. The method of [19] achieved these results by proving not only the nonunique-
ness of globally dissipative solutions in L∞

t,x , but also the much stronger following
much stronger result6: following.

Theorem 3. (DeLellis andSzékelyhidi [19])Let d ≥ 2. Then there exists an infinite
family of weak solutions to the incompressible Euler equations on [0, T ] × T

d of
class v ∈ L∞

t,x ∩ Ct L2
w, that all share the same initial data v(0, ·), and the same

kinetic energy density |v|2/2(t, x) = e(t) a.e. on (0, T )×T
d , with |v|2(0, x) < e(0)

for a.e. x ∈ T
d , and all have common pressure given by p(t, x) = −2e(t)/d. One

may take e(t) = 1, or e(t) to be strictly decreasing and smooth on [0, T ] with
e(T ) = 0.

The key point in this theoremwith regard to the local energy inequality and equality
is that one may arrange ∂t (|v|2/2) + ∇ j ((|v|2/2 + p)v j ) = ∂t e(t) to be either
strictly negative or 0. Consequently, one has nonuniqueness for solutions obeying
the local energy equality (3), and the existence of strict dissipation in the local
energy inequality (2) within the class of L∞

t,x solutions. The method of [18,19]
however faces substantial difficulties towards constructing any weak solutions that
are continuous. In the context of solutions that fail to conserve total kinetic energy,
these difficulties were later overcome in [22,23] by developing a new version of
convex integration for the incompressible Euler equations in 3D that is closely
related to the work of Nash [45] on isometric embeddings of class C1. These works
gave the first results towards Onsager’s conjecture on the 1/3 threshold regularity
for conservation of energy, and led to a series of improvements and partial results
[1,3,4,7,35] including most recently a full proof of the conjecture by the author
[38]; see also [5,36].

Several works following [22,23] have focused on proving the existence of strict
dissipation of total kinetic energy for solutions in this range of regularity. The
works [22,23] prove that the total kinetic energy of a (1/10−ε)-Hölder Euler flow
on [0, T ] × T

3 may be equal to any prescribed, smooth, strictly positive function
of time e(t) > 0. This result is strengthened and generalized to higher regularity
solutions in [3,5,33,34], where the last reference obtains this result for solutions
having the regularity (1/3−ε) of theOnsager conjecture.However, theseworks face
substantial difficulties towards obtaining local dissipation of energy (see Sect. 1.2.1
below).

6 We have stated here a simplification of their result for the periodic setting. See the proof
of [19, Theorem 1, (a),(b)] and [19, Theorem 1, Proposition 2.1] for more general statements.
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Another branch of works building on [22,23] have extended the method to
obtain nonuniqueness results for weak solutions. Nonuniqueness of continuous
solutions was first addressed in [35], where it is shown that any smooth initial
datum admits weak solutions of class C1/5−ε

t,x that are identically constant outside
of afinite interval thatmaybe chosen arbitrarily small. Thenonuniqueness ofHölder
continuousEuler flowsdissipating total kinetic energy or having a prescribed energy
profile was proven in [14], while in [27] it is shown that there is an L2 dense subset
of “wild” divergence free initial data that admit infinitely “admissible” solutions
of class C1/5−ε

t,x , thus extending a previous result for L∞
t,x solutions of [52]. In

this work a solution is called “admissible” if its energy remains bounded by that
of the initial data. This definition of admissible is motivated by the weak-strong
uniqueness theory for the Euler equations, which shows that weak (even measure-
valued) solutions to incompressible Euler with energy bounded by their initial data
must coincide with the classical solution obtaining the same initial data provided
the latter exists (see [2] and [54]).

We note aswell the recentwork of [8] onweak solutions to the 3DNavier Stokes
equations of class L2

t Hβ
x for some β > 0, which shows that such solutions may be

nonunique, may have any prescribed smooth energy profile with compact support,
and may generate any Hölder continuous weak solution to Euler as a zero viscosity
limit in Ct L2

x . At present these solutions appear to be separate from the previous
discussion as they do not satisfy the local energy inequality for Navier–Stokes that
defines a suitable weak solution assumed in Conjecture 2.

Finally, we remark that our work has led to a further improved Hölder exponent
in [16] and a generalization to the compressible Euler equations in [32]. Compared
to theseworks, which drawon ourmain ideas, ourworkmaintains some advantages.
Namely, we obtain solutions with compact forward in time support, we establish a
stronger nonuniqueness result, and we prove a result on the density of wild initial
data as a consequence of a general approximation theorem. We also anticipate that
our approach may be more possible to extend to the two-dimensional setting where
Mikado flows are not applicable.

1.2.1. Main difficulties It must be emphasized that dissipation of total kinetic
energy, though useful as a criterion for data that admit a classical or Lipschitz so-
lution, would not be expected to provide a uniqueness criterion for weak solutions
that exhibit strict dissipation of energy, whereas in contrast the local energy in-
equality may be considered for this purpose. This point may be seen most easily
in the example of the Burgers equation (4), which admits the infinite family of
compactly supported solutions on [0, 2] × R equal to

uα(t, x) = α · 10<x<αt + (x/t) · 1αt≤x<t + 1 · 1t≤x≤1+t/2

+ 0 · 1x>1+t/2, 0 < t ≤ 2, (8)

for 0 < x < ∞, and extended to be odd uα(t,−x) = −uα(t, x) for x < 0. For any
0 ≤ α ≤ 1, uα(t, x) is a weak solution to (4) with initial data uα(0, x) = 10<x≤1−
1−1≤x<0, and for small values of α ≤ (1/6)1/3, uα satisfies the dissipation of total
kinetic energy d

dt

∫
R

u2
α(t, x)dx ≤ 0. In this case, the unique entropy solution is the
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solution u0(t, x), which exhibits strict dissipation of energy − d
dt

∫
R

u2
0(t, x)dx =

2/3 and is the only bounded weak solution to Burgers for the given initial data
that satisfies the local energy inequality (5). Here the failure of total kinetic energy
dissipation to provide a uniqueness criterion may be explained by the fact that
the entropy solution has strictly positive total energy dissipation, giving room for
nearby solutions to exist such as the family uα that exhibit a small amount of local
energy creation but not strong enough to disturb the strict dissipation of total kinetic
energy. We are thus motivated to consider the local energy inequality (2) for the
Euler equations as a more stringent admissibility criterion for energy dissipating
solutions with lower regularity. The problem of constructing continuous solutions
satisfying this inequality, which is motivated by the discussion of Conjectures 1
and 2, would appear even more challenging from this vantage point in view of the
fact that uniqueness holds for continuous weak solutions to Burgers (see, e.g. [13]).

Due to intrinsic differences in the setting of continuous solutions, the proof of
Theorem 3 on L∞

t,x solutions faces substantial difficulties towards being extended
to constructing continuous, globally dissipative solutions or more generally to-
wards a proof of Conjecture 1. Specifically the proof of Theorem 3 yields a series
v =∑q Vq where each Vq is of size 1 in L∞

t,x , the partial sums vk =∑q≤k Vq are

uniformly bounded in L∞
t,x with energy densities |vk |2

2 (t, x) converging in Ct L p
x to

the prescribed kinetic energy density for p < ∞, and the series converges only
in L p

t,x for p strictly less than ∞. In contrast the construction of continuous and
Hölder continuous solutions relies on convergence of the approximate solutions to
be achieved uniformly at a rate compatible with the desired regularity. The known
methods for producing Hölder continuous solutions lead to at best Ct L p

x approxi-
mation of the energy density (which follows from the estimates of [33,34]) and not
to uniform convergence.

1.3. Main results and new ideas

Themain achievement of thiswork is to develop an entirely different strategy for
constructing solutions satisfying the local energy inequality that completely avoids
the difficulties faced in generalizing the approach of Theorem 3. The strategy we
develop in this work provides a significantly more explicit picture of how local
energy dissipation may be achieved in the construction of solutions compared to
the proof of Theorem 3. This construction has properties that are interesting from a
physical point of view. In particular, the arrowof time plays a fundamental role in the
scheme, and the construction itself turns out to closelymirror a picture of turbulence
theorized by Kraichnan, called the Lagrangian Direct Interaction Approximation
[41], which postulates that turbulent energy cascades are governed by trilinear
interactions of waves that are carried by the mean velocity field.

With this new strategy, we obtain the following results:

Theorem 4. For any α ∈ [0, 1/15), there exists an infinite family of weak solu-
tions (vβ, pβ) to (1) of class vβ ∈ Cα

t,x ([0,∞) × T
3) that satisfy the local energy

inequality 2 and share the same initial data while having uniformly bounded, com-
pact support. Such a family may be chosen to have a common dissipation measure
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μ = −[∂t (|vβ |2/2)+∇ j ((|vβ |2/2+ pβ)v
j
β)] independent of β while being home-

omorphic to a Cantor set as a subspace of Cα
t,x , and also having positive Hausdorff

dimension as a subspace of Ct L2
x .

This theorem gives in particular the first examples of continuous Euler flows that
satisfy the local energy inequality with nonzero dissipation, and the first partial
result towards Conjecture 1.

Our motivation for showing nonuniqueness for a fixed energy dissipation mea-
sure is related to the possible physical interpretation of general nonunique solutions.
One may imagine that nonuniqueness of globally dissipative Euler flows may be
due to information that is lost in the zero viscosity limit if such solutions were to
arise in this limit. A related idea conveyed in [50] is that the energy nonconserving
Euler flows may be viewed as Euler flows with an “invisible” force that is equal
to zero as a distribution, but may be captured by a different mathematical descrip-
tion. One may ask in this regard if the dissipation measure itself can encapsulate
the effects of a weakly vanishing friction and restore uniqueness. The result of
Theorem 4, reinforcing Theorem 3, would suggest that such a result may not be
expected.

Our next theorem shows that the same type of nonuniqueness result holds for
global solutions to incompressible Euler that satisfy local conservation of energy
as in the local energy equality (3).

Theorem 5. The statement of Theorem 4 holds also with the local energy inequality
(2) replaced by the local energy equality (3), and the condition that the family
(vα)α∈2N have compact support replaced by the condition that the family (vα)α∈2N
are defined globally on the domain R × T

3.

The fact that the family of solutions is homeomorphic to a Cantor set has some
physical interest. Since there are no isolated members of the family, no finite-
precisionmeasurement (that is continuous in theCα topology) can isolate a solution
to restore uniqueness.

We note here that the nonuniqueness statement we obtain is stronger than the
previous results on nonunique energy-conserving weak solutions, including those
proven in the L∞

t,x context. More precisely, in [19] what is shown is that there is
a complete, separable metric space of “subsolutions” such that there is a Baire
residual (i.e. generic) set of subsolutions consisting of solutions to Euler that obey
the local energy equality and have the same initial data (in the sense of Ct L2

w).
An exercise in real analysis shows that every separable metric space has a dense
Gδ subset with zero Hausdorff dimension; thus, one cannot deduce that a Baire
generic subset of a complete, separable metric space will have positive Hausdorff
dimension. Furthermore, our theorem yields a metric space of solutions that is
already complete (since it is compact) rather than being only Baire generic, and the
initial data is obtained in a strong topology (Cα) rather than a weak topology, so
energy conservation holds for all t ∈ [0,∞) including t = 0.

Thenonuniqueness statements inTheorems4 and 5 are provenby implementing
a new strategy for proving nonuniqueness of solutions that represents the first use
of a probabilistic method in the context of convex integration. The proof proceeds
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by inserting a random coin toss into each step of the iteration at a point where none
of the estimates of the iteration will be disturbed. In this way our work gives a first
answer to the question of whether there exists a probabilistic approach to convex
integration raised in [20, Problem 9]. This question has a natural motivation in our
context given the role that randomness is believed to play in turbulent motion. The
method leads naturally to a Cantor family of solutions, as the outcome of every coin
toss changes the final solution in a quantitative way. Our proof that the resulting
family of solutions has positive Hausdorff dimension in the energy space Ct L2

x
uses the exponential (rather than double-exponential) growth of frequencies in the
iteration obtained via techniques of [39]. It is plausible to expect that our method
may also produce an infinite Hausdorff family of solutions when a greater amount
of randomness is employed.

The final application we consider here concerns the C0 density of “wild” initial
data that admit an infinite family of nonunique weak solutions to incompressible
Euler satisfying the local energy equality (3). The result may be compared to the
analogous density results in [27,52]; however, our proof is by a quite different
approach; we refer to Sect. 6.3 for a more precise discussion.

Theorem 6. For any α < 1/15, the set of initial data on T
3 that admit infinitely

many solutions of class Cα
t,x that obey the local energy equality (3) on a common

interval of time containing 0 is C0 dense in the space of continuous, divergence
free initial data.

Our proof of Theorems 4–6 above proceeds by developing a new type of convex
integration argument based on the concept of a “dissipative Euler–Reynolds flow”.
This concept, which extends the notion of an Euler–Reynolds flow of [22], keeps
track of errors in solving the Euler equation while allowing for a relaxation of the
local energy inequality (2) to hold. The goal of the argument is then to design an
elaborate convex integration scheme that can not only reduce the error in solving
the incompressible Euler equations, but also reduce the error in satisfying the local
energy inequality simultaneously.

Obtaining a scheme that satisfies all of the conditions we require for this argu-
ment turns out to be more restrictive than previous constructions of incompressible
Euler flows that have been used in the results towards Onsager’s conjecture. We
have found in particular that both Beltrami flows (as applied in [1,22,23,37] et.
al.) and Mikado flows (as applied in [5,27,38]) appear to be incompatible with
our goals for separate reasons. For Beltrami flows it is apparently the case that no
significant progress towards improving the error in satisfying the local energy in-
equality is obtained when they are implemented in the construction. Mikado flows
seem to face a different difficulty, namely that their implementation in [5,38] in-
troduces both creation and dissipation of energy in the disjoint regions where the
waves are supported and cut off. It is unclear what kind of construction may be
necessary to advance beyond such difficulties and hopefully achieve a future proof
of Conjecture 1.

In view of the above, our proof relies on a different construction based on “one-
dimensional” waves that was first outlined by [39] and turns out to be suitable for
improving the error in the local energy inequality. In the present paper we improve
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the ansatz that had been outlined there to make the waves “multi-dimensional” in
our proofs of Theorems 4–6. Our proof generalizes readily to extend Theorems 4–
6 to all dimensions d ≥ 3 while obtaining the same regularity 1/15 independent
of the dimension. We believe that our argument may also be extended in part to
dimension two7; however, in this case there are additional complications related to
the error in the local energy inequality that have prevented us so far from obtaining
a scheme of comparable regularity. We discuss these points further in Sect. 5.

In the course of our proof of Theorems 4–6, our work develops several new
techniques in the method of convex integration. As noted, our method of proving
nonuniqueness in Theorems 4 and 5 is new and yields a stronger nonuniqueness
result than the methods previously used in the literature on Hölder continuous
solutions. Our method of establishing density of wild initial data is also new, as we
obtain the result as a consequence of a general Approximation Theorem (Theorem7
below), which implies also both Theorems 4 and 5. We have also maintained and
proven estimates throughout the proof that are as sharp as possible so that our work
may be applicable to higher regularity regimes of parameters and potentially to a
broader range of applications.

1.4. Outline

We will describe the notation of the paper in Sect. 1.5. The basic concepts
of a dissipative Euler–Reynolds flow and the frequency energy levels that will be
used to estimate such flows are described in Sect. 2. The Main Lemma is stated in
Sect. 3. The bulk of the paper then consists of the proof of the Main Lemma, which
is contained in Sect. 4. Section 4.1 provides a general introduction to the proof of
the Main Lemma, which is carried out in detail in Sects. 4.2–4.13. Section 4.14
provides a summary andfinal details of the proof, and summarizeswhere in 4.2-4.13
the various statements of the Main Lemma have been proven. Section 5 outlines
the extension of the proof to dimensions d ≥ 3 and contains discussion of the two
dimensional case.

Theorems 4-6 are deduced from a general Approximation Theorem stated in
Theorem 7. The proof of Theorem 7, which immediately implies Theorems 4 and 5,
is carried out in Sects. 6.1–6.2 using theMain Lemma of Sect. 3. The final Sect. 6.3
provides the proof of Theorem 6, which is formulated in more detail as Theorem 8.

1.5. Notation

We will always view tensor fields (including scalar and vector fields) on T
3 =

(R/Z)3 as distributions defined on all of R
3 that are Z

3-periodic. We will use the
symbol p ∈ R̂3 to denote the frequency variable, and Fsupp F := supp F̂ ⊆ R̂3

to denote the Fourier support of a tensor field F . We use suppt F = {t ∈ R : {t} ∩

7 It is possible that both Conjectures 1 and 2 could be true in both dimensions two and
three.However, the two settings are highly different regarding the circumstances underwhich
one may possibly encounter solutions with vorticity becoming arbitrarily large as would be
true for the sequence in Conjecture 2.
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supp F 
= ∅} to denote the time-support of a tensor field F . We will follow the
summation convention of summing upper and lower spatial indices that are repeated
(e.g., ∇ j (v

jv�) = ∑3
j=1 ∇ j (v

jv�)), maintaining the indices as raised or lowered
depending on whether they are viewed as covariant or contravariant indices.

We will always use vector notation to denote a multi-index �a = (a1, . . . , an)

of order n = |�a| ≥ 0, where each ai ∈ {1, 2, 3}. The expression ∇�a refers to the
corresponding partial derivative operator ∇�a = ∇a1∇a2 · · · ∇an , while for h ∈ R

3,
h�a refers to the corresponding multinomial ha1ha2 · · · han of degree n = |�a| ≥ 0.
We will write ‖∇L F‖C0 := max|�a|=L ‖∇�a F‖C0 to denote the C0 norm of the L’th
derivative of a tensor field F , where all C0 norms are taken as space-time norms.
The Ct L2

x norm of a tensor field taking values in L2(T3) continuously in t is given
by ‖F‖Ct L2

x
= supt ‖F(t, ·)‖L2(T3) = supt (

∫
T3 |F(t, x)|2dx)1/2.

We record the following elementary counting inequality, which may be shown
by induction on m:

(x1 + . . . + xm − y)+ ≤
∑

i

(xi − y)+, if y, xi ≥ 0 for all 1 ≤ i ≤ m. (9)

At certain points we will use the notation A � B to refer to an inequality A ≤ B
that has not been established, but will be assumed from that point in order to ensure
that certain terms are well-defined, and will later be verified to hold.

2. Dissipative Euler–Reynolds Flows

The starting point for our proof will be to introduce the following notion of
a dissipative Euler–Reynolds flow, which provides us with a natural space of
vector and tensor fields that can be used to approximate weak solutions to the
Euler equations that satisfy the local energy inequality (2). We define this notion
as follows by augmenting the well-known Euler–Reynolds system of [22] with
an additional inequality (Inequality (11) below) that represents a relaxation of the
local energy inequality. The inequality contains two new fields (the unresolved flux
density and current, κ, ϕ), which, together with the Reynolds stress R, measure the
error in the local energy inequality.

Definition 2.1. A dissipative Euler–Reynolds flow on Ĩ × T
n , Ĩ an interval, is a

tuple of tensor fields (v, p, R, κ, ϕ, μ) on Ĩ × T
n consisting of: a vector field v�

(the velocity field), a scalar function p (the pressure), a symmetric tensor field
R j� (the Reynolds stress), a scalar function κ (the unresolved flux density), a
vector field ϕ j (the unresolved flux current), all smooth in the spatial variables
and satisfying the system of equations

∂tv
� + ∇ j (v

jv�) + ∇� p = ∇ j R j�, ∇ jv
j = 0 (10)

∂t

( |v|2
2

)
+∇ j

[( |v|2
2

+ p

)
v j
]
≤ Dtκ +∇ j [v� R j�] + ∇ jϕ

j

Dt F := ∂t F +∇i (v
i F), (11)
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together with the scalar function μ ≥ 0 (the dissipation measure) defined by

μ = −
(

∂t

( |v|2
2

)
+ ∇ j

[( |v|2
2

+ p

)
v j
])

+ Dtκ + ∇ j [v� R j�] + ∇ jϕ
j .

(12)

Remark. The definition of a dissipative Euler–Reynolds flow, which generalizes
the notion of an Euler–Reynolds flow, can be naturally motivated by observing
that any ensemble average (v, p) of globally dissipative Euler flows must be a
dissipative Euler–Reynolds flow. From the point of view of ensemble averages, the
unresolved flux density κ arises as half the trace of R j� := v jv� − v jv� while the
unresolved flux current φ j arises from trilinear variations in velocity and bilinear
variations in velocity and pressure in a cumulant expansion of the averaged cubic

nonlinearity
( |v|2

2 + p
)

v j on the left hand side of (2); see [37, Section 1] for more

on the significance of this remark for performing convex integration.

Our strategy at this point will be to construct a convex integration scheme that
generates a sequenceof smooth, dissipativeEulerReynoldsflows (v, p, R, κ, ϕ, μ)(k)

indexed by k with (R, κ, ϕ)(k) all tending to 0 uniformly as k → ∞ and with
(v, p)(k) converging uniformly to a Hölder continuous, weak solution to incom-
pressible Euler. As the error terms in (11) that involve κ , R and ϕ will all converge
weakly to zero, the limiting solution (v, p) will satisfy the local energy inequality
(11) with dissipation measure μ = −[∂t (|v|2/2) + ∇ j ((|v|2/2 + p)v j )] equal to
the weak limit μ = w- limk→∞ μ(k) ≥ 0.

We measure the size of these errors using the following notion of compound
frequency-energy levels. The notion is adapted from the use of analogous estimates
in [39], which were introduced for the purpose of executing a convex integration
scheme in which only a single “component” of the error could be reduced in size
during the construction of solutions. In our construction,wewill be able to eliminate
essentially a part of the error that can be built from restricting to a single subspace
in each stage. In what follows we will view dx1 = [1, 0, 0], dx2 = [0, 1, 0], dx3 =
[0, 0, 1] as elements in the dual of R

3, so that ker dx1 = 〈e2, e3〉, ker dx2 =
〈e1, e3〉, . . ., and ker dx1 ⊗ ker dx1 = ⊕i, j 
=1〈ei ⊗ e j 〉, etc..
Definition 2.2. For � ≥ 2, ev ≥ eϕ ≥ eR > eG > 0 and integers L > 0, I, J ∈
{1, 2, 3}, I 
= J , we say that a dissipative Euler–Reynolds flow (v, p, R, κ, ϕ, μ)

on Ĩ × T
3 has compound frequency-energy levels (of type [I, J ] and order L)

bounded by (�, ev, eϕ, eR, eG) if one can express the stress tensor and unresolved
flux density and current in the form

R j� = R j�
[I ] + R j�

[J ] + R j�
[G],

κ = κ[I ] + κ[G], κ[I ] = δ j� R j�
[I ]/2

ϕ j = ϕ
j
[1] + ϕ

j
[G],

(13)

where R j�
[I ] and R j�

[J ] are symmetric tensor fields that take values respectively in the

vector subspaces ker dx I ⊗ ker dx I and ker dx J ⊗ ker dx J of R
3 ⊗ R

3, ϕ j
[I ] takes

values in ker dx I , and the following estimates hold uniformly on Ĩ × T
3:



1238 Philip Isett

‖∇�av‖C0 ≤ �|�a|e1/2v , ‖∇�a p‖C0 ≤ �|�a|ev, 1 ≤ |�a| ≤ L (14)

‖∇�a Dt p‖C0 ≤ �|�a|+1e3/2v , 0 ≤ |�a| ≤ L − 1 (15)

‖∇�a F‖C0 ≤ �|�a|hF , 0 ≤ |�a| ≤ L (16)

‖∇�a Dt F‖C0 ≤ �|�a|+1e1/2v hF , 0 ≤ |�a| ≤ L − 1. (17)

Here (F, hF )t is any column of the following formal matrix (in which we define
eϕ := e1/3ϕ e2/3R )

[
F R[I ] R[J ] R[G] κ[I ] κ[G] ϕ[I ] ϕ[G]

hF eϕ eR eG eϕ eR e3/2ϕ e3/2ϕ

]
, (18)

and Dt F := ∂t F + v · ∇F = ∂t F + ∇i (v
i F). If Ĩ is finite we also require

| Ĩ | ≥ 8(�e1/2v )−1.

3. The Main Lemma

The following technical Main Lemma summarizes the result of one stage of
the iteration. The Lemma is stated in terms of the notion of a (δ̄, M)-well-prepared
dissipative Euler–Reynolds flow (to be defined in Definition 4.1 below), which
places conditions on the form of the principal part of the error term R j�

[1] that
are consistent with the outcome of the previous stage of the iteration, and that in
particular imply positive definiteness and that the trace part is dominant on the
appropriate intervals. In particular, even though the error terms are supported in a
certain interval Ĩ[G], it is only on a smaller interval Ĩ[l] that the trace part dominates
the largest incoming error terms. This nuance of the iteration is used to obtain
compactly supported solutions, but not to obtain solutions satisfying local energy
conservation.

In the following, we recall that eϕ = e1/3ϕ e2/3R , is as in Definition 2.2:

Lemma 3.1. (Main Lemma) For any L ≥ 2, there exist constants δ̄ > 0 and
Ĉ, CL > 1 such that the following holds: Let (�, ev, eϕ, eR, eG) be compound
frequency energy levels. Let (v, p, R, κ, ϕ, μ) be a dissipative Euler–Reynolds flow
on Ĩ ×T

3 with compound frequency energy levels (of type [l, l+1] mod 3 and order
L) bounded by (�, ev, eϕ, eR, eG). Let Ĩ[l] ⊆ Ĩ[G] be nonempty subintervals of Ĩ ,
let ē : Ĩ → R+ be a smooth, non-negative function and let N ≥ 1 be such that

N ≥ max
{
(ev/eG)(e1/2ϕ /e1/2ϕ ), (e1/2v /e1/2ϕ )(eϕ/eG)2 · (eϕ/eϕ), (ev/eϕ)3/2

}
,

(19)

suppt (R[1], R[2], R[G], ϕ[1], ϕ[G], κ[G]) ⊆ Ĩ[G]. (20)

Suppose also that (v, p, R, κ, ϕ, μ) is (δ̄, M)-well-prepared (for stage [l]) for
some M ≥ 1 in the sense of Definition (4.1) below with respect to these frequency
energy levels and the trio ( Ĩ[l], Ĩ[G], ē).
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Then there exists a dissipative Euler–Reynolds flow (
∗
v,

∗
p,

∗
R,

∗
κ,

∗
ϕ,

∗
μ) that has

compound frequency energy levels (of type [l+1, l+2]mod 3 and order L) bounded
by

(
∗
�,

∗
ev,

∗
eϕ,

∗
eR,

∗
eG)

= (NĈ�, Ĉeϕ, Ĉeϕ, ĈeG , (e1/2v /(e1/2ϕ N ))1/2eϕ), eϕ = e1/3ϕ e2/3R , (21)

and that is (δ̄, Ĉ)-well prepared with respect to the frequency energy levels (21),
some pair of intervals Ĩ[l+1] ⊆ Ĩ[G∗] contained in Ĩ , and some smooth, non-negative
e : Ĩ → R+. The trio ( Ĩ[l+1], Ĩ[G∗], e) may be chosen such that e = e(t) depends
only on (�, ev, eϕ, eR, eG), Ĩ[G] and L.

One may arrange that
∗
v has the form

∗
v = v + V such that

‖V ‖C0 ≤ CLe1/2ϕ , (22)

sup
t

∣∣∣∣
∫
T3

φ�(t, x)V �(t, x)dx

∣∣∣∣
≤ �−1e1/2ϕ sup

t
‖∇φ(t, ·)‖L1 , for all φ� ∈ C∞( Ĩ × T

3), (23)

and also such that the restrictions of V and the components of (
∗
v,

∗
p,

∗
R,

∗
κ,

∗
ϕ) to any

interval Ĩ ′ ⊆ Ĩ depend only on the data (�, ev, eϕ, eR, eG), ( Ĩ[l], Ĩ[G], ē) and on the

restriction of (v, p, R, κ, ϕ) and their components to the (�e1/2v )−1 neighborhood
of Ĩ ′ in Ĩ .

It is possible to arrange that
∗
μ − μ depends only on Ĩ[G], (�, ev, eϕ, eR, eG)

and L, and is everywhere non-negative with
∗
μ = μ on Ĩ[G]. One may also arrange

that

Ĩ[l+1] = {t + t̄ : t ∈ Ĩ[G], |t̄ | ≤ 10−3(�e1/2v )−1} ∩ Ĩ (24)

suppt V ∪ suppt (
∗
R,

∗
κ,

∗
ϕ)) ⊆ Ĩ[G∗] := {t ≤ sup Ĩ[G] + (�e1/2v )−1/40} ∩ Ĩ ,

(25)

where the containment (25) applies also to the all the components of (
∗
R,

∗
κ,

∗
ϕ) in

(13).
Furthermore, for any interval J̃ with length | J̃ | ≥ �−1e−1/2

v that is con-
tained in Ĩ[l], there exists a (possibly different) dissipative Euler–Reynolds flow
(v2, p2, R2, κ2, ϕ2, μ2), v2 = v + V2 obeying all of the above conclusions stated

for (
∗
v,

∗
p, . . .) and for V with the same functions e2(t) = e(t) and μ2 = ∗

μ, but

possibly differing from
∗
v somewhere in the interval J̃ and satisfying

supp t

(
v2 − ∗

v, p2 −
∗
p, R2 −

∗
R, κ2 − ∗

κ, ϕ2 − ∗
ϕ

)
⊆ J̃ (26)

sup
t

∫
T3

|v2(t, x) − ∗
v(t, x)|2dx ≥ ((CL M)−1 − N−1)eϕ, (27)

with (26) applying also to the components of (R2 −
∗
R, κ2 − ∗

κ, ϕ2 − ∗
ϕ).
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In the proof of Lemma 3.1 that follows we will consider only the case of type
[l, l+1] = [1, 2] frequency energy levels to simplify notation. The general case,
which will be used in Sect. 6 to prove the main theorems, follows by symmetry by
permuting the coordinate axes. We note that the estimate (23) will not be required
for the applications we consider in this paper. However, we have included the bound
due its usefulness for further applications such as results of h-principle type (e.g.,
[33,39]).

4. Proof of the Main Lemma

4.1. Proof of Main Lemma: Introduction

Let (v, p, R, κ, ϕ, μ) be a dissipative Euler flow given as in the assumptions of

Lemma 3.1. We will construct the new velocity field
∗
v

� = v� + V � and pressure
∗
p = p + P by adding carefully designed corrections V and P to the velocity field
and pressure.

The correction V � is a “high-frequency”, divergence free vector field con-
structed as a sum V = ∑

I∈I VI of individual waves V �
I that are divergence free

and that are together indexed by a set I. The V �
I are complex-valued vector fields,

and each VI has a conjugate wave VĪ := VI indexed by Ī ∈ I so that the correction
V � is real valued. A new point in this construction is that there will be several types
of waves that partition the index set into I = IR � Iϕ . The waves indexed by Iϕ

are those that will be used to cancel out (part of) the unresolved flux current ϕ,
whereas the waves indexed by IR will be used to cancel out (part of) the Reynolds
stress R, and these two families are disjoint. These families will furthermore be

partitioned into IR := IR � �
IR, Iϕ = Iϕ � �

Iϕ , where the waves in I = IR � Iϕ

are the largest and they will be designed to cancel out the main error terms R j�
[1]

and ϕ
j
[1], while those in

�
I := �

IR � �
Iϕ will be designed to cancel out (part of) the

remaining, smaller error terms and may have slightly larger support in time. This

decomposition yields also that I = I � �
I.

The new Reynolds stress
∗
R will be constructed as in previous incompressible

Euler schemes as a sum of several terms that will be required to satisfy the following
equations:

∗
R

j�
= R j�

T + R j�
S + R j�

H + R j�
M (28)

∇ j R j�
T = ∂t V

� + ∇ j [v j
ε V � + V jv�

ε ] (29)

R j�
S =

∑
I

V j
I V �

I + Pδ j� + R j�
ε (30)

∇ j R j�
H =

∑
J 
= Ī

∇ j (V j
I V �

J ) (31)



Nonuniqueness and Existence of Continuous, Globally Dissipative Euler Flows 1241

R j�
M = [(v j − v j

ε )V � + V j (v� − v�
ε )] + (R j� − R j�

ε ) :
= R j�

Mv + (R j� − R j�
ε ). (32)

The vector field v�
ε and symmetric tensor field R j�

ε are regularizations of the given
v� and R j� that will be defined in Sect. 4.5 below. As in Definition 2.2, we will also
have a decomposition R j�

ε = R j�
[1ε] + R j�

[2ε] + R j�
[Gε], where the R j�

[lε] take values

in ker dxl ⊗ ker dxl for l = 1, 2, and we require that ‖R[lε]‖C0 � AL‖R[l]‖C0 for
l = 1, 2 and ‖R[Gε]‖C0 � AL‖R[G]‖C0 with AL ≥ 1 depending on L .

Towards considering the local energy inequality, let us introduce the resolved
energy flux density of (v, p), which we define to be D[v, p] := ∂t (|v|2/2) +
∇ j ((|v|2/2+ p)v j ). Then the definition of the dissipation measure μ in (12) gives

D[v, p] = Dtκ +∇ j (v� R j�) +∇ jϕ
j − μ (33)

A major goal of this construction will be to design the new (
∗
v,

∗
p) so that its

resolved energy flux
∗
D := D[∗v,

∗
p] has the form (33) with (

∗
κ,

∗
R,

∗
ϕ) much smaller

than the original (κ, R, ϕ). Using
∗
v = v + V ,

∗
p = p + P , pv j = v�(pδ j�), and

(33) the new
∗
D = D[∗v,

∗
p] can be decomposed in the form

∗
D = D̊T + D̊S + D̊H + D̊κ + D̊ϕ − μ, (34)

where the first three terms are related to the decomposition of the stress in (28)

D̊T = ∂t (v�V �) +∇ j (v�V �v j ) +∇ j

(( |v|2
2

+ p

)
V j
)

(35)

D̊S = ∇ j

[
v�[
∑

I

V j
I V �

I + Pδ j� + R j�]
]

(36)

D̊H = ∇ j

[
v�[
∑
J 
= Ī

V j
I V �

J ]
]
, (37)

and where the other terms involve the unresolved flux density and current, κ and ϕ

D̊κ = ∂t

( |V |2
2

+ κ

)
+∇ j

(( |V |2
2

+ κ

)
v j
)

(38)

D̊ϕ = ∇ j

[ ∑
I,J,K

(VI )�V j
J V �

K + PV j + ϕ j
]
. (39)

Since one of our main objectives is to ensure the new unresolved flux density
∗
ϕ

will be substantially smaller than the given ϕ, we aim to design our corrections so
that the frequency cascades in the product of equation (39) will cancel out as much
as possible of the “low-frequency” part of ϕ. At the same time, we will also need
to reduce the sizes of both κ and R.

The goal of canceling out ϕ will be accomplished by the waves VI , I ∈ Iϕ ,
as follows. We will specify a subset T ⊆ Iϕ × Iϕ × Iϕ that is symmetric under
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conjugation (I, J, K ) ∈ T ⇔ ( Ī , J̄ , K̄ ) ∈ T with the property that all trilinear
interactions of the form (VI )�V j

J V �
K with I, J, K ∈ T produce low frequency

terms that together will cancel out the term ϕ in (39). We perform this task by first
splitting D̊ϕ = D̊ϕL + D̊ϕH into a low frequency cascade term plus purely high
frequency terms of the form

DϕL = ∇ j

[ ∑
I,J,K∈T

(VI )�V j
J V �

K + ϕ j
ε

]
,

D̊ϕH = ∇ j

[ ∑
I,J,K /∈T

(VI )�V j
J V �

K + PV j + (ϕ j − ϕ j
ε )
]
, (40)

where ϕε is a regularization of ϕ to be defined with the other regularizations in
Sect. 4.5 below.

It is of interest to note that the use of tri-linear interactions as above is reminis-
cent of the trilinear interactions that appear in the predictions of the DIA and LDIA
theories by Kraichnan for modeling the energy spectrum in turbulent flows (see
e.g. [42, Equation 3]).8 Precisely, Kraichnan’s theory predicts that energy cascades
in turbulence are governed by trilinear interactions of waves that are carried along
the mean flow, much like what will follow.

In addition to canceling out the term ϕε in (40), we must also cancel out the
unresolved flux density κ in (38). We will treat κ with a similar approach by
first isolating the low frequency part of κ inside the error term D̊κ . Thus we split
D̊κ = DκL + D̊κ H into low and high frequency terms as follows

DκL = Dt

[∑
I

VI · VI

2
+ κε

]
(41)

D̊κ H = Dt

[∑
J 
= Ī

VI · VJ

2

]
+ Dt [κ − κε] + ∇ j

(( |V |2
2

+ κ

)
(v j − v j

ε )

)
, (42)

where here and in what follows the operator Dt denotes the coarse scale advective
derivative Dt F := (∂t + vε · ∇)F = ∂t F +∇i (v

i
ε F).

Observe that there is an important coupling between our goals of canceling out
the term κε in (41) and the low frequency stress term Rε in (30), namely that term∑

I VI · VI /2 that appears in (41) is exactly half the trace of the term
∑

I V j
I V �

I
that appears in (30). We address this tension using our control of the pressure term
Pδ j� and the following idea.

The term
∑

I VI · VI /2 is essentially the contribution of V = ∑
I VI to the

coarse scale part of the energy density, since the waves VI will be of high frequency
and will be essentially orthogonal. For a solution that exhibits local energy dissipa-
tion, this contribution to the local energy flux should be decreasing in time. With
this motivation, we will choose a function e(t) with the properties

8 We thank T. Drivas for this comment.
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e(t) ≥ 0, Dt e(t) = ∂t e(t) ≤ 0

e(t) ≥ K0eϕ, if t ≤ sup Ĩ[G] + (�e1/2v )−1

‖D
r
t e1/2(t)‖C0 ≤ K1(�e1/2v )r e1/2ϕ , r = 0, 1, 2,

(43)

where K0 is a constant that will be specified later and K1 is another constant that is
allowed to depend on K0. Our choice of K0 will depend on L , but not on any other
parameters in the construction.

The choice of e(t) will determine the contribution of V = ∑
I VI to the new

dissipation measure
∗
μ, as we will rewrite (41) as

DκL = Dt

[∑
I

VI · VI

2
+ κε − e(t)

]
+ Dt e(t) (44)

with the key observation that Dt e(t) ≤ 0 is non-positive since e(t) is nonin-
creasing. This fact implies that this term can be absorbed into the new dissipation

measure
∗
μ := μ−Dt e(t). In particular, the dissipationmeasure

∗
μ = μwill remain

unchanged if we take e(t) to be constant in time.
The correction P to the pressure is now determined by our requirement that it

is possible to choose VI to cancel out the main terms in both of equations (30) and
(44) simultaneously. Namely, taking the trace of (30) and comparing to (44) we
require P = P(t, x) to satisfy the following equality pointwise

−e(t) + κε = (3P(t, x) + δ j� R j�
ε )/2. (45)

Using that κ = κ[1] + κ[G], κ[1] = −(1/2)δ j� R j�
[1], the equation (46) becomes

−3P(t, x) = 2e(t) − 2κ[Gε] + δ j�(R j�
[2ε] + R j�

[Gε]). (46)

The main term in this equation will be the term coming from e(t) due to the lower
bound in (43).

4.2. General shape of the construction

Our correction V =∑I VI will be a sum of divergence free “plane waves” that
oscillate at a large frequency λ := BλN∗�. The parameter Bλ ≥ 2 will be taken
such that λ is an integer multiple of 2π , and will be bounded in size by a constant
Bλ, which will be the last constant chosen in the argument and depends on all of the
other parameters and constants in the construction. (Informally one should simply
think of Bλ as a large constant.)

More explicitly, the leading term in each individual wave V �
I will be equipped

with a real-valued phase function ξI (t, x) and an amplitude v�
I (t, x), and there will

be a lower order term δV �
I that is present to ensure that V �

I is exactly divergence
free:

V �
I := eiλξI (v�

I + δv�
I ) = V̊ �

I + δV �
I

V̊ �
I = eiλξI v�

I , δV �
I := eiλξI δv�

I .
(47)
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The amplitude v�
I will be required to take values orthogonal to the phase gradient

〈∇ξI 〉 in order to make the leading order term in (47) divergence free to leading
order in λ. Meanwhile, the phase function ξI will be advected by the coarse scale
flow of vε initiating from a time t (I ) with data ξ̂I (x):

(∂t + v j
ε∇ j )ξI = 0 on R × T

3, ξI (t (I ), x) = ξ̂I (x) on T
3, (48)

vI · ∇ξI = 0 on R × T
3. (49)

The index I ∈ I will have components I = (k, f ) ∈ Z × F, where k ∈ Z will

specify the time interval on which VI will be supported, t (I ) = k
∗
τ will be specified

in line (55) below, F is a finite set that we will specify, and f ∈ F describes the
direction of oscillation VI . The index set has a conjugation symmetry Ī = (k, f̄ ),
f̄ ∈ F, which corresponds to the conjugate wave defined by VĪ = VI , v Ī =
vI , ξ Ī = −ξI . The set F will be partitioned into disjoint subsets F = FR �Fϕ , and
we write I ∈ IR if f (I ) ∈ FR , while I ∈ Iϕ if f (I ) ∈ Fϕ . In general, k(I ) and

f (I ) refer to the (k, f ) components of I . We will similarly decompose F = F� �
F,

FR = FR � �
FR , Fϕ = Fϕ � �

Fϕ into larger vs. smaller amplitude waves, each of

these groups having the conjugation symmetry f ∈ �
FR ⇒ f̄ ∈ �

FR , etc.
Waves having the form (47)–(49) are also used in [37], where an additional

condition is imposed to emulate the Beltrami flows of [22]. Our construction will
be different in that we use the Ansatz based on “one-dimensional, plane-waves”
introduced in [39], and we take advantage of the frequency localization techniques
introduced there. Our construction also improves on this one-dimensional Ansatz
by noting that, in the case of incompressible Euler, one is free to use “multi-
dimensional” waves in the construction provided one maintains the orthogonality
condition (49).

We describe thesewaves as follows. The oscillationswill occur essentially in the
direction of the x1 coordinate, and the vector fields will take values vI ∈ 〈∇ξI 〉⊥
approximately tangent to the level hyperplanes of the x1 coordinate, 〈∇ξI 〉⊥ ≈
ker dx1. The waves will have operators PI that localize to frequencies of size ≈ λ

near the line {(p1, 0, 0)} ⊆ R̂3.
More precisely let ψ : R

3 → R be a Schwartz function with compact Fourier
support in supp ψ̂ ⊆ B2/3(1, 0, 0) ⊆ R̂3 and ψ̂ = 1 in B1/2(1, 0, 0). We will
choose a finite set of nonzero integers FZ ⊆ Z
=0, symmetric under negation n ∈
FZ ⇔ −n ∈ FZ, with the property that

B4(n + n′, 0, 0) ∩ B4(0, 0, 0) = ∅ for all n 
= −n′ in FZ. (50)

We will also assign to each [k] ∈ Z/2Z and f ∈ F a natural number n[k], f ∈ FZ by
an injective map n· : (Z/2Z) × F → FZ with the conjugation symmetry n[k], f̄ =
−n[k], f . For I = (k, f ) ∈ Z × F, we let n[I ] = n[k], f , where [k] is k evaluated
mod 2.

We now specify that each wave VI , I = (k, f ), has frequency support near
λn[I ](1, 0, 0) by setting



Nonuniqueness and Existence of Continuous, Globally Dissipative Euler Flows 1245

V �
I = PI [eiλξI v�

I ],

P̂I [U �](m) = ψ̂

(
m

n[I ]λ

)[
Û �(m) − (Û (m) · m)

|m|2 m�

]
, m� ∈ Z

3 ∼= T̂3. (51)

In this way, each VI is divergence free, since the operator PI in (51) is simply
the usual Leray projection to mean-zero divergence-free vector fields but cut off to
frequencies near λn[I ](1, 0, 0). Note that (51) may be expressed in physical space
as a convolution operator

V �
I =

∫
R3

V̊ b
I (x − h)K �

I b(h)dh, K �
I b(h) = (n[I ]λ)3 K̊ �

b(n[I ]λh) (52)

where K̊ �
b(h) the Kernel associated to P[ψ ∗ ·], which is a Schwartz, matrix-

valued function on R
3. Note we have suppressed the dependence of PI and K �

I b on
λ = BλN∗� in our notation.

We choose the initial data ξ̂I (x) for the phase functions in (48) to be ξ̂I (x) :=
n[I ](1, 0, 0) · x so that λξ̂I (x) is well-defined on x ∈ T

3 = R
3/Z

3 modulo integer
multiples of 2π . We will impose the following properties to ensure ∇ξI remains
sufficiently close to ∇ ξ̂I = n[I ](1, 0, 0) on the support of vI :

‖∇ξI − ∇ ξ̂I‖C0 � (1/4)‖ |∇ ξ̂I | ‖C0 , ‖ |∇ξI |−1‖C0 � 2‖ |∇ ξ̂I |−1‖C0 . (53)

The amplitudes v�
I for I = (k, f ) have the form

v�
I = e1/2I (t)ηI (t)γI f̃ �

I . (54)

Here eI (t) is either the function introduced in (43) above if I ∈ �
I or a different

function ē(t) to be introduced later if I ∈ I, the γI = γI (t, x) are real-valued scalar
functions (the “coefficients”), the ηI (t) are time cutoffs, and the f̃ �

I are vector fields
of size∼ 1 that take values in 〈∇ξI 〉⊥ to ensure that v�

I does also. The time cutoffs

have a time-scale
∗
τ of the form

∗
τ := ∗

b�−1e−1/2
v ,

∗
b = b0(e

1/2
v /(e1/2ϕ BλN ))1/2, (55)

Here b0 ≤ 1 is a positive constant that will be chosen in Proposition 4.3 below

to ensure (53) and depends only on the A0 in (95). (The above choice of
∗
b will

optimize the main error terms.)
We construct ηI differently for I ∈ IR than for I ∈ Iϕ . Namely, let η̄ : R → R

be a smooth cutoff supported in suppt η̄ ⊆ [−1, 1] such that 0 ≤ η̄(t̄) ≤ 1 and∑
k∈Z η̄6(t̄ − k) = 1 for all t̄ ∈ R.9 For I ∈ IR , I = (k, f ), we set ηI (t) =

η̄3(
∗
τ
−1

(t − k
∗
τ)), whereas for I ∈ Iϕ we set ηI (t) = η̄2(

∗
τ
−1

(t − k
∗
τ)). In this way

9 For example, starting with any smooth η̃(t) with suppt η̃ ⊆ [−1, 1] with 0 ≤ η̃(t) ≤ 1
for all t and η̃(t) = 1 on [−2/3, 2/3] one can set η̄(t̄) = η̃(t̄)/(

∑
k∈Z η̃6(t̄ − k))1/6, noting

that the denominator is bounded below and smooth.
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the ηI form part of a quadratic partition of unity for I ∈ IR as opposed to a cubic
partition of unity for I ∈ Iϕ , and the following bounds hold:

For all I = (k, f ), suppt ηI ⊆ {|t − k
∗
τ | ≤ ∗

τ },
‖∂r

t ηI‖C0 �r
∗
b
−r

(�e1/2v )r , 0 ≤ r ≤ 2. (56)

Wemake f̃ I orthogonal to∇ξI by orthogonally projecting some constant vector
f̂ I ∈ 〈∇ ξ̂I 〉⊥:

f̃ �
I (t, x) = f̂ �

I − |∇ξI |−2(∇ξI · f̂ I )∇�ξI . (57)

Note that (57) is well-defined and bounded once (53) is verified, and is equal to f̂ �
I

at the initial time t (I ) = k
∗
τ . The error in approximating f̃ I by its starting value f̂ I

will be written using the hat notation

v�
I = v̂�

I + δ̂v�
I , δ̂v�

I = e1/2(t)γI ( f̃ �
I − f̂ �

I )

= −e1/2(t)γI |∇ξI |−2((∇ξI − ∇ ξ̂I ) · f̂ I )∇�ξI . (58)

The initial direction f̂ I will depend only on the component f = f (I ) ∈ F

of I = (k, f ) in a manner we now describe. For I ∈ �
Iϕ , the initial direc-

tion f̂ I will be chosen from the finite set
�
Bϕ ⊆ 〈(1, 0, 0)〉⊥ defined by

�
Bϕ :=

{(0, 1, 0), (0, 0, 1)}, while for I ∈ Iϕ we use a different orthonormal basis for

ker dx1, Bϕ := {(0, 1/√2, 1/
√
2), (0,−1/

√
2, 1/

√
2)}. For I ∈ �

IR , the initial

direction f̂ I will be chosen from a finite set
�
BR ⊆ 〈(1, 0, 0)〉⊥ = ker dx1 of

cardinality #
�
BR = 3 with the following properties:

The tensors ( f̂ j f̂ �)
f̂ ∈ �

BR
form a basis for ker dx1 ⊗ ker dx1, and (59)

there exists
∗
BR ⊆ ker dx2 such that (ĝ j ĝ�)

ĝ∈ ∗
BR

form a basis for ker dx2 ⊗ ker dx2, and

(60)∑
f̂ ∈ �

BR

f̂ j f̂ � +
∑

ĝ∈ ∗
BR

ĝ j ĝ� = δ j�. (61)

We take for
�
BR a subset of 〈(1, 0, 0)〉⊥ for which

∑
f̂ ∈BR

f ⊗ f = e2 ⊗ e2 +
(1/2)e3 ⊗ e3, and then for

∗
BR we choose a subset of 〈(0, 1, 0)〉⊥ that satisfies∑

ĝ∈ ∗
BR

g ⊗ g = e1 ⊗ e1 + (1/2)e3 ⊗ e3. To find these subsets, observe that the

quadratic forms on the right hand sides of these equations become the standard inner
product on R

2 after choosing appropriate bases for 〈(1, 0, 0)〉⊥ and 〈(0, 1, 0)〉⊥,
which itself be written as f1 ⊗ f1 + f2 ⊗ f2 + f3 ⊗ f3 for vectors fi that form the
vertices of an equilateral triangle in the plane centered at the origin. An exercise in
linear algebra shows that the properties (59)–(61) are all satisfied by this construc-
tion. The exact dependence of f̂ I on I and the description of f̂ I for I ∈ IR will
now be specified in Sect. 4.3 below.
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4.3. Solving for the coefficients in the smaller amplitudes

In this section and in Sect. 4.4, we finish describing the shape of the construction
including the coefficient functions γI , the index sets I, F and the assignment of
integers n[I ].

Our goal for the VI with I ∈ Iϕ is to obtain an array of frequency cascades
such that the low frequency terms arising in (40) for (I, J, K ) ∈ T may cancel out
ϕε . Low frequency contributions from the product (VI )�V j

J V �
K should arise only in

cases where the phases cancel out in the sense that eiλ(ξI+ξJ+ξK ) = 1, which will
occur in cases where the waves share the same initial time t (I ) = t (J ) = t (K )

and satisfy n[I ] + n[J ] + n[K ] = 0. We therefore desire that FZ has several trios of
numbers (n1, n2, n3) ∈ F

3
Z
for which n1 + n2 + n3 = 0. We arrange these features

as follows.
We define the set Fϕ to have the form Fϕ := Bϕ × {±1} × {“a”, “p”}, so

each element f ∈ Fϕ has the form f = ( f̂ , σ, “r”). The component f̂ ∈ Bϕ =
Bϕ � �

Bϕ specifies the direction of the amplitude in the sense of (57), the “sign”
σ ∈ {±1} distinguishes a wave from its conjugate f̄ = ( f̂ ,−σ, “r”), and the string
“r” characterizes the “role” of the wave: if it is “active” or “passive”. We achieve
our desired frequency cascades by requiring the following properties from our map
n· restricted to (Z/2Z) × Fϕ :

• [ConjugateSymmetry] We requiren[k], f̄ = −n[k], f for all ([k], f ) ∈ (Z/2Z)×
Fϕ .

• [High-High-Low Cascades] We require that

n[k],( f̂ ,σ,“p”) + n[k],( f̂ ,σ,“p”) + n[k],( f̂ ,σ,“a”) = 0, (62)

and we define the set of “cascade trios” TF ⊆ F
3
ϕ to be those trios ( f1, f2, f3) ∈

F
3
ϕ that satisfy f1 = ( f̂ , σ, “a”) and f2 = f3 = ( f̂ , σ, “p”) or are a permutation

of such trios. Note that #TF = 4 · 3!, due to two choices of e2, e3 ∈ Bϕ , the two
possible signs and the 3! possible permutations.

• [No Undesired Cascades] We require that

|n[k], f + n[k′], f ′ + n[k′′], f ′′ | ≥ 4 (63)

except for the previously specified High-High-Low cascades required in (62).
Any injective map n· : (Z/2Z) × Fϕ → N that satisfies these properties and
whose image satisfies (50) suffices for defining the restriction of n· to (Z/2Z)×
Fϕ .

We now explain how to choose coefficients γI , I ∈ Iϕ to eliminate part of the
unresolved flux current ϕε using the frequency cascades in (40). We say that a trio
(I, J, K ) ∈ I3 belongs to the set T in (40) if I, J, K ∈ Iϕ have the same initial
time t (I ) and ( f (I ), f (J ), f (K )) ∈ TF as defined in (62). We will require that
the leading order part of (40) in D̊ϕL cancels except for a term taking values in
ker dx2; namely we require that
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∑
I,J,K∈T

(V̊I )�V̊ j
J V̊ �

K + ϕ j
ε =

∑
I,J,K∈T

vI�v
j
J v�

K + ϕ j
ε = ϕ

j
(2) + Lower order terms

(64)

pointwise for all (t, x), where ϕ
j
(2) takes values in ker dx2. Here we use that, for

I, J, K ∈ T , the term (V̊I )�V̊ j
J V̊ �

K = (vI · vK )v
j
J is purely low frequency, since

eiλ(ξI+ξJ+ξK ) = 1 holds for all (t, x). Namely, the identity holds at the initial time
t = t (I ) and persists for all time by uniqueness of solutions to regular transport
equations and by (48), (62) and the definition of ξ̂I following (52).

The problem (64) will be solved separately by the two different types of waves,

T = T � �
T where T = T ∩ (Iϕ)3, T = T ∩ (

�
Iϕ)3. The larger waves I ∈ Iϕ will

be assigned to the principal term ϕ
j
[1ε], while the waves I ∈ �

Iϕ will be assigned to

the general term ϕ
j
[Gε], which though smaller may have slightly larger support in

time than ϕ
j
[1ε]. We choose linear maps π(1) and π(2) on R

3 such that Rng π(1) ⊆
〈(1, 0, 0)〉⊥, Rng π(2) ⊆ 〈(0, 1, 0)〉⊥, and π(1) +π(2) = Id on R

3 to isolate the part

ϕ
j
[G1] := π(1)ϕ

j
[G] taking values in ker dx1. We will then achieve (64) by solving

separately the equations

∑
I,J,K∈T

vI�v
j
J v�

K = −ϕ
j
[1] + Lower order terms, (65)

∑
I,J,K∈ �

T

vI�v
j
J v�

K = −ϕ
j
[G1] + Lower order terms. (66)

We focus first on (66). We use the partition of unity property for the η̄(·) to de-

compose ϕ
j
[G1] = ∑

k∈Z η̄6(
∗
τ
−1

(t − k
∗
τ))ϕ

j
[G1] and recall the expression v

j
I =

e1/2I (t)η̄2(
∗
τ
−1

(t − t (I )))γI f̂ j
I + δ̂v

j
I . Factoring out the cutoffs and e(t)3/2 from

(66), we will achieve (66) if for all k ∈ Z we solve

∑
( f1, f2, f3)∈

�
T F

γ(k, f1)γ(k, f2)γ(k, f3) f̂ j
2 ( f̂1 · f̂3) = −e−3/2(t)ϕ j

[G1] (67)

pointwise on [k ∗
τ − ∗

τ , k
∗
τ + ∗

τ ] ∩ Ĩ × T
3.

Note that, since each f̂i is either e2 or e3, the sum in (67) has only two distinct
terms, both repeated 2 · 3! times. One takes values in the e2 direction and involves
some fi = (e2,±1, “a”), and the other term points in the e3 direction and involves
(e3,±1, “a”). With this observation, we can solve (67) if we make γI = K−1/2

0
constant for every “passive wave” (those for which f (I ) = ( f̂ I , σ, “p”)), then for
“active waves” (those for which f (I ) = ( f̂ I , σ, “a”)) we set

γI (t, x) = −K0e−3/2(t)( f̂ I · ϕ[G1])/(2 · 3!). (68)
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We will also solve (65) using the same approximation vI�v
k
J v

j
K = v̂I�v̂

k
J v̂

j
K +

(δ̂vI )�v̂
k
J v̂

j
K + . . . for I ∈ Iϕ , which leaves the low frequency part of (40) in the

form

D̊ϕL = ∇ jϕ
j
L , ϕ

j
L := ϕ

j
(2) +

∑
I,J,K∈T

(δ̂vI )�v
j
J v�

K + similar O(δ̂vI · vJ · vK ) terms

(69)

+
∑

I,J,K∈T
(δVI )�V̊ j

J V̊ �
K + similar O(δV · V · V ) terms,

ϕ
j
(2) := π(2)ϕ

j
[Gε]. (70)

We also observe that the above choices of γI for I ∈ �
Iϕ lead to the estimate

max
I∈Iϕ

‖γI‖C0 ≤ AK−1/2
0 (71)

for some absolute constant A, where K0 is the constant in the lower bound in (43).

The construction of γI for I ∈ �
IR is analogous to that for

�
Iϕ except that the

goal is to cancel out a part of the stress Rε appearing in (30) that takes values in
ker dx1. To isolate this part, choose linear maps π[1], π[2], π[3] on the vector space
R
3 ⊗ R

3 such that Rng π[l] ⊆ ker dxl ⊗ ker dxl for l = 1, 2, 3 and such that

π[1] + π[2] + π[3] = Id on R
3 ⊗ R

3, then decompose Rε = R j�
[1∗] + R j�

[2∗] + R j�
[3∗]

where

R j�
[l∗] = R j�

[lε] + π[l]R j�
[Gε], for l = 1, 2, R j�

[3∗] = π[3]R j�
[Gε]. (72)

Here R[1ε], R[2ε] and R[Gε] refer to the decomposition of Rε referenced after line
(32), which will be defined in Sect. 4.5. In particular, we have that Rng R[l∗] ⊆
ker dxl ⊗ ker dxl for all l = 1, 2, 3. From (61), the pressure term similarly decom-
poses into δ j� = δ

j�
[1] + δ

j�
[2∗], where

δ
j�
[1] :=

∑
f̂ ∈ �

BR

f̂ j f̂ � ∈ ker dx1 ⊗ ker dx1, δ
j�
[2∗] :=

∑
ĝ∈ ∗

BR

ĝ j ĝ� ∈ ker dx2 ⊗ ker dx2.

(73)

We will now arrange that the remaining part of the term in (30) will have the form∑
I

V j
I V �

I + Pδ j� + R j�
ε = Pδ

j�
[2] + R j�

[2∗] + R j�
[3∗] + Small Error Terms (74)

by ensuring that∑
I∈IR

V j
I V �

I = −Pδ
j�
[1] − R j�

[1∗] −
∑
I∈Iϕ

V j
I V �

I + Small Error Terms. (75)

Yet again, we distinguish IR = IR � �
IR and obtain (75) by solving, separately,∑

I∈IR

v
j
I v

�
I = −R j�

[1ε] −
∑
I∈Iϕ

v
j
I v

�
I + Small Error Terms, (76)
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∑
I∈ �

IR

v
j
I v

�
I = −Pδ

j�
[1] − R j�

[G1] −
∑
I∈ �

Iϕ

v
j
I v

�
I + Small Error Terms, (77)

where R j�
[G1] := π[1]R j�

[Gε]. Here we used that V �
I = eiλξI v�

I + δV �
I and discarded

the δV �
I terms.

We focus now on determining vI , I ∈ �
IR to solve (77). We define

�
FR to be

�
FR := �

BR×{±1} so that each f ∈ �
FR has the form f = ( f̂ , σ ), f̂ ∈ �

BR, σ ∈ {±1}
and we let f̄ = ( f̂ ,−σ) be the conjugate index. We specify that n· restricted to

(Z/2Z)×�
FR to be any injectivemap n· : (Z/2Z)×�

FR → N such that the completed

function n· : (Z/2Z)×�
F → N,

�
F = �

FR�
�
Fϕ , is injective andmaintains the property

(50). We multiply (77) by the identity 1 = ∑k∈Z η̄6(
∗
τ
−1

(t − k
∗
τ)) and recall that

for I ∈ �
IR , v�

I = e1/2(t)ηI γI f̂ �
I + δ̂v�

I , ηI = η̄3(
∗
τ
−1

(t − k
∗
τ)). Dropping the δ̂vI

terms and factoring out the cutoffs and e(t) from (77), we obtain (77) if, for all
k ∈ Z we solve the following equation pointwise on Ĩ × T

3:
∑
f ∈�

FR

2γ 2
(k, f ) f̂ j f̂ � = (2/3)δ j�

[1] + ε j�, (78)

ε j� (46)= e(t)−1
[
(1/3)(−2κ[Gε] + δ j�(R j�

[2ε] + R j�
[Gε])) − R j�

[G1] −
∑
I∈ �

Iϕ

v̂
j
I v̂

�
I

]
,

e(t)−1
∑
I∈ �

Iϕ

v̂
j
I v̂

�
I =

∑
I∈ �

Iϕ

η2I γ
2
I f̂ j

I f̂ �
I . (79)

Using (59) and (73), provided ε is sufficiently small, the quadratic equation admits

unique, positive solutions that depend smoothly as functions γ f (ε) of ε, f ∈ �
FR ,

and that obey the estimate

γ(k, f )(t, x) = γ f (ε) = 1/
√
3+ O(‖ε‖C0), ‖ε‖C0

(43),(71)= O((K0)
−1), (80)

where K0 is the parameter assumed in the lower bound for e(t) in (43).10 The
implicit constants in the O(·) notation are geometric and do not depend on any
parameters of the construction, which allows us to guarantee a bound of 1/3 ≤
γ(k, f ) ≤ 2/3 for all f ∈ �

FR by taking K0 to be a sufficiently large constant
depending on L (in particular ensuring that the square root is well-defined in solving
(78)).

To solve the analogous equation (76) for the larger waves I ∈ IR , we will make
a similar approximation of VI = eiλξI vI + δVI , vI = v̂I + δ̂vI , and arrange the
main terms to satisfy

10 Here we use the bounds maxl ‖R[lε]‖C0 + ‖R[Gε]‖C0 � AL eϕ , ‖κε‖C0 � AL eϕ and

‖ϕε‖C0 � AL e3/2ϕ , which will be checked in Sect. 4.5.
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∑
I∈IR

v̂
j
I v̂

�
I = −R j�

[1ε] −
∑
I∈Iϕ

v̂
j
I v̂

�
I (81)

Defining the vI in this way, and noting δVI VI = δvI vI leaves an error in (30) of
the form

R j�
S = Pδ

j�
[2] + R j�

[2∗] + R j�
[3∗] +

∑
I∈I

(
δv

j
I v

�
I + δ̂v

j
I v

�
I

)

+ similar O(δvI vI ) and O(δ̂vI vI ) terms.

(82)

At the same time, the error that remains for the unresolved flux density in (44)
reduces to

∑
I

VI · VI

2
+ κε − e(t)

(46)= 1

2

(∑
I

VI · VI + δ j�(Pδ
j�
[2∗] + R j�

ε )
)

= κL := 1

2

(
δ j�(Pδ

j�
[2∗] + R j�

[2∗] + R j�
[3∗])

)

+ 1

2

∑
I

(
δvI · vI + δ̂vI · vI

)

+ similar O(δvI vI ) + O(δ̂vI vI ) terms.

(83)

Note that the main term is (1/2)δ j�(Pδ
j�
[2∗] + R j�

[2∗]), which is the only term of size
eR . This term will be canceled out in the subsequent stage of the iteration where
we use waves with values in ker dx2. For now we isolate the main terms in the new
stress for the next stage of the iteration by defining

∗
R

j�

[2] := Pδ
j�
[2∗] + R j�

[2∗],
∗
κ [2] := δ j�

∗
R

j�

[2]/2, κL = ∗
κ [2] + κLG . (84)

The terms contained in κ[LG] from (83) will be shown to have a smaller order of
magnitude � eG .

4.4. Solving for the coefficients in the larger amplitudes

The task that remains to fully specify the shape of the construction is to explain
how to define vI for I ∈ I to tackle the principal terms of equations (65), (81).
To solve these equations, we make an assumption on the structure of our given
R j�
[1], which is necessary for defining our construction and also consistent with the

outcome of designing the smaller amplitudes vI for I ∈ �
I as above.

Definition 4.1. Let δ̄ > 0 and M ≥ 1. We say that a dissipative Euler–Reynolds
flow (v, p, R, κ, ϕ) is (δ̄, M)-well-prepared (for stage [1]) with respect to a set
of frequency energy levels (�, ev, eϕ, eR, eG), a pair of intervals Ĩ[1] ⊆ Ĩ[G] and
a smooth non-negative ē : Ĩ → R≥0 if there is a positive number eϕ ≥ M−1eϕ
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such that the following properties hold for δ[1∗] := (e3 ⊗ e3)+ (e2 ⊗ e2)/2 and all
0 ≤ s ≤ 2:

R j�
[1] = −ē(t)δ j�

[1∗] + R j�
[1◦] (85)

suppt (R[1◦], ϕ[1]) ⊆ Ĩ[1], suppt ē ⊆ Ĩ[G] (86)

‖Ds
t ē1/2(t)‖C0 ≤ (�e1/2v )se1/2ϕ , (87)

ē(t)−1‖R[1◦]‖C0 + ē(t)−3/2‖ϕ[1]‖C0 ≤ δ̄, if t ≤ sup Ĩ[1] + (�e1/2v )−1. (88)

‖Ds
t [ē(t)−1/2]‖C0 ≤ 10(�e1/2v )se−1/2

ϕ if t ≤ sup Ĩ[1] + (�e1/2v )−1 (89)

e1/2ϕ ‖∇�a Dr
t R[1◦]‖C0 + ‖∇�a Dr

t ϕ[1]‖C0 ≤ �|�a|(�e1/2v )r e3/2ϕ , 0 ≤ r ≤ 1,

0 ≤ r + |�a| ≤ L . (90)

Alternatively, we may allow for (85) to hold with δ
j�
[1] in place of δ

j�
[1∗] in the

definition of (δ̄, M)-well-preparedness for stage 1 (which will be convenient for
the proof of Lemma 6.1 below).We similarly define (δ̄, M)-well-prepared for stage
[l] by replacing (1, 2, 3) with (l, l+1, l+2) mod 3 where appropriate. Note that we
do not make any monotonicity assumption on ē(t) in contrast to (43).

Having an assumption of the type (88), which causes the term ē(t)δ j�
[1∗] to

dominate the error, will be necessary for achieving any gain in the size of the
error, since otherwise we would require adding an additional term of size eϕ into
the pressure that would generate additional error terms of size eϕ that take values
outside of ker dx1 ⊗ ker dx1.

We will use the function ē(t) of Definition 4.1 as our choice of e f (t) appearing
in the amplitude vI in (54) for f = f (I ) ∈ F = FR � Fϕ . With this choice,
equation (65) will be satisfied (with error terms involving δ̂vI ) by solving the
equation analogous to (67)

∑
( f1, f2, f3)∈T F

γ(k, f1)γ(k, f2)γ(k, f3) f̂ j
2 ( f̂1 · f̂3) = −ē−3/2(t)ϕ j

[1ε]. (91)

Similarly to the argument after (68) and using δ̄-well-preparedness, we may solve
(91) by taking coefficients for passive waves that are constant, γI = δ̄1/3 if f (I ) ∈
Bϕ × {±1} × {“p”}, while we choose active waves of the form

γI = −δ̄−2/3ē(t)−3/2( f̂ I · ϕ[1ε])/(2 · 3!). (92)

Using (88), we then have a bound of ‖γI ‖C0 ≤ Aδ̄1/3 for all I ∈ Iϕ for some
absolute constant A.

Turning now to I ∈ IR , we will solve (81) by ensuring that for all k ∈ Z the
following equation analogous to (78) holds pointwise on Ĩ × T

3:

∑
f ∈FR

2γ 2
(k, f ) f̂ j f̂ � = δ

j�
[1∗] + ε j�, (93)
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ε j� (46)= ē(t)−1
[
− R j�

[◦ε] −
∑
I∈Iϕ

v̂
j
I v̂

�
I

]
,

ē(t)−1
∑
I∈Iϕ

v̂
j
I v̂

�
I =

∑
I∈Iϕ

η2I γ
2
I f̂ j

I f̂ �
I . (94)

Here R j�
[◦ε] is a regularization of R[1◦] defined in Sect. 4.5 below, which is assumed

to satisfy ‖R j�
[◦ε]‖C0 ≤ AL‖R[1◦]‖C0 with AL depending only on L . Using the

bound (88) in the definition of δ̄-well-preparedness, we may then estimate (94) by
‖ε‖C0 ≤ AL δ̄2/3 where AL depends only on L .

To solve (93) we first choose a subset BR ⊆ ker dx1 of cardinality #BR = 3
such that the tensors ( f̂ j f̂ �) f̂ ∈BR

form a basis for ker dx1 ⊗ ker dx1 and such that∑
f̂ ∈BR

f̂ j f̂ � = δ
j�
[1∗]. This subset may be constructed as in the argument following

line (61). For δ̄ sufficiently small depending on L , assuming γ(k, f ) = γ(k, f̄ ) are
equal, we obtain a solution to (93) by first solving the linear equation for the
γ 2

I and then taking square roots to obtain the γI , which will obey the bounds
γ(k, f ) = 1/2+ O(‖ε‖C0) = 1/2+ O(δ̄2/3). For δ̄ sufficiently small depending on
L , the solutions obtained in this way satisfy 1/4 ≤ γ(k, f ) ≤ 1 pointwise, and take
the form γ(k, f )(t, x) = γ f (ε) for γ f (·) one of finitely many functions indexed by
f ∈ F R that are smooth in ε and defined on a ball of radius AL δ̄2/3 ≥ 2‖ε‖C0 .

At this point, we are able to fix the final choice of δ̄ to be sufficiently small
depending on L so that the properties of the preceding paragraph all remain satisfied.
This choice completes our description of the shape of the construction.

4.5. Regularizations, preliminary bounds and the energy increment

In this sectionwedefine regularizations (vε, pε, Rε, κε, ϕε)of the given dissipa-
tive Euler–Reynolds flow (v, p, R, κ, ϕ, μ) and obtain some preliminary estimates
for the construction.

Wedefine the coarse scale velocity field v�
ε bymollifying v�  → v�

ε = χε∗χε∗v�

in the spatial variables using a Schwartz kernel with length scale εv: χε(h) =
ε−3
v χ1(ε

−1
v h), χ1 : R

3 → C. We assume that χε has compact Fourier support,
supp χ̂1 ⊆ {|ξ | ≤ 2} ⊆ R̂3, χ̂ (ξ) = 1 for |ξ | ≤ 1, which implies that Fsupp vε ⊆
{|ξ | ≤ 2ε−1

v } and Fsupp (v − vε) ⊆ {|ξ | ≥ ε−1
v } in R̂3.

This choice leads to the following estimates (see [37, Lemma 14.1] for a proof
of (96)):

‖∇�avε‖C0 ≤ A0‖∇�av‖C0 , 1 ≤ |�a| ≤ L (95)

‖(v − vε)‖C0 � (εv)
L‖∇Lv‖C0 . (96)

Inequality (95) follows with A0 = ‖χ1‖2L1(R3)
by commuting the spatial derivative

with the mollifier.
We choose the length scale εv of the form c1[(N )1/L�]−1 to guarantee the

following bound on the main term appearing in (32):

‖v − vε‖C0 � cL
1 (e1/2v /N ) (97)
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∥∥∥∑
I

[(v j − v j
ε )eiλξI v�

I + eiλξI v
j
I (v

� − v�
ε )]
∥∥∥

C0
� ‖v − vε‖C0 max

I
‖|vI |‖C0

� A1‖v − vε‖C0e1/2ϕ ≤ e1/2v e1/2ϕ

1000N
. (98)

Examining Sects. 4.2–4.3, the constant A1 (and hence the choice of c1) depends
only on the constant appearing in the upper bound ‖e1/2(t)‖C0 ≤ K1e1/2ϕ ≤ K1e1/2ϕ

of (43), since all the terms f̂ I , γI and ηI appearing in (54) are uniformly bounded
by geometric constants while ‖ē1/2‖C0 ≤ e1/2ϕ . The constant A1 will thus be deter-
mined in line (117) below, where we specify the function e1/2(t).

For the remaining fields F ∈ (p, R, κ, ϕ), we first define a spatial mollification
Fεx by setting Fεx := χεx ∗χεx ∗ F , with χεx (h) = ε−3

x χ1(ε
−1
x h) a Schwartz kernel

onR
3 with integral 1 that obeys the vanishingmoment condition

∫
R3 h�aχεx (h)dh =

0 for all multi-indices 1 ≤ |�a| ≤ L . We then define Fε using the coarse scale flow
of vε to mollify in time:

Fε = ηεt ∗� Fεx :=
∫
R

Fεx (�s(t, x))ηεt (s)ds. (99)

Here ηεt (s) = ε−1
t η1(ε

−1
t s) is a smooth, positive mollifying kernel with compact

support in the interval |s| ≤ εt ≤ �−1e−1/2
v /2 and

∫
R

ηεt (s)ds = 1, while�s(t, x)

is the flow map of ∂t + vε · ∇ (the coarse scale flow of vε), which takes values in
R × T

3 and is defined as the unique solution to the ODE

�s(t, x) = (t + s,�i
s(t, x)), �0(t, x) = (t, x),

d

ds
�i

s(t, x) = vi
ε(�s(t, x)).

(100)

There is a small issue that if F is supported near the boundary of Ĩ ×T
3 in R×T

3,
the expression (99) is not well-defined if t + s exists the interval Ĩ . We can get
around this issue by choosing two different mollifiers η+εt

(s) and η−εt
(s) supported

respectively in 0 < s < εt and −εt < s < 0, then setting

Fε(t, x) = χ̄ (t)η+εt
∗� Fεx + (1− χ̄ (t))η−εt

∗� Fεx (101)

with χ̄ ∈ C∞( Ĩ ) equal to χ̄ (t) = 1 for t ≤ inf Ĩ + �−1e−1/2
v , equal to χ̄(t) = 0

for t ≥ sup Ĩ − �−1e−1/2
v , taking values between 0 ≤ χ̄ (t) ≤ 1 on Ĩ and obeying

the bounds ‖(∂t )
r χ̄‖C0 �r (�e1/2v )r . Such a cutoff χ̄ exists since we have assumed

| Ĩ | ≥ 8�−1e−1/2
v . We note that if the interval I for the domain of the Euler–

Reynolds flow is unbounded, then the use of the cutoff χ̄ (t) is not needed.
For each field F to be regularized, we assume bounds of the form

‖∇�a F‖C0 ≤ �|�a|hF , 0 ≤ |�a| ≤ L

‖∇�a Dt F‖C0 ≤ �|�a|+1e1/2v hF , 0 ≤ |�a| ≤ L − 1,
(102)

and we choose εx and εt of the form εx = c0(N−1/L�−1), εt = c0(N�e1/2ϕ )−1.
Note that the above construction of Fε guarantees the bound ‖Fε‖C0 ≤ AL‖F‖C0
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that was required in Sect. 4.3, with the constant AL = ‖η1‖L1(R) · ‖χ1‖2L1(R3)
de-

pending only on the choice of smooth functions η1 andχ1 (in particular independent
of c0 or c1).

These choices of parameters lead to the following estimates as in [37, Section
18.3], which determines our choice of c0 depending only on η1 and χ1.

Proposition 4.1. (Preliminary Estimates) We have the following bounds

‖∇�avε‖C0 ��a N (|�a|−L)+/L�|�a|e1/2v , for all |�a| ≥ 1, (103)

‖∇�a Dtvε‖C0 ��a N (|�a|+1−L)+/L�|�a|�e1/2v , for all |�a| ≥ 0, (104)

‖∇�a Dt (∇vε)‖C0 ��a N (|�a|+2−L)+/L�|�a|�e1/2v , for all |�a| ≥ 0. (105)

If (102) holds for (F, hF ), then for all multi-indices �a we have

‖∇�a Fε‖C0 + ‖∇�a Fεx ‖C0 ��a N (|�a|−L)+/L�|�a|hF (106)

‖∇�a Dt Fε‖C0 + ‖∇�a Dt Fεx ‖C0 ��a N (|�a|+1−L)+/L�|�a|+1e1/2v hF (107)

‖∇�a D
2
t Fε‖C0 ��a ε−1

t N (|�a|+1−L)+/L�|�a|+1e1/2v hF (108)

��a N 1+(|�a|+1−L)+/L�|�a|+2e1/2v e1/2ϕ hF . (109)

Examples include (F, hF )t any column of the following formal matrix
[

F R[1] R[2] R[G] κ[G] R[1◦] ϕ[1] ϕ[G]
hF eϕ eR eG eR eϕ e3/2ϕ e3/2ϕ

]
. (110)

Furthermore, the constants in (103)–(107) do not depend on the choice of c1 in the
definition of εv = c1N−1/L�−1 when the total number of derivatives (counting Dt )
does not exceed L. We also have the following bounds on the mollification errors
for c0 sufficiently small depending on η1, χ1

‖F − Fεx ‖C0 ≤ hF

400N

‖F − Fε‖C0 ≤ (e1/2v /e1/2ϕ )
hF

200N
.

(111)

Proof. The bounds (103)–(104) can be found in [37, Sections 15–16]. These bounds
imply (105) as follows. Note that Dt (∇cv

�
ε ) = ∇c Dtv

�
ε −∇cv

b
ε∇bv

�
ε . The first term

obeys (105) by (104) while the second may be estimated using the product rule and
(103):

‖∇�a[∇cv
b
ε∇bv

�
ε ]‖C0 �

∑
|�a1|+|�a2|=|�a|

‖∇�a1∇cv
b
ε ‖C0‖∇�a2∇bv

�
ε ]‖C0

�
∑

|�a1|+|�a2|=|�a|
[N (|�a1|+1−L)+/L�|�a1|+1e1/2v ][N (|�a2|+1−L)+/L�|�a2|+1e1/2v ]

‖∇�a[∇cv
b
ε∇bv

�
ε ]‖C0 � N (|�a|+2−L)+/L�|�a|+2e1/2v .

Here we used the counting inequality (9) with y = L − 1 ≥ 0.
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The proofs of (106)–(109) with (F, hF ) replaced by (R, eR) may be found in
[37, Section 18]. We note that the second advective derivative estimate (109) uses
the commutation property

Dtη ∗� G(t, x) =
∫
R

Dt G(�s(t, x))ηεt (s)ds = −
∫
R

G(�s(t, x))η′εt
(s)ds

(112)

for mollification along the flow proven in [37, Lemma 18.2] (see also [33, Propo-
sition 11.1] for an alternative proof). This calculation explains the appearance of
ε−1

t in (109). We also note that the bounds (107)–(109) remain undisturbed after
multiplying by a time cutoff function χ̄ (t) that obeys ‖∂t χ̄‖C0 � (�e1/2v )r for
0 ≤ r ≤ 2, as can be seen using the product rule and �e1/2v ≤ ε−1

t .
Toprove (111)weuse the estimate‖F−Fεx ‖C0 � εL

x ‖∇L F‖C0 ≤ Aχ1cL
0 N−1hF ,

the bound ‖F − Fε‖C0 ≤ ‖F − Fεx ‖C0 +‖Fεx − ηεt ∗� Fεx ‖C0 and the inequality

‖Fεx − ηεt ∗� Fεx ‖C0 ≤ Aη1εt‖Dt Fεx ‖C0 ≤ Aη1c0(e
1/2
v /e1/2ϕ )(hF/N ),

taking c0 small depending on χ1 and η1. (See [37, Section 18.3] for details.) Note
that the presence of time cutoffs as described in (101) does not disturb the estimate.
"#
We will also use the following bounds, which result from applying the proofs of
(106)–(107), (111) with (R, eR) replaced by (p, ev):

‖p − pεx ‖C0 ≤ ev

200N
(113)

‖∇�a pεx ‖C0 ��a N (|�a|−L)+/L�|�a|ev if |�a| ≥ 1, and (114)

‖∇�a Dt pεx ‖C0 ��a N (|�a|+1−L)+/L�|�a|+1e3/2v for all |�a| ≥ 0. (115)

The observation applied here is that the proofs of these estimates use only the
bounds on ∇�a p for |�a| ≥ 1 and on ∇�a Dt p, but do not use any assumption on the
C0 norm of p.

With the above choice of εt , we can also choose the energy increment e(t) in
(43). We assume that the parameter K0 has been fixed at this point, although so far
we have only imposed after line (80) a lower bound on K0 (depending on π[1] and
the set BR). The final choice of K0, to be stated in line (225) of Sect. 4.10, will
depend also on the operator π[2] and the set BR of Sect. 4.3, but will not depend of
the choice of c1 in the definition of εv . This choice of K0 will guarantee in particular
that

K−1
0 e−1

ϕ ‖ ∗
R[2]‖C0 + K−3/2

0 e−3/2
ϕ ‖∗

ϕ[2]‖C0 � δ̄, (116)

where
∗
R[2] was defined in (84), while

∗
ϕ[2] has yet to be defined.

Now let Ĩ[G] be the interval in the assumptions of Lemma 3.1. Let τ =
(�e1/2v )−1 and define e1/2(t) as follows by mollifying the characteristic function
of a time interval

e1/2(t) = 2(K0eϕ)1/2ητ ∗t 1≤sup Ĩ[G]+τ/100(t). (117)
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Here ητ is a smooth, non-negativemollifier in the t variable with compact support in
0 ≤ t ≤ τ/200. The properties in (43) now follow from this definition. (To ensure
the lower bound holds on the support of (κε, Rε, ϕε), we use here that εt ≤ τ ·10−3

for c0 small enough, since N ≥ (e1/2v /e1/2ϕ ) from (19).)
We also record the following immediate consequence of (106)–(109):

Proposition 4.2. For (F, hF ) as in Proposition 4.1, 0 ≤ r ≤ 2 and b−2
ϕ :=

(Ne1/2ϕ /e1/2v ), we have

‖∇�a D
r
t Fε‖C0 ��a

[
N (|�a|+1−L)+/L�|�a|] [(�e1/2v )r b−2(r−1)+

ϕ

]
hF . (118)

With the regularizations defined, we are ready to estimate the components of
the construction.

4.6. Bounding the components of the construction

In this section we estimate the components of the construction. All implicit
constants in the � notation will be allowed to depend on the constant parameters
such as K0, c0, b0, . . . that were discussed in the preceding Sects. 4.2–4.5.

We start by stating bounds for the phase gradients ∇ξI , which follow from
analysis of the equation

(∂t + vi
ε∇i )∇aξI = −∇avi

ε∇iξI , ∇aξI (t (I ), x) = ∇a ξ̂I . (119)

Proposition 4.3. (Transport Estimates) There exists a positive number b0 ≤ 1

depending on A0 in (95) such that (53) holds for times |t − t (I )| ≤ ∗
τ . For such

times t, we have the following estimates

‖∇�a∇ξI‖C0 ��a N (|�a|+1−L)+/L�|�a| (120)

‖∇�a Dt∇ξI‖C0 ��a N (|�a|+1−L)+/L�|�a|(�e1/2v ) (121)

‖∇�a D
2
t ∇ξI‖C0 ��a N (|�a|+2−L)+/L�|�a|(�e1/2v )2. (122)

We also have, the following bounds for δ̂∇ξI := ∇ξI −∇ ξ̂I :

‖∇�a(∇ξI −∇ ξ̂I )‖C0 ��a (BλN )|�a|/2�|�a| ∗b (123)

‖∇�a D
r
t (∇ξI −∇ ξ̂I )‖C0 ��a (BλN )|�a|/2�|�a|(

∗
b
−1

�e1/2v )r ∗b, 0 ≤ r ≤ 2. (124)

Proof. Recalling the coarse scale flow�s from (100), we have d
ds |∇ξI |2(�s(t, x))

= −∇�v
i
ε∇iξI∇�ξI for |s| ≤ τ (each term being evaluated at �s(t, x)), which

implies by a Gronwall inequality argument that

e−|s|‖∇vε‖C0

∣∣∣ |∇ ξ̂I |2
∣∣∣ ≤

∣∣∣ |∇ξI |2(�s(t, x))

∣∣∣ ≤ e−|s|‖∇vε‖C0

∣∣∣ |∇ ξ̂I |2
∣∣∣ . (125)
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Using |s|‖∇vε‖C0 ≤ b0(�e1/2v )−1A0�e1/2v = b0A0, we have e|s|‖∇vε‖C0 ≤ 2 if
b0 > 0 is small depending on A0. From d

ds∇�ξI (�s(t (I ), x)) = −∇�v
i
ε

(�s(t (I ), x))∇iξI (�s(t (I ), x)) we obtain

|∇ξI (�s(t (I ), x)) − ∇ ξ̂I | ≤ 2
∗
τ‖∇vε‖C0 |∇ ξ̂I | ≤

∗
bA0|∇ ξ̂I |.

Taking b0 small depending on A0, we obtain (53), and also the |�a| = 0 case of
(123).

The estimates (120)–(122) are shown in [37, Section 17]. (Note that the proof of
(122) goes through the Euler–Reynolds system and the main term comes from the
pressure gradient.) The bounds (120)–(124) imply the remaining estimates (124)

and the |�a| ≥ 1 case of (123) by comparison using L ≥ 2, (BλN )1/2 ≥ ∗
b
−1

and
the fact that ∇ ξ̂I is constant. "#
We next estimate the components of the construction. We start with the following
Lemma:

Lemma 4.1. For integers 0 ≤ R ≤ 2 and M ≥ 0, define the weighted norm

H̄ (M,R)[F] := max
0≤r≤R

{
max

0≤|�a|+r≤M+R

‖∇�a D
r
t F‖C0

N (|�a|+1−L)+/L�|�a| ∗τ
−r

}
. (126)

Then one has the triangle inequality H̄ (M,R)[F + G] ≤ H̄ (M,R)[F] + H̄ (M,R)[G]
and the product rule

H̄ (M,R)[FG] �M H̄ (M,R)[F] · H̄ (M,R)[G]. (127)

We also have, for
∗
τ = ∗

b(�e1/2v )−1 and 0 ≤ s ≤ 2,

H̄ (M,R)[F] = max
0≤r≤R

∗
τ

r
H̄ (M+R−r,0)[Dr

t F], H̄ (M,0)[Ds
t F] ≤ ∗

τ
−s

H̄ (M,s)[F].
(128)

Proof. The triangle inequality follows quickly from the definition of the norm. The
product rule in the case R = 0 follows by using inequality (9) to obtain for all
0 ≤ |�a| ≤ M that

‖∇�a(FG)‖C0 �
∑

|�b|+|�c|=|�a|
‖∇�b F‖C0‖∇�cG‖C0

�
∑

|�b|+|�c|=|�a|

(
N (|�b|+1−L)+/L�|�b| H̄ (M,0)[F]

)

(
N (|�c|+1−L)+/L�|�c| H̄ (M,0)[G]

)

� N (|�a|+1−L)+/L H̄ (M,0)[F]H̄ (M,0)[G].
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We note that the properties in (128) follow immediately from the definition of H̄ in
(126). We can obtain the product rule in the case 0 < R ≤ 2 from the case R = 0
above and (128) by writing

H̄ (M,R)[FG] �M

∑
0≤r≤R

∗
τ

r ∑
r1+r2=r

H̄ (M+R−r,0)[Dr1
t F D

r2
t G]

�M

∑
0≤r≤R

∗
τ

r ∑
r1+r2=r

H̄ (M+R−r,0)[Dr1
t F]H̄ (M+R−r,0)[Dr2

t G]

�M

∑
0≤r≤R

∑
r1+r2=r

(
∗
τ

r1
H̄ (M+R−r1,0)[Dr1

t F])( ∗τ r2
H̄ (M+R−r2,0)[Dr2

t G])

H̄ (M,R)[FG] �M H̄ (M,R)[F]H̄ (M,R)[G].
This bound concludes the proof of Lemma 4.1. "#

In terms of these weighted norms, we have the following bounds

Proposition 4.4. We have that H̄ (M,1)[∇vε] �M �e1/2v , and the estimate H̄ (M,2)

[Fε] �M hF holds for (F, hF )t any column of the formal matrix in line (110). We
also have that H̄ (M,2)[F] � hF for (F, hF )t any column of the following formal
matrix [

F ∇ξI ηI e1/2(t) ē1/2(t) ē(t)−1/2

hF 1 1 e1/2ϕ e1/2ϕ e−1/2
ϕ

]
, (129)

where the last estimate for ē(t)−1/2 holds on suppt (R[ε◦], ϕ[1ε]).

Proof. We obtain H̄ (M,1)[∇vε] �M �e1/2v from (103), (105) by noting that
∗
τ
−1 ≥

B1/2
λ N 1/2(�e1/2v ), which implies N (|�a|+2−L)+/L(�e1/2v ) ≤ N (|�a|+1−L)+/L ∗

τ
−1

.

The bound H̄ (M,2)[Fε] �M hF follows from (118) by noting that (�e1/2v ) ≤
∗
τ
−1 = ∗

b
−1

(�e1/2v ) and b−2
ϕ (�e1/2v )2 �

∗
b
−2

(�e1/2v )2 = ∗
τ
−2

, where b−2
ϕ =

(Ne1/2ϕ /e1/2v ) and
∗
b
−2

= b−2
0 (BλNe1/2ϕ /e1/2v ).

The bound H̄ (M,2)[∇ξI ] �M 1 follows from (120)–(122) bynoting that (�e1/2v )

≤ ∗
τ
−1

and that

N (|�a|+2−L)+/L(�e1/2v )2 ≤ N 1/2N (|�a|+1−L)+/L(�e1/2v )2 ≤ N (|�a|+1−L)+/L ∗
τ
−2

.

for L ≥ 2. The bounds for the cutoffs ηI and the functions e1/2, ē1/2 and ē−1/2

follow from the estimates (56), (43), (87), (89) and (�e1/2v ) ≤ ∗
τ
−1

. "#
We record also the following useful property of the weighted norm (126):

Proposition 4.5. For any operator of the form

D(�a,�r) = ∇�a1(Dt )
r1∇�a2(Dt )

r2∇�a3 (130)
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with �a = (�a1, �a2, �a3), |�a| = |�a1|+|�a2|+|�a3|, �r = (r1, r2) and 0 ≤ r := r1+r2 ≤ 2,
we have the bound

‖D(�a,�r)F‖C0 ��a N (|�a|+1−L)+/L�|�a| ∗τ
−r

H̄ (|�a|,r)[F]. (131)

Proof. The result is immediate if r1 + r2 = 0. In general, for 1 ≤ r1 + r2 ≤ 2,
repeatedly applying the commutator identity Dt∇a F = ∇a(Dt F) − ∇avi

ε∇i F
leads to an expansion of the form

D(�a,�r)F =
∑

0≤m≤r

∑
�b,�c,s

cm,�b,�c,s
m∏

i=1

(
∇�ci D

si
t (∇vε)

)
∇�b D

sm+1
t F,

where the summation runs over s1+· · ·+ sm +m + sm+1 = r (the total number of
advective derivatives), the empty product is equal to 1 in the case m = 0, and the
multi-indices satisfy |�b| +∑i |�ci | = |�a| (the total number of spatial derivatives).
(We have omitted the summation over the indices of ∇vε .) In particular, at most
one advective derivative falls on ∇vε , and we obtain the bounds

‖D(�a,r)F‖C0 �
∑

0≤m≤3

∑
�b,�c

m∏
i=1

(
N (|�ci |+1−L)+/L ∗

τ
−si

�|�ci |(�e1/2v )

)

[
N (|�b|+1−L)+/L ∗

τ
−sm+1

�|�b| H̄F

]

� N (|�a|+1−L)+/L�|�a| ∗τ
−r

H̄F ,

where H̄F := H̄ (|�a|,r)[F]. HereweusedProposition 4.4 for H̄ (M,1)[∇vε], (�e1/2v )m

≤ ∗
τ
−m

, and the counting inequality (9) with y = L − 1 ≥ 0. "#
We now proceed to estimate the components of the correction.

Proposition 4.6. The following bounds hold uniformly for I ∈ I and for both
ε̊ j� ∈ {ε j�, ε j�}.

‖∇�a ε̊‖C0 + ‖∇�aγI ‖C0 + ‖∇�a f̃ I ‖C0 ��a N (|�a|+1−L)+/L�|�a| (132)

‖∇�a Dt ε̊‖C0 + ‖∇�a DtγI‖C0 + ‖∇�a Dt f̃ I ‖C0 ��a N (|�a|+1−L)+/L�|�a| ∗b
−1

(�e1/2v )

(133)

‖∇�a D
2
t ε̊‖C0 + ‖∇�a D

2
t γI ‖C0 + ‖∇�a D

2
t f̃ I ‖C0 ��a N (|�a|+1−L)+/L�|�a| ∗b

−2
(�e1/2v )2

(134)

These estimates generalize to operators of the form D(�a,�r) defined as in (130).

Proof of (132)–(134) for γI , I ∈ Iϕ . If I ∈ Iϕ , then either I is passive (in which

case γI = K−1/2
0 or γI = δ̄1/3 is a constant and the bounds are clear) or I is active

and is given as in (68) or (92). On suppϕ1, e(t) = 4K0eϕ is a constant so we easily
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have ‖D
r
t e−3/2(t)‖C0 � (�e1/2v )r e−3/2

ϕ for 0 ≤ r ≤ 2. Now using Lemma 4.1 and

Proposition 4.4 we find that for I ∈ �
Iϕ ,

H̄ (M,2)[γI ] �M H̄ (M,2)[e−3/2(t)]H̄ (M,2)[ϕ[Gε]] � e−3/2
ϕ e3/2ϕ = 1.

Similarly, for I ∈ Iϕ , we have using (89) the bound

H̄ (M,2)[γI ] �M H̄ (M,2)[ē−3/2(t)]H̄ (M,2)[ϕ[1]]
�M H̄ (M,2)[ē−1/2(t)]3e3/2ϕ � e−3/2

ϕ e3/2ϕ = 1.

"#
Proof of (132)–(134) for ε. Let R̃ j�

[1] := (1/3)(−2κ[Gε] + δ j�(R j�
[2ε] + R j�

[Gε])) −
R j�
[G1]. From (79) we can write ε j� = e(t)−1 R̃ j�

[1] +
∑

I∈ �
Iϕ

η2I γ
2
I f̂ j

I f̂ �
I . Now using

Lemma 4.1 and Proposition 4.4 we find (using eϕ = e1/3ϕ e2/3R ≥ eR and that

e(t) ≥ eϕ is constant on suppt R̃[1]) that, for I ∈ �
Iϕ , we have

H̄ (M,2)[e(t)−1 R̃ j�
[1]] � e−1

ϕ H̄ (M,2)[R̃[1]]
�M e−1

ϕ

(
H̄ (M,2)[κGε] + H̄ (M,2)[R[2ε]] + H̄ (M,2)[R[Gε]]

)

�M e−1
ϕ eR � 1.

For the latter term in (79), we use Lemma 4.1 to get

H̄ (M,2)[η2I γ 2
I f̂ j

I f̂ �
I ] �M H̄ (M,2)[ηI ]2 H̄ (M,2)[γI ]2 � 1,

where we applied (132)–(134) for γI , I ∈ Iϕ .

The bound for ε j� is similar, except the term analogous to R̃ j�
[1] is simply

−ē(t)−1R j�
[ε◦], which we bound using Lemma 4.1 and Proposition 4.4 to get

H̄ (M,2)[ē(t)−1R j�
[ε◦]] �M H̄ (M,2)[ē−1/2(t)]2 H̄ (M,2)[R j�

[ε◦]] �M e−1
ϕ · eϕ � 1.

The term involving
∑

I∈Iϕ
η2I γ

2
I f̂ j

I f̂ �
I may be bounded exactly as was done for

�
Iϕ . "#
Proof of (132)–(134) for γI , I ∈ IR . We consider I ∈ �

IR since the case I ∈ IR

will be no different. If I ∈ �
IR we have that γI (t, x) = γ f (I )(ε) is a smooth function

of ε. To bound spatial derivatives, apply the chain rule and product rule repeatedly
to obtain

∇�a[γ f (ε)] =
|�a|∑

k=0

∑
�ai

∂kγ f (ε)

k∏
i=1

∇�ai ε

‖∇�a[γ f (ε)]‖C0 ��a
|�a|∑

k=0

∑
�ai

k∏
i=1

[N (|�ai |+1−L)+/L�|�ai |],
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where the sum ranges over multi-indices with
∑

i |�ai | = |�a| and the implicit
constant depends also on the function γ f (·). Using the elementary inequality∑

i (|�ai | − (L − 1))+ ≤ (|�a| − (L − 1))+ from (9), we obtain ‖∇�a[γ f (ε)]‖C0 ��a
N (|�a|+1−L)+/L�|�a|, which we note is equivalent to H̄ (M,0)[γ f (ε)] �M 1. The same
estimate clearly holds with γ f (·) replaced by any of its partial derivatives ∂γ f (·).

To bound advective derivatives, note that schematically the chain rule gives

Dt [γ f (ε)] = ∂γ f (ε)Dtε (135)

D
2
t [γ f (ε)] = Dt [∂γ f (ε)](Dtε) + ∂γ f (ε)D

2
t ε. (136)

Applying Lemma 4.1 to (135), we obtain

H̄ (M,0)[Dt [γ f (ε)]] �M H̄ (M,0)[∂γ f (ε)] · H̄ (M,0)[Dtε]
�M 1 · ∗

τ
−1

. (137)

Applying Lemma 4.1 to (136), we obtain

H̄ (M,0)[D2
t [γ f (ε)]] �M H̄ (M,0)[Dt [∂γ f (ε)]] · H̄ (M,0)[Dtε]

+ H̄ (M,0)[∂γ f (ε)]H̄ (M,0)[D2
t ε]

�M (
∗
τ
−1

)(
∗
τ
−1

) + 1 · ∗
τ
−2

�M
∗
τ
−2

, (138)

which implies our desired bound. (In line (138), the result of (137) is used with γ f

replaced by ∂γ f .) "#
Proof of (132)–(134) for f̃ I . The bound on ‖ f̃ I ‖C0 is clear from formula (57). To
bound derivatives, it suffices to estimate the term |∇ξI |−2(∇ξI · f̂ I )∇�ξI . Using
Lemma 4.1 we have

H̄ (M,2)[|∇ξI |−2(∇ξI · f̂ I )∇�ξI ] �M H̄ (M,2)[|∇ξI |−2]H̄ (M,2)[∇ξI ]2 (139)

Proposition 4.4 gives H̄ (M,2)[∇ξI ] �M 1. We deduce that H̄ (M,2)[|∇ξI |−2] �M 1
aswell by the same argument we used to establish H̄ (M,2)[γ f (ε)] �M 1 for I ∈ IR ,
but replacing ε by ∇ξI and replacing the smooth function γ f (·) by the smooth
function | · |−2 restricted to a neighborhood of ∇ ξ̂I . "#

From these bounds we obtain the following estimates for the amplitudes of the
correction:

Proposition 4.7. The following estimates hold uniformly for I ∈ I

‖∇�avI ‖C0 + ∗
τ‖∇�a DtvI ‖C0 + ∗

τ
2‖∇�a D

2
t vI‖C0 ��a N (|�a|+1−L)+/L�|�a|e1/2ϕ

(140)

‖∇�a v̂I ‖C0 + ∗
τ‖∇�a Dt v̂I ‖C0 + ∗

τ
2‖∇�a D

2
t v̂I‖C0 ��a N (|�a|+1−L)+/L�|�a|e1/2ϕ

(141)
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‖∇�aδvI ‖C0 + ∗
τ‖∇�a DtδvI ‖C0 + ∗

τ
2‖∇�a D

2
t δvI ‖C0

��a N (|�a|+2−L)+/L�|�a|(BλN )−1e1/2ϕ (142)

‖∇�a δ̂vI ‖C0 + ∗
τ‖∇�a Dt δ̂vI‖C0 + ∗

b
∗
τ
2‖∇�a D

2
t δ̂vI‖C0 ��a (BλN )|�a|/2�|�a|e1/2ϕ

∗
b.

(143)

These estimates generalize to operators of the form D(�a,�r) defined as in (130).

Proof of (140) and (141). ApplyingLemma4.1 andProposition4.6 tov�
I = e1/2I (t)

ηI γI f̃ �
I , we have

H̄ (M,2)[vI ] �M H̄ (M,2)[e1/2I (t)]H̄ (M,2)[ηI ]H̄ (M,2)[γI ]H̄ (M,2)[ f̃ I ]
�M e1/2ϕ · 1 · 1 · 1 = e1/2ϕ ,

which implies (140). The same calculation with v�
I and f̃ �

I replaced by v̂�
I and f̂ �

I
gives (141). "#
Proof of (143). It suffices to prove (143) for |�a| = 0 and 0 ≤ r ≤ 1, since the
remaining bounds follow from (140), (141) and δ̂vI = vI − v̂I by comparison

using (BλN )1/2 ≥ ∗
b
−1

. Using (58), (43) and (53) we have ‖δ̂vI‖C0 � ‖e1/2(t)‖C0 ·
‖∇ξI −∇ ξ̂I ‖C0 � e1/2ϕ

∗
b as desired. We then obtain

‖Dt δ̂vI ‖C0 ≤
∑

r1+···+r4=1

‖D
r1
t e1/2I (t)‖C0‖D

r2
t ηI (t)‖C0

· ‖D
r3
t (∇ξI −∇ ξ̂I )‖C0‖D

r4
t f̃ �

I ‖C0

�
∑

r1+···+r4=1

[ ∗τ−r1
e1/2ϕ ][ ∗τ−r2 ][ ∗τ−r3 ∗

b][ ∗τ
−r4 ] � ∗

τ
−1 ∗

be1/2ϕ

using (43), (123)–(124) and (132)–(133). "#
Proof of (142). Theestimate (142) follows from (140) using theMicrolocalLemma
of [39, Lemma 4.1]. According to this Lemma, the result of the convolution in (52)
has the following form

PI [eiλξI v�
I ] = eiλξI (K̂ �

I b(λ∇ξI )v
b
I + δv�

I ) (144)

where K̂ �
I b(λ∇ξI ) denotes the Fourier transform11 of theKernel K I (i.e. the symbol

ofPI ) evaluated at the frequency λ∇ξI , and where δv�
I is given by a certain explicit

formula. We have from (51) that the symbol of PI is an orthogonal projection

multiplied by a cutoff K̂ �
I b(m) = ψ̂

(
m

nI λ

)
(δ�

b−|m|−2mbm�). From (53), the cutoff

term becomes ψ̂
(

λ∇ξI
n I λ

)
= 1 when evaluated at λ∇ξI . Using that v�

I ∈ 〈∇ξI 〉⊥

11 As with all convolution kernels in this work, K I is viewed as a Schwartz function on
R
3.
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pointwise, we have that (δ�
b−|∇ξI |−2∇bξI∇�ξI )v

b
I = v�

I , so (144) simplifies to the
form assumed in (47), namely PI [eiλξI v�

I ] = eiλξI (v�
I + δv�

I ). The estimate (142)
for δv�

I is essentially carried out in [39, Lemma 7.5], but with the following minor
notational differences. Namely, the amplitude in [39] is a scalar function denoted
θI rather than the vector amplitude v�

I , it has size e1/2R rather than e1/2ϕ , and the
convolution kernel is scalar-valued rather than matrix valued. The bounds of (140)
for v�

I become identical to those used for θI in the proof of [39, Lemma 7.5] when

we replace v�
I by e1/2R (v�

I /e1/2ϕ ) (see [39, Lemma 7.4]), while the convolution kernel
K �

I b obeys all the bounds used for the convolution kernel ηI≈λ in [39, Lemma 7.5],
since they are both obtained by rescaling a fixed Schwartz function by the frequency
λ while preserving the L1 norm. We can thus obtain our desired bound (142) for
δv�

I by following the proof of [39, Lemma 7.5] used to bound the term δθI . "#
We now have the following bounds for the high frequency corrections and the

pressure increment:

Proposition 4.8. The following bounds hold uniformly for I ∈ I:

‖∇�a VI ‖C0 + ∗
τ‖∇�a Dt VI ‖C0 + ∗

τ
2‖∇�a D

2
t VI ‖C0 ��a λ|�a|e1/2ϕ (145)

‖∇�a V̊I ‖C0 + ∗
τ‖∇�a Dt V̊I ‖C0 + ∗

τ
2‖∇�a D

2
t V̊I ‖C0 ��a λ|�a|e1/2ϕ (146)

‖∇�aδVI ‖C0 + ∗
τ‖∇�a DtδVI ‖C0 + ∗

τ
2‖∇�a D

2
t δVI ‖C0 ��a λ|�a|(BλN )−1e1/2ϕ (147)

‖∇�a P‖C0 ��a N (|�a|−L)+/L�|�a|eϕ, ‖∇�a Dt P‖C0

��a N (|�a|+1−L)+/L�|�a|+1e1/2v eϕ. (148)

The bound (148) holds also with Dt replaced by Dt for 0 ≤ |�a| ≤ L − 1.

Proof of (145)-(147). We start with (146). Using V̊ �
I = eiλξI v�

I , we have that

∇�a D
r
t [eiλξI v�

I ] =
∑

0≤m≤|�a|

∑
�b,�c

∇�b D
r
t v

�
I eiλξI (iλ)m

m∏
i=1

∇�ci (∇ci ξI ), (149)

where the sum includes only multi-indices such that |�b| + m +∑i |�ci | = |�a|. For
0 ≤ r ≤ 2, we obtain

‖∇�a D
r
t [eiλξI v�

I ]‖C0

�M

∑
0≤m≤|�a|

∑
�b,�c

[
N (|�b|+1−L)+/L�|�b| ∗τ

−r
e1/2ϕ

]
· λm

m∏
i=1

N (|�ci |+1−L)+/L�|�ci |

(150)

��a
∑

0≤m≤|�a|

∗
τ
−r

e1/2ϕ N (|�a|−m−(L−1))+/L�|�a|−mλm ��a
∗
τ
−r

e1/2ϕ λ|�a|, (151)

where in the last line we used the elementary counting inequality (|�b| − (L −
1))+ +∑i (|�ci | − (L − 1))+ ≤ (|�a| − m − (L − 1))+ in (9) and the fact that
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N 1/L� ≤ λ. The proof of (147) is the same except that we replace v�
I by δv�

I ,
∗
τ
−r

e1/2ϕ by (BλN )−1 ∗τ
−r

e1/2ϕ , and we replace L − 1 ≥ 0 by L − 2 ≥ 0 in the
elementary counting inequality. Inequality (145) now follows by adding (146) and
(147). "#
Proof of (148). These bounds follow from the formula (46), since they hold for
e(t), κ[Gε], R[2ε] and R[Gε] by (43) and Proposition 4.1. To obtain the bound for Dt

in place of Dt , wewill use the fact that for 0 ≤ |�a1| ≤ L wehave ‖∇�a1(v−vε)‖C0 �
�|�a1|e1/2v ,

fromwhichwecanbound the remaining term in∇�a Dt P = ∇�a Dt P+∇�a∇i [(vi−
vi
ε)P] by
‖∇�a∇i [(vi − vi

ε)P]‖C0 �
∑

|�a1|+|�a2|=|�a|+1

(�|�a1|e1/2v )(�|�a2|eϕ) � �|�a|+1e1/2v eϕ

(152)

for all 0 ≤ |�a| ≤ L − 1 as desired. "#
With these bounds in hand, we can begin to estimate the terms of the new stress

given in (28).

4.7. Preliminaries for estimating the new stress

In this sectionwe gather some preparatory estimates for bounding the new stress

tensor
∗
R

j�
.

To prove Lemma 3.1, wemust estimate the new stress
∗
R

j�
and also its advective

derivative
∗
Dt

∗
R

j�
corresponding to the new velocity field

∗
Dt := ∂t + ∗

v · ∇,
∗
v

� =
v� + V �. Since the bounds we have encountered so far have been stated in terms of
the velocity fields v�

ε and v� and their corresponding advective derivatives Dt and

Dt rather than
∗
v

�

and
∗
Dt , the following Lemma will be useful.

Lemma 4.2. For each advective derivative D̊t ∈ {Dt , Dt ,
∗
Dt }, define H̊ ∈

{H, H̄ ,
∗
H} by

H̊ [F] := max
0≤r≤1

max
0≤|�a|+r≤L

‖∇�a D̊r
t F‖C0

λ|�a|(λe1/2ϕ )r
. (153)

Then each weighted norm H̊ [·] satisfies the triangle inequality and product rule

as in (127), these norms are comparable
∗
H [F] � H [F] � H̄ [F] �

∗
H [F], and

H̄ [F] � H̄ (L−1,1)[F]. The inequalities
∗
H [F] � H [F] � H̄ [F] �

∗
H [F] hold

also for the homogeneous weighted seminorms H̊ [F], which we define similarly to
(153) but omitting the term |�a| = r = 0. The homogeneous seminorms satisfy the
triangle inequality H̊ [F + G] ≤ H̊ [F] + H̊ [G] and a product rule of the form

H̊ [FG] � H̊ [F]H̊ [G] + H̊ [F]H̊ [G]. (154)



1266 Philip Isett

Proof. The proof of the triangle inequality and product rule (154) is analogous
to Lemma 4.1. The inequality H̄ [F] � H̄ (L−1,1)[F] follows from the definitions

using N 1/L� ≤ λ and λe1/2ϕ ≥ ∗
τ
−1

. The proof of
∗
H [F] � H [F] is a simpler

version of the proof of
∗
H [F] � H̄ [F], so we will focus on this latter inequality

instead. Let Ṽ � = ∗
v

� − v�
ε = V � + (v� − v�

ε ), and observe that, for 0 ≤ |�a| ≤ L
we have

‖∇�a(v� − v�
ε )‖C0 ��a λ|�a|(e1/2v /N ), (155)

‖∇�a Ṽ ‖C0 ≤ ‖∇�a V �‖C0 + ‖∇�a(v� − v�
ε )‖C0 � λ|�a|(e1/2ϕ + e1/2v /N ) � λ|�a|e1/2ϕ .

(156)

In (155) we use (14), (95)–(96) and λ ≥ N�, while in (156) we use (145) and
N ≥ (e1/2v /e1/2ϕ ).

For any 0 ≤ |�a| ≤ L − 1, we then have that

∇�a
∗
Dt [F] = ∇�a[Dt F + Ṽ �∇�F]

‖∇�a
∗
Dt [F]‖C0 � ‖∇�a Dt F‖C0 +

∑
|�a1|+|�a2|=|�a|

‖∇�a1 Ṽ �‖C0‖∇�a2∇�F‖C0

‖∇�a
∗
Dt [F]‖C0 � λ|�a|+1e1/2ϕ H̄ [F]

+
∑

|�a1|+|�a2|=|�a|
[λ|�a1|e1/2ϕ ][λ|�a2|+1 H̄ [F]] � λ|�a|(λe1/2ϕ )H̄ [F],

(157)

which implies the bound
∗
H [F] � H̄ [F] we desire. Interchanging the roles of

∗
H

and H̄ [·] and replacing Ṽ � by −Ṽ � gives the opposite inequality
∗
H [F] � H̄ [F].

Note that the same argument applies to the homogeneous versions
∗
H [·] and H̄ [·].

"#
In terms of the above weighted norms, we have the following Proposition, which

follows from Propositions 4.1, 4.3, 4.7 and 4.8 (noting that
∗
b
−1 ∗

τ
−1 ≤ λe1/2ϕ in the

case of δ̂vI ).

Proposition 4.9. Let (F, hF )t be any column of the following formal matrix of
variables
[

F ∇ξI vI v̂I P R[2∗] R[3∗] ϕ(2) VI V̊I δ̂∇ξI δ̂vI δvI δVI

hF 1 e1/2ϕ e1/2ϕ eϕ eR eG e3/2ϕ e1/2ϕ e1/2ϕ

∗
b

∗
be1/2ϕ λ−1�e1/2ϕ λ−1�e1/2ϕ

]

Then H̄ [F] � hF and H̄ [Dt F] � ∗
τ
−1

hF .

Proof. From the inequality
∗
τ
−1 ≤ λe1/2ϕ , which follows from the choices of

∗
b = b0(e

1/2
v /e1/2ϕ N )1/2,

∗
τ
−1 = ∗

b
−1

(�e1/2v )−1 and λ = BλN�, as well as
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N (|�a|+1−L)+/L�|�a| ≤ λ|�a| we have that H̄ [F]+ ∗
τ H̄ [Dt F] � H̄ (L ,2)[F]. Applying

Propositions 4.4, 4.7, 4.8, we obtain the bounds on each field except for P , δ̂∇ξI and
δ̂vI . The bound for P follows from the bound H̄ (M,2)[P] �M eϕ , which follows as

in the proof of (148). The bounds for δ̂∇ξI and δ̂vI folllow from (124) and (143) af-

ter noting that λ ≥ (BλN )1/2 and
∗
τ
−1 ≤ ∗

b
−1 ∗

τ
−1 = b−2

0 Bλ(e
1/2
ϕ N/e1/2v )(�e1/2v ) �

λe1/2ϕ . "#
The following Lemma will be useful when we encounter the terms of the form
F − Fε or F − Fεx that arise as the errors in regularizing the various tensor fields
in the construction.

Proposition 4.10. Let (F, hF )t be any column of the formal matrix
[

F v p P R[1◦] R[2] R[G] ϕ κ κ[G]
hF e1/2v ev eϕ eϕ eR eG e3/2ϕ eϕ eR

]
.

Then we have the bounds

H̄ [F − Fεv ] � (hF/N ) (158)

H̄ [F − Fε] � (e1/2v /e1/2ϕ )(hF/N ), (159)

where Fεv = χε ∗ χε ∗ F is the spatial mollification of F defined using the kernel
of lines (95)–(96).

For the functions (v, p, P) we will only use (158) although (159) is also true
in these cases.

Proof. For each of the fields F above, we have bounds of the form

‖F − Fεx ‖C0 ≤ (hF/N ) (160)

‖F − Fε‖C0 ≤ (e1/2v /e1/2ϕ )(hF/N ), (161)

from (97), (111), (113), as well as the bounds (using that λ ≥ N�)

‖∇�a F‖C0 + ‖∇�a Fεv‖C0 + ‖∇�a Fε‖C0 � �|�a|hF � λ|�a|(hF/N ) if |�a| ≥ 1,

(162)

‖∇�a Dt F‖C0 + ‖∇�a Dt Fεv‖C0 + ‖∇�a Dt Fε‖C0

� �|�a|+1e1/2v hF ≤ λ|�a|+1e1/2ϕ

(
e1/2v hF

e1/2ϕ N

)
, (163)

where (162) holds for 1 ≤ |�a| ≤ L while (163) holds for 0 ≤ |�a| ≤ L − 1.12

These bounds are obtained in (14)–(18), (103)–(104), (106)–(109), (114)–(115)
and (148). The final inequality in (163) holds also for the coarse scale advective

12 The bound ‖P − Pεv‖C0 � (eϕ/N ) follows from Proposition 4.1 using (148).
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derivative Dt F in place of Dt F as a consequence of the comparison inequality
H̄ [F] � H [F] of Lemma 4.2. established in (98), (111) and (113) gives (159).13

We now consider the sharper bound of (158). The bounds on spatial derivatives
and the C0 norm follow from (160), (162). The bounds on the advective derivative
will require a more delicate argument. For 1 ≤ |�a| ≤ L − 1, we can use the
following estimate, which applies (163) and (155):

Dt (F − Fεv ) = (v j
ε − v j )∇ j F + Dt F − Dt Fεx (164)

‖∇�a Dt (F − Fεv )‖C0 �
∑

|�a1|+|�a2|=|�a|
‖∇�a1(v

j − v j
ε )‖C0‖∇�a2∇ j F‖C0

+ �|�a|+1e1/2v hF

�
∑

|�a1|+|�a2|=|�a|
[λ|�a1|(e1/2v /N )][λ|�a2|�hF ] + λ|�a|−1�2e1/2v hF

‖∇�a Dt (F − Fεv )‖C0 � λ|�a|+1e1/2ϕ (hF/N ), if 1 ≤ |�a| ≤ L − 1. (165)

In the last two lines we used that |�a| ≥ 1, λ ≥ N� and N ≥ e1/2v /e1/2ϕ . It now
suffices to prove (165) in the case |�a| = 0 to obtain (158). Since the first term in
(164) obeys ‖(v j

ε − v j )∇ j F‖C0 ≤ (e1/2v /N )�hF ≤ λe1/2ϕ (hF/N ), it is enough to
bound the term Dt F − Dt Fεx .

We will use that the mollifier used to define vε in (95)–(96) and Fεv := χε ∗
χε ∗ F := χε+ε ∗ F satisfies the vanishing moment conditions

∫
R3 h�aχε(h)dh = 0

for all multi-indices 1 ≤ |�a| ≤ L . To reduce the appearances of minus signs in
what, we will also be using that χε(·) is even. Writing

Dt F − Dt Fεv = (Dt F − χε+ε ∗ Dt F) + χε+ε ∗ Dt F − Dt Fεv ,

the vanishingmoment condition allowsus to apply the inequality‖G−χε∗G‖C0 �k

εk‖∇k G‖C0 with k = L − 1 and ε = εv = c0N−1/L�−1 to estimate the first term
by

‖Dt F − χε+ε ∗ Dt F‖C0 ≤ ‖Dt F − χε ∗ Dt F‖C0 + ‖χε ∗ (Dt F − χε ∗ Dt F)‖C0

(166)

� (N−1/L�−1)L−1‖∇L−1Dt F‖C0 � N−1+1/L�e1/2v hF .

(167)

Using λ ≥ N�, L ≥ 2 and N ≥ ev/eϕ , the last term is bounded by λe1/2ϕ (hF/N )

as desired.
For the commutator term Qε[v, F] := Dt Fεx − χε+ε ∗ Dt F , we follow [37,

Section 16] to express

13 Here we again use (148) for P , which implies the bounds required in Proposition 4.1.
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Qε[v, F] := va
ε∇a(χε ∗ χε F) − χε ∗ χε ∗ (va∇a F) (168)

= χε ∗ (va
ε∇a(χε ∗ F)) + [va

ε∇a, χε∗](χε ∗ F)

− χε ∗ (va∇a(χε ∗ F)) + χε ∗ ([va∇a, χε∗]F) (169)

We introduce here the notation Fε1 := χε ∗ F . Each of these terms when properly
viewed has a form amenable to our desired estimate, the simplest term being

‖χε ∗ (va
ε − va)∇a Fε1)‖C0 � ‖v − vε‖C0�hF � (e1/2v /N )�hF ≤ λe1/2ϕ (hF/N ).

(170)

We consider the last commutator term in (169) since the other remaining term is
similar. We write

−[va∇a, χε∗]F(x) =
∫
R3

(va(x + h) − va(x))[∇a F](x + h)χε(h)dh. (171)

We will apply Taylor expansion to order L − 1 (noting L ≥ 2) with

G(1) =
L−2∑
i=0

G(i)(0)

i ! + 1

(L − 2)!
∫ 1

0
(1− σ)L−2G(L−1)(σ )dσ

G(σ ) := (va(x + σh) − va(x))[∇a F](x + σh)

= σ

∫ 1

0
∇bv

a(x + τσh)[∇a F](x + σh)dτhb.

(172)

The vanishing moment condition for χε(h) implies that, when we substitute G(1)

in (172) for the integrand in (171), all the terms involving G(i)(0)
i ! vanish because

they are proportional to
∫
R3 h�aχε(h)dh for some 1 ≤ |�a| ≤ L , and (171) becomes

an expression of the form

∑
�a1,�a2

c�a1,�a2
(L−2)!

∫∫∫
R3

∇�a1∇bv
a(x + τσh)

[∇�a2∇a F](x + σh)hbh�a1h�a2χε(h)dh σ(1−σ)L−2τ |�a1|dτdσ,

where the sum runs over multi-indices with |�a1| + |�a2| = L − 1 and the bounds of
integration for dτ and dσ are from 0 to 1. This long expression gives us the bound

‖(171)‖C0 �
∑

|�a1|+|�a2|=L−1

[�|�a1|+1e1/2v ] · [�|�a2|+1hF ] · ‖ |h|Lχε‖L1(R3)

� εL
v �L+1e1/2v hF � �e1/2v (hF/N ) ≤ λe1/2ϕ (hF/N ). (173)

This bound implies that‖χε∗([va∇a, χε∗]F)‖C0 = ‖χε∗(171)‖C0 � λe1/2ϕ (hF/N )

as desired, and the bound for the remaining term [va
ε∇a, χε∗](Fε1) in (169) follows

by the same argument. "#
Our next Lemma will be useful when we apply order −1 operators of the form

Q∗ that are restricted to frequencies of the order λ. Similar estimates appear in [39,
Lemma 7.2] and [6].
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Lemma 4.3. Suppose Q : R
3 → R is Schwartz and satisfies the bounds

max
0≤|�a|≤|�b|≤L

λ−(|�b|−|�a|)‖h�a∇�b Q]‖L1(R3) ≤ �−1 (174)

for some real number �−1 ≥ 0. Then, for any smooth U on T
3, we have

H̄ [Q ∗ U ] � �−1
(
‖U‖C0 + λ−1e−1/2

ϕ ‖DtU‖C0

)
. (175)

As a consequence, we have H̄ [Q ∗ U ] � �−1 H̄ [U ] and, if U = eiλξ u with
Dtξ = 0, we have that

H̄ [Q ∗ (eiλξ u)] � �−1(‖u‖C0 + λ−1e−1/2
ϕ ‖Dt u‖C0) � �−1 H̄ [u]. (176)

Proof. The estimate on spatial derivatives follows from the standard bound

‖∇�a[Q ∗ U ]‖C0 = ‖(∇�a Q) ∗ U‖C0 ≤ ‖U‖C0‖∇�a Q‖L1(R3)

≤ �−1λ|�a|‖U‖C0 , 0 ≤ |�a| ≤ L .

For the advective derivative calculation, we use (x̄)∇ to denote differentiation
in the x̄ variable and calculate Dt [Q ∗ U ] at the point x ∈ T

3 as follows:

Dt [Q ∗ U ] = (∂t + v j
ε (x)∇ j )

∫
R3

U (x − h)Q(h)dh =
∫
R3

DtU (x − h)Q(h)dh − B

B =
∫
R3

(v j
ε (x − h) − v j

ε (x))∇ j U (x − h)Q(h)dh. (177)

The first term is equal to Q ∗ DtU (x), which we bound as before by

‖∇�a Q ∗ DtU‖C0 ≤ �−1λ|�a|‖DtU‖C0 , 0 ≤ |�a| ≤ L .

For the commutator term (177) we first use (x)∇ j [U (x − h)] = −(h)∇ j [U (x − h)]
to integrate by parts and, using ∇ jv

j
ε = 0 and the Fundamental Theorem, we write

(177) =
∫
R3

(v j
ε (x − h) − v j

ε (x))U (x − h)∇ j Q(h)dh

= −
∫ 1

0

∫
R3

U (x − h)∇bv
j
ε (x − σh)hb∇ j Q(h)dhdσ.

Now differentiating 0 ≤ |�a| ≤ L−1 times in x and performing a similar integration
by parts when the derivative hits U (x − h), we obtain our desired estimate

∇�a(177)

=
∑

|�a1|+|�a2|=|�a|
c�a1,�a2,�a

∫ 1

0

∫
R3

U (x − h)(h)∇�a2 [∇�a1∇bv
j
ε (x − σh)hb∇ j Q(h)]dhdσ

‖∇�a(177)‖C0

�
∑

|�b1|+|�b2|=|�a|
‖U‖C0‖∇�b1∇bv

j
ε ‖C0‖∇�b2 [hb∇ j Q]‖L1(R3)
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‖∇�a(177)‖C0

�
∑

|�b1|+|�b2|=|�a|
‖U‖C0 [�|�b|+1e1/2v ][λ|�b2|�−1] � �−1‖U‖C0λ|�a|+1e1/2ϕ .

In the last line we used λ ≥ N� and N ≥ (e1/2v /e1/2ϕ ). "#
With the above preliminaries in hand, we can now begin estimating the new

stress.

4.8. Estimating the new stress

Recall from (28) that the new stress
∗
R

j�
= R j�

T + R j�
S + R j�

H + R j�
M will be

decomposed into four terms. The terms R j�
T and R j�

H are symmetric tensors that
must solve the equations

∇ j R j�
T = ∂t V

� + ∇ j [v j
ε V � + V jv�

ε ]
∇ j R j�

T = ∂t V
� + v j

ε∇ j V � + V j∇ jv
�
ε (178)

∇ j R j�
H =

∑
J 
= Ī

∇ j (V j
I V �

J ). (179)

Observe that right hand sides of (178) and (179) both have frequency support
contained in the annulus

Fsupp (178) ∪ Fsupp (179) ⊆ {BλN� ≤ |p| � BλN�} ⊆ R̂3. (180)

This containment uses that the Fourier transform maps products to convolutions,
the containment Fsupp VI ⊆ {2BλN� ≤ (nI /3)BλN� ≤ |p| ≤ 3nI BλN�} for
nI chosen appropriately in Sect. 4.2 (noting (50)), and the containmentFsupp vε ⊆
{|p| ≤ (1/10)N 1/2�} for c0 chosen small in (98).

Now let Q j�
a ∗ be a right-inverse for the divergence operator with order −1

taking values in symmetric tensors. Let Q j�
a,≈λ∗ = P≈λQ j�

a ∗ be the same operator
but localized to frequencies of order λ by a Fourier multiplier P≈λ = χ≈λ∗ whose
symbol is a smooth, rescaled cutoff function χ̂≈λ(p) = χ̂≈1(p/λ) supported in
Fsupp χ ⊆ {λ/2 ≤ |p| � λ} with χ̂≈λ(p) = 1 on (180). We solve (178)–(179)
by setting

R j�
T = Q j�

a,≈λ ∗ [Dt V
a + V b∇bv

a
ε ], R j�

H =
∑
J 
= Ī

Q j�
a,≈λ ∗ [∇b(V b

I V a
J )].

(181)

One example of such an order−1 inverse to the divergence is the Fourier-multiplier
whose symbol is

Q̂ j�
a (p) = (−i)

(
Q̂ j�

a‖(p) + Q̂ j�
a⊥(p)

)

Q̂ j�
a‖(p) = |p|−2 paδ j�, Q̂ j�

a⊥(p) = |p|−2(p jδ�
a + δ

j
a p�) − 2|p|−4(p j p� pa).

(182)
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The properties we need are that Q̂ j�
a (p) is symmetric in j�, degree −1 homoge-

neous, smooth away from 0, and satisfies (i p j )Q̂ j�
a (p) = δ�

a . With these properties,

we have that Q j�
a,≈λ(h) is a rescaling of a Schwartz function with Q̂ j�

a,≈λ(p) =
λ−1̂χ≈1(p/λ)Q̂ j�

a (p/λ), and that R j�
T and R j�

H defined in (181) solve (178)–(179)
and satisfy the containment (180). In physical space, the kernel takes the form
Q j�

a,≈λ(h) = λ−1(λ3Q j�
a,≈1(λh)) with Q j�

a,≈1 a fixed Schwartz function. Conse-

quently, Q j�
a,≈λ(h) satisfies the hypotheses of Lemma 4.3 with �−1 � λ−1. Apply-

ing Lemma 4.3 to (181) and using the estimates

‖Dt V
a + V b∇bv

a
ε ‖C0 � ∗

τ
−1

e1/2ϕ + e1/2ϕ �e1/2v (183)

‖Dt (Dt V
a + V b∇bv

a
ε )‖C0 � ∗

τ
−1

(
∗
τ
−1

e1/2ϕ + e1/2ϕ �e1/2v ), (184)

which follow from (105) and (145), we obtain the estimate H̄ [RT ] � λ−1 ∗τ
−1

e1/2ϕ .

Turning now to R j�
H , we calculate that

∇ j (V j
I V �

J ) = V j
I ∇ j V �

J = V̊ j
I ∇ j V̊ �

J + δV j
I ∇ j V �

J + V̊ j
I ∇ jδV �

J (185)

V̊ j
I ∇ j V̊ �

J = (iλ)eiλ(ξI+ξJ )v
j
I ∇ jξJ v�

I

= (iλ)eiλ(ξI+ξJ )(δ̂v
j
I ∇ j ξ̂J + v

j
I δ̂∇ jξJ )v�

I , (186)

where we have used v
j
I = v̂

j
I + δ̂v

j
I , ∇ξJ = ∇ ξ̂J + δ̂∇ξJ and v̂

j
I ∇ j ξ̂J = 0.

Using (185)–(186), Propositions 4.3, 4.7, and 4.8, and that� ≤ ∗
bλ for Bλ large

and N ≥ (ev/eϕ), we obtain the estimates

‖V̊ j
I ∇ j V̊ �

J ‖C0 � λ(
∗
be1/2ϕ · 1+ e1/2ϕ · ∗b)e1/2ϕ � λ

∗
beϕ (187)

‖V j
I ∇ j V �

J ‖C0 � λ
∗
beϕ + (λ−1�e1/2ϕ )(λe1/2ϕ ) + e1/2ϕ · [�e1/2ϕ ] � λ

∗
beϕ. (188)

We may also apply Dt to (186) and use the product rule (noting Dt eiλ(ξI+ξJ ) = 0)
to obtain that

‖Dt [V̊ j
I ∇ j V̊ �

J ]‖C0 � λ
∗
τ
−1

(
∗
be1/2ϕ · 1+ e1/2ϕ · ∗b)e1/2ϕ � λ

∗
τ
−1 ∗

beϕ (189)

‖Dt [V j
I ∇ j V �

J ]‖C0 � λ
∗
τ
−1 ∗

beϕ + ∗
τ
−1

�eϕ � λ
∗
τ
−1 ∗

beϕ. (190)

Herewehave again used the bounds of Propositions 4.3, 4.7, and 4.8 in combination.
Applying Lemma 4.3 for (181) with �−1 � λ−1 and using (183)–(184) and

(188), (190), we obtain

H̄ [RT ] + H̄ [RH ] � λ−1 ∗τ
−1

e1/2ϕ + ∗
beϕ �

∗
beϕ

H̄ [RT ] + H̄ [RH ] � B−1/2
λ (e1/2v /e1/2ϕ N )1/2eϕ.

(191)

In particular, for Bλ sufficiently large we can ensure that

‖RT ‖C0 + ‖RH‖C0 ≤ 10−3(e1/2v /eϕ N )1/2eϕ. (192)
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Using that V �
I = eiλξI v�

I + δV �
I and (98), (111), an even better C0 estimate holds

for the term

R j�
M =

∑
I

[(v j − v j
ε )V �

I + V j
I (v� − v�

ε )] + (R j� − R j�
ε )

‖R j�
M ‖C0 ≤ 10−3(e1/2v /N )e1/2ϕ + ‖v − vε‖C0‖

∑
I

δVI ‖C0 + 200−1(eϕ/N )

‖R j�
M ‖C0 ≤ 10−2(e1/2v /N )e1/2ϕ + A(e1/2v /N )B−1

λ (e1/2ϕ /N ) ≤ 10−1(e1/2v /N )e1/2ϕ

(193)

for Bλ sufficiently large. Also, using Proposition 4.10 and the product rule of
Lemma 4.2, we have

H̄ [RM ] � H̄ [v − vε]H̄ [V ] + H̄ [R − Rε] � (e1/2v /N )e1/2ϕ + (e1/2v /e1/2ϕ )(eϕ/N )

� (e1/2v /N )e1/2ϕ . (194)

The last termwemust estimate is R j�
S .Wewrite R j�

S = Pδ
j�
[2∗]+R j�

[2∗]+R j�
[3∗]+ R̃ j�

S ,

with R̃ j�
S the lower order term calculated in line (82). By Proposition 4.9 and

Lemma 4.2, we then obtain

H̄ [P] + H̄ [R[2∗]] � eϕ, H̄ [R[3∗]] � eG (195)

H̄ [R̃S] � max
I

[
H̄ [δVI ](H̄ [VI ] + H̄ [V̊I ]) + H̄ [δ̂vI ](H̄ [vI ] + H̄ [δ̂vI ])

]

H̄ [R̃S] � [λ−1�e1/2ϕ ][e1/2ϕ ] + [∗be1/2ϕ ][e1/2ϕ ] � B−1/2
λ (e1/2v /e1/2ϕ N )1/2eϕ.

(196)

The last inequality uses that λ = BλN�,
∗
b = b0B−1/2

λ (e1/2v /e1/2ϕ N )1/2, and (19).

We have now proved our desired estimates for P, R[2∗], R[3∗] and R j�
[G∗] :=

R̃ j�
S +R j�

M +R j�
T +R j�

H that will be sufficient for the bounds required in Lemma 3.1.
We now move on to defining and estimating the new unresolved flux density and

current
∗
κ and

∗
ϕ.

4.9. Calculating the unresolved flux density and current

In this section, we define and estimate the new unresolved flux density and

current,
∗
κ and

∗
ϕ.

According to the definition of a dissipative Euler–Reynolds flow, wemust write

the new resolved energy flux density
∗
D = D[∗v,

∗
p] in the form

∗
D = ∗

Dt
∗
κ +∇ j [∗v�

∗
R

j�
] + ∇ j

∗
ϕ

j
− ∗

μ, (197)

where
∗
R

j�
= R j�

T + R j�
S + R j�

H + R j�
M is exactly the new stress that has been

estimated in Sect. 4.8,
∗
v

� = v� + V � and
∗
Dt = (∂t + ∗

v
j∇ j ). To see that this goal
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may be accomplished, we must properly rewrite the terms introduced in Sect. 4.1 in
lines (34), (40)–(42). In the process, we will frequently encounter the vector field

Ṽ � := ∗
v

� − v�
ε = V � + (v� − v�

ε ), which we note satisfies the bound

H̄ [Ṽ ] ≤ H̄ [V ] + H̄ [v − vε] � e1/2ϕ , (198)

where we used Propositions 4.9 and 4.10 (specifically H̄ [v − vε] � e1/2v /N ) and
N ≥ (e1/2v /e1/2ϕ ).

We construct
∗
κ to have the form

∗
κ = κL + κM + κH , where κM = κ − κε

appears in D̊κ H in (42), κL is defined in (83), and κH will be extracted by writing
the term (35) in the following form

D̊T = D̊T A + D̊T κ + D̊T B

D̊T A := Dt (vε · V ) +∇ j

[( |vε |2
2

+ pεv

)
V j
]

,

D̊T κ := Dt ((v − vε) · V ) = Dt (κH ).

(199)

In (199) we have chosen the κH = (v − vε) · V part of
∗
κ = κL + κM + κH . Now

(44), (83), (199) give

DκL + Dt (κ − κε) + D̊T κ =Dt [κL + κM + κH ] − Dt e(t)

= ∗
Dt [ ∗κ] − ∇ j [ ∗κ Ṽ j ] − Dt e(t). (200)

Recalling that
∗
μ = μ − Dt e(t), we see already the terms

∗
Dt

∗
κ and −∗

μ that are
required in (197). We find the remaining terms by manipulating the components of
(34)–(39) such as.

D̊S = ∇ j

[
v�

(∑
I

V j
I V �

I + Pδ j� + R j�

)]
= ∇ j

[
v�(R j�

S + (R j� − R j�
ε )]
]

D̊S = ∇ j [∗v�(R j�
S + (R j� − R j�

ε ))] − ∇ j [V�(R j�
S + (R j� − R j�

ε )]. (201)

Our general aim will be to absorb terms such as the latter terms in (201) into the

new unresolved flux current
∗
ϕ. However, the particular term (201) poses a difficulty

as the term V� R j�
S is in fact too large to be absorbed into the current

∗
ϕ. We will

treat this difficulty later in Sect. 4.10. For now we move on to the flux term D̊H ,
which we treat as follows:

D̊H = ∇ j

⎡
⎣v�

⎛
⎝∑

J 
= Ī

V j
I V �

J

⎞
⎠
⎤
⎦

D̊H =
∑
J 
= Ī

∇ jvε�V j
I V �

J +
∑
J 
= Ī

∇ j [(v − vε)�V j
I V �

J ] + D̊H B, (202)
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D̊H B =
∑
J 
= Ī

vε�∇ j (V j
I V �

J )

D̊H B
(179)= vε�∇ j R j�

H = ∇ j [vε� R j�
H ] − R j�

H ∇ jvε�. (203)

We expand D̊T using that |v|2 = |vε |2 + 2(v − vε) · v + |v − vε |2 to obtain

D̊T = ∂t (v�V �) +∇ j [v�V �v j ] + ∇ j

(( |v|2
2

+ p

)
V j
)

D̊T = Dt (v�V �) + ∇ j [v�((v
j − v j

ε )V � + V j (v� − v�
ε ))]

+ ∇ j

(( |vε |2
2

+ pεv

)
V j
)
+∇ j

[( |v − vε |2
2

+ (p − pεv )

)
V j
]

D̊T = D̊T A + Dt [(v − vε) · V ] + D̊T B, (204)

D̊T B
(199)= ∇ j [v� R j�

Mv] + ∇ j

[( |v − vε |2
2

+ (p − pεv )

)
V j
]

. (205)

For the term D̊T A appearing in (199), (204), we calculate, using that ∇ j V j = 0

D̊T A = Dt (vε · V ) + vε�V j∇ jv
�
ε + V j∇ j pεv

= vε�(Dt V
� + V j∇ jv

�
ε ) + V�(Dtv

�
ε + ∇� pεv )

D̊T A
(178)= vε�∇ j R j�

T + V�(Dtv
�
ε + ∇� pεv )

= ∇ j [vε� R j�
T ] − ∇ jvε� R j�

T + V�(∇ j R j�
εv

+ Q�
ε[v, v]). (206)

In the last line, we have used the Euler–Reynolds equations for v� (mollified by the
kernel χε∗). The term Q�

ε[v, v] = v
j
ε∇ jv

�
ε −χε ∗ (v j∇ jv

�) is the commutator that
arises from this mollification, which we encountered previously in line (168).

From these calculations, we have isolated terms of the form ∇ j [vε� R̃ j�] or
∇ j [v� R̃ j�] for all of the terms R̃ j� ∈ {RS, RT , RH , RM = R j�

Mv + (R j� − R j�
ε )}

that compose the new stress
∗
R. Sincewe have specified

∗
κ and

∗
μ (see (200)), our goal

of achieving the form (197) will be accomplished if we choose a
∗
ϕ

j
that satisfies

∗
ϕ

j
= ϕ

j
S + ϕ

j
H + ϕ

j
T + ϕ

j
M + ϕ j

κ + ϕ
j
L + ϕ

j
T (207)

∇ jϕ
j
S = −∇ j [V� R j�

S ] (208)

∇ jϕ
j
H = ∇ jvε�

(∑
J 
= Ī

(V j
I V �

J ) − R j�
H

)
−∇ j [Ṽ� R j�

H ] (209)

∇ jϕ
j
T = −∇ jvε� R j�

T + V�(∇ j R j�
εv

+ Q�
ε[v, v]) −∇ j [Ṽ� R j�

T ], (210)

and we recalling that ϕ j
L is defined in (69), the remaining terms satisfy

ϕ
j
M = −V� R j�

M +
∑
J 
= Ī

(v − vε)�V j
I V �

J +
( |v − vε |2

2
+ (p − pεv )

)
V j (211)
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∇ jϕ
j
κ = −∇ j (

∗
κ Ṽ j ) +

∑
J 
= Ī

Dt

(
VI · VJ

2

)
+∇ j

(( |V |2
2

+ κ

)
(v j − v j

ε )

)

(212)

∇ jϕ
j
T = ∇ j

[ ∑
I,J,K /∈T

(VI )�V j
J V �

K + PV j + (ϕ j − ϕ j
ε )
]
. (213)

The above equations have been derived from (201), (202)–(203) ,(204)–(206),
(200), (41)–(42), and (40).

4.10. The main term in the unresolved flux current

As in the statement of Lemma 3.1, we require that
∗
ϕ

j
have the form

∗
ϕ

j
=

∗
ϕ

j

[2] +
∗
ϕ

j

[G], where
∗
ϕ

j

[2] is the larger term, which takes values in ker dx2 and has

size e3/2ϕ , while
∗
ϕ

j

[G] is the smaller term, which is required to have size � e1/2ϕ eG .

We define ϕ
j
[2∗] to have two parts, one being the term ϕ

j
(2) from (69), and the other

will be extracted from the term −V� R j�
S in (208).

The term−V� R j�
S presents a special difficulty. Naively, one might try to absorb

this term into the new
∗
ϕ

j
= ∗

ϕ
j

[2] +
∗
ϕ

j

[G]. However, the main part of the term

V� R j�
S = V�[Pδ

j�
[2∗] + R j�

[2∗]] + . . ., though it does take values in ker dx2, is too
large to be acceptable. Most seriously, it is impossible to achieve the inequality
e(t)−3/2‖V�[Pδ

j�
[2∗]‖C0 ≤ δ̄ required in the definition of δ̄-well-preparedness, as

the term V� Pδ
j�
[2∗] is already proportional to e(t)3/2 · O(1) by design. This term

therefore threatens the entire success of being able to continue the iteration.
What saves us from this difficulty is that, even though the term V� Pδ

j�
[2∗] is

not permissibly small, the divergence of this vector field exhibits an important
cancellation. To see this fact, recall the formula for δ[2∗] = e1 ⊗ e1 + (e3 ⊗ e3)/2
expressed following line (61).Recall also that∇ ξ̂I ∈ 〈(1, 0, 0)〉,while v̂I = ηI γI f̂ I

takes values in 〈(1, 0, 0)〉⊥ = 〈(0, 1, 0), (0, 0, 1)〉. Combining these together, we
find

(∇ j ξ̂I v̂I�)δ
j�
[2∗] = 0

∇ j [V� Pδ
j�
[2∗]] =

∑
I

(iλ)eiλξI ∇ jξI vI� Pδ
j�
[2∗] + . . .

∇ j [V� Pδ
j�
[2∗]] =

∑
I

(iλ)eiλξI (∇ j ξ̂I (δ̂vI )� + (δ̂∇ jξI )vI�)Pδ
j�
[2∗] + . . . .

(214)

Taking advantage of the cancelation in (214)will be crucial for closing the estimates
of Sect. 4.11.

For the next term ∇ j [V� R j�
[2∗]] within ∇ j [V� R j�

S ], the same cancellation is not

available. In this case, wewill absorb the term into the new
∗
ϕ

j

[2], which is reasonable
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since the term takes values in ker dx2 (using that R j�
[2∗] takes values in ker dx2 ⊗

ker dx2) and has a permissible order of magnitude � e1/2ϕ eR .

The final term within V� R j�
S that presents a difficulty is the term V� R j�

[3∗]. This

term cannot be absorbed into
∗
ϕ

j

[2] as it does not take values in ker dx2, and its order

of magnitude e1/2ϕ eR is too large to be absorbed into the lower order term
∗
ϕ

j

[G],
which cannot be any larger than � e1/2ϕ eG to continue the iteration. What allows

us to treat this term is a combination of the above ideas. Namely, using that R j�
[3∗]

takes values in ker dx3 ⊗ ker dx3, we can decompose this tensor using projection
operators π× and π‖ on ker dx3 ⊗ ker dx3. We require for these operators that,
on ker dx3 ⊗ ker dx3, we have π× + π‖ = 1, and π‖ takes values in the span of
〈e1 ⊗ e1, e2 ⊗ e2〉 while π× takes values in the span of 〈e1 ⊗ e2 + e2 ⊗ e1〉. For
π‖R j�

[3∗], we have a cancellation similar to that of the pressure term:

∇ j [V�π‖R j�
[3∗]] =

∑
I

(iλ)eiλξI (∇ j ξ̂I (δ̂vI )� + (δ̂∇ jξI )vI�)π‖R j�
[3∗] + . . ., (215)

where we used that (∇ j ξ̂I v̂I�)π‖R j�
[3∗] = 0.

What remains is the term V�(π×R j�
[3∗]), which can be safely absorbed into

∗
ϕ

j

[2]
as follows. Note that V � takes values essentially in ker dx1 in that we can write
V �

I = V̂ �
I + δ̂V �

I , where V̂ �
I = eiλξI v̂�

I takes values in ker dx1 = 〈e2, e3〉. On the

other hand, π×R j�
[3∗] takes values in 〈e1 ⊗ e2 + e2 ⊗ e1〉 and hence maps ker dx1 to

〈e1〉 ⊆ ker dx2. Therefore, if we now define

∗
ϕ

j

[2] := ϕ
j
(2) − V� R j�

[2∗] − V̂�π×R j�
[3∗], (216)

with ϕ
j
(2), R j�

[l∗] as in (70), (72) and V̂ � =∑I V̂ �
I , we have that

∗
ϕ

j

[2] takes values in
ker dx2 as desired.

With
∗
ϕ

j

[2] chosen we can now verify the condition of (δ̄, Ĉ)-well-preparedness
in Definition 4.1 for the new dissipative Euler–Reynolds flow. Recall from (72),

(84), (46) that the main term in the new stress
∗
R

j�

[2] = Pδ
j�
[2∗] + R j�

[2∗] expands to
become

∗
R

j�

[2] = −(2e(t)/3)δ j�
[2∗] +

∗
R

j�

[2◦] (217)

∗
R

j�

[2◦] = (2κ[Gε] + tr(R[2ε] + R[Gε]))δ j�
[2∗] + R j�

[2ε] + π[2]R j�
[Gε], (218)

e1/2(t) = 2(K0eϕ)1/2ητ ∗t 1≤sup Ĩ[G]+τ/100(t), (219)

where the last formula is as in (117). We will set the new
∗
ē
1/2

(t) to be
∗
ē
1/2

(t) =√
2/3e1/2(t). We set the parameter

∗
eϕ to be

∗
eϕ = (4/3)K0eϕ , which is the constant
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value obtained by
∗
ē(t) on the interval t ≤ sup Ĩ[G] + 10−2(�e1/2v )−1. Note in

particular that
∗
eϕ ≥ Ĉ−1∗eϕ , since

∗
eϕ = Ĉeϕ .

To check condition (88), observe from our choice of εt ≤ 10−3(�e1/2v )−1 that
∗
R[2◦] and

∗
ϕ[2] are supported in

suppt (
∗
R[2◦],

∗
ϕ[2]) ⊆ Ĩ[2] := {t + t̄ : t ∈ Ĩ[G], |t̄ | ≤ 10−3(�e1/2v )−1} (220)

while we have suppt e1/2(t) ⊆ Ĩ[G∗] := {t ≤ sup Ĩ[G] + (�e1/2v )−1/40} as desired
in (25).

We next check (89). Recall that the new frequency energy levels have the form

(
∗
�,

∗
ev)=(Ĉ N�, Ĉeϕ) for some Ĉ ≥ Bλ ≥ 1 as in (21). In particular, since

(
∗
�

∗
e
1/2

v )−1 ≤ 10−4(�e1/2v )−1 for Ĉ large enough and N ≥ e1/2v /e1/2ϕ , we have

that
∗
ē(t) takes on the constant value

∗
eϕ on the interval t ≤ sup Ĩ[2] + (

∗
�

∗
e
1/2

v )−1

by our choice of εt ≤ 10−3(�e1/2v )−1, which immediately implies the bounds (89)

for
∗
ē
−1/2

and
∗
eϕ .

We now confirm that the crucial smallness condition (88) holds for K0 chosen

sufficiently large depending only on L . Recall that
∗
ē(t) = ∗

eϕ is constant and equal to

its maximum value on the interval Ĩ ′[2] = {t ≤ sup Ĩ[2] + (
∗
�

∗
e
1/2

v )} where condition
(88) is required. We will assume the following bound:

max
I

‖δVI ‖C0 +max
I

‖δ̂vI ‖C0 � 10−40e1/2ϕ . (221)

The bound (221) will follow easily from (143), (147) and
∗
b ≤ B−1/2

λ by later taking
Bλ large depending on our choice of K0. Assuming (221), we have for all t ∈ Ĩ ′[2]
that

‖V ‖C0 ≤ ‖
∑
I∈I

VI‖C0 + ‖
∑
I∈ �

I

VI ‖C0 ≤ A(‖ē1/2(t)‖C0 + ‖e1/2(t)‖C0 + e1/2ϕ )

(222)
∗
ē(t)−3/2(V� R j�

[2∗]) = (3/2)e(t)−3/2(V� R j�
[2∗]) (223)

‖∗ē(t)−3/2(V� R j�
[2∗])‖C0

(222),(87)≤ Ae(t)−3/2(‖e(t)1/2‖C0 + e1/2ϕ )eR,

(224)

where the constant A, which varies line by line, crucially does not depend on the
choice of K0. Recalling that e3/2ϕ = e1/2ϕ eR (hence eϕ ≥ eR) and the constant
value of e(t) = 4K0eϕ = ‖e(t)‖C0 , the right hand side of (224) is bounded by

A(K−1
0 + K−3/2

0 ) for some A independent of K0. Taking K0 large, we can bound

(224) by δ̄/40. We may also bound
∗
ē(t)−3/2‖V̂�π×R j�

[3∗]‖C0 for ∈ Ĩ ′[2] by δ̄/40 for
K0 sufficiently large by a simpler version of the same argument.
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Using the bounds ‖ ∗
R[2◦]‖C0 ≤ AeR and ‖ϕ j

(2)‖C0 ≤ Ae3/2ϕ with A independent

of K0, the latter deriving from ϕ
j
(2) = π[2]ϕ j

[Gε], we finally choose K0 large enough

such that, for all t ∈ Ĩ ′[2],

ē(t)−1‖ ∗
R[2◦]‖C0 + ē(t)−3/2‖ϕ(2)‖C0 ≤ A(K0eϕ)−1eR + (K0eϕ)−3/2e3/2ϕ ≤ δ̄/10.

(225)

This choice of K0 guarantees the smallness condition (88) and also the stated
inequality (116).

We are now ready to prove the bounds (90), (87), which must be checked for

the new frequency energy levels (
∗
�,

∗
ev) = (Ĉ N�, Ĉeϕ) where Ĉ ≥ Bλ > 1 is

a large constant to be chosen at the conclusion of the proof. Since we have that

ē(t) ≤ ∗
eϕ , the C0 bound in (90) follows from the smallness condition (88) so it is

enough to prove (90) for 0 < r + |�a| ≤ L . We will use the weighted seminorm

Ĥ [F] := max
0≤r≤1

(
∗
�

∗
e
1/2

v )−r max
0<|�a|+r≤L

∗
�

−|�a|
‖∇�a

∗
Dt F‖C0 (226)

and the property that Ĥ [F] ≤ Ĉ−1Bλ

∗
H [F] ≤ Ĉ−1Bλ

∗
H [F] where ∗

H [F] is de-
fined as in Lemma 4.2, which follows from

∗
� = Ĉ B−1

λ λ and
∗
ev = Ĉeϕ . Using

Lemma 4.2 and (218) we obtain

∗
H [ ∗R[2◦]] � H̄ [ ∗R[2◦]] � eR � ∗

eϕ

∗
H [ϕ(2)] � H̄ [ϕ[Gε]] � eG � ∗

eϕ

∗
H [V� R j�

[2∗] + V̂�π×R j�
[3∗]] � H̄ [V�]H̄ [R j�

[2∗]] + H̄ [V̂�]H̄ [R j�
[3∗]]

� e1/2ϕ eR + e1/2ϕ eG ≤ 2
∗
e
3/2

ϕ .

Assuming Ĉ large enough compared the above implied constants and Bλ, we obtain

Ĥ [R[2◦]] ≤ 2−1∗eϕ and Ĥ [ ∗ϕ
j

[2]] ≤ 2−1∗e
3/2

ϕ , which is sufficient for the 0 < r+|�a| ≤
L cases of the desired bound (90).

The desired bound (87) of ‖ ∗
D

s

t

∗
ē
1/2

‖C0 �(
∗
�

∗
e
1/2

v )s ∗e
1/2

ϕ for 0 ≤ s ≤ 2 and
∗
eϕ :=

Ĉeϕ follows by taking Ĉ large and using the bounds ‖∂s
t e1/2(t)‖C0 � (�e1/2v )se1/2ϕ

and the fact that
∗
ē(t) = (2/3)e(t) depends only on t . This bound proves (85)–(90)

for stage 2 with the new frequency energy levels, the time intervals Ĩ[2] ⊆ Ĩ[G∗],
and the function (2/3)e(t).

4.11. Estimating the unresolved flux density and current

With our choice of
∗
ϕ

j

[2] made in (216) and the list of terms (207), (69) in hand,
we are now ready to estimate the components of the unresolved flux density and
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current,
∗
κ and

∗
ϕ

j
= ∗

ϕ
j

[2] +
∗
ϕ

j

[G], beginning with
∗
κ . the leading order terms

∗
κ [2] and

∗
ϕ

j

[2].
Recall the decomposition of

∗
κ = κL +κM +κH with κL defined in (83). We de-

compose κL as
∗
κ [2] +κLG , where

∗
κ [2] = (1/2)δ j�(Pδ

j�
[2∗]+ R j�

[2∗]) = (1/2)δ j�
∗
R

j�

[2],
and we set

∗
κ [G] = κLG + κM + κH . We will use the following estimates, stated in

terms of the weighted norms of Lemmas 4.1, 4.2.

Proposition 4.11. The following bounds hold for all M ≥ L with constants that
may on M

H̄ [ ∗κ [2]] � H̄ (M,1)[ ∗κ [2]] � eϕ (227)

H̄ [κLG] � H̄ (M,1)[κLG] �M eG (228)

H̄ [κL ] + H̄ [κLεv ] � H̄ (M,1)[κL ] + H̄ (M,1)[κLεv ] � eϕ (229)

H̄ [κL − κLεv ] � (eϕ/N ) (230)

H̄ [ ∗κ [G]] � eG . (231)

Proof. The bound (227) for
∗
κ [2∗] follows from the bounds for P and R j�

[2∗] in
Proposition 148 and (106)–(107). For κLG we apply (106)–(107) to (F, hF ) =
(R[3], eR) and use Proposition 4.11 to obtain

H̄ (M,1)[κLG] � H̄ (M,1)[R[3∗]] +max
I

H̄ (M,1)[δvI ]
(

H̄ (M,1)[vI ] + H̄ (M,1)[δvI ]
)

+max
I

H̄ (M,1)[δ̂vI ]
(

H̄ (M,1)[vI ] + H̄ (M,1)[δ̂vI ]
)

H̄ (M,1)[κLG] � eG + (BλN )−1eϕ + ∗
beϕ � eG (232)

where we have used (19) and
∗
b � (e1/2v /e1/2ϕ N )1/2. The bound (229) for κL now

follows from κL = ∗
κ [2]+κLG , while (229) for κLεv follows by applying (106)–(107)

to (F, hF ) = (κL , eϕ) (which satisfies the bounds required of Proposition 4.1 thanks
to (229) for κL ). Similarly, we may apply Proposition 4.10 to (F, hF ) = (κL , eϕ)

to obtain (230).

Recalling
∗
κ [G] = κLG + (κ − κε)+ (v− vε) · V and applying Proposition 4.10

to κ and v gives

H̄ [ ∗κ [G]] � eG + (e1/2v /e1/2ϕ )(eϕ/N ) + (e1/2v /N )e1/2ϕ � eG , (233)

where we used again (19) . "#

We now turn to estimating the components of
∗
ϕ

j
. The main term

∗
ϕ

j

[2] has been

estimated in Sect. 4.10 by H̄ [ ∗ϕ
j

[2]] � ∗
e
3/2

ϕ � e3/2ϕ , which is the desired bound for
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this term. We gather the remaining terms into
∗
ϕ

j

[G] =
∗
ϕ

j
− ∗

ϕ
j

[2], which will require
a more involved treatment.

The terms in
∗
ϕ

j

[G] canbegathered into three types
∗
ϕ

j

[G] = ϕ
j
[G M]+ϕ

j
[G A]+ϕ

j
[G B].

“Type M” terms arise from errors in mollifications. We estimate these as follows

Proposition 4.12. Let ϕ
j
[G M] be the sum of terms in (211)–(213) that are in di-

vergence form and involve mollification errors of the form F − Fε or F − Fεv .
Then

H̄ [ϕ j
[G M]] � (eve1/2ϕ /N ) � e1/2ϕ eG , (234)

where the second inequality follows from the assumption (19).

Proof. We start by bounding ϕ
j
M in (211) using Proposition 4.10

H̄ [ϕ j
M ] � H̄ [V� R j�

M ] +max
I,J

H̄ [v − vε]H̄ [VI ]H̄ [VJ ]
+ (H̄ [v − vε]2 + H̄ [p − pεv ])H̄ [V ]

H̄ [ϕ j
M ] � H̄ [V ](H̄ [v − vε]H̄ [V ] + H̄ [R − Rε]) + (e1/2v /N )eϕ

+ ((e1/2v /N )2 + (ev/N ))e1/2ϕ

� eϕ(e1/2v /N ) + e1/2ϕ (e1/2v /e1/2ϕ )(eϕ/N ) + (ev/N )e1/2ϕ � eve1/2ϕ /N

Themollification errors in (212) including the terms from
∗
κ = κL +(κ−κε)+(v−

vε)·V may be bounded using Lemma 4.2 (including the inequality H̄ [F] � H [F]),
and Proposition 4.10 to give

ϕ
j
κ M = −Ṽ j [(κ − κε) + (v − vε) · V ] +

( |V |2
2

+ κ

)
(v − vε)

H̄ [ϕκ M ] � e1/2ϕ

[(
e1/2v

e1/2ϕ

)(eϕ

N

)
+
(

e1/2v

N

)
e1/2ϕ

]

+ (H̄ [V ]2 + H [κ])(e1/2v /N ) � e1/2v eϕ/N .

The bound H [κ] � eϕ follows from (16)–(17) and N� = λ ≥ �, �e1/2v ≤
λe1/2ϕ for N ≥ e1/2v /e1/2ϕ .

The mollification error in (213) is then bounded by

H̄ [ϕ j − ϕ j
ε ] � (e1/2v /e1/2ϕ )(e3/2ϕ /N ) � e1/2v eϕ/N , (235)

where we have used Proposition 4.10 for ϕ j . "#
We next consider terms of “Type A”, which are those terms found in (69),

(207)–(213) that are already in the divergence form ∇ j ϕ̃
j for some ϕ̃ j obeying the

required bound H̄ [ϕ̃ j ] � e1/2ϕ eG .
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Proposition 4.13. The term ϕ
j
[G A] identified within the course of the following proof

as the sum of Type A terms obeys the bound H̄ [ϕ[G A]] � e1/2ϕ eG.

The proof will make use of the inequality

(λ−1 ∗τ
−1

eϕ + ∗
be3/2ϕ ) � e1/2ϕ eG , (236)

which follows from
∗
b = b0(e

1/2
v /(e1/2ϕ BλN ))1/2, λ = BλN�,

∗
τ
−1 = ∗

b
−1

(�e1/2v )

and (19).

Proof. From (69), we isolate the term ϕ̃
j
(69) defined as the sum of terms of the

form O(δ̂vI vJ vK ) (including terms that are higher order in δ̂vI ) or of the form
O(δV · V · V ) (including terms that are higher order in δVI ). These terms are
bounded by

H̄ [ϕ̃ j
(69)] � max

I,J,K
H̄ [δ̂vI ](H̄ [vJ ] + H̄ [δ̂vJ ])(H̄ [vJ ] + H̄ [δ̂vK ])

+ max
I,J,K

H̄ [δVI ](H̄ [VJ ] + H̄ [δVJ ])(H̄ [VK ] + H̄ [δVK ])

H̄ [ϕ̃ j
(69)] �

∗
be1/2ϕ · eϕ + (BλN�)−1�e1/2ϕ · eϕ �

∗
be3/2ϕ � e1/2ϕ eG .

In the last line we used our choice of
∗
b = (e1/2v /(e1/2ϕ BλN ))1/2, N ≥ e1/2v /e1/2ϕ

and (19).
We next isolate the acceptable divergence-form terms in (209)–(210), which

we bound using (191)

H̄ [−Ṽ� R j�
H ] + H̄ [−Ṽ� R j�

T ] � H̄ [Ṽ ](H̄ [RH ] + H̄ [RT ])
H̄ [−Ṽ� R j�

H ] + H̄ [−Ṽ� R j�
T ] � e1/2ϕ (

∗
beϕ) � e1/2ϕ eG .

In the last line we used (198) and (236).
The term−V� R j�

S in (208) contains various type A terms. These terms may be

identified by first decomposing R j�
S = Pδ

j�
[2] + R j�

[2∗] + R j�
[3∗] + R j�

SG , where R j�
SG

contains terms of the form O(δvI vI ), O(δ̂vI vI ) along with quadratic terms in δ̂vI

or δvI . Several terms in (208) have already been incorporated into the
∗
ϕ

j

[2] chosen
in (216). The remaining terms in(208) will satisfy

∇ jϕ
j
SB = −∇ j [V� Pδ

j�
[2∗] + V�π‖R j�

[3∗]] (237)

ϕ
j
S A = −δ̂V�π⊥R j�

[3∗] − V� R j�
SG , (238)

δ̂V � =
∑

I

(eiλξI δ̂v�
I ) + δV �

I . (239)

We can bound (239) by H̄ [δ̂V ] �
∗
be1/2ϕ + (BλN )−1e1/2ϕ �

∗
be1/2ϕ , where we use

that H̄ [δvI ] �
∗
b, while H̄ [eiλξI ] � 1. (The last estimate follows from Dt eiλξI = 0
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and ‖∇�aeiλξI ‖C0 ��a λ|�a|, which can be checked by replacing (F, hF ) = (vI , e1/2ϕ )

by (F, hF ) = (1, 1) in the computation of line (151).)

We now obtain using (236) and
∗
b ≤ (BλN )−1 for N ≥ e1/2v /e1/2ϕ the bound

H̄ [ϕS A] � H̄ [δ̂V ]H̄ [R[3∗]] + +H̄ [V ]H̄ [δ̂vI ](H̄ [vI ] + H̄ [δ̂vI ])
+ H̄ [V ]H̄ [δvI ](H̄ [vI ] + H̄ [δvI ])

H̄ [ϕS A] �
∗
be1/2ϕ eG + e1/2ϕ (

∗
beϕ + (BλN )−1eϕ)

�
∗
be3/2ϕ � e1/2ϕ eG .

This bound concludes our estimates for the type A, divergence form terms. "#

4.12. Solving the divergence equation for the unresolved flux current

We now calculate and estimate the remaining error terms in
∗
ϕ

j
, which are all of

“Type B”, meaning that they require solving the divergence equation∇ j ϕ̃
j = U in

order to obtain an appropriate estimate. We gather all these terms into ϕ
j
[G B], where

∗
ϕ

j

[G] = ϕ
j
[G M] + ϕ

j
[G A] + ϕ

j
[G B] is the lower order part of the new unresolved flux

current
∗
ϕ

j
, and ϕ

j
[G M], ϕ

j
[G A] have been defined and bounded in Propositions 4.12,

4.13. We require ϕ
j
[G B] to satisfy the following:

ϕ
j
[G B] = ϕ

j
[M B] + ϕ

j
[L H ] + ϕ

j
[H B] + ϕ

j
[T B] + ϕ

j
[Q B] + ϕ

j
[κ B] + ϕ

j
[T B] (240)

ϕ
j
[M B] = (P − Pεv )(V j − V�δ

j�
[2∗]) − (κL − κLεv )V j

− (v j − v j
ε )κL − V�(π‖R j�

[3∗] − R j�
‖ε ) (241)

∇ jϕ
j
[L H ] = ∇ j [(Pεv + κLεv )V j ] (242)

∇ jϕ
j
[P R] = −∇ j [V� Pεv δ

j�
[2∗]] − ∇ j [V� R j�

‖ε ] (243)

∇ jϕ
j
[H B] = ∇ jvε�

(∑
J 
= Ī

(V j
I V �

J ) − R j�
H − R j�

T

)
(244)

∇ jϕ
j
[T B] = V�(∇ j R j�

εv
+ Q�

ε[v, v]), Q�
ε[v, v] = va

ε∇av�
ε − χε ∗ χε ∗ (va∇av�)

(245)

∇ jϕ
j
[κ B] =

∑
J 
= Ī

Dt

(
VI · VJ

2

)
(246)

∇ jϕ
j
[T B] = ∇ j

[ ∑
I,J,K /∈T

(VI )�V j
J V �

K

]
. (247)

Here R j�
‖ε = χε ∗ χε ∗ π‖R j�

[3∗] is the mollification of π‖R j�
[3∗] in space using the

frequency-localized kernel χε that was also used to define vε . The reason we have
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mollified each of P, κL and π‖R j�
[3∗] is to arrange that all of the equations (242)–

(247) have frequency support on |p| ≥ λ/3:

Fsupp (242)−(247) ⊆ {|p| ≥ (BλN�)/3} ⊆ R̂3. (248)

This observation uses the fact that χε∗ localizes to frequencies of size |p| ≤
N−1/L� ≤ 10−2BλN� while each VI is localized to frequency 2−1nI BλN� ≤
|p| ≤ 2nI BλN� from the presence of PI in (51), and also uses that the Fourier
transform maps products to convolutions, and the various cascade conditions (50),
(63) that constrain the nI to ensure the above products of high frequency terms all
have frequency support in {|p| ≥ BλN�}.

Similarly to Sect. 4.8, we take advantage of this frequency localization as fol-
lows. Choose an order −1 right inverse to the (scalar) divergence equation Q j∗
and choose a Fourier multiplier P≈λ = χ≈λ∗whose symbol is a rescaled Schwartz
function of the form χ̂≈λ(p) = χ̂≈1(p/λ) with χ̂≈λ(p) = 1 for all p in (248). Let
our solution to ∇ j ϕ̃

j = U be defined to be

ϕ̃ j = P≈λQ j ∗ U = Q j
≈λ ∗ U. (249)

For example, if we use the standard solution operator given by the Fouriermultiplier
Q j∗ with symbol

Q̂ j (p) = (−i)|p|−2 p j , (250)

then (249) solves ∇ j ϕ̃
j = U whenever Fsupp U is contained in (248). Further-

more, the kernel of Q j
≈λ∗ is a rescaled Schwartz function with Fourier transform

λ−1̂χ≈1(p/λ)Q̂ j (p/λ), which has the form Q j
≈λ(h) = λ−1[λ3Q j

≈1(λh)] in phys-
ical space for the Schwartz function Q j

≈1. We may thus apply Lemma 4.3 with
�−1 � λ−1 to the operator in (249). Doing so gives the following estimates.

Proposition 4.14. Every term in (240) including ϕ
j
[G B] satisfies the estimate

H̄ [ϕ j
[G B]] � e1/2ϕ eG.

Proof. We start by estimating the term in (241) using Lemmas 4.2 and Propo-
sition 4.10. (Note that Proposition 4.1 and therefore Proposition 4.10 apply to
F = π‖R j�

[3∗] = π‖π[3]R j�
[Gε] with hF = eG .14)

H̄ [ϕ j
[M B]] � H̄ [V ] (H̄ [P − Pεv ] + H̄ [κL − κLεv ]

+H̄
[
π‖R[3∗] − R j�

‖ε
])

+ H̄ [v − vε]H̄ [κL ] (251)

H̄ [ϕ j
[M B]]

(158)−(230)
� e1/2ϕ ((eϕ/N ) + (eG/N )) + (e1/2v /N )eϕ

� e1/2v eϕ/N
(19)
� e1/2ϕ eG . (252)

14 Here we use the calculation of line (152) to deduce the bounds for Dt from those of Dt .
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As for the remaining terms in (242)–(247), to apply Lemma 4.3 we need only
estimates on H0[U ] := max{‖U‖C0 , (λe1/2ϕ )−1‖DtU‖C0}, where U is the right
hand side of the equation. We denote the right hand sides of equations (242)–(247)
by U[L H ], U[H B], . . . , U[T B]. The bounds for (244) and (246) are

H̄ [U[κ B]] � max
I,J

H̄ [Dt VI ]H̄ [VJ ] � ∗
τ
−1

eϕ (253)

H̄ [ϕ[κ B]]
(175)
� λ−1 ∗

τ
−1

eϕ

(236)
� e1/2ϕ eG . (254)

‖U[H B]‖C0 � ‖∇vε‖C0(max
I,J

‖VI ‖C0‖VJ‖C0 + ‖RH‖C0 + ‖RT ‖C0)

(145),(191)
� (�e1/2v )eϕ

‖DtU[H B]‖C0 � ‖Dt (∇vε)‖C0eϕ + (�e1/2v )(max
I,J

‖Dt VI ‖C0‖VJ‖C0

+ ‖Dt RH‖C0 + ‖Dt RT ‖C0)

(105),(145),(191)
� (�e1/2v )2eϕ + (�e1/2v )(

∗
τ
−1

eϕ + λe1/2ϕ

∗
beϕ) � λe1/2ϕ (�e1/2v )eϕ

H̄ [ϕ[H B]] � λ−1(�e1/2v )eϕ � λ−1 ∗
τ
−1

eϕ

(236)
� e1/2ϕ eG . (255)

In line (253) we used Proposition 4.9, which relies the bounds for D
2
t VI in (145).

In lines (254) and (255) we applied Lemma 4.3 with �−1 � λ−1.
We now consider (242). Using the divergence free property ∇ j V j = 0, this

term becomes

U[L H ] = V j (∇ j Pεv +∇ jκLεv ),

DtU[L H ] = Dt V
j (∇ j Pεv +∇ jκLεv ) + V j (∇ j Dt Pεv +∇ j DtκLεv )

−∇ jv
a
ε V j (∇a Pεv +∇aκLεv ),

which leads to the following estimates (using Proposition 4.1 for F ∈ {P, κL} and
hF = eϕ):

‖U[L H ]‖C0 � ‖V ‖C0(‖∇Pεv‖C0 + ‖∇κLεv‖C0) � e1/2ϕ (�eϕ)

‖DtU[L H ]‖C0 �
∑

r1+r2=1

‖D
r1
t V a‖C0(‖D

r2
t ∇a Pεv‖C0 + ‖D

r2
t ∇aκLεv‖C0)

‖DtU[L H ]‖C0 � ∗
τ
−1

e1/2ϕ (�eϕ)

H̄ [ϕ[L H ]] � λ−1(�e1/2ϕ )eϕ � N−1e1/2ϕ eϕ

(19)
� e1/2ϕ eG .

We turn now to (245). We will use the following bounds for the commutator
term:

‖Q�
ε[v, v]‖C0 � �ev/N , ‖Dt Q�

ε[v, v]‖C0 � �2eve1/2ϕ . (256)
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The C0 estimate in (256) was proved already by taking (F, eV ) = (v, e1/2v ) in
lines (170), (173). We will establish the bound for Dt Q�

ε in Sect. 4.13. For now we
proceed assuming (256) to obtain

‖U[T B]‖C0 � ‖V ‖C0(‖∇Rεv‖C0 + ‖Qε‖C0) � e1/2ϕ (�eϕ + �(ev/N ))

‖DtU[T B]‖C0 �
∑

r1+r2=1

‖D
r1
t V ‖C0(‖D

r2
t ∇Rεv‖C0 + ‖D

r2
t Q�

ε[v, v]‖C0)

� ∗
τ
−1

(e1/2ϕ �eϕ + �(ev/N )) + e1/2ϕ (�2eve1/2ϕ )

� [λe1/2ϕ ]e1/2ϕ (�eϕ + �(ev/N ))

H̄ [ϕ[T B]] � λ−1e1/2ϕ (�eϕ + �(ev/N )) � N−1e3/2ϕ

(19)
� e1/2ϕ eG .

We now consider (247). For this term, the key cancellation arises by using that
∇ j V j

J = 0 and the calculation in line (261)

U[T B] =
∑

I,J,K /∈T
V j

J ∇ j (VI · VK ) =
∑

I,J,K /∈T
[Ů[I J KT ] + δU[I J KT ]]

Ů[I J KT ] = (iλ)eiλξJ v
j
J (∇ jξI + ∇ jξK )(vI · vK ) + eiλξJ v

j
J∇ j (vI · vK ) (257)

δU[I J KT ] = δV j
J ∇ j (VI · VK ) + V̊ j

J ∇ j (δVI · VK ) + V̊ j
J ∇ j (V̊I · δVK ) (258)

For the lower order term (258) we obtain the following estimates using the formula
Dt∇ j F = ∇ j Dt F − ∇ jv

a
ε∇a F and the inequality max{‖F‖C0 , λ−1‖∇F‖C0} ≤

H̄ [F]
‖δU[I J KT ]‖C0 � λ max

I,J,K
H̄ [δVI ](H̄ [VJ ] + H̄ [δVJ ])(H̄ [VK ] + H̄ [δVK ])

� λN−1e1/2ϕ · e1/2ϕ · e1/2ϕ � N−1λe3/2ϕ (259)

‖DtδU[I J KT ]‖C0 �
∑

r1+r2=1

λ max
I,J,K

H̄ [Dr1
t δVI ](H̄ [Dr2

t VJ ]

+ H̄ [Dr2
t δVJ ])(H̄ [∇VK ] + H̄ [∇δVK ])

+ ‖∇vε‖C0λ max
I,J,K

H̄ [δVI ](H̄ [VJ ] + H̄ [δVJ ])(H̄ [VK ]
+ H̄ [δVK ])

‖DtδU[I J KT ]‖C0

(145)−(147)
� λ

∗
τ
−1

N−1e3/2ϕ � ∗
τ
−1

(λ
∗
be3/2ϕ ) (260)

For the leading order term (257), we use that v̂ j
J∇ j ξ̂I = v̂

j
J∇ j ξ̂K = 0 to obtain

Ů[I J KT ] = (iλ)eiλξJ v
j
J (δ̂∇ jξI + δ̂∇ jξK )(vI · vK )

+ (iλ)eiλξJ δ̂v
j
J (∇ j ξ̂I + ∇ j ξ̂K )(vI · vK ) + eiλξJ v

j
J∇ j (vI · vK ) (261)

‖Ů[I J KT ]‖C0 � λmax
I,J

(‖vI ‖3C0‖δ̂∇ξJ‖C0 + ‖vI ‖2C0‖δ̂vJ‖C0 + λ−1‖vI ‖2C0‖∇vJ‖C0)

‖Ů[I J KT ]‖C0 � λ(
∗
be3ϕ + N−1e3ϕ) � λ

∗
be3ϕ (262)
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‖DtŮ[I J KT ]‖C0 �
∑

r1+r2=1

max
I,J,K

{
λ‖D

r1
t vI ‖C0‖D

r2
t ∇ξJ‖C0‖vK ‖2C0

+‖D
r1
t vI ‖C0‖D

r2
t ∇vJ‖C0‖vK ‖C0

}

‖DtŮ[I J KT ]‖C0 � (�e1/2v )λe3/2ϕ � ∗
τ
−1

(λ
∗
be3ϕ). (263)

Toobtain (263)we applied Dt to the formula (257) and usedProposition 4.7 and that
∗
b
−1

�e1/2v = ∗
τ
−1

. Applying Lemma 4.3 with �−1 � λ−1 and using (257)–(263)
we obtain

H̄ [ϕ[T B]] �
∗
be3/2ϕ

(236)
� e1/2ϕ eG . (264)

The last term we must bound is the solution to (243). For this term, we rely on the
cancellation explained in lines (214) and (215) (replacing P  → Pεv andπ‖R j�

[3∗]  →
R j�
‖ε by their frequency-localized versions and noting that R j�

‖ε still takes values in
the span of 〈e1 ⊗ e1, e2 ⊗ e2〉). We decompose

U[P R] = −U[P R1] − U[P R2]
U[P R1] = ∇ j V�(Pεv δ

j�
[2∗] + R j�

‖ε ), U[P R2] = V�(∇ j Pεv δ
j�
[2∗] + ∇ j R j�

‖ε ). (265)

We bound the lower order term using the bounds of Proposition 4.1 applied to
P, π‖R[3∗]

‖U[P R2]‖C0 � ‖V ‖C0(‖∇Pεv‖C0 + ‖∇R‖ε‖C0) � e1/2ϕ (�eϕ) (266)

We then expand the main term in (265) as U[P R1] = ∑
I Ů[P RI ] + δU[P RI ]

with

Ů[P RI ] = (iλ)eiλξI ∇ jξI vI�(Pεv δ
j�
[2∗] + R j�

‖ε ), δU[P RI ] = ∇ jδVI�(Pεv δ
j�
[2∗] + R j�

‖ε )

(267)

We bound the lower order term using

‖δU[P RI ]‖C0 � ‖∇δVI ‖C0(‖Pεv‖C0 + ‖R‖ε‖C0) � λ[λ−1�e1/2ϕ ]eϕ (268)

We treat the main term using the observations of lines (214) and (215) to find that

Ů[P RI ] = (iλ)eiλξI (∇ j ξ̂I (δ̂vI )� + δ̂∇ jξI vI�)(Pδ
j�
[2∗] + R j�

‖ε )

‖Ů[P RI ]‖C0 � λ(‖δ̂vI ‖C0 + ‖δ̂∇ξI ‖C0‖vI ‖C0)(‖Pεv‖C0 + ‖R‖ε‖C0) � λ[∗be1/2ϕ ]eϕ.

(269)

Combining (266), (268), (269) with � ≤ λ
∗
b for N ≥ (e1/2v /e1/2ϕ ),

∗
b ≈ (e1/2v /

e1/2ϕ N )1/2, we obtain

‖U[P R]‖C0 � �e1/2ϕ eϕ + λ
∗
be1/2ϕ eϕ � λ[∗be3/2ϕ ]. (270)
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To bound the advective derivative of U[P R], we introduce the weighted C1 norm

H1[F] := max{‖F‖C0 , λ−1‖∇F‖C0}, (271)

noting the properties ‖∇F‖C0 ≤ λH1[F], H1[F+G] ≤ H1[F]+H1[G], H1[FG]
� H1[F]H1[G].

Using these properties and commuting ∇ j with Dt , we obtain

DtU[P R] = ∇ j [Dt [V�(Pεv δ
j�
[2∗] + R j�

‖ε )] − ∇ jv
a
ε∇a[V�(Pεv δ

j�
[2∗] + R j�

‖ε )]
‖DtU[P R]‖C0 �

∑
r1+r2=1

λH1[Dr1
t V ]

(
H1[Dr2

t Pεv ] + H1[Dr2
t R‖ε]

)

+ ‖∇vε‖C0 · λH1[V ](H1[Pεv ] + H1[R‖ε])
‖DtU[P R]‖C0 �

∑
r1+r2=1

λ[ ∗τ−r1
e1/2ϕ ][ ∗τ−r2

eϕ] + λ(�e1/2v )e1/2ϕ eϕ

‖DtU[P R]‖C0 � λ
∗
τ
−1

e1/2ϕ eϕ ≈ [λe1/2ϕ ][ ∗τ−1
eϕ], (272)

Using (270), (272) and applying Lemma 4.3 with �−1 � λ−1, we obtain

H̄ [ϕ[P R]] � λ−1[λ∗
be3/2ϕ + ∗

τ
−1

eϕ]
(236)
� e1/2ϕ eϕ. (273)

This estimate concludes the proof of Proposition 240. "#

4.13. A commutator estimate for the advective derivative

In this sectionwe establish a general commutator estimate to establish inequality
(256), which states that ‖Dt Q�

ε[v, v]‖C0 � �2eve1/2ϕ . This bound follows by taking

(F, hF ) to be (v, e1/2v ) in Proposition 4.15 below and noting that N ≥ (ev/eϕ) by
(19). The proposition will involve the weighted semi-norm

H R� [F] = max
0≤r≤R

max
0<r+|�a|≤L

‖∇�a Dr
t F‖C0

�|�a|(�e1/2v )r
. (274)

It will later be useful to note the comparison inequality

H [F] ≤ (ev/eϕ)−1 Ĥ�[F], (275)

which uses that λ ≥ N� and that N ≥ (ev/eϕ)3/2 from (19) implies (λe1/2ϕ )−1 ≤
(ev/eϕ)−1(�e1/2v )−1.

As in Sect. 4.5, we let χεx be a mollifier at length scale εx := c0N−1/L�−1,
c0 ≤ 1, that satisfies the vanishing moment condition

∫
R3 h�aχεx (h)dh = 0 for

1 ≤ |�a| ≤ L . We define
�
χε = χεx ∗ χεx and note that the same vanishing moment

condition holds for
�
χε , as can be shown using the formula

∫
f (h)

�
χε(h)dh =∫∫

f (y+z)χεx (y)χεx (z)dydz. We will use only the case where
�
χε is exactly the

mollifier used in Sect. 4.5 to define vε and c0 = c1 is the parameter specified in
that section.



Nonuniqueness and Existence of Continuous, Globally Dissipative Euler Flows 1289

Proposition 4.15. If L ≥ 2, H1�[F] ≤ hF and
�
χε = χεx ∗ χεx is as above, then

‖Dt Qε[v, F]‖C0 � N−1+ 1
L (�e1/2v )2hF ,

Qε[v, F] = va
ε∇a(

�
χε ∗ G) − �

χε ∗ [va∇a F] (276)

We remark that the implied constant depends only on the particular Schwartz func-
tion that is rescaled to define the mollifying kernels and will be independent of the
choice of c0, c1 ≤ 1 in the mollifying parameters since the proof will avoid having
any losses due to differentiating the mollifiers.

Proof. We decompose Qε and its advective derivative into

Qε[F] = [va
ε∇a,

�
χε∗](F) + �

χε ∗ [(va
ε − va)∇a F]

Dt Qε[F] =
(

Dt [va
ε∇a,

�
χε∗](F)

)

+
(
[Dt ,

�
χε∗][(va

ε − va)∇a F]
)
+
( �

χε ∗ [Dt [(va
ε − va)∇a F]]

)

Dt Qε[F] := (T1) + (T2) + (T3).

We first consider the term T3, for which we obtain the bounds

Dt [∇a F] = ∇a Dt F − ∇avb
ε∇b F, ‖Dt [∇a F]‖C0 � (�e1/2v )(�hF )

‖(v − vε)‖C0 ≤ N−1e1/2v , ‖Dt (v − vε)‖C0 � N−1+1/L�e1/2v · e1/2v (277)

T3 � ‖Dt [(va
ε − va)∇a F]‖C0 � N−1+1/L(�e1/2v )2hF . (278)

Here we obtained (277) by taking (F, hF ) to be (v, e1/2v ) in lines (164)–(173) and
recalling (97).

We record the estimate ‖G‖C0 ≤ N−1(�e1/2v )hF satisfied by G := (va
ε −

va)∇a F . Our desired bound for T2 can be achieved from this estimate by integrating
by parts in the h variable as follows

−T2 = −[Dt ,
�
χε∗]G = −[va

ε∇a,
�
χε∗]G

=
∫
R3

(va
ε (x + h) − va

ε (x))∇aG(x + h)
�
χε(h)dh (279)

= −
∫
R3

(va
ε (x + h) − va

ε (x))G(x + h)∇a
�
χε(h)dh

= −
∫ 1

0

∫
R3

∇bv
a
ε (x + σh)G(x + h)hb∇a

�
χε(h)dhdσ

‖T2‖C0 � ‖∇vε‖C0‖G‖C0‖|h||∇ �
χε |‖L1(R3) � (�e1/2v )(N−1�e1/2v hF ) · 1

� N−1(�e1/2v )2hF . (280)

Here we used that ∇ava
ε = 0, although the same estimate would follow without

this cancellation.
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Using the notation [Dt , ]L := Dt L−L Dt to denote the commutator operation,
we expand T1 as

T1 = [Dt , ][va
ε∇a,

�
χε∗](F) + [va

ε∇a,
�
χε∗](Dt F) = T1a + T1b + T2 (281)

T1a = [Dt , ][va
ε∇a,

�
χε∗](F), T1b = [va

ε∇a,
�
χε∗](Dt F). (282)

To treat T1b, we replace F in the derivation of inequality (173) by U = Dt F to
express T1b in the form

∑
�a1,�a2

c�a1,�a2
(L−2)!

∫∫∫
R3

∇�a1∇bv
a(x + τσh)[∇�a2∇aU ](x + σh)

hbh�a1h�a2 �
χε(h)dh σ(1−σ)L−2τ |�a1|dτdσ,

where the sum runs over multi-indices with |�a1| + |�a2| = L − 1 and the bounds of
integration for dτ and dσ are from 0 to 1.

The number of derivatives of U appearing when |�a2| + 1 = L and |�a1| = 0
exceeds the number we control, but we can observe that σ [∇�a2∇aU ](x + σh) =
(h)∇a[∇�a2U (x + σh)]. Integrating by parts in h and using that ∇ava = 0, we
express the integrals appearing in such terms in the form

−
∫∫∫

R3
[∇�a2U ](x + σh)∇bv

a(x + τσh)∇a[hbh�a2 �
χε(h)]dh (1−σ)L−2τ |�a1|dτdσ.

From the above two formulas, we obtain a bound of

‖T1b‖C0 �
∑

|�a1|+|�a2|=L−1

[�|�a1|+1e1/2v ][�|�a2|+2e1/2v hF ]‖|h|L
�
χε‖L1

+ [�L+1e1/2v hF ][�e1/2v ](‖|h|L−1 �
χε‖L1 + ‖|h|L∇ �

χε‖L1)

‖T1b‖C0 � (εL
x �L + εL−1

x �L−1)(�e1/2v )2hF � N−1+ 1
L (�e1/2v )2hF . (283)

The last term to consider is the term T1a , which we decompose as T1a =
−T11 − T12, where

T11 =
∫
R3

(Dtv
i
ε(x + h) − Dtv

i
ε(x))∇i F(x + h)

�
χε(h)dh (284)

T12 =
∫
R3

(va
ε (x + h) − va

ε (x))∇avi
ε(x + h)∇i F(x + h)

�
χε(h)dh. (285)

The term T11 can be rewritten by Taylor expanding as in (172) to have the form

∑
�a1,�a2

c�a1,�a2
(L−2)!

∫∫∫
R3

∇�a1∇b Dtv
a
ε (x + τσh)[∇�a2∇a F](x + σh)

hbh�a1h�a2χε(h)dh σ(1−σ)L−2τ |�a1|dτdσ,

where the sum runs over multi-indices with |�a1| + |�a2| = L − 1 and the bounds
of integration for dτ and dσ are from 0 to 1. In the cases where |�a1| = L − 1, we
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observe that τσ∇�a1∇b Dtv
a
ε (x + τσh) = (h)∇b[∇�a1 Dtv

a
ε (x + τσh)] and integrate

by parts in h to write the integrals in such terms in the form

−
∫∫∫

R3
∇�a1 Dtv

a
ε (x + τσh)(h)∇b

[
[∇a F](x + σh)hbh�a1 �

χε(h)

]
dh

(1−σ)L−2τ L−2dτdσ.

The bounds we deduce from the above two formulas are the same as those in (283),
thus yielding the desired bound of ‖T11‖C0 � N−1+ 1

L (�e1/2v )2hF for this term.
We may similarly Taylor expand the term T12 as a finite linear combination of

terms of the form
∫∫∫

R3
∇�a1∇bv

a
ε (x + τσh)[∇�a2(∇avi

ε∇i F)](x + σh)hbh�a1

h�a2χε(h)dh σ(1−σ)L−2τ |�a1|dτdσ,

where the multi-indices satisfy |�a1|+|�a2| = L−1 and the bounds of integration for
dτ anddσ are from0 to1. In this case,wedonot have any terms involvingderivatives
beyond order L , and we obtain ‖T12‖C0 � εL

x �L(�e1/2v )2hF � N−1(�e1/2v )2hF .

It now follows that ‖T1‖C0 � N−1+ 1
L (�e1/2v )2hF sincewe have already proved

this estimate for the term T2 appearing in (281).With this bound we have concluded
the proof of Proposition 4.15. "#

4.14. Verifying the conclusions of the Main Lemma

In this section, we verify all of the conclusions of Lemma 3.1.
The choice of δ̄ > 0 depending on L is made in the concluding paragraph of

Sect. 4.4.

The bounds in (21) for the components of
∗
R

j�
= ∗

R
j�

[2] +
∗
R

j�

[3] +
∗
R

j�

[G], of
∗
κ =

∗
κ [2]+ ∗

κ [G] and of
∗
ϕ

j
= ∗

ϕ
j

[2]+
∗
ϕ

j

[G] follow from the bounds we have already proven.

The bound ‖ ∗
R[G]‖C0 ≤ (e1/2v /(e1/2ϕ N ))1/2eϕ for

∗
R[G] = R j�

T + R j�
H + R j�

M + R̃ j�
S ,

follows by combining the estimates (192) and (193), using the comparison inequal-

ity
∗
H [F] � H̄ [F] of Lemma 4.2 and taking Bλ sufficiently large in (196). The

remaining bounds on derivatives of
∗
R[G] and the bounds on the other components

of
∗
R

j�
(namely

∗
R

j�

[2] = Pδ
j�
[2∗] + R j�

[2∗] and
∗
R

j�

[3] = R j�
[3∗] follow from (194), (195),

(196) for all Ĉ sufficiently large compared to Bλ. The bounds for the components
∗
κ = ∗

κ [2] + ∗
κ [G] follow from (227), (231), using again that

∗
H [F] � H̄ [F] and

taking Ĉ large compared to Bλ. The bounds on the components of
∗
ϕ

j

[2] follow from

the inequality H̄ [ ∗ϕ
j

[2]] � ∗
e
3/2

ϕ � e3/2ϕ proven in Sect. 4.10, while the bounds for
∗
ϕ

j

[G] follow from Propositions 4.12, 4.13 and 4.14 after taking Ĉ sufficiently large.
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We obtain the bounds in (21) for
∗
v

� = v� + V � as follow: using (14), (145),
and λ ≥ N�, N ≥ e1/2v /e1/2ϕ , we have for all 1 ≤ |�a| ≤ L that

‖∇�a
∗
v‖C0 ≤ ‖∇�av‖C0 + ‖∇�a V ‖C0 � �|�a|e1/2v + λ|�a|e1/2ϕ � λ|�a|e1/2ϕ .

For Ĉ sufficiently large compared to Bλ, we obtain ‖∇�a
∗
v‖C0 ≤ ∗

�
|�a| ∗

e
1/2

v for all
1 ≤ |�a| ≤ L .

To establish (21) for
∗
p = p+ P , we first recall the seminorms H̊ [ · ], Ĥ�[ · ] of

Lemma 4.2 and (274). We now apply Lemma 4.2 and the bounds (14)–(15), (195)
and (275) with F = p to obtain

∗
H [ ∗p] ≤ ∗

H [p] + ∗
H [P] � H [p] + H̄ [P]

∗
H [ ∗p] � (ev/eϕ)−1 Ĥ�[p] + H̄ [P] � (ev/eϕ)−1ev + eϕ � eϕ.

This bound achieves our desired estimate for
∗
p after taking Ĉ sufficiently large.

The conditions of (δ̄, Ĉ)-well-preparedness (for stage [2]) as defined in Defini-
tion 4.1 have all been checked throughout the course of Sect. 4.10. It is clear from
the formula (117) that e(t) depends only on the given frequency-energy levels, L
and Ĩ[G] since K0 depends only on L .

The bound (22) on ‖V ‖C0 follows from (145). Using that V � = P≈λV � is
localized to frequencies of the order λ = BλN�, we have for any smooth test
function φ�(t, x) that

∫
T3

φ�(t, x)V �(t, x)dx =
∫
T3

P≈λφ�(t, x)V �(t, x)dx

sup
t

∥∥∥∥
∫
T3

φ�(t, x)V �(t, x)dx

∥∥∥∥ � sup
t

‖P≈λφ�(t, ·)‖L1‖V ‖C0

� λ−1 sup
t

‖∇φ(t, ·)‖L1e1/2ϕ ,

which implies (23) for Bλ sufficiently large.

Since
∗
μ − μ = −Dt e(t) as stated after (44) and Dt e(t) = ∂t e(t) ≤ 0 as

required in (43), it is clear that
∗
μ−μ is non-negative and also depends only on the

given frequency-energy levels, L and Ĩ[G]. We arranged for e(t) to be constant on

a neighborhood of Ĩ[G], so we have that
∗
μ = μ on Ĩ[G].

The choices of Ĩ[l+1] and Ĩ[G∗] stated in (24)–(25) coincide with those of
Sect. 4.10. From the overall construction, we have that V � as well as all the com-

ponents of (
∗
R,

∗
κ,

∗
ϕ) have support contained in suppt e(t), and the latter support is

contained in Ĩ[G∗] by the remarks of Sect. 4.10.
The final remaining task is to construct the second dissipative Euler–Reynolds

flow v�
2 = v� + V �

2 . Let J̃ be any subinterval of Ĩ[1] with length | J̃ | ≥ (�e1/2v )−1.
Choose an index I ∗ ∈ IR from the “larger waves” such that the lifespan interval
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{|t − t (I ∗)| ≤ ∗
τ } is entirely contained in J̃ . This choice is possible since

∗
τ ≤

10−1(�e1/2v )−1, and the union of the lifespan intervals covers J̃ .
We define v�

2 by simply replacing the wave V �
I ∗ by its negation −V �

I ∗ , and its
conjugate V �

Ī ∗ by −V �

Ī ∗ throughout the entire construction. In other words, v�
2 :=

∗
v

� − 2V �
I∗ − 2V �

Ī ∗ . Making this replacement disturb does not disturb any estimate
or important equality obtained in the construction. Most importantly, the equation

(81) remains satisfied since the summation
∑

I∈IR
v

j
I v

�
I that appears there remains

unchanged if one replaces any of the amplitudes v�
I by its negation. It is also clear

that making this change affects the values of (
∗
v,

∗
p) and the components of the new

(
∗
R,

∗
κ,

∗
ϕ) only within the interval {|t−t (I ∗)| ≤ τ } ⊆ J̃ that contains the lifespan of

V �
I ∗ and its conjugate and not elsewhere. This observation implies the containment

(26). What remains to prove is the lower bound (27) for
∫
T3

|v2(t, x) − ∗
v(t, x)|2dx = 4

∫
T3

|VI ∗ + VĪ ∗ |2dx . (286)

Since the frequency supports of V �
I ∗ and its conjugate are disjoint, V �

I ∗ and V �

Ī ∗
are L2-orthogonal. Using that V �

I = V̊ �
I + δV �

I , V̊ �
I = eiλξI v�

I and that the v�
I = v�

Ī
are real-valued, we then have that

∫
T3

|VI ∗ + VĪ ∗ |2dx =
∫
T3

|VI ∗ |2 + |VĪ ∗ |2dx = 2
∫
T2

|vI ∗ |2(t, x)dx

+ 2Re
∫
T3

(2δVI ∗ · VI ∗ − |δVI ∗ |2)dx

For Bλ chosen sufficiently large, the last termmay be bounded using Proposition 4.8
by

2 sup
t

∣∣∣∣Re
∫
T3

(2δVI ∗ · VI ∗ − |δVI ∗ |2)dx

∣∣∣∣ ≤ AL(BλN )−1eϕ ≤ 4−1N−1eϕ. (287)

Achieving inequality (287) together with the desired bound on ‖ ∗
R[G]‖C0 are the

last requirements we impose on the parameter Bλ. We thus specify Bλ at this point
to be any sufficiently large value (depending on all previous choices of parameters)
to ensure the estimates stated so far, and to ensure that λ = BλN� is an integer-
multiple of 2π . The final constants Ĉ, CL are then allowed to be large depending
on the implied upper bound for Bλ (although this condition is not necessary for
CL ).

Recall now the form of v�
I = ē1/2(t)ηI γI f̃ �

I , where f̃ �
I = f̂ �

I − |∇ξI |−2 f̂ I ·
∇ξI∇�ξI . At time t∗ = t (I ∗), we have that ηI ∗(t∗) = 1, f̃ �

I (t∗, x) = f̂ �
I , and

v�
I ∗ = ē1/2(t∗)γI ∗(t∗, x) f̂ �

I ∗ .We obtained a lower bound of γI ≥ 1/4 for all I ∈ IR

at the end of Sect. 4.4. We also have that ē(t) ≥ 10−2eϕ ≥ 10−2M−1eϕ for all

t ∈ Ĩ[1], which follows from the C0 bound in (89). Combining these observations,
we obtain
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2
∫
T2

|vI ∗ |2(t∗, x)dx = 2
∫
T2

ē(t∗)|γI ∗(t
∗, x)|2| f̂ I ∗ |2dx ≥ 2−3 · 10−2| f̂ I ∗ |2M−1eϕ.

(288)

We note that the directions f̂ I chosen at the end of Sect. 4.4 are all nonzero vectors.
We may therefore require CL ≥ 2 · 102 max f̂ ∈BR

| f̂ |−2 to finalize the choice of
CL . Combining (286), (287), and (288), we obtain the desired lower bound stated
in (27). This bound concludes the proof of Lemma 3.1.

5. Extensions to general dimensions

In this sectionwe discuss how our approachmay be adapted to other dimensions
n 
= 3.

The above proof can be extended very directly to higher dimensions n ≥ 3. To

accomplish this extension, we redefine the sets
�
BR ⊆ ker dx1 and

∗
BR ⊆ ker dx2

so that equation (61) becomes∑
f̂ ∈ �

BR

f̂ j f̂ � +
∑

ĝ∈ ∗
BR

ĝ j ĝ� = δ j�,

∑
f̂ ∈ �

BR

f̂ ⊗ f̂ = e2 ⊗ e2 +
n∑

j=3

(1/2)(e j ⊗ e j ),

∑
ĝ∈ ∗

BR

ĝ ⊗ ĝ = e1 ⊗ e1 +
n∑

j=3

(1/2)(e j ⊗ e j ).

(289)

These sets now have cardinality #
�
BR = #

∗
BR = n(n − 1)/2 so that the tensors

( f̂ j f̂ �)
f̂ ∈ �

BR
and (ĝ j ĝ�)

ĝ∈ ∗
BR

may form bases for the vector spaces ker dx1 ⊗
ker dx1, ker dx2 ⊗ ker dx2 respectively.

The key observations from linear algebra that we require to carry out the other
parts of the construction remain true. Namely, since every element of R

d ⊗R
d may

be written as a sum of three tensors that belong to ker dxi ⊗ ker dxi for 1 ≤ i ≤ 3,
we may construct projection operators π(1), π(2), π(3) on R

d ⊗R
d that take values

respectively in π(i) ∈ ker dxi ⊗ ker dxi and preserve the subspace of symmetric
tensors while satisfying π(1) +π(2) +π(3) = Id on R

3⊗R
3 . Similarly, since every

element of R
d belongs to ker dx1 + ker dx2, there exist projections π[1], π[2] with

values in ker dx1 and ker dx2 that satisfy π[1] + π[2] = Id on R
d .

One sees also that the important cancellations of lines (214) and (215) still hold
once one makes the appropriate modifications in defining the terms. Namely, the
projection operators π× and π‖ on ker dx3 ⊗ ker dx3 should be chosen such that
π‖ takes values in the span 〈ei ⊗ ei 〉i 
=3 + 〈ei ⊗ e j + e j ⊗ ei 〉i, j 
=1 while π× takes
values in 〈e1⊗e j +e j ⊗e1〉 j 
=1.With these choices, onemaintaines the cancellation
of line (215) (namely that π‖R[3∗] takes values orthogonal to dx1 ⊗ 〈e1〉⊥), while
π×R[3∗] maps ker dx1 to the span of 〈e1〉 ⊆ ker dx2 as desired.
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Extending the above proof to dimension d = 2 would require substantially
more work. The main issue is that even in two dimensions one requires waves to
take values in three distinct hyperplanes (such as ker dx1, ker dx2, ker dx3 above) in
order to span the space of symmetric tensors (as in the decomposition R

d ⊗ R
d =∑3

i=1 ker dxi ⊗ ker dxi if d ≥ 3). However, a decomposition such as (289) in
dimension 2 would require the directions of the different stages to be orthogonal,
which would limit the number of allowed directions to only 2. The closest analogue
to (289) would be to choose distinct rational lines ker du1, ker du2, ker du3 in R

2

for which there exists a decomposition of the form

δ j� = δ
j�
[1] + δ

j�
[2] + δ

j�
[3],

with δ
j�
[1] = f̂ j f̂ �, f̂ ∈ ker du1, δ

j�
[2] = ĝ j ĝ�, ĝ ∈ ker du2 and δ

j�
[3] = ĥ j ĥ�, ĥ ∈

ker du3 all nonzero. The existence of a decomposition of δ j� of this form is equiva-
lent to the existence of vectors f̂ , ĝ, ĥ spanning the lines ker du1, ker du2, ker du3

such that the angle between each pair of vectors is obtuse. (One concrete exam-
ple would be to take du1 = dx1, du2 = d(x1 + 2x2), du3 = d(x1 − 2x2) with
f̂ = (

√
3/2)e2, ĝ = (1/

√
8)(2e1 − e2) and ĥ = (1/

√
8)(−2e1 − e2).) One would

then hope to perform the iteration as above with waves taking values essentially
in the periodic sequence of subspaces (ker du1, ker du2, ker du3, ker du1, . . .). The
difficulty this approach faces is that the cancellation of line (214) no longer appears
to be available in the presence of such additional terms. For this reason we have
not been able to extend our results to two dimensions without incurring a loss of
regularity and we leave the consideration of the two-dimensional case for future
work.

6. Proof of the Main Theorem

With the Main Lemma, Lemma 3.1, now proven we proceed to the proofs of
Theorems 4 and 5.

The proof of Theorems 4 and 5 will proceed by iteratively applying Lemma 3.1
to obtain a sequence of dissipative Euler–Reynolds flows (v, p, R, κ, ϕ, μ)(k) that
converge uniformly to an Euler flow that satisfies the local energy inequality. The
size of the error and the growth of frequencies during the iteration are dictated by
the bound (21), which we restate here as[ ∗

�
∗
ev

∗
eϕ

∗
eR

∗
eG

Ĉ N� Ĉeϕ Ĉeϕ ĈeG (N−1(e1/2v /e1/2ϕ ))1/2eϕ

]
, eϕ := e1/3ϕ e2/3R . (290)

The sequence of (compound) frequency-energy levelswill be dictated by specifying
that eG,(k+1) = Z−1eG,(k) for some large constant Z .15 We will therefore choose

N = N(k) = Z2(e1/2v /e1/2ϕ )(k)(eϕ/eG)2(k) when applying Lemma 3.1.

15 Taking Z to depend on k would be important for achieving an endpoint type result as in
[36].
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The fact that the evolution rule (290) contains the term eϕ = e1/3ϕ e2/3R that
couples together distinct energy levels introduces some additional complexity into
the iteration compared to previous schemes. To approach this issue, we introduce
the notation Qvϕ = (ev/eϕ), Qϕϕ = (eϕ/eϕ), QϕR = (eϕ/eR), etc. to denote
the quotients of the corresponding energy levels, and we write Lvϕ = log Qvϕ ,
LϕR = log QϕR , etc. to denote their natural logarithms.We alsowrite LG = log eG ,

L� = log�, L Z = log Z and LĈ = log Ĉ . We will write Q(k)
vϕ , L(k)

G , etc. when we
wish to consider the dependence of the parameters on the stage k of the iteration,
and will often suppress this dependence. In the above notation, for example, we
have N = Z2Q1/2

vϕ Q2
ϕG , suppressing the dependence on k.

We will mainly work with the variables Qϕϕ, QϕG rather than QϕR and Q RG

to simplify some calculations. The equations Qϕϕ = (eϕ/eR)2/3 = Q2/3
ϕR and

QϕG = (e1/3ϕ e2/3R /eG) = Q1/3
ϕR Q RG allow us to convert between the two pairs. In

the new variables we have
∗
QϕG = ∗

Q
1/3

ϕR

∗
Q RG = Q1/3

ϕG (Ĉ Z),
∗
Qϕϕ = ∗

Q
2/3

ϕR = Q2/3
ϕG

and
∗
� = Ĉ Z2Q1/2

vϕ Q2
ϕϕ Q2

ϕG�(k). We write these rules in matrix notation as

⎡
⎢⎢⎢⎢⎢⎢⎣

L Z

LG

LϕG

Lϕϕ

Lvϕ

L�

⎤
⎥⎥⎥⎥⎥⎥⎦

(k+1)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
−1 1 0 0 0 0
1 0 1/3 0 0 0
0 0 2/3 0 0 0
0 0 0 1 0 0
2 0 2 2 1/2 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

L Z

LG

LϕG

Lϕϕ

Lvϕ

L�

⎤
⎥⎥⎥⎥⎥⎥⎦

(k)

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

LĈ
0
0

LĈ

⎤
⎥⎥⎥⎥⎥⎥⎦

. (291)

We let L(k) denote the column vector of parameters in (291) and T denote the 6×6
matrix appearing above. In terms of the difference operator δ(k) f(k) := f(k+1)− f(k),
equation (291) may be rewritten as a difference equation δ(k)L(k) = (T − 1)L(k) +
LĈ (e3 + e6). We then derive the identity

15δ(k)LG + 11δ(k)LϕG + 5δ(k)Lϕϕ + δ(k)Lvϕ + 2δ(k)L� = 13LĈ . (292)

The coefficients 15 and 2 appearing in (292) will ultimately lead to the regularity
1/15 for the iteration. This equation may be obtained by locating the row vector
[0, 15, 11, 5, 1, 2] in the row null space of (T − 1), and applying this vector to the
difference equation for L(k).

To ensure the iteration proceeds in a well-defined way, it is necessary that we
check that the parameter N chosen above satisfies the admissibility conditions (19)
assumed in the Main Lemma. To do so it is only necessary to check the latter two
inequalities in (19), since the first inequality, which requires N ≥ QvG Q1/2

ϕϕ =
Qvϕ Q3/2

ϕϕ QϕG , follows from the latter two by taking their geometric mean. The
latter inequalities will be addressed in Sect. 6.1 below.

After establishing sufficient conditions on the parameters to ensure a well-
defined iteration, the proofs ofTheorems4 and5will be completed in the concluding
Sect. 6.3.
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6.1. Admissibility conditions and asymptotics for continuing the iteration

In this section we consider the admissibility conditions in (19) for the parameter
N = Z2Q1/2

vϕ Q2
ϕG . The main result of this section is to isolate a range of initial

parameters that satisfy the conditions in (19) and allow the iteration to proceed by
induction in awell-definedway.Wewill use the notation ut to indicate the transpose
of a column or row vector u.

As remarked in the previous section, we need only check the latter two inequali-
ties in (19), since these imply the first one. These inequalitiesmay bewritten as N ≥
Q1/2

vϕ Q2
ϕG Qϕϕ = Q1/2

vϕ Q3
ϕϕ Q2

ϕG and N ≥ Q3/2
vϕ , where N = Z2Q1/2

vϕ Q2
ϕϕ Q2

ϕG . In

logarithmic form these conditions become

2L Z − Lϕϕ ≥ 0, 2L Z + 2LϕG + 2Lϕϕ − Lvϕ ≥ 0. (293)

We write L̊ = [L Z , LϕG, Lϕϕ, Lvϕ]t to denote the column vector of logarithms of

these parameters, which evolves according to the equation L̊(k+1) = T̊ L̊(k)+ LĈ e2
that in matrix notation becomes

⎡
⎢⎢⎣

L Z

LϕG

Lϕϕ

Lvϕ

⎤
⎥⎥⎦

(k+1)

=

⎡
⎢⎢⎣
1 0 0 0
1 1/3 0 0
0 2/3 0 0
0 0 1 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

L Z

LϕG

Lϕϕ

Lvϕ

⎤
⎥⎥⎦

(k)

+

⎡
⎢⎢⎣

0
LĈ
0
0

⎤
⎥⎥⎦ . (294)

Observe that T̊ has eigenvalues (1, 1/3, 0, 0), and that the 1-eigenspace is the span
of the vector ζ = [1, 3/2, 1, 1]t ∈ ker(T − 1). The crucial point in checking the
condition (293) is that ζ (and hence any positive multiple of ζ ) satisfies (293) with
strict inequality. The positive linear span of ζ is on the other hand not invariant
under the affine transformation (294), so we cannot perform an induction with
parameters in the span of ζ . However, as the following Proposition shows, if we
start with parameters sufficiently close to the positive span of ζ and Z is sufficiently
large, then (293) will remain satisfied.

Proposition 6.1. (Admissible truncated sector)There exist r0 ∈ (0, 1/2)and Z ≥ 1
such that the truncated sector defined by

C̃ := {L̊ ∈ R
4 : L̊ = L Z (ζ + ε), ε1 = 0, max

i
|εi | ≤ r0, L Z ≥ L Z } (295)

is contained in the set of solutions to (293) and is mapped to itself by the affine
transformation (294).

Proof. Recall that both inequalities in (293) hold with strict inequality for ζ =
[1, 3/2, 1, 1]t . We may therefore choose r0 ∈ (0, 1/2) such that for all ε ∈ R

4 with
maxi |εi | ≤ r0 the vector ζ + ε also satisfies both inequalities in (293). With this
choice of r0 we have that every vector in C̃ also satisfies the conditions in (293),
since the value of L Z ≥ L Z > 0 is positive and the conditions are linear.
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Now suppose L̊ = L Z (ζ + ε) belongs to the truncated sector C̃ defined in
(295). Applying the affine transformation in (294) and recalling that T̊ ζ = ζ , we
have

T̊ L̊ + LĈ e2 = L Z (ζ + ∗
ε),

∗
ε := T̊ ε + L−1

Z LĈ e2. (296)

Computing with the matrix T̊ in (294) and using ε1 = 0, we have that
∗
ε1 = 0

and we calculate
∗
ε2 = ε2/3 + L−1

Z LĈ . We thus obtain |∗ε2| ≤ r0/3 + L−1
Z LĈ .

For Z chosen sufficiently large, we have L−1
Z LĈ ≤ L−1

Z LĈ ≤ 2r0/3 and hence

|∗ε2| ≤ r0. We also have that |∗ε3| = 2|ε2|/3 ≤ 2r0/3 ≤ r0 and |∗ε4| = |ε3| ≤ r0.
These inequalities together imply that T̊ L̊ + LĈ e2 belongs to C̃ as desired. "#

At this point, it is also useful to make the following observation on the limiting
behavior of L̊(k):

Proposition 6.2. If L̊(k) evolves by the rule (294), then limk→∞ L̊(k) exists and
limk→∞ δ(k) L̊(k) = 0, where δ(k) L̊(k) := L̊(k+1) − L̊(k).

Proof. Let L̊(k) obey (294). Then the first component L Z = et
1 L̊(k) remains

constant in k, which implies that LĈ = ηL Z , where η > 0 is constant in k.
With this observation, we can re-write the parameter evolution as the iteration
of a fixed matrix, rather than an affine map. That is, for all k we obtain that
L̊(k) = T k

η L̊(0), Tη = (T̊ + ηe2et
1). Note that Tη is lower triangular with a diag-

onal consisting of the eigenvalues (1, 1/3, 0, 0). As a consequence, limk→∞ T k
η

exists and is equal to the Tη-invariant projection onto its 1-eigenspace. It fol-
lows that L̊(∞) := limk→∞ L̊(k) = limk→∞ T k

η L̊(0) exists, and as a consequence

limk→∞ δ(k) L̊(k) = L̊(∞) − L̊(∞) = 0. "#
We will also use the following estimates on the decay rates of the time scale

and the error:

Proposition 6.3. There exists Z1 > 0 such that for all Z ≥ Z1 if L(k) evolves
according to (291) and L̊(0) belongs to the set C̃ in (295), we have for all k ≥ 0
that

Z−3/4e1/2ϕ,(k) ≤ e1/2ϕ,(k+1) ≤ Z−1/4e1/2ϕ,(k) (297)

Z�(k)e
1/2
v,(k) ≤ �(k+1)e

1/2
v,(k+1) ≤ Z9�(k)e

1/2
v,(k) (298)

Proof. Note that eϕ,(k) = Qϕϕ QϕGeG,(k). Using (292), (294) and (295) we have

δ(k) log eϕ,(k) = δ(k)LG + δ(k)Lϕϕ + δ(k)LϕG

= (−L Z ) + ((2/3)LϕG − Lϕϕ) + (L Z + LĈ − (2/3)LϕG)

= −Lϕϕ + LĈ = −L Z (1+ ε2(k)) + LĈ ,

where |ε2(k)| ≤ r0 < 1/2. For sufficently large Z ≥ Z1 we have −(3/2)L Z ≤
δ(k) log eϕ,(k) ≤ −(1/2)L Z , yielding (297). To obtain (298), we start by noting that
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−δ(k) log(�(k)e
1/2
v,(k)) = −(1/2)(δ(k)LG + δ(k)LϕG + δ(k)Lϕϕ + δ(k)Lvϕ) − δ(k)L�

= (−1/2)[0, 1, 1, 1, 1, 2]δ(k)L(k),

where L(k) is the column vector of parameters in (292). Using that L(k) obeys the
evolution equation δ(k)L(k) = (T − 1)L(k) + LĈ (e3 + e6), where T is the matrix
in (291), we obtain

−δ(k) log(�(k)e
1/2
v,(k)) = (−1/2)

([4, 0, 4, 4, 0, 0]L(k) + 3LĈ

)
δ(k) log(�(k)e

1/2
v,(k)) = 2L Z + 2LϕG + 2Lϕϕ + (3/2)LĈ

= 2L Z (1+ 3/2+ ε2(k) + 1+ ε3(k)) + 2LĈ .

Using that maxi |εi(k)| ≤ 1/2, we obtain L Z ≤ δ(k) log(�(k)e
1/2
v,(k)) ≤ 9L Z for

L ≥ Z1 sufficiently large. This bound implies the desired estimate (298). "#

6.2. The Approximation Theorem

We now state our Approximation Theorem, which immediately implies Theo-
rems 4 and 5.

Theorem 7. (Approximation Theorem) Let α < 1/15. Then there exists a constant
Cα > 0 such that the following holds. Suppose that �0 ≥ 1 and E0 > 0 are
positive, that Ĩ is an interval having length | Ĩ | ≥ 8(�0E1/2

0 )−1, and that Ĩ(0), Ĩ(1)
are nonempty subintervals of Ĩ such that sup Ĩ(0) + (�0E1/2

0 )−1 ≤ sup Ĩ(1). Let
(v, p, R, κ, ϕ, μ)0 be a dissipative Euler–Reynolds flow on Ĩ ×T

3 with compound
frequency energy levels to order 2 bounded by (�, ev, eϕ, eR, eG)0 = (�0, E0, E0,

E0, E0) satisfying suppt (R, κ, ϕ)0 ⊆ Ĩ(0).
Then there is a family (vβ, pβ) of weak solutions to the incompressible Euler

equations on Ĩ ×T
3 of class v ∈ Cα

t,x that is parameterized by β ∈ 2N and has the
following properties:

1. For each β, (vβ, pβ) satisfies the local energy inequality (2) with a common

dissipation measure μβ := −[∂t (|vβ |2/2)+∇ j ((|vβ |2/2+ pβ)v
j
β)] = μ∞ ≥ 0

that is independent of β.
2. On Ĩ(0)×T

3, the weak solutions (vα, pα) are all identically equal to each other.
3. On Ĩ(1) × T

3, the dissipation measure μ∞ = μ(0) coincides with the initial
dissipation measure.

4. For all β ∈ 2N, the support of (vβ, pβ) is contained in {t ≤ sup Ĩ(1) +
(�E1/2

0 )−1} ∩ Ĩ .
5. The map β  → vβ is a homeomorphism of 2N onto its image in Cα

t,x .

6. The image (vβ)β∈2N has positive Hausdorff dimension as a subspace of Ct L2
x ( Ĩ×

T
3).

7. We have supβ∈2N ‖vβ − v0‖C0 ≤ Cα E1/2
0 .
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We refer to the proof of Theorem 7 below for a review of the topology of 2N.
Theorems 4 and 5 follow immediately from Theorem 7 by taking the initial

dissipative Euler–Reynolds flow to be identically 0, the �0 ≥ 1, E0 > 0 to be
arbitrary positive numbers, setting Ĩ = R, and taking Ĩ(0) = (−∞, 1), Ĩ(1) =
(−∞, 2) in the case of Theorem 4 or taking Ĩ(0) = (−∞, 1), Ĩ(1) = (−∞,∞) in
the case of Theorem 5.

The first step in the proof of the Approximation Theoremwill be to observe that
the initial dissipative Euler–Reynolds flow can be made (δ̄, M)-well-prepared for
a suitable choice of energy increment function and a (larger) choice of frequency
energy levels belonging to the admissible region (295) without making changes to
the velocity field. The lemma involves a parameter Z that will be chosen to be a
large constant (depending on α) at the end of the argument.

Lemma 6.1. There exists Z1 > 0 such if (v, p, R, κ, ϕ, μ)0 are as in Theorem 7
and if Z ≥ Z1 there is a smooth function ēZ : Ĩ → R≥0 and a dissipative Euler–
Reynolds flow of the form (v, p̃, R̃, κ̃, ϕ, μ̃)(0) that is (δ̄, Z2)-well-prepared for
stage 1 with respect to the compound frequency energy levels given by

(�, ev, eϕ, eR, eG)(0) := (�0, Z7/2E0, Z5/2E0, Z E0, E0), (299)

the pair of intervals ( Ĩ[10], Ĩ[G0]), Ĩ[10] = {t ≤ sup Ĩ(1)}, Ĩ[G0] = {t ≤ sup Ĩ(1) +
(�0E1/2

0 )−1}, and the function eZ . One may arrange that μ̃(0)(t, x) = μ(0)(t, x)

for t ≤ sup Ĩ(1) + 4−1(�0E1/2
0 )−1.

During this proof we will ignore the subscripts in writing (v, p, R, κ, ϕ, μ) :=
(v, p, R, κ, ϕ, μ)0.

Proof. We recall the notation D[v, p] := ∂t (|v|2/2)+∇ j ((|v|2/2+ p)v j ) for the
resolved kinetic energy density. We set p̃ = p+ P with P to be determined. Recall
also the notation δ[1∗] = e3⊗ e3+ (e2⊗ e2)/2 and that δ j� = δ

j�
[1∗] + δ

j�
[2∗]. Starting

with D[v, p] = Dtκ + ∇ j [v� R j�] + ∇ jϕ
j − μ and using the Euler–Reynolds

equations (10), we obtain for any choice of non-increasing function eZ : Ĩ → R≥0
the following equalities

∂tv
� +∇ j (v

jv�) + ∇� p̃ = ∇ j (Pδ j� + R j�) (300)

D[v, p̃] = Dt (κ − (1/2)tr(δ[1∗])eZ (t)) + ∇ j [v�(Pδ j� + R j�)]
+ ∇ jϕ

j − μ̃ (301)

by setting μ̃ = μ − (1/2)tr(δ[1∗])∂t eZ (t) ≥ 0.

Define Ĩ ′(1) := {t ≤ sup Ĩ(1)+2−1(�0E1/2
0 )−1} and set ē1/2Z (t) = Z1/4E1/2

0 ητ0∗
1 Ĩ ′

(1)
(t), where ητZ (t) is a standard, non-negative mollifier in t with support in

|t | ≤ (8�0E1/2
0 )−1. Define R̃ j�

[1] = Pδ
j�
[1∗] + R j�

[1] and choose P = −eZ (t), which
implies that

κ̃[1] := (1/2)δ j�(Pδ
j�
[1∗] + R j�

[1]) = κ[1] − (1/2)eZ (t)tr(δ[1∗]). (302)
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Wemaynowdefine the newdissipativeEuler–Reynolds flow (v, p̃, R̃, κ̃, ϕ̃, μ̃)with
p̃ and μ̃ defined as above, R̃[1] = −eZ (t)δ j�

[1] + R j�
[1], R̃ j�

[2] = −eZ (t)δ j�
[2∗] + R j�

[2],
R̃ j�
[G] = R j�

[G], κ̃[1] as in (302), κ̃[G] = κ[G], and ϕ̃[1] = ϕ[1], ϕ̃[2] = ϕ[2]. We set

eϕ = Z1/2E0 and observe that eϕ ≥ Z−2eϕ,(0) as defined in (299). The conditions

of (δ̄, Z2)-well-preparedness for R̃ j�
[1◦] = R j�

[1] in Definition 4.1 with the above
choices of tensor fields and parameters translate to

suppt (R[1], ϕ[1]) ⊆ Ĩ[10], suppt eZ ⊆ Ĩ[G0]
‖Ds

t ē1/2(t)‖C0 ≤ (�0Z7/4E1/2
0 )s(Z5/2E0)

1/2,

eZ (t)−1‖R[1]‖C0 + e−3/2
Z (t)‖ϕ[1]‖C0 ≤ δ̄, if t ≤ sup Ĩ[10] + (�0Z7/4E1/2

0 )−1

‖Ds
t [e−1/2

Z (t)]‖C0 ≤ 10(�0Z7/4E1/2
0 )s(Z1/2E0)

−1/2 if t ≤ sup Ĩ[10] + (�0Z7/4E1/2
0 )−1

(Z1/2E0)
1/2‖∇�a Dr

t R[1]‖C0 + ‖∇�a Dr
t ϕ[1]‖C0 ≤ �

|�a|
0 (�0Z7/4E1/2

0 )r (Z1/2E0)
3/2

for all 0 ≤ s ≤ 2, and all 0 ≤ r ≤ 1, 0 ≤ r + |�a| ≤ 2. Note that the above
conditions are clear from construction for Z sufficiently large using the bounds
assumed on (v, p, R, κ, ϕ, μ). Similarly, the estimates (14)–(17) for the frequency
energy levels (299) are also clear from construction for Z sufficiently large using
the bounds assumed on (v, p, R, κ, ϕ, μ). With this estimate we obtain Lemma 6.1.
"#

We now proceed with the proof of Theorem 7.

Proof of Theorem 7. Letα < 1/15and let�0, E0, ( Ĩ , Ĩ(0), Ĩ(1)), (v, p, R, κ, ϕ, μ)0
be as in the assumptions of Theorem 7. Let Z be a large constant that will be spec-
ified at the end of the proof. Let (�, ev, eϕ, eR, eG)(0) be the compound frequency
energy levels specified in line (299) and define the dissipative Euler–Reynolds flow
(v, p, R, κ, ϕ, μ)(0) to be the (v, p̃, R̃, κ̃, ϕ̃, μ̃) obtained in Lemma 6.1 with Z as
above.Let L(0) = [L Z , LG , LϕG, Lϕϕ, Lvϕ, L�]t(0) and L̊(0) = [L Z , LϕG , Lϕϕ, Lvϕ]t(0)
be the vectors of parameter logarithms following the notation of Sect. 6.1.

From (299), we obtain that L̊(0) = L Z [1, 3/2, 1, 1] = L Z ζ lies in the 1-
eigenspace of the matrix T̊ in (294). Since L̊(0) lies in the admissible truncated
sector (295),wemayapplyLemma3.1 repeatedly to obtain a sequenceof dissipative
Euler–Reynolds flows (v, p, R, κ, ϕ, μ)(k) with compound frequency energy levels
below (�, ev, eϕ, eR, eG)(k) that evolve according to the equation (291). Moreover,
Lemma 3.1 allows us to construct many possible such sequences of Euler–Reynolds

flows by providing two choices of dissipative Euler–Reynolds flows (either
∗
v or v2)

at each stage of the iteration. We take advantage of this freedom by lefting N be the
set of non-negative integers and let 2N be its power set; i.e., each β ∈ 2N is a subset
of N. We endow 2N with its natural product topology, which is compact, Hausdorff
and metrizable (in fact 2N is homeomorphic to the Cantor set). In this topology a
sequence β( j) in 2N converges to β ∈ 2N when lim supβ( j) = ⋃n

⋂
j≥n β( j) and

lim inf β( j) = ⋂
n
⋃

n≥ j β( j) are both equal to β (in other words, the sequence

β( j) converges pointwise when viewed as maps β( j) : N → {0, 1}). The symmetric
difference operation β�β̄ = (β ∩ β̄c) ∪ (β̄ ∩ βc), which is addition mod 2 if we
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view β and β̄ as maps into Z/2Z, makes 2N a locally compact abelian group with
identity element ∅, and one has the following property characterizing convergence
of sequences in the topology of 2N:

β( j) → β in 2N as j → ∞ if and only if min(β( j)�β) → ∞ in N as j → ∞.

(303)

To each β ∈ 2N we associate a sequence of dissipative Euler–Reynolds flows
(v, p, R, κ, ϕ, μ)β,(k) together with a sequence of frequency energy levels (�, ev,

eϕ, eR, eG)(k), intervals Ĩ[1k], Ĩ[Gk] and non-negative functions ē(k)(t) as follows.
We first define the sequence of frequency energy levels, intervals, and non-negative
functions. We let (�, ev, eϕ, eR, eG)(0) be defined as in (299) and take Ĩ[10], Ĩ[G0]
and ē(0) = eZ as given by the Lemma. The sequence of frequency energy levels is
then dictated by the evolution rules (290)–(291), and coincides with the result of
repeatedly applying Lemma 3.1 with N(k) = Z2(e1/2v /e1/2ϕ )(k)(eϕ/eG)

1/2
(k) chosen

as in Sect. 6. The sequence of frequency energy levels together with the initial
ē(0)(t), Ĩ[10] and Ĩ[G0] determine the sequence of non-negative functions ē(k)(t)
and intervals Ĩ[1k], Ĩ[Gk] obeying (24)–(25) that arises from repeatedly applying
Lemma 3.1 with the above choice of N(k).

Letting Ĩ(0) be as in Theorem 7, we set t∗ = sup Ĩ(0) + 2−1(�0E1/2
0 )−1 and we

define J̃(k) to be the open interval (t∗ − (�(k)e
1/2
v,(k))

−1, t∗ + �(k)e
1/2
v,(k)). We note

that J̃(k) is an open interval of length | J̃(k)| ≥ (�(k)e
1/2
v,(k))

−1 that is contained in

Ĩ[10] ⊆ Ĩ[1k] for all k ≥ 0.
We now define the sequence of Euler–Reynolds flows (v, p, R, κ, ϕ, μ)β,(k) as-

sociated toβ ∈ 2N as follows.We let (v, p, R, κ, ϕ, μ)β,(0) be the dissipativeEuler–
Reynolds flow (v, p̃, R̃, κ̃, ϕ̃, μ̃)(0) in the conclusion of Lemma 6.1. We define
(v, p, R, κ, ϕ, μ)β,(k+1) inductively by applyingLemma6.1 to (v, p, R, κ, ϕ, μ)β,(k)

with the choice of N(k) = Z2(e1/2v /e1/2ϕ )(k)(eϕ/eG)
1/2
(k) and taking Ĩ[1k], Ĩ[Gk] and

positive function ē(k) as above. If k + 1 /∈ β we choose (v, p, R, κ, ϕ, μ)β,(k+1) =
(
∗
v,

∗
p,

∗
R,

∗
κ,

∗
ϕ,

∗
μ)β,(k), while if k + 1 ∈ β we choose (v, p, R, κ, ϕ, μ)β,(k+1) =

(v2, p2, R2, κ2, ϕ2, μ2)β,(k), taking J̃(k) ⊆ Ĩ[1k] as above. In either case, the dissi-
pation measure μ(k+1) is the same and independent of β. Note that N(k) satisfies
the admissibility conditions (19) for all k ≥ 0 by Proposition 6.1 since the initial
frequency energy levels belong to the admissible truncated sector (295). This fact
together with the (δ̄, M)-well-preparedness of (v, p, R, κ, ϕ, μ)β,(k) justifies the
application of the Main Lemma.

For each β ∈ 2N, the sequence of velocity fields vβ(k) converges uniformly
as k → ∞ to a bounded, continuous vector field vβ on Ĩ × T

3, as follows from

‖vβ(k+1) − vβ(k)‖C0 ≤ CLe1/2ϕ,(k) and (297). Since Rβ(k) converges uniformly to 0
(again by (297)), we have that (vβ, pβ) solve the incompressible Euler equations,

where pβ ∈ D′( Ĩ×T
3) is equal to theweak limit pβ = limk→∞ �−1(∇�∇ j (R j�

β(k)−
v

j
β(k)v

�
β(k)). Note that we may assume without loss of generality that the sequence

of approximate pressures is equal to pβ(k) = �−1(∇�∇ j (R j�
β(k) − v

j
β(k)v

�
β(k)) by
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adding a constant if necessary to replace each pβ(k) by its integral 0 representa-
tive. With this normalization, we have that the convergence pβ = limk→∞ pβ(k)

occurs strongly in L p for all p < ∞ by Calderón-Zygmund estimates and the
uniform convergence of (R j�

β(k) − v
j
β(k)v

�
β(k)) (in fact the convergence holds also

in Hölder spaces). In particular pβ ∈ L p for all p < ∞, making D[vβ, pβ ] :=
∂t (|vβ |2/2) + ∇ j [(|vβ |2/2+ pβ)v

j
β)] a well-defined distribution for all β.

We now verify that the limiting Euler flows (vβ, pβ) must satisfy the lo-
cal energy inequality (2) for all β and all have the same dissipation measure
−D[vβ, pβ ] = μ∞ = limk→∞ μ(k), which is equal to the weak limit μ∞ =
− limk→∞[∂t (|vβ(k)|2/2)+∇ j ((|vβ(k)|2/2+ pβ(k))v

j
β(k))]. The fact thatD[vβ, pβ ]

is equal to this weak limit follows from the strong L p convergence of the prod-
ucts including pβ(k)v

j
β(k) as in the previous remark above. The fact that the limit

is non-negative as a distribution (and hence given by a measure), and is equal to
μ∞ = limk→∞ μ(k) ≤ 0 follows from (12) by observing that the functions on
the right hand side of the relaxed local energy inequality (11) all converge weakly
to 0 in D′ as k → ∞. Specifically, since the vβ(k) are uniformly bounded in
C0 and (Rβ(k), κβ(k), ϕβ(k)) converge to 0 uniformly, the functions Dtκβ(k) :=
∂tκβ(k) + ∇ j (v

j
β(k)κβ(k)), ∇ j [(vβ(k))� R j�

β(k)] and ∇ jϕ
j
β(k) in the relaxed energy in-

equality (11), (12) all converge weakly to 0 in D′ as k → ∞.
The solutions constructed above all coincide on Ĩ(0) ×T

3. To see this equality,
note that (by induction on k and the local dependence properties of Lemma 3.1)
the dissipative Euler–Reynolds flows (v, p, R, κ, ϕ, μ)β,(k) are all equal outside of
the interval

J (k) :=
{

t0 + t̄ : t0 ∈ J̃(0), |t̄ | ≤
k∑

j=1

(�( j)e
1/2
v,( j))

−1
}
,

which does not intersect Ĩ(0) by (298) when Z is taken sufficiently large.
We claim that the map β  → vβ is injective when restricted to 2N+2 = {β ∈

2N : β ∩ {0, 1} = ∅}. To see this fact, suppose β1, β2 ∈ 2N+2 are distinct and
let k∗ = min β1�β2 be the smallest integer that belongs to exactly one of β1, β2.
Then, letting Vβ(k) = vβ(k+1) − vβ(k), we have by (22) and (297)

‖vβ1 − vβ2‖Ct L2
x
≥ ‖vβ1(k∗) − vβ2(k∗)‖Ct L2

x
−
∑
k>k∗

(‖Vβ1(k)‖C0 + ‖Vβ2(k)‖C0)

≥ ‖vβ1(k∗) − vβ2(k∗)‖Ct L2
x
−

∑
k≥k∗+1

2Z−(k−k∗)/4CLe1/2ϕ,(k∗)

‖vβ1 − vβ2‖Ct L2
x
≥ ‖vβ1(k∗) − vβ2(k∗)‖Ct L2

x
− 4CL Z−1/4e1/2ϕ,(k∗)

From (27) with M = Ĉ we have ‖vβ1(k∗) − vβ2(k∗)‖Ct L2
x
≥ ((CLĈ)−1 − N−1

(k∗)
)1/2

e1/2ϕ,(k∗). Using that N(k∗) ≥ Z and taking Z sufficiently large we obtain

‖vβ1 − vβ2‖Ct L2
x
≥ 2−1(CLĈ)−1/2e1/2ϕ,(k∗), k∗ = min(β1�β2). (304)
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It follows that vβ1 
= vβ2 for all β1 
= β2 in 2N+2; i.e., the map β  → vβ is injective.
We claim furthermore that, if α < 1/15 and Z ≥ Zα is sufficiently large, then

β  → vβ is a continuous map from 2N into Cα
t,x . We first note that for all k such

that ev,(k) ≤ 1 we have the bound

‖∇vβ(k)‖C0 + ‖∂tvβ(k)‖C0 ≤ ‖∇vβ(k)‖C0 + ‖Dtvβ(k)‖C0 + ‖vβ(k)‖C0‖∇vβ(k)‖C0

≤ C‖∇vβ(k)‖C0 + ‖∇ pβ(k)‖C0 + ‖∇Rβ(k)‖C0

≤ C(�e1/2v,(k) + �ev,(k)) ≤ C�(k)e
1/2
v,(k), (305)

where C depends on supβ,k ‖vβ(k)‖C0 . Using (298), we bound Vβ(k) = vβ(k+1) −
vβ(k) for large k by

‖Vβ(k)‖C0 ≤ CLe1/2ϕ,(k)

‖∇Vβ(k)‖C0 + ‖∂t Vβ(k)‖C0 ≤ C�(k+1)e
1/2
v,(k+1) ≤ C Z9�(k)e

1/2
v,(k).

Interpolating, we obtain that ‖Vβ(k)‖Cα
t,x

≤ CZ (�e1/2v /e1/2ϕ )αe1/2ϕ(k) for some con-

stant CZ depending on Z and the C above. We let Hα(k) := (�e1/2v /e1/2ϕ )αe1/2ϕ(k),
which we estimate as follows using the notation L(k) = [L Z , LG , LϕG, Lϕϕ, Lvϕ,

L�]t(k) and L̊(k) = [L Z , LϕG, Lϕϕ, Lvϕ]t(k), of Sect. 6.1

log Hα(k) = (1/2)[LG + LϕG + Lϕϕ + (1+ α)Lvϕ] + αL�

δ(k) log Hα(k) = (1/2)δ(k)LG + αδ(k)L� + O(|δ(k) L̊(k)|)
= −(1/15− α)δ(k)L� + (1/2)δ(k)LG + (1/15)δ(k)L� + O(|δ(k) L̊(k)|)

δ(k) log Hα(k) = −(1/15− α)δ(k)L� + (1/30)[0, 15, 11, 5, 1, 2]δ(k)L(k)

+ O(|δ(k) L̊(k)|)
= −(1/15− α)δ(k)L� + (13/30)LĈ + o(1), as k → ∞.

In the last line we used equation (292) and the fact from Proposition 6.2 that
|δ(k) L̊(k)| → 0 as k → ∞. Since −δ(k)L� ≤ −L Z and α < 1/15, we have
for all Z ≥ Zα sufficiently large (depending on Ĉ and α) that δ(k) log Hα(k) ≤
− log 10 + o(1) as k → ∞. In particular, there exists k0 ∈ N such that for all
k ≥ k0 we have Hα(k) ≤ 9−(k−k0)Hα(k0). This estimate implies that every vector
field vβ is of classCα

t,x , and also that themap β  → vβ from 2N toCα
t,x is continuous,

since it implies the estimates

‖vβ‖Cα
t,x

≤ ‖v0‖Cα
t,x

+
∑
k≥0

‖Vβ(k)‖Cα
t,x

≤ ‖v0‖Cα
t,x

+
∑
k≥0

CZ Hα(k) < ∞

‖vβ1 − vβ2‖Cα
t,x

≤
∑

k≥min(β1�β2)

‖Vβ(k)‖Cα
t,x

≤
∑

k≥min(β1�β2)

CZ Hα(k). (306)

Since (306) goes to 0 as min(β1�β2) tends to∞, we obtain continuity of the map
β  → vβ by (303).

Since 2N+2 is a compact topological space (homeomorphic to a Cantor set),
Cα

t,x is Hausdorff, and we have shown that β  → vβ is injective on 2N+2, it follows
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that the map β  → vβ is a homeomorphism onto its image in Cα
t,x when restricted

to 2N+2. Identifying 2N+2 with 2N defines the map vβ of Theorem 7.
Now fix a particular value of Z ≥ Zα that is sufficiently large to guarantee all of

the preceding estimates. We claim that the image of (vβ)β∈2N+2 restricted to 2N+2

has positive Hausdorff dimension as a subspace of Ct L2
x . To establish this claim,

we show that there exist positive numbers δ = δZ > 0, ε0 > 0 and a0 > 0 such
that whenever there is a covering {vβ : β ∈ 2N+2} ⊆ ⋃i∈I Bri (vβi ) of the image
by open balls of radius ri ≤ ε0 in Ct L2

x centered at points in the image, we have a
lower bound of

0 < a0 ≤
∑
i∈I

r δZ
i . (307)

We may assume without loss of generality that the collection of balls I in the
covering is countable. The estimate (307) then shows that the Hausdorff dimension
of the space {vβ : β ∈ 2N+2} (viewed as a subspace of Ct L2

x ) is at least δZ .
We recall the notation [k] := {0, 1, . . . , k} and we introduce the “basic cylin-

ders” defined by

2N+k := {β ∈ 2N : β ∩ [k − 1] = ∅}, β̄�2N+k := {β ∈ 2N : (β�β̄)

∩ [k − 1] = ∅}, k ≥ 1, β̄ ∈ 2N.

For any k ≥ 1, the set 2N is the union of 2k disjoint basic cylinders 2N =⋃
β̄⊆[k−1] β̄�2N+k . Moreover, every basic cylinder has the form β̄�2N+k = (β̄ ∩

[k − 1])�2N+k , where β̄ ∩ [k − 1] is finite. Every basic cylinder is therefore both
closed (by (303)) and open (as its complement is closed), and its Haar measure
is equal to μ(β̄�2N+k) = μ((β̄ ∩ [k − 1])�2N+k) = μ(2N+k) = 2−k when we
endow 2N with the natural Haar measure μ of unit total mass. The collection of all
basic cylinders β̄�2N+k , where β̄ is finite and k ≥ 1, can be visualized as forming
a countable basis for the topology of 2N.

Suppose now that we have a covering {vβ : β ∈ 2N+2} ⊆ ⋃
i∈I Bri (vβi ) ⊆

Ct L2
x with maxi ri ≤ ε0, where ε0 := 4−1(CLĈ)−1/2e1/2ϕ,(0). For each i ∈ I define

k∗i ∈ N to be the largest integer that satisfies ri ≤ 4−1(CLĈ)−1/2e1/2
ϕ,(k∗i )

. By the

lower bound (304), every vβ ∈ Bri (vβi ) satisfies min(β�βi ) ≥ k∗i , or equivalently
belongs to the basic cylinder β ∈ βi�2N+k∗i . We therefore obtain the inequalities

12N+2(β) ≤
∑
i∈I

1Bri (vβi )
(β) ≤

∑
i∈I

1
βi �2N+k∗i (β),

2−2 =
∫
2N

12N+2 dμ ≤
∑
i∈I

μ(βi�2N+k∗i ) =
∑
i∈I

2−k∗i . (308)

On the other hand, by the choice of k∗i and (297) we have also a lower bound of

ri ≥ ce1/2
ϕ,(k∗i +1) ≥ cZ−3(k∗i +1)/4e1/2ϕ,(0) for all i ∈ I, (309)
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where c := 4−1(CLĈ)−1/2 > 0. Combining (308) and (309), we obtain the de-
sired bound (307) with δZ = 4 log(2)

3 log(Z)
for some a0 > 0 that depends explicitly on

CL , Ĉ, eϕ,(0) and Z .
We remark that the calculation of line 308 can be viewed as a purely combina-

torial statement taking place on a finite quotient of 2N when the collection of balls
I is finite, but relies on the use of measure theory to handle the case of a countably
infinite I .

The last bound we require is that supβ∈2N+2 ‖vβ − v0‖C0 ≤ Cα E1/2
0 with Cα

depending on α. This bound follows from the choice of e1/2ϕ,(0) ≤ Cα E1/2
0 in (299),

the bound ‖Vβ(k)‖C0 ≤ CLe1/2ϕ,(k) in (22) for Vβ(k) = vβ(k+1)−vβ(k), and inequality
(297) for eϕ,(k). With this estimate we have concluded the proof of Theorem 7. "#

6.3. Density of Wild Initial Data for Conservative Solutions

As the final application of Theorem 7 that we consider here, we state the fol-
lowing theorem, which proves the density of “wild” initial data of class Cα for
α < 1/15. The theorem is in the spirit of [27], which extended a similar theorem
of [52], where an analogous L2 density result is obtained for solutions with kinetic
energy below that of the initial data and having Hölder regularity α < 1/5. Our
approach to Theorem 8 turns out to be considerably simpler than the approach to
the analogous result in [27] (in particular we avoid the use of time-dependent es-
timates and the notion of an adapted subsolution), but at the expense of having a
nonuniform time interval of existence for the corresponding solutions.

Theorem 8. (Density of wild initial data) For any α < 1/15, there is a set of vector
fields Fα on T

3 such that the C0 closure of Fα consists of all continuous, divergence
free vector fields v̄0 : T

3 → R
3, and such that for every v0 ∈ Fα there exists an

open interval I containing 0 and uncountably many vector fields (vβ)β∈2N of class

Cα
t,x (I ×T

3) that satisfy the incompressible Euler equations on I ×T
3 with initial

data vβ(0, x) = v0(x) for all β ∈ 2N and satisfy the local energy equality (3) on
I × T

3.

Proof. Let v̄0 : T
3 → R

3 be a smooth, divergence free vector field, and let Ĩ
be a bounded open interval containing 0 such that a unique, smooth solution to
the Euler equations (v̄, p̄) having initial data v̄(0, x) = v̄0 exists on the interval
2 Ĩ ×T

3. Let E0 > 0 be any positive number and choose�0 large enough such that
the dissipative Euler–Reynolds flow defined by (v̄, p̄, R, κ, ϕ, μ)0 with zero error
terms (R, κ, ϕ, μ)0 = (0, 0, 0, 0) has compound frequency energy levels bounded
by (�0, E0, E0, E0, E0) to order 2 in C0. (Such a choice is possible since all the
error terms are 0 and since (v̄, p̄) and their partial derivatives are uniformly bounded
on Ĩ × T

3.)
Applying Theorem 7 with Ĩ(0) = {t ≤ (1/2) sup Ĩ } and Ĩ(1) = Ĩ (taking �0

larger if necessary),weobtain anuncountable family ofweak solutions (vβ, pβ)β∈2N
in the class (vβ) ∈ Cα

t,x that all share the same initial data (being equal on Ĩ(0)) and
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share a uniform bound of supβ∈2N ‖vβ − v̄‖C0
t,x

≤ Cα E1/2
0 . These solutions also

satisfy the local energy equality (3) on Ĩ by our choice of Ĩ(1) = Ĩ and μ0 = 0.
We now take Fα to be the union of all initial data arising from the above

construction over all choices of smooth divergence free v̄0 on T
3 and E0 > 0. It

is clear that the C0 closure of Fα contains all smooth, divergence free v̄0, since
E0 > 0 is arbitrary and the common initial data of the family vβ constructed above
converges uniformly to v̄0 as E0 tends to 0. By approximation, every continuous,
divergence free v̄0 on T

3 belongs to the C0 closure of Fα . The other properties
stated for Fα are immediately approved from the construction. "#
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