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Abstract

We show that Holder continuous incompressible Euler flows that satisfy the lo-
cal energy inequality (“globally dissipative” solutions) exhibit nonuniqueness and
contain examples that strictly dissipate kinetic energy. The collection of such so-
lutions emanating from a fixed initial data may have positive Hausdorff dimension
in the energy space even if the local energy equality is imposed, and the set of
initial data giving rise to such an infinite family of solutions is C° dense in the
space of continuous, divergence free vector fields on the torus T>. The construction
of these solutions involves a new and explicit convex integration approach mir-
roring Kraichnan’s LDIA theory of turbulent energy cascades that overcomes the
limitations of previous schemes, which had been restricted to bounded measurable
solutions or to continuous solutions that dissipate total kinetic energy.

1. Introduction

In this work we consider weak solutions to the incompressible Euler equations,
which take the form

8111[ + Vj(vjve) + V’Zp =0

: ey
\% j U/ = 0,

where we use the summation convention to indicate a sum over the repeated spatial

index j. -

_ We will mainly consider solutions defined on a spatially periodic domain / x T,

I an open interval and T? = (R/Z)? a d-dimensional torus with d > 3. A weak
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solution (v, p) to (1) may be defined as a locally square-integrable vector field
: I x T — R? (the velocity field) and a scalar field p € D'(I x T¢) (the
pressure) that together satisfy (1) in the sense of distributions.
A weak solution (v, p) to (1) here will be called globally dissipative if it is of
classv € Lt3, . and satisfies the following local energy inequality, which is always

interpreted in the sense of distributions':

o (M) 1w T(E 1) ] <0 )
t ) J ) p = U

Globally dissipative weak solutions include all sufficiently regular solutions to (1)
including all solutions of class (v, p) € C L[ x T9), which satisfy the stronger
condition of the local energy equality

(ool o

Solutions obeying the local energy equality also conserve total kinetic energy in
the sense that their total kinetic energy fof |v|?/2(t, x)dx is equal to a constant as
a distribution in ¢.

The physical meaning of the local energy inequality (2) is that kinetic energy
cannot be created locally, although it may be allowed to dissipate. This interpretation
is most easily seen for solutions (v, p) that are continuous, in which case inequality
(2) is equivalent to the requirement that the change in kinetic energy contained in a
givenregion €2 during a time interval [#1, #>] cannot exceed the flux of energy carried
by the incoming and outgoing fluid plus the work done by pressure. Namely, for
any open 2 C T with smooth boundary, inward unit normal vector n, and t; < 1,
one has

v]? Bl Bl
—(tr, x)dx — —(tl,x)dx </ / —(t, x)(v - n)dS dr
Q Q 2 a0

2
+/ / p(t, x)(v-n)dSd:.
1 aIQ

In particular, taking Q@ = T¢, 9Q = (, the total kinetic energy of a globally
dissipative weak solution must be nonincreasing in time.

There has been significant motivation from both physical and mathematical
points of view to determine whether continuous, globally dissipative Euler flows
are uniquely determined by their initial data and whether there exist examples that
strictly dissipate kinetic energy. Sections 1.1-1.2 below describe these motivations
in detail. However, the known approaches to addressing such existence and unique-
ness questions, which all implement the method known as “convex integration”,

I Note thatv € L3  implies, by Calderén-Zygmund theory, that p € Lt/x , making the left
hand side of (2) a well defined distribution. Inequality (2) is defined by formally integrating
against an arbitrary non-negative, smooth function of compact support, and implies that the

left hand side acts on such test functions as a Radon measure.
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have faced limitations either to constructing continuous solutions that dissipate fo-
tal kinetic energy but do not satisfy the local energy inequality (2) on any open ball
[1,5,22,23,34] or to constructing bounded and measurable solutions that satisfy
the local energy inequality or equality but are nowhere continuous [19].

The present work provides the first construction of continuous, globally dis-
sipative Euler flows. The construction is achieved using a new convex integration
approach for constructing solutions satisfying the local energy inequality, which
overcomes the limitations of the previous approaches. Among the new results, we
obtain are the following:

Theorem 1. On (0, 00) x T4, for d > 3, there exist Holder-continuous weak solu-
tions (v, p) that satisfy the local energy inequality (2) with strict inequality holding
everywhere on an open interval of time.

Theorem 2. On R x T9, d > 3, there exists « > 0 and an uncountable Sfamily
(vg, pp) of solutions of class v € C', (R x T9) having no isolated points in Py
that all satisfy the local energy equality (3) and all achieve the same initial data
vg(0, x) = vo(x) at time 0.

Stronger forms of Theorems 1 and 2 are stated in Theorems 4-5 of Sect. 1.3
below, which include a stronger nonuniqueness result than stated above and are
accompanied by an additional theorem on the density of “wild” initial data, Theo-
rem 6. The nonuniqueness results in these theorems are all proven by incorporating
a use of randomness in the construction of the solutions, which represents the first
use of a probabilistic method in the context of convex integration. See Sect. 1.3
below for a more detailed discussion.

We now explain in greater detail the general physical and mathematical moti-
vations surrounding the study of continuous, globally dissipative Euler flows and
the local energy inequality.

1.1. Motivation

The importance of the local energy inequality arises from several contexts where
the inequality (2) is imposed as a criterion towards isolating the most physically
relevant weak solutions to the incompressible Euler equations among solutions that
may be singular. Of particular importance is the zero viscosity limit of the incom-
pressible Navier—Stokes equations” which has a substantial interest as it relates to
the description of turbulence in fluid motion at high Reynolds numbers. It is known?
that every divergence free initial datum in L? admits a global in time “suitable”
weak solution to the 3D Navier—Stokes equations that obeys the corresponding
local energy inequality for Navier—Stokes. This inequality, which generalizes (2),

2 These generalize the incompressible Euler equations (1) to include a forcing term vAV?
on the right hand side of (1) that describes the internal friction in the fluid, with v > 0 the
viscosity parameter. For simplicity we will maintain focus in the discussion that follows on
the incompressible Euler and Navier—Stokes equations without external forcing terms.

3 See [48] and [11, Appendix].
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plays a fundamental role in the partial regularity theory of suitable weak solutions
to Navier—Stokes [11,48]. Furthermore, one can show that every vector field that
arises as a limit in L?’ . of suitable weak solutions to Navier—Stokes with viscosity
tending to zero must be a weak solution to incompressible Euler that satisfies the
local energy inequality (2). We will discuss such limits further in connection with
Conjecture 2 below.

A closely related context where conditions such as (2) play a primary role is
the theory of hyperbolic conservation laws. The theory is most successful in the
setting of scalar conservation laws, where the class of “admissible weak solutions”,
which are bounded weak solutions that satisfy an entropy condition akin to (2) for
every convex function of the unknown scalar field, provides the appropriate setting
for well-posedness of the initial value problem despite the presence of inevitable
singularities in the solutions. The simplest example in this theory is the Burgers’
equation in one spatial dimension

du + 0y (u?/2) = 0. )

For scalar conservation laws in one spatial dimension, a weak solution is admissible
if and only if it satisfies an entropy condition for at least one strictly convex entropy
[47] (see also [17,43]). For (4) a sufficient entropy condition is given by the local
energy inequality

3 u*)2) + 0, ?/3) < 0 Q)

analogous to (2). These entropy conditions impose an arrow of time on solutions to
the conservation laws, which would otherwise be time-reversible, and are viewed
in this context as mathematical expressions of the second law of thermodynamics.
For scalar conservation laws the class of admissible solutions also coincides with
the class of weak solutions that arise as zero viscosity limits. However, the theory
for general systems of conservation laws faces great challenges towards obtaining
results as strong as those described above. As a general reference for these subjects
we refer to [13].

Further motivation for studying the existence and uniqueness of globally dissi-
pative weak solutions to the incompressible Euler equations arises from the study of
turbulence in fluid motion and the zero viscosity limit, which in addition motivates
the problem of determining the maximal regularity for there can exist a weak solu-
tion that satisfies the local energy inequality and strictly dissipates kinetic energy.
The well known foundational theory of Kolmogorov [40] postulates that the mean
rate of kinetic energy dissipation in fully developed turbulence should be nonvan-
ishing in the limit of zero viscosity, and predicts that mean fluctuations in velocity
of nearby fluid elements scale in the bulk of the fluid as distance to the power 1/3 in
the inertial range of length scales. Onsager [46] gave an independent derivation of
this scaling law applied to the energy spectrum, and he proposed that the dissipation
of energy independent of viscosity can be explained as the result of cascades of
energy from lower to higher wavenumbers (or coarser to finer length scales) that are
modeled by the nonlinear advective term of the incompressible Navier—Stokes and
Euler equations. Onsager observed that this mechanism for dissipation by energy
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cascades could in principle take place even without viscosity for the incompress-
ible Euler equations (1), but that the notion of solution to the inviscid equations
could not be interpreted in the classical sense, stating that an Euler solution with
spatial Holder regularity greater than 1/3 must satisfy the conservation of kinetic
energy. The idea that the Holder exponent 1/3 marks the threshold regularity for
conservation of energy in the incompressible Euler equations has been known in
the mathematical literature as the Onsager conjecture and has inspired a surge of
mathematical activity in recent years. These works, to be surveyed further below,
have led most recently to a positive resolution of Onsager’s conjecture. We refer to
[21,26,28,30] for more detailed discussions of Onsager’s ideas above.

Analogous to the Onsager conjecture for the 3D incompressible Euler equa-
tions, we present here the following well known conjecture on the existence of
globally dissipative incompressible Euler flows this conjecture and the question of
uniqueness for the conjectured solutions are the primary focus of the paper:

Conjecture 1. (Strong Onsager Conjecture) There exists an open interval 1, and
a weak solution (v, p) to the incompressible Euler equations on I x T> that is of
class v € L;’OC;/'3 and satisfies the local energy inequality (2) with the left hand

side not identically zero.

It is known from the results on the conservative direction of Onsager’s conjecture
[9,25,29] that the Holder exponent 1/3 cannot be replaced by any greater value,
and more generally that every weak solution to Euler of Besov class L?Bg"oo with
o > 1/3 satisfies the local energy equality (3).

A notable motivation for the above conjecture arises from the following state-
ment concerning smooth solutions to the the incompressible Navier—Stokes equa-
tions, which serves as a mathematical interpretation of some conclusions that may
be drawn from Kolmogorov and Onsager’s seminal papers:

Conjecture 2. (K41-Onsager Conjecture for Navier—Stokes) There exists a finite
open interval 1, and a sequence of suitable weak solutions to the Navier—Stokes
equations v,; on I x T3 with viscosity parameters v; > 0 tending to O that is

. . 1 o L
uniformly bounded in the LY°C x/ 3 norm, and that dissipates kinetic energy at an
average rate that is uniform in viscosity:

. 1 d |vv,-|2
lim sup — - ——(t,x)dx |dt > ¢ >0, e e Ry (6)
Jj—00 1 J; dr Jps 2

The existence of dissipative Euler flows stated in the inviscid Conjecture 1 is in fact
a direct consequence of Conjecture 2 for the Navier—Stokes equations. A globally
dissipative weak solution to the Euler equations as described in the inviscid conjec-
ture arises as a limit from the viscous conjecture by passing to a subsequence that
converges strongly in C ,L% N Lt3, .- The existence of such a convergent subsequence
can be easily shown using the Aubin—Lions—Simon lemma and the compactness
of C'/3in L3(T3). By the same argument, the regularity exponent 1/3 in the con-
jecture cannot be replaced by any value greater than 1/3, as the conservation of
energy would then have to be satisfied by any limiting Euler flow.
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Note that neither of the above conjectures makes assumptions on initial data for
the sequence v,; or for the Euler flow v, and consequently the conjectures do not
imply the ex1stence of blowup for classical solutions to the incompressible Euler
equations. Rather, in the conjectural picture the initial data for the Navier—Stokes
solutions may be smooth but developing a Kolmogorov type energy spectrum, and
thus converging to a rough vector field in the O viscosity limit. More generally,
if v, € L% « is any weak solution to the Navier—Stokes or Euler equations on
I x T?, I an open interval, one does have the existence* of uniquely defined initial
data v, (t9, -) € D'(T?), which converge weakly when the v, converge strongly in
L,2’ .- The convergence takes place in stronger norms when the v, satisfy stronger
assumptions. The convergence of initial data in Conjecture 2 would be uniform as
implied for bounded sequences in C'/3(T3).

These conjectures may be generalized to other function space norms that reflect
the regularity that is most appropriate, or to other viscous regularizations of Euler.
In the present formulation, the Navier—Stokes solutions in question must be smooth,
classical solutions to the equations as they satisfy the Ladyzhenskaya-Prodi Serrin
criterion. Bounds in weaker function spaces, including the Besov space L3 oo for

any o > 0, are sufficient to guarantee the compactness in L> 7 x and, using the same
argument, the existence of a subsequence converging to a weak solution to Euler
obeying the local energy inequality. For the existence of an incompressible Euler
flow that dissipates total kinetic energy, it suffices to have a uniform, pointwise
lower bound on the energy dissipation rate and strong convergence in Ltz’ , along
a subsequence, which would follow from a uniform in viscosity bound in L%BZ .

for some o > 0. In particular, the 5/3-law for the energy spectrum of Kolmogorov,

which corresponds to a regularity slightly stronger than the Besov space Bz/ oo 18

more than sufficient for this compactness if it were to hold at least as an upper
bound in the inviscid limit in the preceding sense. It is an open question, however,
to determine if general a priori estimates such as those above could be proven
rigorously for weak solutions to the 3D Navier Stokes equations, and the known
mathematical frameworks for establishing compactness in the zero viscosity limit
based on the available a priori energy estimates (which include the dissipative
solutions of [44, Chapter 4.4] and the measure-valued solutions of [24]) are not
known to give rise to Euler flows.

4 This fact is usually discussed in the context of L;’OLi solutions, in which case the initial
data are also in L)zc. One may see this point by defining vy, (79, -) for each f in the closure of
I to be the unique element of D’ (T3) for which

t

vl x) = vl x) +/ [—ij(u{(r, vl(z, ) + vAvf(r,x)]dt )

]

holds as a distribution in (7, x) on I x T3, where P is the Leray-projection to divergence
free vector fields. The definition of a weak solution guarantees that the vf (10, -) defined
implicitly by (7) is independent of 7 (i.e., al[vf (t9, -)] = 0 weakly) and therefore may be
identified with a unique distribution v, (¢, -) € D’ (11‘3 ) in the x variable for each fixed 1.
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Remark. The direct relationship between the energy spectrum of Kolmogorov and
compactness in the inviscid limit discussed above was first observed in Theorem
5.1 of [10], which contains further results that may be obtained under a weak
Kolmogorov hypothesis, Assumption (K41W). The approach via the Aubin-Lions—
Simon lemma outlined above provides an alternative approach to their Theorem
5.1, as their Assumption (K41W) implies boundedness in L? H* for some & > 0
by [10, Prop 3.1].

More recent papers addressing the relationship between turbulent statistics and
energy dissipation in the inviscid limit are [12, 15]. The work [12] considers impor-
tant issues related to enstrophy and vorticity production at boundaries, and gives a
convergence result under hypotheses imposed only in the inertial range of length
scales. In [15], it is shown that “quasi-singularities” must arise in the inviscid limit
for Leray-Hopf solutions to Navier—Stokes even if the rate of kinetic energy dis-
sipation does not tend to a positive value as in (6) but rather tends to zero slowly
as v — 0T. The authors review the existing numerical and experimental evidence
for dissipation of energy in the inviscid limit in [15, Remark 3]. They prove also
further results on convergence in the inviscid limit including details of the Aubin—
Lions—Simon lemma argument noted here; see also [53] for further review of the
empirical literature on the energy dissipation rate.

The problem of proving or disproving the existence of kinetic energy dissi-
pation independent of viscosity as in (6) for 3D Navier—Stokes is a well known
open problem. This situation is in stark contrast to the analogous statements for
scalar conservation laws such as the Burgers’ equation (4), where analogues of
Conjectures 1 and 2 are well understood. In this context, zero viscosity limits of
bounded solutions are admissible solutions that typically exhibit strict dissipation
of energy due to shocks, and their viscous approximations exhibit dissipation of
energy independent of viscosity. The energy dissipating, admissible, inviscid solu-
tions have the regularity L° B; / ;,5 which is the maximal possible regularity for
energy dissipation in the scale of L based Besov spaces (similarly to the Euler
equations), and their viscous approximations remain bounded in L{° B, / 3 in the
inviscid limit. Inviscid limits in this setting are known to both exist and to be unique
even for fixed initial data in L.

1.2. Previous related results and difficulties of previous approaches

Although little progress has been made towards approaching Conjecture 2 for
Navier-Stokes directly, developments in the method of convex integration based
on pioneering work of De Lellis and Székelyhidi [18,19,22,23] have yielded great

5 We thank R. Shvydkoy for first pointing this out to us. The regularity may be seen, as
noted in [31], by interpolating the maximum principle ||u|| LS, < |lug|l 1, and the BV bound
[Ju]| LTV, = llugll7v - The same may be stated for the viscous solutions (see [ 13, Theorems
6.2.3, 6.3.2] and the proof of [13, Theorem 6.2.6]). The dissipation of energy independent

of viscosity follows from the compactness of the viscous approximations in L,2  Whenever
the limiting entropy solution to Burgers exhibits strict dissipation of energy.
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advances in understanding energy non-conserving solutions to the incompressible
Euler equations that are directly relevant to Conjecture 1. The initial work of [18]
produced L solutions to the incompressible Euler equations with compact sup-
port, which improved and turned out to yield a more systematic approach to earlier
breakthrough results of [49,50]. The method was extended in [19] to address admis-
sibility criteria for the Euler equations, which included a proof of nonuniqueness of
weak Euler flows of class L, obeying the local energy equality (3), and examples
demonstrating that the inequality may be sharp for bounded solutions, before which
only the dissipation of total kinetic energy for solutions in L;’OLi was known due to
[51]. The method of [19] achieved these results by proving not only the nonunique-
ness of globally dissipative solutions in L7, but also the much stronger following

much stronger result®: following.

Theorem 3. (De Lellis and Székelyhidi [19]) Letd > 2. Then there exists an infinite
family of weak solutions to the incompressible Euler equations on [0, T] x T¢ of

class v € Lf’f’x N C,L%), that all share the same initial data v(0, -), and the same

kinetic energy density |v|2/2(t, x) = e(t) a.e.on(0, T)x T with |v|2(0, x) < e(0)
fora.e.x € T¢, and all have common pressure given by p(t, x) = —2e(t)/d. One
may take e(t) = 1, or e(t) to be strictly decreasing and smooth on [0, T'| with
e(T)=0.

The key point in this theorem with regard to the local energy inequality and equality
is that one may arrange 3 (Jv|%/2) + Vj((|v|2/2 + p)v/) = d.e(t) to be either
strictly negative or 0. Consequently, one has nonuniqueness for solutions obeying
the local energy equality (3), and the existence of strict dissipation in the local
energy inequality (2) within the class of L7 solutions. The method of [18,19]
however faces substantial difficulties towards constructing any weak solutions that
are continuous. In the context of solutions that fail to conserve total kinetic energy,
these difficulties were later overcome in [22,23] by developing a new version of
convex integration for the incompressible Euler equations in 3D that is closely
related to the work of Nash [45] on isometric embeddings of class C ! These works
gave the first results towards Onsager’s conjecture on the 1/3 threshold regularity
for conservation of energy, and led to a series of improvements and partial results
[1,3,4,7,35] including most recently a full proof of the conjecture by the author
[38]; see also [5,36].

Several works following [22,23] have focused on proving the existence of strict
dissipation of total kinetic energy for solutions in this range of regularity. The
works [22,23] prove that the total kinetic energy of a (1/10—¢)-Holder Euler flow
on [0, T] x T? may be equal to any prescribed, smooth, strictly positive function
of time e(¢) > 0. This result is strengthened and generalized to higher regularity
solutions in [3,5,33,34], where the last reference obtains this result for solutions
having the regularity (1/3—¢) of the Onsager conjecture. However, these works face
substantial difficulties towards obtaining local dissipation of energy (see Sect. 1.2.1
below).

6 We have stated here a simplification of their result for the periodic setting. See the proof
of [19, Theorem 1, (a),(b)] and [19, Theorem 1, Proposition 2.1] for more general statements.
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Another branch of works building on [22,23] have extended the method to
obtain nonuniqueness results for weak solutions. Nonuniqueness of continuous
solutions was first addressed in [35], where it is shown that any smooth initial
datum admits weak solutions of class C,lf_é that are identically constant outside
of afinite interval that may be chosen arbitrarily small. The nonuniqueness of Holder
continuous Euler flows dissipating total kinetic energy or having a prescribed energy
profile was proven in [14], while in [27] it is shown that there is an L? dense subset

of “wild” divergence free initial data that admit infinitely “admissible” solutions
of class C [I,CCS*E, thus extending a previous result for L, solutions of [52]. In
this work a solution is called “admissible” if its energy remains bounded by that
of the initial data. This definition of admissible is motivated by the weak-strong
uniqueness theory for the Euler equations, which shows that weak (even measure-
valued) solutions to incompressible Euler with energy bounded by their initial data
must coincide with the classical solution obtaining the same initial data provided
the latter exists (see [2] and [54]).

‘We note as well the recent work of [8] on weak solutions to the 3D Navier Stokes
equations of class L,zH f for some B > 0, which shows that such solutions may be
nonunique, may have any prescribed smooth energy profile with compact support,
and may generate any Holder continuous weak solution to Euler as a zero viscosity
limit in C ,L)zc. At present these solutions appear to be separate from the previous
discussion as they do not satisfy the local energy inequality for Navier—Stokes that
defines a suitable weak solution assumed in Conjecture 2.

Finally, we remark that our work has led to a further improved Holder exponent
in [16] and a generalization to the compressible Euler equations in [32]. Compared
to these works, which draw on our main ideas, our work maintains some advantages.
Namely, we obtain solutions with compact forward in time support, we establish a
stronger nonuniqueness result, and we prove a result on the density of wild initial
data as a consequence of a general approximation theorem. We also anticipate that
our approach may be more possible to extend to the two-dimensional setting where
Mikado flows are not applicable.

1.2.1. Main difficulties It must be emphasized that dissipation of fotal kinetic
energy, though useful as a criterion for data that admit a classical or Lipschitz so-
lution, would not be expected to provide a uniqueness criterion for weak solutions
that exhibit strict dissipation of energy, whereas in contrast the local energy in-
equality may be considered for this purpose. This point may be seen most easily
in the example of the Burgers equation (4), which admits the infinite family of
compactly supported solutions on [0, 2] x R equal to

ug(t, x) =a - locx<ar + (x/0) - lyr<x<t + 1+ Li<x<iyep2
+0-1ysi4sp2, 0<t=<2, ®)

for 0 < x < 0o, and extended to be odd uy (f, —x) = —uy(t, x) for x < 0. For any
0 <o < 1,uy(t, x) is a weak solution to (4) with initial data uy (0, x) = lo<x<1 —
1_1<x<0, and for small values of @ < (1/6)1/3, uy satisfies the dissipation of total
kinetic energy g—t fR ui (t, x)dx < 0. In this case, the unique entropy solution is the



1232 PHILIP ISETT

solution uq (¢, x), which exhibits strict dissipation of energy —% fR u%(t, x)dx =
2/3 and is the only bounded weak solution to Burgers for the given initial data
that satisfies the local energy inequality (5). Here the failure of total kinetic energy
dissipation to provide a uniqueness criterion may be explained by the fact that
the entropy solution has strictly positive total energy dissipation, giving room for
nearby solutions to exist such as the family u,, that exhibit a small amount of local
energy creation but not strong enough to disturb the strict dissipation of total kinetic
energy. We are thus motivated to consider the local energy inequality (2) for the
Euler equations as a more stringent admissibility criterion for energy dissipating
solutions with lower regularity. The problem of constructing continuous solutions
satisfying this inequality, which is motivated by the discussion of Conjectures 1
and 2, would appear even more challenging from this vantage point in view of the
fact that uniqueness holds for continuous weak solutions to Burgers (see, e.g. [13]).

Due to intrinsic differences in the setting of continuous solutions, the proof of
Theorem 3 on L, solutions faces substantial difficulties towards being extended
to constructing continuous, globally dissipative solutions or more generally to-
wards a proof of Conjecture 1. Specifically the proof of Theorem 3 yields a series

v =), Vq where each V, is of size 1 in L7, the partial sums vy = }__ _; V, are

q<k
uniformly bounded in L7 with energy densities % (¢, x) converging in C, LY to
the prescribed kinetic energy density for p < oo, and the series converges only
in Lf . for p strictly less than co. In contrast the construction of continuous and
Holder continuous solutions relies on convergence of the approximate solutions to
be achieved uniformly at a rate compatible with the desired regularity. The known
methods for producing Hélder continuous solutions lead to at best C; LY approxi-
mation of the energy density (which follows from the estimates of [33,34]) and not
to uniform convergence.

1.3. Main results and new ideas

The main achievement of this work is to develop an entirely different strategy for
constructing solutions satisfying the local energy inequality that completely avoids
the difficulties faced in generalizing the approach of Theorem 3. The strategy we
develop in this work provides a significantly more explicit picture of how local
energy dissipation may be achieved in the construction of solutions compared to
the proof of Theorem 3. This construction has properties that are interesting from a
physical point of view. In particular, the arrow of time plays a fundamental role in the
scheme, and the construction itself turns out to closely mirror a picture of turbulence
theorized by Kraichnan, called the Lagrangian Direct Interaction Approximation
[41], which postulates that turbulent energy cascades are governed by trilinear
interactions of waves that are carried by the mean velocity field.

With this new strategy, we obtain the following results:

Theorem 4. For any a € [0, 1/15), there exists an infinite family of weak solu-
tions (vg, pg) to (1) of class vg € C7 ([0, 00) x T3) that satisfy the local energy
inequality 2 and share the same initial data while having uniformly bounded, com-
pact support. Such a family may be chosen to have a common dissipation measure
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W= —[8,(|vﬁ|2/2) + Vj((|vﬁ|2/2 + pﬁ)vé)] independent of B while being home-
omorphic to a Cantor set as a subspace of Cf" ., and also having positive Hausdorff

dimension as a subspace of C;Ly.

This theorem gives in particular the first examples of continuous Euler flows that
satisfy the local energy inequality with nonzero dissipation, and the first partial
result towards Conjecture 1.

Our motivation for showing nonuniqueness for a fixed energy dissipation mea-
sure is related to the possible physical interpretation of general nonunique solutions.
One may imagine that nonuniqueness of globally dissipative Euler flows may be
due to information that is lost in the zero viscosity limit if such solutions were to
arise in this limit. A related idea conveyed in [50] is that the energy nonconserving
Euler flows may be viewed as Euler flows with an “invisible” force that is equal
to zero as a distribution, but may be captured by a different mathematical descrip-
tion. One may ask in this regard if the dissipation measure itself can encapsulate
the effects of a weakly vanishing friction and restore uniqueness. The result of
Theorem 4, reinforcing Theorem 3, would suggest that such a result may not be
expected.

Our next theorem shows that the same type of nonuniqueness result holds for
global solutions to incompressible Euler that satisfy local conservation of energy
as in the local energy equality (3).

Theorem 5. The statement of Theorem 4 holds also with the local energy inequality
(2) replaced by the local energy equality (3), and the condition that the family
(Vo )y e have compact support replaced by the condition that the family (Vy ), eon
are defined globally on the domain R x T°.

The fact that the family of solutions is homeomorphic to a Cantor set has some
physical interest. Since there are no isolated members of the family, no finite-
precision measurement (that is continuous in the C* topology) can isolate a solution
to restore uniqueness.

We note here that the nonuniqueness statement we obtain is stronger than the
previous results on nonunique energy-conserving weak solutions, including those
proven in the LS. context. More precisely, in [19] what is shown is that there is
a complete, separable metric space of “subsolutions” such that there is a Baire
residual (i.e. generic) set of subsolutions consisting of solutions to Euler that obey
the local energy equality and have the same initial data (in the sense of C,L%)).
An exercise in real analysis shows that every separable metric space has a dense
G5 subset with zero Hausdorff dimension; thus, one cannot deduce that a Baire
generic subset of a complete, separable metric space will have positive Hausdorff
dimension. Furthermore, our theorem yields a metric space of solutions that is
already complete (since it is compact) rather than being only Baire generic, and the
initial data is obtained in a strong topology (C%) rather than a weak topology, so
energy conservation holds for all # € [0, co) including # = 0.

The nonuniqueness statements in Theorems 4 and 5 are proven by implementing
a new strategy for proving nonuniqueness of solutions that represents the first use
of a probabilistic method in the context of convex integration. The proof proceeds



1234 PHILIP ISETT

by inserting a random coin toss into each step of the iteration at a point where none
of the estimates of the iteration will be disturbed. In this way our work gives a first
answer to the question of whether there exists a probabilistic approach to convex
integration raised in [20, Problem 9]. This question has a natural motivation in our
context given the role that randomness is believed to play in turbulent motion. The
method leads naturally to a Cantor family of solutions, as the outcome of every coin
toss changes the final solution in a quantitative way. Our proof that the resulting
family of solutions has positive Hausdorff dimension in the energy space C,Lg
uses the exponential (rather than double-exponential) growth of frequencies in the
iteration obtained via techniques of [39]. It is plausible to expect that our method
may also produce an infinite Hausdorff family of solutions when a greater amount
of randomness is employed.

The final application we consider here concerns the C° density of “wild” initial
data that admit an infinite family of nonunique weak solutions to incompressible
Euler satisfying the local energy equality (3). The result may be compared to the
analogous density results in [27,52]; however, our proof is by a quite different
approach; we refer to Sect. 6.3 for a more precise discussion.

Theorem 6. For any o < 1/15, the set of initial data on T> that admit infinitely
many solutions of class Ci', that obey the local energy equality (3) on a common

interval of time containing 0 is C® dense in the space of continuous, divergence
free initial data.

Our proof of Theorems 4—6 above proceeds by developing a new type of convex
integration argument based on the concept of a “dissipative Euler—Reynolds flow”.
This concept, which extends the notion of an Euler—Reynolds flow of [22], keeps
track of errors in solving the Euler equation while allowing for a relaxation of the
local energy inequality (2) to hold. The goal of the argument is then to design an
elaborate convex integration scheme that can not only reduce the error in solving
the incompressible Euler equations, but also reduce the error in satisfying the local
energy inequality simultaneously.

Obtaining a scheme that satisfies all of the conditions we require for this argu-
ment turns out to be more restrictive than previous constructions of incompressible
Euler flows that have been used in the results towards Onsager’s conjecture. We
have found in particular that both Beltrami flows (as applied in [1,22,23,37] et.
al.) and Mikado flows (as applied in [5,27,38]) appear to be incompatible with
our goals for separate reasons. For Beltrami flows it is apparently the case that no
significant progress towards improving the error in satisfying the local energy in-
equality is obtained when they are implemented in the construction. Mikado flows
seem to face a different difficulty, namely that their implementation in [5,38] in-
troduces both creation and dissipation of energy in the disjoint regions where the
waves are supported and cut off. It is unclear what kind of construction may be
necessary to advance beyond such difficulties and hopefully achieve a future proof
of Conjecture 1.

In view of the above, our proof relies on a different construction based on “one-
dimensional” waves that was first outlined by [39] and turns out to be suitable for
improving the error in the local energy inequality. In the present paper we improve
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the ansatz that had been outlined there to make the waves “multi-dimensional” in
our proofs of Theorems 4—6. Our proof generalizes readily to extend Theorems 4—
6 to all dimensions d > 3 while obtaining the same regularity 1/15 independent
of the dimension. We believe that our argument may also be extended in part to
dimension two’; however, in this case there are additional complications related to
the error in the local energy inequality that have prevented us so far from obtaining
a scheme of comparable regularity. We discuss these points further in Sect. 5.

In the course of our proof of Theorems 4-6, our work develops several new
techniques in the method of convex integration. As noted, our method of proving
nonuniqueness in Theorems 4 and 5 is new and yields a stronger nonuniqueness
result than the methods previously used in the literature on Holder continuous
solutions. Our method of establishing density of wild initial data is also new, as we
obtain the result as a consequence of a general Approximation Theorem (Theorem 7
below), which implies also both Theorems 4 and 5. We have also maintained and
proven estimates throughout the proof that are as sharp as possible so that our work
may be applicable to higher regularity regimes of parameters and potentially to a
broader range of applications.

1.4. Outline

We will describe the notation of the paper in Sect. 1.5. The basic concepts
of a dissipative Euler—Reynolds flow and the frequency energy levels that will be
used to estimate such flows are described in Sect. 2. The Main Lemma is stated in
Sect. 3. The bulk of the paper then consists of the proof of the Main Lemma, which
is contained in Sect. 4. Section 4.1 provides a general introduction to the proof of
the Main Lemma, which is carried out in detail in Sects. 4.2—4.13. Section 4.14
provides a summary and final details of the proof, and summarizes where in 4.2-4.13
the various statements of the Main Lemma have been proven. Section 5 outlines
the extension of the proof to dimensions d > 3 and contains discussion of the two
dimensional case.

Theorems 4-6 are deduced from a general Approximation Theorem stated in
Theorem 7. The proof of Theorem 7, which immediately implies Theorems 4 and 5,
is carried out in Sects. 6.1-6.2 using the Main Lemma of Sect. 3. The final Sect. 6.3
provides the proof of Theorem 6, which is formulated in more detail as Theorem 8.

1.5. Notation

We will always view tensor fields (including scalar and vector fields) on T =
(R/Z)* as distributions defined on all of R? that are Z*-periodic. We will use the
symbol p € R3 to denote the frequency variable, and Fsupp F := supp FCR3
to denote the Fourier support of a tensor field F. Weusesupp, F = {r e R : {t}N

7 1tis possible that both Conjectures 1 and 2 could be true in both dimensions two and
three. However, the two settings are highly different regarding the circumstances under which
one may possibly encounter solutions with vorticity becoming arbitrarily large as would be
true for the sequence in Conjecture 2.
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supp F' # @} to denote the time-support of a tensor field F. We will follow the
summation convention of summing upper and lower spatial indices that are repeated
(e.g., Vj(v-/ vh) = 23:1 v (vivh)), maintaining the indices as raised or lowered
depending on whether they are viewed as covariant or contravariant indices.

We will always use vector notation to denote a multi-index @ = (ay, ..., a,)
of order n = |a| > 0, where each a; € {1, 2, 3}. The expression V; refers to the
corresponding partial derivative operator V; = V,, V,, - -V, , while for h € R3,
hd refers to the corresponding multinomial h91h%2 - .. h% of degree n = |a| > 0.
We will write ||VLF||C0 = maxg|=L || VaF | co to denote the C° norm of the L’th
derivative of a tensor field F, where all C° norms are taken as space-time norms.
The C,L)% norm of a tensor field taking values in L>(T>) continuously in 7 is given
by I Fllc, 2 = sup, IF(t. )l 2zs) = sup, (fos | F (2, 2)Pdx) /2,

We record the following elementary counting inequality, which may be shown
by induction on m:

X1+ ...+ xm — V)t 52(x,~—y)+, if y,x; >0foralll <i <m. (9)
i

At certain points we will use the notation A < B to refer to an inequality A < B
that has not been established, but will be assumed from that point in order to ensure
that certain terms are well-defined, and will later be verified to hold.

2. Dissipative Euler—-Reynolds Flows

The starting point for our proof will be to introduce the following notion of
a dissipative Euler—Reynolds flow, which provides us with a natural space of
vector and tensor fields that can be used to approximate weak solutions to the
Euler equations that satisfy the local energy inequality (2). We define this notion
as follows by augmenting the well-known Euler—Reynolds system of [22] with
an additional inequality (Inequality (11) below) that represents a relaxation of the
local energy inequality. The inequality contains two new fields (the unresolved flux
density and current, «, ¢), which, together with the Reynolds stress R, measure the
error in the local energy inequality.

Definition 2.1. A dissipative Euler-Reynolds flow on I x T, [ an interval, is a
tuple of tensor fields (v, p, R, k, ¢, ) on I xT" consisting of: a vector field vt
(the velocity field), a scalar function p (the pressure), a symmetric tensor field
RJ* (the Reynolds stress), a scalar function « (the unresolved flux density), a
vector field (pj (the unresolved flux current), all smooth in the spatial variables
and satisfying the system of equations

'+ Vo) +Vip = VR Vi =0 (10)
9 |U|2 v |v|2 il < D v Rjz v j
5 +V; T+P v/ | < Dik + Vj[ueR”T+ Vg

DTF = BIF—FVi(UiF), (11)
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together with the scalar function ;& > 0 (the dissipation measure) defined by

v|? v|? i it i
nw=—10 > +V; T—i—p v + Dk + V[ R7"T+ V.

12)

Remark. The definition of a dissipative Euler—Reynolds flow, which generalizes
the notion of an Euler—Reynolds flow, can be naturally motivated by observing
that any ensemble average (v, p) of globally dissipative Euler flows must be a
dissipative Euler—Reynolds flow. From the point of view of ensemble averages, the
unresolved flux density « arises as half the trace of R/¢ := v/v¢ — v/3* while the
unresolved flux current ¢/ arises from trilinear variations in velocity and bilinear
variations in velocity and pressure in a cumulant expansion of the averaged cubic

nonlinearity (# + p) v/ on the left hand side of (2); see [37, Section 1] for more
on the significance of this remark for performing convex integration.

Our strategy at this point will be to construct a convex integration scheme that
generates a sequence of smooth, dissipative Euler Reynolds flows (v, p, R, k, ¢, 1) )
indexed by k with (R, «, ¢)() all tending to O uniformly as k — oo and with
(v, p) (k) converging uniformly to a Holder continuous, weak solution to incom-
pressible Euler. As the error terms in (11) that involve x, R and ¢ will all converge
weakly to zero, the limiting solution (v, p) will satisfy the local energy inequality
(11) with dissipation measure 1 = —[3;(|v|*/2) + V;(([v|*/2 + p)v/)] equal to
the weak limit ;0 = w-1limy_, o0 k) > 0.

We measure the size of these errors using the following notion of compound
frequency-energy levels. The notion is adapted from the use of analogous estimates
in [39], which were introduced for the purpose of executing a convex integration
scheme in which only a single “component” of the error could be reduced in size
during the construction of solutions. In our construction, we will be able to eliminate
essentially a part of the error that can be built from restricting to a single subspace
in each stage. In what follows we will view dx! =11,0,0], dx? = [0, 1, 0], dxd =
[0,0, 1] as elements in the dual of R3, so that kerdx! = (e2, e3), ker dx? =
(e1,e3),...,and kerdx! ® kerdx! = @i, j+1(ei ®ej), etc..

Definition 2.2. For E > 2, ¢, > ¢, > eg > ec > O andintegers L > 0,1, J €
{1,2,3}, I # J, we say that a dissipative Euler—Reynolds flow (v, p, R, k, ¢, 1)
on I x T3 has compound frequency-energy levels (of type [/, J] and order L)
bounded by (E, ey, ey, eg, ec) if one can express the stress tensor and unresolved
flux density and current in the form

JO_ it | it | pit
R = Rjjy + Rjjy + Rig),
14
K = K[[] + K[G]» K[1]=8ng[JI]/2 (13)

i ) J
@) = i T Y6y
where R[’;Z] and R'[jf] are symmetric tensor fields that take values respectively in the

vector subspaces ker dx! @ kerdx! and ker dx’ ® kerdx’ of R3 ® R?, (p[j 1 takes
values in ker dx/, and the following estimates hold uniformly on [ x T3
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IVavlico < E¥el/2, | Vaplico < Elile,, l<lal<L (14)
IViDipllco < B2 0<ja)<L—1 (15)

C v
IVaFllco < E9np, 0<lal <L (16)

IVaD;Fllco < B4+ 2hp 0<jal<L—1. (17)

Here (F, hp)" is any column of the following formal matrix (in which we define

13 2/3
F
hF

ep i=ey ey )
and D,F = &F +v-VF = &F + V;(v'F). If [ is finite we also require
71> 8zl .

(18)

Riny Ry RiG) k1) k161 9111 #16)
ey €R eG €, €R e(p/ e(/ ’

3. The Main Lemma

The following technical Main Lemma summarizes the result of one stage of
the iteration. The Lemma is stated in terms of the notion of a (5, M)-well-prepared
dissipative Euler—Reynolds flow (to be defined in Definition 4.1 below), wh1ch
places conditions on the form of the principal part of the error term Rlll that
are consistent with the outcome of the previous stage of the iteration, and that in
particular imply positive definiteness and that the trace part is dominant on the
appropriate intervals. In particular, even though the error terms are supported in a
certain interval /jg}, it is only on a smaller interval /) that the trace part dominates
the largest incoming error terms. This nuance of the iteration is used to obtain
compactly supported solutions, but not to obtain solutions satisfying local energy
conservation.

In the following, we recall that e, = e(/ 3ei/ , 1s as in Definition 2.2:

Lemma 3.1. (Main Lemma) For any L > 2, there exist constants 5§ > 0 and
6 Cp > 1 such that the following holds: Let (E, ey, ey, g, eg) be compound
Jfrequency energy levels. Let (v, p, R, k, ¢, ) be a dissipative Euler—Reynolds flow
on I x T3 with compound frequency energy levels (of type [1, 1+1] mod 3 and order
L) bounded by (E, ey, ey, eR, ec). Let I”] C I[G] be nonempty subintervals ofI
leté: I — Ry be a smooth, non-negative function and let N > 1 be such that

N = max f(eo/ec)(elf2 ey, el ey ey fec) - (ep/ey). (eufen) 2]
(19)
supp, (R(11» Ri2p, RiGy» e ¢161s k61 < Iia)- (20)

Suppose also that (v, p, R, k, ¢, ) is (8, M)-well-prepared (for stage [1]) for
some M > 1 in the sense of Definition (4.1) below with respect to these frequency
energy levels and the trio (1), 1[Gy, ).
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*

Then there exists a dissipative Euler—Reynolds flow (;, ;, R, I><k, ;’, I*L) that has
compound frequency energy levels (of type [[+1, [+2] mod 3 and order L) bounded
by

i‘ * ok * *
(B, ey, €y, €Rr, €G)

Ae A A& 2/3

= (NC&,Ce,. Ce,. Ceg. (e)?/(e}PN)Pey), e, =el3eil, @)
and that is (8, C )-well prepared with respect to the frequency energy levels (21),
some pair of intervals I[H_ 1< I [Gx] contained in I, and some smooth, non-negative
e: [ — Ry. The trio (11+1 I[G*], e) may be chosen such that e = e(t) depends
only on (B, ey, ey, €Rr, €G), I(;] and L.

One may arrange that v has the form v=v + V such that

[Viieo < Crey/?, (22)

sup
t

/ be(t, x)VE(t, x)dx
11‘3

< 872w Vo, Ny, forallge e CFU T, (23)
t

and also such that the restrictions of V and the components of (v P R K §0) to any
interval I' C I depend only onthe data (B, ey, ey, eR, €G), (I[l], I[G e) and on the
restriction of (v, p, R, k, ) and their components to the (uev/ )~ !
of I'inl.

It is possible to arrange that M % depends only on I[G (B, ey, ey, R, eG)

neighborhood

and L, and is everywhere non-negative with M = on I [G]- One may also arrange
that

iy ={t+7 :t el |f] <1073(Ee/H™hnT (24)

k * ~
supp; V U supp; (R, K, ) C IiGx) = {t < supljg) + (Bey/?) "' /401 N1,
(25)

where the containment (25) applies also to the all the components of ( I*é, I?, <2) in
(13).

Furthermore, for any interval J with length |J| > E_lev_l/z that is con-
tained in i[l], there exists a (possibly different) dissipative Euler—Reynolds flow
(v2, p2, Ra, k2, ©2, 2), v2 = v + Vo obeying all of the above conclusions stated

for (;;, ]*7 ...) and for V with the same functions e;(t) = e(t) and puy, = li but

possibly differing from v somewhere in the interval J and satisfying
& * k k k ~
supp; | v2 =V, p2 =P, Ry =R, ko =K, p =@ ) S J (26)
sup f 2t ) = 0(t, ) Pdx = (CLM) ™ = N7 De, @7)
t JT3

£ *
with (26) applying also to the components of (R» — R, k» — /><k, @2 — P).
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In the proof of Lemma 3.1 that follows we will consider only the case of type
[/,14+1] = [1, 2] frequency energy levels to simplify notation. The general case,
which will be used in Sect. 6 to prove the main theorems, follows by symmetry by
permuting the coordinate axes. We note that the estimate (23) will not be required
for the applications we consider in this paper. However, we have included the bound
due its usefulness for further applications such as results of k-principle type (e.g.,
[33,39]).

4. Proof of the Main Lemma

4.1. Proof of Main Lemma: Introduction

Let (v, p, R, k, ¢, ) be a dissipative Euler flow given as in the assumptions of

4
Lemma 3.1. We will construct the new velocity field v =v'+ Vland pressure

; = p + P by adding carefully designed corrections V and P to the velocity field
and pressure.

The correction V¢ is a “high-frequency”, divergence free vector field con-
structed as a sum V = ) ;7 V; of individual waves Vf that are divergence free
and that are together indexed by a set Z. The Vf are complex-valued vector fields,
and each V; has a conjugate wave Vj := V; indexed by I € 7 so that the correction
V¢ is real valued. A new point in this construction is that there will be several types
of waves that partition the index set into Z = Zg L1 Z,. The waves indexed by Z,,
are those that will be used to cancel out (part of) the unresolved flux current ¢,
whereas the waves indexed by Zg will be used to cancel out (part of) the Reynolds
stress R, and these two families are disjoint. These families will furthermore be

— < — < — — -
partitioned into Zg :=Zg U7Zg, 1, = Z, U T,, where the wavesinZ =Zg U7,
are the largest and they will be designed to cancel out the main error terms R[jle]

. < < <
and (p‘[’l], while those in 7 := Zg LI Z,, will be designed to cancel out (part of) the
remaining, smaller error terms and may have slightly larger support in time. This
— <&
decomposition yields also that Z = Z 11 7.

3

The new Reynolds stress R will be constructed as in previous incompressible

Euler schemes as a sum of several terms that will be required to satisfy the following
equations:

je ) . ) ‘
R =R{'+ R+ R+ RIE (28)
ViR) =8, V' + Vil Ve + Vi (29)
RIS =" V/V{+ Psit + R (30)
1
y .
ViRy = Vi(Vivp) 31

J#I



Nonuniqueness and Existence of Continuous, Globally Dissipative Euler Flows 1241

RIF =1/ —v))VE+ VIt — oD+ (R — RIY)
” ) .

= R}, + (R7* — RY). 32)
The vector field vf and symmetric tensor field Rg * are regularizations of the given
v’ and R/* that will be defined in Sect. 4.5 below. As in Definition 2.2, we will also
have a decomposition Ré“ = R[/fe] + R[/Zi] + R[jGZE], where the R[Jli] take values
in ker dx! ® kerdx! for I = 1,2, and we require that || Rjejllco < ALl Ry llco for

I =1,2and ||RGelllco L ALIRG)llco with A > 1 depending on L.
Towards considering the local energy inequality, let us introduce the resolved

energy flux densi_ty of (v, p), which we define to be D[v, p] = & (|v|*/2) +
V;i((Jv |2/2 + p)v/). Then the definition of the dissipation measure p in (12) gives

Dlv, pl = Dk + V(v R + V) — (33)
A major goal of this construction will be to design the new (;S, ;7) so that its
resolved energy flux 1*) = D[lj;, ;] has the form (33) with (l;k, ;i, 92) much smaller
than the original («, R, ¢). Using V=1 +V, ; =p+ P, pv/ = v(psi?), and
(33) the new 1*) = D[;, ;] can be decomposed in the form
* o o o o o
D:DT+DS+DH+DK+Dw_Ms (34)

where the first three terms are related to the decomposition of the stress in (28)

. 2 .
DBr = 8,0V + V(0 Vo)) + 7, ((%ﬂa) Vf> 35)
Dy =V, wl)_ V] Vi + Pt + RI] (36)
1
Dy = V,[vel Y vivill, (37)
J#I

and where the other terms involve the unresolved flux density and current, k and ¢

2 2
Dy =9, ('% +K>+v,» ((% +x> vj> (38)

Dy =V;| 3 evivi+ PV 4el]. (39)
1,J,K

Since one of our main objectives is to ensure the new unresolved flux density é;
will be substantially smaller than the given ¢, we aim to design our corrections so
that the frequency cascades in the product of equation (39) will cancel out as much
as possible of the “low-frequency” part of ¢. At the same time, we will also need
to reduce the sizes of both « and R.

The goal of canceling out ¢ will be accomplished by the waves V;, I € 1,
as follows. We will specify a subset 7 € 7, x Z, x Z, that is symmetric under
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conjugation (I, J, K) € T < (I,J, K) € T with the property that all trilinear
interactions of the form (Vy), VJJ V;é with I, J, K € T produce low frequency
terms that together will cancel out the term ¢ in (39). We perform this task by first
splitting ﬁp = lo)(p L+ ﬁp p into a low frequency cascade term plus purely high
frequency terms of the form

Dy = Vj[ Z (VI)zVJjV;; +</’€j],
1,J,KeT

Don =Vi[ Y VDeVivi+ PV 4@l — b, (40)
LIK¢T

where ¢, is a regularization of ¢ to be defined with the other regularizations in
Sect. 4.5 below.

It is of interest to note that the use of tri-linear interactions as above is reminis-
cent of the trilinear interactions that appear in the predictions of the DIA and LDIA
theories by Kraichnan for modeling the energy spectrum in turbulent flows (see
e.g. [42, Equation 3]).% Precisely, Kraichnan’s theory predicts that energy cascades
in turbulence are governed by trilinear interactions of waves that are carried along
the mean flow, much like what will follow.

In addition to canceling out the term ¢, in (40), we must also cancel out the
unresolved flux density « in (38). We will treat ¥ with a similar approach by
first isolating the low frequency part of k inside the error term Dy. Thus we split
D¢ = Der + Dey into low and high frequency terms as follows

D = Dy [Z % + K51| (41)
1

\ _ Vi-Vi1 — V|2 P

DKHZDI[Z ’2 J]+D;[K—K€]+Vj ((%-FK) (v’—v£)>, (42)
J#I

where here and in what follows the operator D, denotes the coarse scale advective
derivative D, F := 0 +ve-VF =0, F+V; (véF).

Observe that there is an important coupling between our goals of canceling out
the term «. in (41) and the low frequency stress term R, in (30), namely that term

>, Vi - Vi /2 that appears in (41) is exactly half the trace of the term Y_, V] V/}
that appears in (30). We address this tension using our control of the pressure term
P87t and the following idea.

The term ), V; - V1 /2 is essentially the contribution of V = ; Vi to the
coarse scale part of the energy density, since the waves V; will be of high frequency
and will be essentially orthogonal. For a solution that exhibits local energy dissipa-
tion, this contribution to the local energy flux should be decreasing in time. With
this motivation, we will choose a function e(¢) with the properties

8 We thank T. Drivas for this comment.
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e(t) =0,  Dye(t) = de(t) <0
e(t) = Koep,  ift <supljg)+ (Be)/)™" (43)
IDre' 2 (0)llco < Ki(Bey/?) e, r=0,1.2,
where K is a constant that will be specified later and K is another constant that is
allowed to depend on K. Our choice of K¢ will depend on L, but not on any other

parameters in the construction.
The choice of e(¢) will determine the contribution of V = )", V; to the new

E3
dissipation measure i, as we will rewrite (41) as

D, = D, [Z Vi 2 Vi + ke — e(t)} + Dye(r) (44)
1

with the key observation that De(t) < 0is non-positive since e(z) is nonin-
creasing. This fact implies that this term can be absorbed into the new dissipation

measure ,l*L := w— D,e(t). In particular, the dissipation measure li = p will remain
unchanged if we take e(?) to be constant in time.

The correction P to the pressure is now determined by our requirement that it
is possible to choose V; to cancel out the main terms in both of equations (30) and
(44) simultaneously. Namely, taking the trace of (30) and comparing to (44) we
require P = P(t, x) to satisfy the following equality pointwise

—e(t) + ke = (BP(t,x) + 8¢RI /2. (45)
Using that k = x1] + k[G], kK[1] = —(1/2)8]-@R[jf], the equation (46) becomes
—3P(t.x) = 2¢(t) — 261Ge] + 8je(Rye; + Rlie)- (46)

The main term in this equation will be the term coming from e(¢) due to the lower
bound in (43).

4.2. General shape of the construction

Our correction V = ), V; will be a sum of divergence free “plane waves” that
oscillate at a large frequency A := B; N*E. The parameter B, > 2 will be taken
such that X is an integer multiple of 2, and will be bounded in size by a constant
B;., which will be the last constant chosen in the argument and depends on all of the
other parameters and constants in the construction. (Informally one should simply
think of B, as a large constant.)

More explicitly, the leading term in each individual wave Vf will be equipped
with a real-valued phase function &; (¢, x) and an amplitude vf (¢, x), and there will
be a lower order term SVIE that is present to ensure that Vf is exactly divergence
free:

V=M1l 4 svh) = V4 8Vf

o

) . 47)
VIZ = /M1 vf, SVIz = e’)‘glévf.
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The amplitude vf will be required to take values orthogonal to the phase gradient
(V&;) in order to make the leading order term in (47) divergence free to leading
order in A. Meanwhile, the phase function &; will be advected by the coarse scale
flow of v, initiating from a time # (/) with data é 7(x):

O +vIV)Er=00onR x T3, & (r(I),x) = & (x) on T3, (48)
v - VE =0onR x T3, (49)

The index I € Z will have components I = (k, f) € Z x [, where k € Z will

specify the time interval on which V; will be supported, t (1) = k7 will be specified
in line (55) below, F is a finite set that we will specify, and f € F describes the
direction of oscillation V;. The index set has a conjugation symmetry I = (k, f),
f € T, which corresponds to the conjugate wave defined by Vi = Vi, v7 =
vy, §; = —&;. The set IF will be partitioned into disjoint subsets F = Fg L1 ¥, and
we write I € Zg if f(I) € Fg, while I € Z, if f(I) € F,. In general, k() and

— <
f(I) refer to the (k, f) components of /. We will similarly decompose F = F LI,
i < — <
Fr =Fg UFg, F, = F, LI F, into larger vs. smaller amplitude waves, each of

these groups having the conjugation symmetry f € ]E’ R=f€ I%R, etc.

Waves having the form (47)—(49) are also used in [37], where an additional
condition is imposed to emulate the Beltrami flows of [22]. Our construction will
be different in that we use the Ansatz based on “one-dimensional, plane-waves”
introduced in [39], and we take advantage of the frequency localization techniques
introduced there. Our construction also improves on this one-dimensional Ansatz
by noting that, in the case of incompressible Euler, one is free to use “multi-
dimensional” waves in the construction provided one maintains the orthogonality
condition (49).

We describe these waves as follows. The oscillations will occur essentially in the
direction of the x! coordinate, and the vector fields will take values v; € (V&;)+
approximately tangent to the level hyperplanes of the x! coordinate, (V&;)+ ~
ker dx!. The waves will have operators P; that localize to frequencies of size ~ A
near the line {(p1, 0, 0)} € R3.

More premsely let y: R3 — R be a Schwartz function with compact Fourier
support in supp ¥y < B/3(1,0,0) < R3 and ¥ = 1lin Bi2(1,0,0). We will
choose a finite set of nonzero integers 7z C Z_.o, symmetric under negation n €
Fz < —n € Fyz, with the property that

Bs(n+n',0,0) N B4(0,0,0) = @ forall n # —n’ in Fy. (50)

We will also assign to each [k] € Z/2Z and f € F anatural number nyy), s € Fz by
an injective map n.: (Z/27Z) x F — Fz with the conjugation symmetry n 7 =
—ni, r. For I = (k, f) € Z x I, we let njj) = ny, r, where [k] is k evaluated
mod 2.

We now specify that each wave V;, I = (k, f), has frequency support near
an (1, 0, 0) by setting
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Vi =Pile™ vy,

iU m) = 3 (;1[’%) [fﬂm) ~ Mme] ComteZ?=T3. (51

|m|>

In this way, each Vj is divergence free, since the operator P; in (51) is simply
the usual Leray projection to mean-zero divergence-free vector fields but cut off to
frequencies near Anyj(1, 0, 0). Note that (51) may be expressed in physical space
as a convolution operator

Vi= /RB Vlx =K (dh,  KE(h) = (A Kf(apnah) (52)

where K }f (h) the Kernel associated to P[y % -], which is a Schwartz, matrix-
valued function on R3. Note we have suppressed the dependence of P; and K fb on
A = B; N*E in our notation.

‘We choose the initial data é 1 (x) for the phase functions in (48) to be é 1(x) =
ni(1,0,0) - x so that Aél (x) is well-defined on x € T3 = R3/Z3 modulo integer
multiples of 2. We will impose the following properties to ensure V&; remains
sufficiently close to V§1 = np(1, 0, 0) on the support of v;:

IVEr — VErllco S /D IVE llco, 11 IVEN Mo Q201 [VE  o. (53)

The amplitudes vf for I = (k, f) have the form
1/2 x
vf = e, (On1yi fF. (54)

Here ¢;(t) is either the function introduced in (43) above if I € % or a different
function &(7) to be introduced later if I € Z, the yr = yi(t, x) are real-valued scalar
functions (the “coefficients”), the n; (¢) are time cutoffs, and the f f are vector fields
of size ~ 1 that take values in (V&;)® to ensure that vf does also. The time cutoffs

have a time-scale  of the form
Ti=pE ey 2 b= bo(el?/(el2 BN, (55)

Here by < 1 is a positive constant that will be chosen in Proposition 4.3 below

to ensure (53) and depends only on the Ag in (95). (The above choice of Z will
optimize the main error terms.)

We construct ; differently for / € Zg than for I € Z,. Namely, letn: R — R
be a smooth cutoff supported in supp, 7 € [—1, 1] such that 0 < #(r) < 1 and
Yken®t —k) = 1forall7 € RY For I € Ig, I = (k, f), we set n;(t) =

-3 x—1 * ) %=1 * .
n°(t (¢t —kt)), whereas for I € I, we set n;(t) = n“(t (¢t — k7)). In this way

9 For example, starting with any smooth 7(¢) with supp, 7 € [—1, 1] with0 < 7(¢) < 1
forall 7 and 77(t) = 1 on [—2/3,2/3] one can set 7j(f) = 7() /(X _re7, 71%(7 — k))1/°, noting
that the denominator is bounded below and smooth.
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the n; form part of a quadratic partition of unity for / € Zy as opposed to a cubic
partition of unity for I € I, and the following bounds hold:

Forall I = (k, f), supp, 7 € {It — k7| < T},
. < o 12y ’
9 nrllco Sr b (Bey/?)", 0=r <2 (56)
_ Wemake f1 orthogonal to V& by orthogonally projecting some constant vector
fre(vVen*:
Fi@x = ff = V&2V - [V (57)
Note that (57) is well-defined and bounded once (53) is verified, and is equal to f f

*k ~ A
at the initial time 7 (/) = kt. The error in approximating f; by its starting value f;
will be written using the hat notation

vp =07 + vy, vy = PWyi(ff — [

= —e' 2Oy |VENT (Ve — VED - fVEr (58)
The initial direction fl will depend only on the component f = f([) € F
of I = (k, f) in a manner we now describe. For I € %(p, the initial direc-

tion f, will be chosen from the finite set [%’w C ((1,0, 0))J- defined by %w =
{(0,1,0), (O 0, 1)}, while for I € T we use a different orthonormal basis for

kerdx!, = {(0,1/+/2,1/4/2), (0, —1/f 1/4/2)}. For I € Tk, the initial

direction f1 will be chosen from a finite set BR C ((1,0, 0)) = kerdx! of
<

cardinality #8r = 3 with the following properties:

The tensors (f/ f e)f 3 form a basis for ker dx! ® kerdx!, and 59)
€BR
there exists ER C ker dx? such that (gf g‘) . Z% form a basis for ker dx? ® ker dx2, and
8€LR
(60)
Yo Y et =t (61)

feBr éeBr
We take for %R a subset of ((1,0, O))l for which ZfeBR fRf=ex®er+

(1/2)e3 ® e3, and then for ;;’R we choose a subset of ((0, 1,0))L that satisfies

> 2 gRg=e Qe+ (1/2)e3 ® e3. To find these subsets, observe that the
8EBR
quadratic forms on the right hand sides of these equations become the standard inner

product on R? after choosing appropriate bases for ((1, 0, 0))l and ((0, 1, 0)){
which itself be written as f1 ® f1 + f2 ® f> + f3 ® f3 for vectors f; that form the
vertices of an equilateral triangle in the plane centered at the origin. An exercise in
linear algebra shows that the properties (59)—(61) are all satisfied by this construc-
tion. The exact dependence of f1 on [ and the description of f1 for I € Zg will
now be specified in Sect. 4.3 below.
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4.3. Solving for the coefficients in the smaller amplitudes

In this section and in Sect. 4.4, we finish describing the shape of the construction
including the coefficient functions y;, the index sets Z, F and the assignment of
integers nyyj.

Our goal for the V; with I € Z, is to obtain an array of frequency cascades
such that the low frequency terms arising in (40) for (Z, J, K) € 7 may cancel out
@e. Low frequency contributions from the product (V;), VJ] Vf( should arise only in
cases where the phases cancel out in the sense that ¢/*¢/+5/+58) = 1, which will
occur in cases where the waves share the same initial time 7 (/) = ¢(J) = t(K)
and satisty nj) + npy) + nix] = 0. We therefore desire that Iz has several trios of
numbers (ny, ny, n3) € IE‘3Z for which n1 4+ ny + n3 = 0. We arrange these features
as follows.

We define the set I, to have the form F, = B, x {£1} x {*a”, “p”}, so
each element f € F, has the form f = ( f , 0, “r”). The component f € B, =

Ea a [OS(/, specifies the direction of the amplitude in the sense of (57), the “sign”
o € {#1} distinguishes a wave from its conjugate f = ( f , —0, “1”), and the string
“r” characterizes the “role” of the wave: if it is “active” or “passive”. We achieve
our desired frequency cascades by requiring the following properties from our map
n. restricted to (Z/27) x Fy:

e [Conjugate Symmetry] We requiren[k],ff = —np, fforall ([k], f) € (Z/27Z)x
Fy.
e [High-High-Low Cascades] We require that

M(Foep) T LGy T LGy = O (62)

and we define the set of “cascade trios” Tp C ]Fg) to be those trios ( f1, f2, f3) €
IF% that satisfy f; = ( f ,o0,“a")and fr = f3 = ( f , 0, “p”) or are a permutation
of such trios. Note that #7p = 4 - 3!, due to two choices of e, e3 € By, the two
possible signs and the 3! possible permutations.

e [No Undesired Cascades] We require that

Inw, r + npen, g+ npen gl = 4 (63)

except for the previously specified High-High-Low cascades required in (62).
Any injective map n.: (Z/2Z) x F, — N that satisfies these properties and
whose image satisfies (50) suffices for defining the restriction of . to (Z/27) x
Fy.

We now explain how to choose coefficients y;, I € I, to eliminate part of the
unresolved flux current ¢ using the frequency cascades in (40). We say that a trio
I,J,K) e 73 belongs to the set 7 in (40) if I, J, K € Z, have the same initial
time t(I) and (f (1), f(J), f(K)) € Tr as defined in (62). We will require that
the leading order part of (40) in f)w 1, cancels except for a term taking values in
ker dx?; namely we require that
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Z (Vi)e f/]j Vit ol = Z vuvﬁvf( +ol = (p(jz) + Lower order terms
1J,KeT 1.0.KeT
(64)

pointwise for all (¢, x), where (p(jz) takes values in ker dx2. Here we use that, for

I,J, K € T, the term (\0/1 )e V]] Vf; = (vy - vK)v§ is purely low frequency, since
eMEr+E+8K) = | holds for all (¢, x). Namely, the identity holds at the initial time
t = t(I) and persists for all time by uniqueness of solutions to regular transport
equations and by (48), (62) and the definition of §1 following (52).

The problem (64) will be solved separately by the two different types of waves,

T=TU ’]<Z where T =7 N (f¢)3, T=T7nN (%(/,)3. The larger waves [ € ip will
be assigned to the principal term go[j] ¢1» While the waves I € %(p will be assigned to
the general term (p[jG ¢1» Which though smaller may have slightly larger support in
time than go[jle]. We choose linear maps 71y and 7(2) on R? such that Rng 7, €
((1, 0, 0))J‘, Rng o) € (0,1, 0))J‘, and 771y +m2) = Idon R3 to isolate the part

go[JGl] = n(])go[]G] taking values in ker dx'. We will then achieve (64) by solving
separately the equations

Z vmvjvf{ = —(p[jl] + Lower order terms, (65)
1,J,KeT

Z v;gvﬂv‘;{ = —ga[le] + Lower order terms. (66)
I,J,KE’ZO'

We focus first on (66). We use the partition of unity property for the 7(-) to de-

. —1 .
compose (p[JGl] = ZkeZ 776(%k (t — k;))(p[JGl] and recall the expression v o=

-1 U
e}/z(t)ﬁz(%k t —t)yr f,] + 5v}. Factoring out the cutoffs and e(1)3/? from
(66), we will achieve (66) if for all k € Z we solve

Yo Ve Yk Vel (i ) == 0l 67
(fi.fruf3)eTs

. . * * % * ~
pointwise on [kT — T, kT +T] N1 X T3.

Note that, since each fl is either e or e3, the sum in (67) has only two distinct
terms, both repeated 2 - 3! times. One takes values in the e, direction and involves
some f; = (ez, =1, “a”), and the other term points in the e3 direction and involves
(e3, 1, “a”). With this observation, we can solve (67) if we make y; = K(; 12

constant for every “passive wave” (those fqr which f(I) = ( fl, o, “p”)), then for
“active waves” (those for which f(I) = (f7, o, “a”)) we set

yi(t, x) = —Koe >2(0)(f1 - o161 /(2 - 3. (68)
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We will also solve (65) using the same approximation vlgvlj v‘,i( = f)]gﬁ]} f);'( +
(5 vy)e? Jv x +...for I € T,, which leaves the low frequency part of (40) in the
form

ﬁ‘pL = Vﬂpi, <p£ = <p{2) + Z (Svl)gvﬂvf( + similar O(SUI -V - Vg) terms

1,J,KET
(69)
+ > (8V)eV] Vg + similar O(8V - V - V) terms,
I1,J,KeT
¢(Jz) = ”(2)‘/’[/Gej~ (70)

o
We also observe that the above choices of y; for I € 7, lead to the estimate

—-1/2
max < AK 71
max lvrllco = AK (71)

for some absolute constant A, where K is the constant in the lower bound in (43).

The construction of y; for I € % R 1s analogous to that for %(p except that the
goal is to cancel out a part of the stress R, appearing in (30) that takes values in
ker dx'. To isolate this part, choose linear maps 7, 772), 77[3] on the vector space
R3 ® R3 such that Rng 7y € ker dx! ® kerdx! for I = 1,2,3 and such that

m(1) + 72y + 73 = Id on R? @ R3, then decompose R, = R[jf*] + RJ (4] T ij*]
where
jt _ pit Jjt — jt o _ je
Rij = Rje) + iRy, forl =1,2, Rz = T31R G- (72)

Here R[i¢], R[2¢) and R|ge) refer to the decomposition of R, referenced after line
(32), which will be defined in Sect. 4.5. In particular, we have that Rng R, €
ker dx! @ ker dx! forall/ = 1, 2, 3. From (61), the pressure term similarly decom-

poses into 8/¢ = 5/ e 8[2* where

8[]6 : Z f' f(3 € kerdx! ® kerdx!, 8[]2*] Z 878% € kerdx? @ ker dx?.
fTE%R §€Z§R
(73)

We will now arrange that the remaining part of the term in (30) will have the form

S V/Vi+ P8It + RIC = P8l + Rl + R, + Small Error Terms ~ (74)
1

by ensuring that

S vivi=—ps)i— R/~ > V/V{ + Small Error Terms.  (75)
1€Zg 1€,

— o
Yet again, we distinguish Zgp = Zr LI Zg and obtain (75) by solving, separately,

Z v, U/ = —R[Jli Z vl v[ ~+ Small Error Terms, (76)
I1€Tr IeIw



1250 PHILIP ISETT

Z v, vI P(S[j(Z R[Jél Z v1v1 + Small Error Terms,  (77)

o
1 EIR 1 EIW

where R/ Gl = n[l]R[Jéd. Here we used that V/ = ¢*$7v! 4 8V and discarded
the (SV‘Z terms.
(o o
We focus now on determining vy, I € Zg to solve (77). We define Fg to be

Fr := Brx [%1} sothateach f € Fg hasthe form f = (f,0), f € B, o € (1)
and we let f = (f, —o) be the conjugate index. We specify that n. restricted to

(Z.)27) x IE‘ g tobe any 1njectlve map n (Z /27) X IF r — Nsuch that the completed
functionn.: (Z/27) x IE‘ —- N, IE‘ ]F R LIIE‘w, isinjective and maintains the property
(50). We multiply (77) by the identity 1 = ) ", ., 7 (r (t — kr)) and recall that
for I € %R, vf = el/z(t)my]ff + Svf, n; = ﬁ3(;_l(t — k;)) Dropping the Svl

terms and factoring out the cutoffs and e(z) from (77), we obtain (77) if, for all
k € 7 we solve the following equation pointwise on I x T°:

Z 2V(k f)fjf = (2/3)3[1] +elt, (78)
fGFR
o049 - 1[(1/3)( 2k1Ge) + 870 (Rlyy + RIG)) — RiG — Y ﬁ{ﬁf],
1€,
e Z oo = Y wivi i ff. (79
Iqu, Iejz,;

Using (59) and (73), provided ¢ is sufficiently small, the quadratic equation admits

<&
unique, positive solutions that depend smoothly as functions yy(e) of €, f € Fg,
and that obey the estimate

(43) (71)

Y )t x) = yr(e) = 1/V3+ 0(lellco),  liellco O((Ko)™"), (80)

where Ky is the parameter assumed in the lower bound for e(?) in (43).10 The
implicit constants in the O(-) notation are geometric and do not depend on any
parameters of the construction, which allows us to guarantee a bound of 1/3 <

<&
Y, r) < 2/3 forall f € Fg by taking Ko to be a sufficiently large constant
depending on L (in particular ensuring that the square root is well-defined in solving
(78)).
To solve the analogous equation (76) for the larger waves I € 7 g, we will make
a similar approximation of V; = ey, + 8V, v = 0 + Svl, and arrange the
main terms to satisfy

10 Here we use the bounds max; | Rjzejllco + I R[Ge]llco < ALeg, llkellco 9 Apep and
llgellco < Apes/, which will be checked in Sect. 4.5.
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AJAe jt ~jnl
3 olof = —Rlyy = Y 10y (81)

IEIR Iefw

Defining the v; in this way, and noting 8V V; = 8v;u7 leaves an error in (30) of
the form

it it it it
R = Poly + Ry + Rl + 3 (sv]vf + 8v]of)
IeT (82)
+ similar O (8v;vy) and O(SUIUI) terms.

At the same time, the error that remains for the unresolved flux density in (44)
reduces to

3 V’év’ c—eny @ (Zv, Vi + 850(P8y,y + RID)
I 1
=k = %(mwa[fzﬁ Rl + RELp) .
+%Z(8v1 97+ dvy - 77)
1
+ similar O (§vyv;) + O(§v1v1) terms.
Note that the main term is (1/2); e(P3[2* 2*]) which is the only term of size

eg. This term will be canceled out in the subsequent stage of the iteration where
we use waves with values in ker dx2. For now we isolate the main terms in the new
stress for the next stage of the iteration by defining

* xJt *
R[2] _PS[Z* +R2*]’ K[2) = (Sj(gR[z]/Z, KL =K +KLG- (84)

The terms contained in x|z ) from (83) will be shown to have a smaller order of
magnitude < eg.

4.4. Solving for the coefficients in the larger amplitudes

The task that remains to fully specify the shape of the construction is to explain
how to define v; for I € Z to tackle the principal terms of equations (65), (81).
To solve these equations, we make an assumption on the structure of our given

R[Jle], which is necessary for defining our construction and also consistent with the

o
outcome of designing the smaller amplitudes v; for I € 7 as above.

Definition 4.1. Let § > 0 and M > 1. We say that a dissipative Euler—Reynolds
flow (v, p, R, k, @) is @, M)-well-prepared (for stage [1]) with respect to a set
of frequency energy levels (&, ey, ey, er, €G), a pair of intervals f[l] C i[G] and
a smooth non-negative &: I — R>q if there is a positive number ¢, > M —le
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such that the following properties hold for [14] := (e3 ® €3) 4 (e2 ® e2)/2 and all
0<s<2:

jt _ - jt Jjt

Rijy = —e®djq + R[lo] (85)

supp; (Ry101, ¢17) € 15, supp; € < I1g) (86)

ID§& 20 o < (aev/zf )2, (87)

o _ . - 12—

&) MR llco + 2 2l llco < 5 if £ < sup Iy + (BeyH". (88)

1D} 1)~ 2l co < 10(Bey/ ) ey if 1 < sup Iy + (EeyH) ™! (89)

— —~ 1/2 3 2

e 213 D} Riioyllco + IV DS oyl co < B9 (Bey?el/?,  0<r<1,

0<r+lal<L. (90)

Alternatively, we may allow for (85) to hold with S{IK] in place of 8[112*] in the
definition of (8, M)-well-preparedness for stage 1 (which will be convenient for
the proof of Lemma 6.1 below). We similarly define (5, M)-well-prepared for stage
[/] by replacing (1, 2, 3) with (/, /41, [4+2) mod 3 where appropriate. Note that we
do not make any monotonicity assumption on e(t) in contrast to (43).

Having an assumption of the type (88), which causes the term é(t)S[jle*] to
dominate the error, will be necessary for achieving any gain in the size of the
error, since otherwise we would require adding an additional term of size e, into
the pressure that would generate additional error terms of size e, that take values
outside of ker dx!' @ ker dx'.

We will use the function e(¢) of Definition 4.1 as our choice of e s (7) appearing
in the amplitude v, in (54) for f = f(I) € F = Fg U F,. With this choice,
equation (65) will be satisfied (with error terms involving Svy) by solving the
equation analogous to (67)

Y Y VapVam s i ) =—-e730gl,. O
(f1.f2. 13T R

Similarly to the argument after (68) and using §-well-preparedness, we may solve
(91) by taking coefficients for passive waves that are constant, y; = §'/3if f(I) €
o X {£1} x {*“p”}, while we choose active waves of the form

yi = —82et) 2 (fr - e /(2 - 3. (92)

Using (88), we then have a bound of [|y;]lco < A§'/3 forall I € Z, for some
absolute constant A.

Turning now to I € Zg, we will solve (81) by ensuring that for all k € Z the
following equation analogous to (78) holds pointwise on I x T3:

T
> 2vap f =6, e (93)
feFg
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_ip (46) _ ie NN
g2 a(r) 1[ R[Joe] Z v;vf]

IeI(p

eyt Y ojog =Y nivi i ff. (94)

[eIw 1 eip

Here R/ i] isa regularization of R[1o] defined in Sect. 4.5 below, which is assumed

to satisfy ”R[oe]”CO < ALlR[10]llco With Ay depending only on L. Using the

bound (88) in the definition of §-well-preparedness, we may then estimate (94) by
IE€llco < A18%3 where Ay depends only on L. _
To solve (93) we first choose a subset Bg C kerdx! of cardinality #8; = 3

such that the tensors ( f J f B} 7B form a basis for ker dx! ® ker dx! and such that

Z. FeBr fift= 8[j 16*] . This subset may be constructed as in the argument following

line (61). For § sufficiently small depending on L, assuming Yk, f) = Y, f) are
equal, we obtain a solution to (93) by first solving the linear equation for the
y12 and then taking square roots to obtain the y;, which will obey the bounds
Yk ) = 1/24 O(|[g]l o) = 1/2+ O(§*/3). For § sufficiently small depending on
L, the solutions obtained in this way satisfy 1/4 < y, ) < 1 pointwise, and take
the form y, s)(t, x) = yy(€) for yr(-) one of finitely many functions indexed by
f € Fg that are smooth in & and defined on a ball of radius A78%/3 > 2|8/ co.

At this point, we are able to fix the final choice of & to be sufficiently small
depending on L so that the properties of the preceding paragraph all remain satisfied.
This choice completes our description of the shape of the construction.

4.5. Regularizations, preliminary bounds and the energy increment

In this section we define regularizations (ve, pe, Re, ke, @) of the given dissipa-
tive Euler—Reynolds flow (v, p, R, k, ¢, ;) and obtain some preliminary estimates
for the construction.

We define the coarse scale velocity field v¢ by mollifying v¢ > v = ye*xe*v®
in the spatial variables using a Schwartz kernel with length scale €,: x.(h) =
€U_3X1(€v_lh), X1: R3 e C. We assume that x. has compact Fourier support,
supp X1 C {|€] <2} CR3, (&) =1for |&] <1, which implies that Fsupp ve
{1&] < 2¢; '} and Fsupp (v — ve) C {|&] > €, !} in R3.

This choice leads to the following estimates (see [37, Lemma 14.1] for a proof
of (96)):

[Vavellco < Aol Vavlico, 1<lal <L (95)

Iw—=vo)llco S () IV vl co. (96)

Inequality (95) follows with Ag = || x1 1|2 LIRS by commuting the spatial derivative
with the mollifier.

We choose the length scale €, of the form ci[(N YWELZEI to guarantee the
following bound on the main term appearing in (32):

v —velleo S ef (e)/*/N) 97)
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|t - s i
1

< —
co ~ v = vellcomax ffjvrflico

Q112,172
_ 1/2 v S
S Atllv = velloe,/ ™ = 000N (98)
Examining Sects. 4.2-4.3, the constant A; (and hence the choice of ¢1) depends

only on the constant appearing in the upper bound [|e'/?(z) || co < Kj e(/2 <Kj el/2

of (43), since all the terms f;, yr and n; appearing in (54) are uniformly bounded
by geometric constants while le!/ 2 lco < e;/ % The constant A 1 will thus be deter-
mined in line (117) below, where we specify the function el2(1).

For the remaining fields F € (p, R, k, ¢), we ﬁrst define a spatial mollification
Fe, by setting Fe, = Xe, * Xe, * F, with xc (h) = € X1(6 1) a Schwartz kernel
on R3 with integral 1 that obeys the vanishing moment condition fR; hé Xe, (h)dh =
0 for all multi-indices 1 < |a| < L. We then define F, using the coarse scale flow
of ve to mollify in time:

F. =1, o Fe, = /R Fo. (3(t, ¥))ne, (5)ds. (99)

Here n¢, (s) = €, lnl(et_ Is) is a smooth, positive mollifying kernel with compact
support in the interval |s| < ¢; < E_le;1/2/2 and fR N, (s)ds = 1, while & (2, x)
is the flow map of 9; + v¢ - V (the coarse scale flow of v, ), which takes values in
R x T3 and is defined as the unique solution to the ODE

(1, x) = (1 +5, D1, x)), Do, x) = (£, x), %@@(r,x)zug‘(cbs(z,x)).
(100)

There is a small issue that if F is supported near the boundary of I x T3 in R x T3,
the expression (99) is not well-defined if ¢ + s exists the interval 1. We can get
around this issue by choosing two different mollifiers .’ T (s) and 1, (s) supported
respectively in 0 < s < ¢, and —¢; < s < 0, then setting

Fe(t,x) = x ()0t %o Fe, + (1 — x (D)0, %o Fe, (101)

with x € C°°(I) equalto x(tr) = 1 fort < inf/ + 8 e,, ,equal to x(t) =0
for ¢t > supI 2 le, 172 , taking values between 0 < (1) < 1 on I and obeying
the bounds [|(9;)" x [l co S (uev/z)r Such a cutoff x exists since we have assumed
|I| > 88 le 1/ 2. We note that if the interval I for the domain of the Euler—
Reynolds ﬂow is unbounded, then the use of the cutoff x (¢) is not needed.

For each field F to be regularized, we assume bounds of the form

glhp,  O0<lal<L

gl 2hp,  0<al<L—1,

'Va Fll co
VaD: Fllco

IA

(102)

A

and we choose €, and ¢, of the form €, = co(N"VLE™D), ¢, = co(NE el/z) 1
Note that the above construction of F, guarantees the bound || F¢|co < AL || F ||C0



Nonuniqueness and Existence of Continuous, Globally Dissipative Euler Flows 1255

that was required in Sect. 4.3, with the constant Ay, = [[n1(l1(r) - | X1 ”il(n@) de-
pending only on the choice of smooth functions 1 and x; (in particular independent
of cg or cy).

These choices of parameters lead to the following estimates as in [37, Section

18.3], which determines our choice of ¢g depending only on 7 and x.

Proposition 4.1. (Preliminary Estimates) We have the following bounds

Vavellco <g NUAI=D+/Lglall/2 - gorair ja) > 1, (103)
IVaDyvellco <z NOAHI=D+/Lglalgel/2 - foralla] >0, (104)

IVaD, (Vv co Sa NIaH2=Dv/Lglalgel/2  gorall ja) > 0. (105)

If (102) holds for (F, hg), then for all multi-indices a we have

IVaFellco + IVaFe, llco Sz NIGI=D+/Lgldlp g (106)
IVaD; Fellco + | VaD; Fe, |l co Sg NOGHI=D+/Lglaltl 12y (107)
IVaD; Fellco g € ' NUAHI=L+/Lglaltl /2y (108)

Sﬁ N1+(|§\+1—L)+/L E|a|+2611)/26§10/2hp. (109)

Examples include (F, hg)" any column of the following formal matrix

F
hr

Furthermore, the constants in (103)—(107) do not depend on the choice of cy in the
definition of €, = ¢y N~YL 2~ when the total number of derivatives (counting D)
does not exceed L. We also have the following bounds on the mollification errors
for cq sufficiently small depending on 1y, x1

32 32 (110)

€p €ER €G €R g(p €y €¢

Ry R2) Rig k161 Riie) @1 ¢[G]]

|F = Fello < —F
e lIC® = 200N
N (111)
_ 12, 172y _"F
IF = Fellco < (e)/*/egf?) 550

Proof. Thebounds (103)—(104) can be foundin [37_,Sections 15-16]. These bounds
imply (105) as follows. Note that D, (V. vf) = V.D; vf -V, vé’ Vp vf. The first term
obeys (105) by (104) while the second may be estimated using the product rule and
(103):

b V4 b V4
IValVerlVoollleo S 3 1Va, Vel ol Vi, Vol o
a1 |+d2|=lal
< Z [N(\51|+1—L)+/LE|ﬁ1\+lell)/2][N(\5z|+l—L)+/L5\32|+1311)/2]
|dy|+]az|=la|

b 4 al+2—L)+ /L =lal+2 1/2
IValVel Vpvilllco S NUH2=Be/bglali2e /2,

Here we used the counting inequality (9) withy =L — 1 > 0.
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The proofs of (106)—(109) with (F, hr) replaced by (R, eg) may be found in
[37, Section 18]. We note that the second advective derivative estimate (109) uses
the commutation property

Dinxo G(t,x) = f DG (®Py(t, x))1e, (s)ds = —/ G (@4 (1, X)), (s)ds
R R
(112)

for mollification along the flow proven in [37, Lemma 18.2] (see also [33, Propo-
sition 11.1] for an alternative proof). This calculation explains the appearance of
€ Uin (109). We also note that the bounds (107)—(109) remain undisturbed after
multiplying by a time cutoff function X (r) that obeys |3;%llco < (Zes/*)" for
0 <r <2, as can be seen using the product rule and Ee,i/z < et_l.

Toprove (111) weuse the estimate || F—Fe, || co S ef ||VLF||C0 <Ay céN‘th,
the bound || F — Fellco < |F — Fe llco + | Fe, — ne, *o Fe, ||co and the inequality

I Fe, = ne, %0 Fe,llco < Ay Di Fe,llco < Ayycoley/* fey/*)(hp /N).

taking co small depending on x; and n;. (See [37, Section 18.3] for details.) Note
that the presence of time cutoffs as described in (101) does not disturb the estimate.
O

We will also use the following bounds, which result from applying the proofs of
(106)—(107), (111) with (R, eg) replaced by (p, e,):

€y
e o < =22 113
P — pe;llco < 200N (113)
IV pe,llco Sg NUaI=D+/Lglale, if |a| > 1, and (114)
IVaD;pe, llco <z NUAHI=D+/Lglal+1 3/ forall a] > 0. (115)

The observation applied here is that the proofs of these estimates use only the
bounds on V; p for |a| > 1 and on V; D, p, but do not use any assumption on the
€0 norm of p.

With the above choice of €;, we can also choose the energy increment e(¢) in
(43). We assume that the parameter K has been fixed at this point, although so far
we have only imposed after line (80) a lower bound on K¢ (depending on 7[1 and
the set Bg). The final choice of Ky, to be stated in line (225) of Sect. 4.10, will
depend also on the operator 2] and the set B of Sect. 4.3, but will not depend of
the choice of ¢ in the definition of €,,. This choice of K will guarantee in particular
that

1 —1,* 3/2 _ * -
Ky'e, IR llco + Ky e, Ieplico <5, (116)

%
where R[] was defined in (84), while ;5[2] has yet to be defined.

Now let iG] be the interval in the assumptions of Lemma 3.1. Let 7 =
(Eell,/ 2)_1 and define e!'/2(r) as follows by mollifying the characteristic function

of a time interval

e'2(t) = 2(Koep)' e # 1 (117)

<sup Jigy+7/1000)-
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Here n; is a smooth, non-negative mollifier in the ¢ variable with compact support in
0 <t < t/200. The properties in (43) now follow from this definition. (To ensure
the lower bound holds on the support of (k¢, Re, ¢c), we use here thate; < - 1073
for ¢o small enough, since N > (e}}/ 2 /e(lp/ 2) from (19).)

We also record the following immediate consequence of (106)—(109):

Proposition 4.2. For (F, hF) as in Proposition 4.1, 0 < r < 2 and b;z =

(Ne(i;/2 /e,l,/z), we have

IVaD, Fellco <a [N<'5'+1—L)+/LE"7‘] [(Ee}/z)’bgz("l”] hp.  (118)

With the regularizations defined, we are ready to estimate the components of
the construction.

4.6. Bounding the components of the construction

In this section we estimate the components of the construction. All implicit
constants in the < notation will be allowed to depend on the constant parameters
such as Ky, co, by, . . . that were discussed in the preceding Sects. 4.2—4.5.

We start by stating bounds for the phase gradients V&;, which follow from
analysis of the equation

(O + ViV Vb = —=VuiVikr, Vg (t(l), x) = Vaéy. (119)

Proposition 4.3. (Transport Estimates) There exists a positive number by < 1

depending on Ag in (95) such that (53) holds for times |t — t(I)| < t. For such
times t, we have the following estimates

IV2VE [l co Sg NUAFHI=D+/Lgldl (120)
IVaD,VE | co Sg NUAHI=D+/L gldl(gel/2) (121)
=2 al+2— -
|VaD, VEr || co <z NUaH2-D+/Lgldl(gel/2)2, (122)

We also have, the following bounds for SVSI = V& — Vél :
~ - -k
IVa(VEr = VEDllco Sa (BuN)/2Ep (123)
Y p al2mldl 5 12t
IVaD; (V& = VED o Sa (BLN)2ENI (5 Bey/®) b, 0<r <2. (124)

Proof. Recalling the coarse scale flow @ from (100), we have %WS[ 12(Ds (2, X))
= —wvgvg,vfs, for |s| < 7 (each term being evaluated at ®,(¢, x)), which
implies by a Gronwall inequality argument that

e IsIVuellco

IVEP| < | 1Ver (@, 0, 00| < eIl

VE P a2s)
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Using |5/ Vuellco < bo(Eey'*) ™ AgBen/> = byAo, we have ellIVellco < 2 if
bop > 0 is small depending on Ap. From %V@El(d)s(t(l),x)) = =Vl
(D5 (t1), x))Vi& (D (2 (1), x)) we obtain

A N * ~
V&1 (D (t(1), ) — VE1| < 2T[| Ve[l o Vér| < bAo| V.

Taking by small depending on Ag, we obtain (53), and also the |d| = O case of
(123).

The estimates (120)—(122) are shown in [37, Section 17]. (Note that the proof of
(122) goes through the Euler—Reynolds system and the main term comes from the
pressure gradient.) The bounds (120)-(124) imply the remaining estimates (124)

—1
and the |@| > 1 case of (123) by comparison using L > 2, (ByN)'/? > Z and
the fact that V&; is constant. |

We next estimate the components of the construction. We start with the following
Lemma:

Lemma 4.1. For integers 0 < R < 2 and M > 0, define the weighted norm

- ViD, F
HM-B[F]:= max _max IVaD, Flico — (- (126)
0<r=<R | O<la|+r<M+R NUdl+1-L); /L szf

Then one has the triangle inequality HMBIF 4+ Gl < HM-B[F1+ FM-B)[G)
and the product rule

HMBIFG) <p HMB[F). MDD (G, (127)
* Ok 120
We also have, for t = b(Eey' ") and () <s <2,

— r _ - - J— —s _
AMPF] = max t HMHR=ODIE) AMODIF <7 HMIF).
=r=R
(128)
Proof. The triangle inequality follows quickly from the definition of the norm. The

product rule in the case R = 0 follows by using inequality (9) to obtain for all
0 < |a] < M that

IVa(FG)lico S Y IV FllcollVaGlieo
16| +1¢]=lal
DY (N(\5|+1—L)+/LEIE\H(M,O)[F])
Ib|+(¢|=lal
(N<|5l+1fL>+/L E|€|g(M,0>[G]>

< N(|5\+1—L)+/L H(M’O)[F]I:I(M’O)[G].
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We note that the properties in (128) follow immediately from the definition of H in
(126). We can obtain the product rule in the case 0 < R < 2 from the case R = 0
above and (128) by writing

— r — J— j—
AMBIEG <y Y.t Y AMHRODN FD G

0<r<R rit+ry=r

r - J— — —
<m Z; Z H(MJerr,O)[D;’lF]H(MJerr,O)[D:’ZG]

0<r<R rit+ry=r

r - J— T - —
<u Z Z (;‘ ]H(MJerrl,O)[D:"l F])(%k ZH(M+R7r2,O)[D:2GD

0<r<Rri+r=r

AMBFG) Sy HMPIFIHM PG,
This bound concludes the proof of Lemma 4.1. O

In terms of these weighted norms, we have the following bounds

Proposition 4.4. We have that HM-D[Vy.] <y Eell,/z, and the estimate HM-2
[Fl Sm hrF hol_dsfor (F, hp)' any column of the formal matrix in line (110). We
also have that HM-2D[F] < hp for (F, hr)' any column of the following formal

matrix

where the last estimate for e(t)™

(129)

F |V&r np e /2(t) e'/2(1) e(r) 1/2
1/2 1/2 — )
L1 ey g(,,

172 holds on supp, (Rico, ¢11¢))-

- -1

Proof. We obtain HM-D[Vu,] < Eel/? from (103), (105) by noting that T

Bkl/le/z(Eell,/z), which implies N (@+2-L)+/L(ge 1/2) < NUal+1=1)+/L *_1.
The bound H™-2[F,] <m hp follows from (118) by noting that (uev ) <

w1

To=b (B and b2Ee?? S b (Bl =7, where ;% =

v

-2
(Nel2jel® andb = by (BANel/z/el/z).
Thebound HM2[vE ] < 1follows from (120)(122) by noting that (Ee,’?)

< %k and that

N(\5\+27L)+/L(Eellj/2)2 < N1/2N(It7\+lfL)+/L(5811}/2)2 < N(Ia\+17L)+/L-Z—<_2.

for L > 2. The bounds for the cutoffs n; and the functions el/z, el/2 and e~ 1/2
-1
follow from the estimates (56), (43), (87), (89) and (Ze/?) <7 . O

We record also the following useful property of the weighted norm (126):

Proposition 4.5. For any operator of the form

D@ = vz (D)1 V;,(D;)? V3, (130)
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witha = (ay, az, az), la| = |ai|+laz|+azl, 7 = (r,r2) and0 < r :=ri+r; <2,
we have the bound

ID@R Fllo <g NUIHI-D/Lglily T ganpy, (131)

Proof. The result is immediate if | + r» = 0. In general, for I < rj +r, < 2,
repeatedly applying the commutator identity D;V,F = V,(D:F) — V!V, F
leads to an expansion of the form

m
D(&,?)F = Z Z Co b7 1_[ <V5i5f" (Vve)> VI;B;'"H F.
i=1

0<m=<rjzs
,C,

where the summation runs over s| + - - - 4+ 8, +m + s, +1 = r (the total number of
advective derivatives), the empty product is equal to 1 in the case m = 0, and the
multi-indices satisfy |l;| +; |ci| = |a| (the total number of spatial derivatives).
(We have omitted the summation over the indices of Vu,.) In particular, at most
one advective derivative falls on Vv,, and we obtain the bounds

- n - —S; -
1Dl s 3 Zl_[(N(ci|+l—L)+/L.z‘ EC"I(Ee}/Z))

0<m<3 g,g i=1

[N(|B|+1L>+/L;‘S’”“ EEUL-,F]

< ylal+I-Dy/Lglaly™ g

where Hy := H.)[F]. Here we used Proposition 4.4 for HM- D[V, ], (e ?)™

—m

<t ,and the counting inequality (9) withy =L — 1 > 0. O
We now proceed to estimate the components of the correction.

Proposition 4.6. The following bounds hold uniformly for I € T and for both
8t e (eIt 8l
IVaéllco + IVavrlico + IVa frllco Sa NUAH=0D+/E gl (132)

_ _ . - Lox—1
IVaDi&llco 4+ IVaDyyilico + IVaDy fillco <g NUEHI=D+/Lglaly — (gel/2)
(133)

-2
-2, —2 —2 = e _ —~lal ¥ —_
IVaD, &llco + 1VaD; yillco + 1V D, frllco Sg NUAHI=D+/Lglaly —(gel/2)2
(134)

These estimates generalize to operators of the form D@ defined as in (130).

Proof of (132)-(134) for y;, 1 € 1,. If I € I, then either [ is passive (in which

case yy = K 0_ 12 ory; = 51/3 is a constant and the bounds are clear) or / is active
and is given as in (68) or (92). On supp ¢1, e(t) = 4Koe£ is a constant so we easily
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32

have ||D e’3/2(t)||co < (B el/z)re(p for 0 < r < 2.Now using Lemma 4.1 and

Proposition 4.4 we find that for / € Iw,

AMD[y) Sy AM P[P 01HM P [gi6al S e, 3% = 1.

Similarly, for I € Zo, we have using (89) the bound

H(M,Z)[y[] SM FI(M’Z)[é_S/Z(I)]ﬁ(M’Z)[(p[]]]
S AMDE 12 (P32 < =332 = 1,
. O
Proof of (132)—(134) for ¢. Let R[] = (1/3)(—2k[Ge) + 5]€(R[125€ Rﬂg]))
R[jél]. From (79) we can write £/¢ = e(1)~ lR[fl] + Z & ’717’1 fl fl Now using

(2
Lemma 4.1 and Proposition 4.4 we find (using e(p = eé/ %ez/ 3 > ep and that

e(t) = ey is constant on supp, 1]) that, for I € I(p, we have
_ =i - .
HM D™ R S e HY 2[Ry
M 6271 (ﬁ(M’2)[KGe] + HM D[R] + I:I(M’z)[R[Ge]D

<M e

Lo, <
= geRNI.

For the latter term in (79), we use Lemma 4.1 to get
AMDn3y2 7 F11 S A2 PAM Py <1,

where we applied (132)—(134) for y;, I € Z,,.
The bound for €/¢ is similar, except the term analogous to Ié[]f] is simply

—e(t)~'R’" |, which we bound using Lemma 4.1 and Proposition 4.4 to get

[GO]’

- — _ e -
AMIe) R 1 <y AMP e 2P AMPRE 1 Sw e, e, S 1.

The term involving ), 7, n 1Yi f[ f1 may be bounded exactly as was done for

I(p. O
<& —
Proof of (132)—(134) for y;, I € Zgr. We consider I € T since the case I € Tg

<&
will be no different. If I € T we have that y; (¢, x) = y () (€) is asmooth function
of €. To bound spatial derivatives, apply the chain rule and product rule repeatedly
to obtain

ld|

Valyr@)l=Y_Y d*ys(e) H Vi

k=0 a;

|al

IValyr@]lico < ZZ]‘[[NWH Ly/Lglaily,

k=0 a; i=1
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where the sum ranges over multi-indices with )_; |d;| = l|a| and the implicit
constant depends also on the function y¢(-). Using the elementary inequality
>:(d@i] — (L — D) < (|a] — (L — 1)) from (9), we obtain || Vz[ys()]llco <
NUal+1=L/Lglal which we note is equivalent to H™-O [y, (£)] <ps 1. The same
estimate clearly holds with y 7 (-) replaced by any of its partial derivatives 0y s (-).
To bound advective derivatives, note that schematically the chain rule gives

Dilys(e)] = 3y (e)Dye (135)
Dilys(e)] = Di[dys(e)](Dye) + dy s (e)D.e. (136)

Applying Lemma 4.1 to (135), we obtain

HMO[D,[ys(@)]] Su HMOloys(e)] - HMO[Dye]

—1
<ul-T . (137)

Applying Lemma 4.1 to (136), we obtain

AMO[D] 1y )] i AMOD [y ()] - AMO[De)
+ HM Oy ()] HM O (D e]

—1 —1 -2
<y @ )@ )+1-7 <yt . (138)

which implies our desired bound. (In line (138), the result of (137) is used with y¢
replaced by dyy.) O
Proof of (132)—(134) for f;. The bound on || f7||co is clear from formula (57). To
bound derivatives, it suffices to estimate the term |V&; |_2(VE 7" f,)vfg ;1. Using
Lemma 4.1 we have

HAHMD(\ve | 72(VEr - fViE Sy HM P VE | HMD vE P (139)

Proposition 4.4 gives HM-2[V&;] < 1. We deduce that HM-2[|VE;|72] <pr 1
as well by the same argument we used to establish A -2 [yr(e)] Su Lforl € Iy,
but replacing ¢ by V&; and replacing the smooth function y¢(-) by the smooth
function | - |72 restricted to a neighborhood of V§1. m|

From these bounds we obtain the following estimates for the amplitudes of the

correction:
Proposition 4.7. The following estimates hold uniformly for I € T
2D % (al+1-L)+ /L gldl ,1/2
IVavilico + TlIVaDrvrllco + T IVaDivrllco Sa N HE ey,
(140)

. i = #2 =2 Gl+1— i
V;0rllco + T VaDivrllco + T |IVaD, 0rlleo Sz NUalH1=L+/L glal 172
c c Vil P

h (141)
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k e *2 —2
IVadvrllco + TV Ddvrllco + T IVaD; vyl o
< N(|a‘+2—L)+/LE|‘7|(BAN)‘1e(lp/2 (142)
; V=D, F VD a2 g2
IVzdvrllco + Tl VaDidvrllco + bt |VaD;dvillco Sg (BaN) b.
(143)

These estimates generalize to operators of the form p@n defined as in (130).

Proof of (140) and (141). Applying Lemma4.1 and Proposition4.6to vl = e;/z (1)

nlylff, we have

HMDy;] <y HMD[e)* (1AM 210 1HM D [y ) HM D[ 7]

Swel?111=el2

which implies (140). The same calculation with vf and f [Z replaced by ﬁf and f IE
gives (141). |

Proof of (143). 1t suffices to prove (143) for |a] = 0 and 0 < r < 1, since the
remaining bounds follow from (140), (141) and Sv; = v; — 0; by comparison
x—1 .
using (B, N)'/? > b . Using (58), (43) and (53) we have [|5v;][co < [le!/2(2)]| co-
A *
V& — VEr|co S e;/zb as desired. We then obtain
IDbvilleo < > ID}'e
riteetra=1
I}’ (V& = VED I oD} i co
%=1 %=1 x—F3% x—T4 —1x%
< N moer I blr 1St bel?
ritetra=1

using (43), (123)~(124) and (132)~(133). O

1/2
D, e;”*)llco D01 (1)l co

Proof of (142). The estimate (142) follows from (140) using the Microlocal Lemma
of [39, Lemma 4.1]. According to this Lemma, the result of the convolution in (52)
has the following form

Prle*1v8] = 51 (R E, (WVENVE + svh) (144)

where K f »(AVE]) denotes the Fourier transform!! of the Kernel K (i.e. the symbol
of Pr) evaluated at the frequency AV&;, and where 5v§ is given by a certain explicit
formula. We have from (51) that the symbol of P; is an orthogonal projection

multiplied by a cutoff I%Z p(m) = 1} (nM) (6‘Z Im|~2mpm*). From (53), the cutoff

term becomes w (Wi’> = 1 when evaluated at AV&;. Using that vf e (Ve -t

11 As with all convolution kernels in this work, K 7 1s viewed as a Schwartz function on
R3.
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pointwise, we have that (Slf —| V&, |_2Vb§1 Veél)v? = vf, so (144) simplifies to the
form assumed in (47), namely P;[e"*$1v¢] = ™41 (v! + v¥). The estimate (142)
for (Svf is essentially carried out in [39, Lemma 7.5], but with the following minor
notational differences. Namely, the amplitude in [39] is a scalar function denoted
07 rather than the vector amplitude vf, it has size e;e/ 2 rather than eé/ 2, and the
convolution kernel is scalar-valued rather than matrix valued. The bounds of (140)
for vf become identical to those used for 6; in the proof of [39, Lemma 7.5] when
We replace vt 1 by el/ 2(v i/ el/ 2 ) (see [39, Lemma 7.4]), while the convolution kernel

obeys all the bounds used for the convolution kernel ni , in [39, Lemma 7.5],
since they are both obtained by rescaling a fixed Schwartz function by the frequency
A while preserving the L' norm. We can thus obtain our desired bound (142) for
8vf by following the proof of [39, Lemma 7.5] used to bound the term 86;. O

We now have the following bounds for the high frequency corrections and the
pressure increment:

Proposition 4.8. The following bounds hold uniformly for I € I:

IVaVillo + TlIVaDy Vil co +r V5D Villeo <z Al 1/2 (145)

Na

IVaVillco + F1VaD: Villco + 5 V3D Vi lleo <a 2 12 (146)

Na

w o — S A—
IVadVillco + TIIVaDi8Vilico + T 1VaD,8Villco Sa M4(BuN)~'el/? (147)
IVaPllco Sz NUP+/Eglle,, VaD, Pl co

r\/tl

The bound (148) holds also with D, replaced by D, for 0 < |a| < L — 1.
Proof of (145)-(147). We start with (146). Using V} = ¢/*§1v%, we have that
VD, [e*1v8] = Z Z Vi D, vhe™ 1 (i p)™ ]_[ Vz (Ve D), (149)
0=m=lal bz i=l

where the sum includes only multi-indices such that |b| + m + > Icil = |al. For
0 <r <2, we obtain

V3D, [0l co

m
. - ) _
<u ¥ Z[N<bl+1L)+/LE'b%‘ eé/2i|_)\ml_[N(|L‘i|+lL)+/LE|Ci

0<m<la| p.¢ i=1
(150)
Z ;*’eé/qum_m_(L_l)mL glal-mym < ;*’g;}/z,\\al, (151)
0=<m<|al

where in the last line we used the elementary counting inequality (|B| — (L —
D)+ + Y (él — (L —1)4 < (Ja] —m — (L — 1))4 in (9) and the fact that
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NYLE < ). The proof of (147) is the same except that we replace vé by sv?,
—r —r

T e;}/z by (B;\N)_l%k e(}/z, and we replace L — 1 > O by L —2 > 0 in the

elementary counting inequality. Inequality (145) now follows by adding (146) and

(147). O

Proof of (148). These bounds follow from the formula (46), since they hold for
e(t), K[GE],_R[zg] and R|Ge) by (43) and Proposition 4.1. To obtain the bound for D;

in place of D;, we will use the fact that for 0 < |a;| < L wehave ||V, (v—ve)llco <
E'ﬁ”eiﬂ,

from which we can bound the remaining termin V; D; P = Vaﬁt P+V;V; [(vi—
ve) P] by

IVaVil' —vDPlleo S Y (EMle)/A)(E®le,) < BV e}/ 2e,
|d1|+laz|=lal+1
(152)

forall 0 < |a| < L — 1 as desired. O
With these bounds in hand, we can begin to estimate the terms of the new stress
given in (28).
4.7. Preliminaries for estimating the new stress

In this section we gather some preparatory estimates for bounding the new stress

% JC
tensor R
) x Jt . .
To prove Lemma 3.1, we must estimate the new stress R and also its advective

x x * 14
derivative D; R  corresponding to the new velocity field D; := 9; + v vV, v o=

vf 4+ V¢, Since the bounds we have encountered so far have been stated in terms of
the velocity fields v¢ and v* and their corresponding advective derivatives D, and

4 *
D; rather than v and D, the following Lemma will be useful.

o —_ * o
Lemma 4.2. For each advective derivative D; € {D;, D;, D;}, define H €

- *
{H,H, H} by
. ViDI F
H[F]:= max max M (153)

Osr<to=fal+r=L lal(ey/?)r

Then each weighted norm H[ satisfies the triangle inequality and product rule
as in (127), these norms are comparable ;I[F] < H[F] < H[F] < ;][F], and
A[F] < ACVD[F). The inequalities HIF) < H[F] < H[F] < HIF] hold
also for the homogeneous weighted seminorms H [ F, which we define similarly to

(153) but omitting the term |a| = r = 0. The homogeneous seminorms satisfy the
triangle inequality HIF + G] < H[F] + H[G] and a product rule of the form

H[FG] < HIFIHIG]+ H[F1H[G]. (154)
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Proof. The proof of the triangle inequality and product rule (154) is analogous
to Lemma 4.1. The inequality H[F] < H (L_l*l)[F ] follows from the definitions
-1
using N'/L'E < A and Aeéﬂ > T . The proof of ITI[F] < H[F] is a simpler
k —
version of the proof of H[F] < H[F], so we will focus on this latter inequality

¢
. ~ * -
instead. Let V{ = v — vf =Vvti4+ (ve — vf), and observe that, for 0 < |a| < L
we have

IVa " = vD)lico Sa Xey/? /M), (155)
IVaVlico < 1VaV llco + 1Va@" = v)llco 2 (e} + e)/*/N) < Ml
(156)

In (155) we use (14), (95)—(96) and A > N E, while in (156) we use (145) and
N = (e*/e?).

For any 0 < |a] < L — 1, we then have that

E J— ~
ViDi[F1 = V;[D,F + V'V, F]

* PR— ~
IVaDiFlllco S IVaDiFlico+ Y 1IVa VEllcoll Va, Ve Fllco

a1 |+]az|=la|

* R (157)
IVaD:[Fllico S )\‘“H'le(yzf_l[F]
+ Z [)L|ﬁl|eé/2][)h\&'2|+ll__l[F]] < k|a|(ke(i,/2)l§[F],

a1 |+]az|=la|

which implies the bound [3 [F] < H[F] we desire. Interchanging the roles of ITI
and H[-] and replacing % by —vt gives the opposite inequality IfI [F] < HLF).

% —
Note that the same argument applies to the homogeneous versions H[-] and H[-].
O

In terms of the above weighted norms, we have the following Proposition, which

1,1
follows from Propositions 4.1, 4.3, 4.7 and 4.8 (noting that ;; T < Ae;,/ 2

case ofgvl).

in the

Proposition 4.9. Let (F, hg)' be any column of the following formal matrix of
variables

F|VE v o1 P Rpw Rps 9 Vi Vi 8VE Svy Svy Vi
* *
hrp| 1 egl/z eé/z €p €R  €G e;/z eé/z eéﬂ b be(l/2 )»*IEe(yz )FlEeé/z

_ - -1
Then HIF1 < hp and HID,F1<T hp.

-1
Proof. From the inequality T < )»e;,/ 2, which follows from the choices of

* -1 x—1
b = bo(eb/z/ei,/zN)l/z, T =b (B> and » = BNE, as well as
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NUal+1=L)/L glal < Aal we have thatI:I[F]—f—;I:I[E F1< HLD[F]. Applylng
Propositions 4.4,4.7, 4.8, we obtain the bounds on each field except for P, §VErand
Sv ;. The bound for P follows from the bound HM-2[p] < SM €ps which follows as

in the proof of (148). The bounds for S V& and Sv 7 folllow from (124) and (143) af-
—1 1,1

ternotingthat A > (B, N)2and?  <bh 7 = by B (ey*N/ey*)(Ee)?) <

rel)?. 5

The following Lemma will be useful when we encounter the terms of the form

F — F. or F — F¢, that arise as the errors in regularizing the various tensor fields
in the construction.

Proposition 4.10. Let (F, h)' be any column of the formal matrix

F
hr

Then we have the bounds

v p P Rpo Ry Rig1 ¢k kG
e,l/zeve(p ey, €R eg ej ey er |’

H[F — F,1 S (hp/N) (158)
HIF — F1 S (e)/?/e)/*)(hp /N), (159)

where Fe, = e * xe * F is the spatial mollification of F defined using the kernel
of lines (95)—(96).

For the functions (v, p, P) we will only use (158) although (159) is also true
in these cases.

Proof. For each of the fields F above, we have bounds of the form
IF — Fe.llco < (hp/N) (160)
IF = Fellco < (e,/*/eg/*) (i /N), (161)
from (97), (111), (113), as well as the bounds (using that A > N B)

S E¥he < AN e /N if 1) = 1,

~

IVaFlico + IVaFe,llco + I VaFellco

(162)
IVaD/Fllco + IVaD; Fe, llco + | VaDy Fell co
=lal+1,1/2 lal+1 172 ezl)/th
< E e,/ hp <A e\ —m | (163)
e/ N

where (162) holds for 1 < |a| < L while (163) holds for 0 < |a| < L — 1.12
These bounds are obtained in (14)—(18), (103)—-(104), (106)—(109), (114)—(115)
and (148). The final inequality in (163) holds also for the coarse scale advective

12 The bound [P — Pe,llco S (ep/N) follows from Proposition 4.1 using (148).
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derivative D; F in place of D;F as a consequence of the comparison inequality
H[F] < H[F] of Lemma 4.2. established in (98), (111) and (113) gives (159).!3

We now consider the sharper bound of (158). The bounds on spatial derivatives
and the C° norm follow from (160), (162). The bounds on the advective derivative
will require a more delicate argument. For 1 < |d| < L — 1, we can use the
following estimate, which applies (163) and (155):

D((F - F,) = (v = v/)V,F + D,F — D, F, (164)
IVaDi(F = F)llco S Y Va0 = v)llcollVa, Vi Fllco

|d1 |+a2|=lal

+ glal+ 12
<D DA NINE BhE] + 21 82}

|d1|+laz|=lal

IVaDi(F = Fe))llco < M (hp /Ny, if 1 <jal < L —1. (165)

In the last two lines we used that [a| > 1, A > NE and N > e /e /2 1t now
suffices to prove (165) in the case |a| = O to obtain (158). Since the first term in
(164) obeys [[(v{ — v/)V;Fllco < (es/*/N)Ehr < hey >(hr/N), it is enough to
bound the term D, F — D, Fe,
We will use that the molhﬁer used to define ve in (95)-(96) and Fe, 1= xc *

Xe * F := Xcte * F satisfies the vanishing moment conditions fR; hé Xe (h)dh =0
for all multi-indices 1 < |a| < L. To reduce the appearances of minus signs in
what, we will also be using that x.(-) is even. Writing

DF — Dt € = (DiF — Yeqe * D F) + Yeqe x D F — DtFe s

the vanishing moment condition allows us to apply the inequality |G — xe %G|l co Sk
€k||VkG||C0 withk = L — 1 and € = ¢, = coN /L E~! to estimate the first term
by

ID/F — Xeye * DiFllco < 1Dt F — xe * DiFllco + || xe ¥ (D F — xe % D F)|lco
(166)

< NV VLI, Fllpo < NTIHIL Ee})/th.
(167)

Using A > NE,L > 2and N > e,/e,, the last term is bounded by Ael/z(hp/N)
as desired.

For the commutator term Q¢[v, F] := D, Fe, — Xete x D F, we follow [37,
Section 16] to express

13 Here we again use (148) for P, which implies the bounds required in Proposition 4.1.
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Qclv, F1:=vIVa(xe * xe F) — Xe * xe % W'V, F) (168)
= Xe * (U Va(xe * F)) 4 [v¢ Va, xex1(xe * F)
— Xe * (V'Va(xe * F)) 4 xe * ([v' Vg, xex]F) (169)

We introduce here the notation F¢j := x. * F. Each of these terms when properly
viewed has a form amenable to our desired estimate, the simplest term being

I xe * (vf — v”)VaPﬂ)Hco < v - VellcoEhF < (e,lj/z/N)chp < Ael/z(hF/N).
(4
(170)

We consider the last commutator term in (169) since the other remaining term is
similar. We write

—[v“Va, xex]F (x) = /3(v“(x + 1) = v ()[Va Fl(x + h) xe(h)dh.  (171)
R

We will apply Taylor expansion to order L — 1 (noting L > 2) with

L-2 P
GD(0) 2 ~(L—1)
G(l):Z; - +(L 2)'/(1—<7)L GV (o)do
G(0) = (W (x + oh) — v (x)[Va F1(x +oh) (172)

1
— / Vv (x + toh) [V, F1(x + oh)dth?.
0

The vanishing moment condition for x. (%) implies that, When we substitute G(1)

(0) vanish because

in (172) for the integrand in (171) all the terms 1nvolv1ng

they are proportional to fR3 hd Xe(h)dh for some 1 < |d| < L, and (171) becomes
an expression of the form

Sandy /// Vs Voo (x 4 Toh)
(L 2)! ay Vb

[vazvaF](x + o YRR Ry (h)dh o (1—0)L 271814 do,

where the sum runs over multi-indices with |a| + |a2| = L — 1 and the bounds of
integration for dt and do are from O to 1. This long expression gives us the bound

17Dl S D (BN )21 (B2 ] A1 el ey
@1 [+ laz] =L —1

Sebaltle)Php < Bel/*(hp/N) < dey*(hp/N). (173)

This bound implies that || xe #([v* Va, xex1F)llco = xex(17D)lco < reg/>(hp/N)
as desired, and the bound for the remaining term [v¢ V,, xe*](Fe1) in (169) follows
by the same argument. O

Our next Lemma will be useful when we apply order —1 operators of the form
QO that are restricted to frequencies of the order A. Similar estimates appear in [39,
Lemma 7.2] and [6].
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Lemma 4.3. Suppose Q: R3 — R is Schwartz and satisfies the bounds

max A~ PR 0| sy < AT (174)
O<la|=|b|<L

for some real number A~ > 0. Then, for any smooth U on T3, we have
A1Q + U1 S A7 (1Ullco + 27" e DU o) (175)

zis a consequence, we have I-_I[Q x* U] < ATVH[U] and, ifU = ey with
D& = 0, we have that

HIQ * (™ i)] S A (lullco + 27" e, /2 IDyullco) S AT HIul. (176)
Proof. The estimate on spatial derivatives follows from the standard bound

IVZ[0  Ullico = 1(V20) * Ullco < 1U ol Va Ol 1 w3
<A "MNUe, O0<lal<L.

For the advective derivative calculation, we use 'V to denote differentiation
in the x variable and calculate D;[Q % U] at the point x € T3 as follows:

DO * Ul = (3 + vi(x)V)) fR} Ux —h)Q(h)dh = fR} D,U(x —h)Q(h)dh — B
B= /ﬂ@(ug(x —h) — vl (x)V,;U(x — h)Q(h)dh. (177)
The first term is equal to Q * D,U (x), which we bound as before by
IVaQ* DiUllco < A~ A D,Ullco, 0 <1dl < L.
For the commutator term (177) we first use OV [Ux—h)]=-PV,[Ux —h)]
to integrate by parts and, using V; v/ = 0 and the Fundamental Theorem, we write

(177) = f ! (x —h) — vl (x)U(x — h)V;Q(h)dh
]R3

1
= —/ / U(x — h)Vpv!l (x — oh)h?V; Q(h)dhdo.
0 JR3

Now differentiating 0 < |a| < L —1 times in x and performing a similar integration
by parts when the derivative hits U (x — &), we obtain our desired estimate

V;(177)

1
= Y c;l],az,,;fo /Rs Ux — )MV, [Va, Vvl (x — ah)hPV; Q(h))dhdo

ldy |+|az|=lal

Va7l co

S Ul Vvlllco Ve, 1RV Q1 1 esy
151 +1b |=la|
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IVa(177)ll co
S S UNlEPH PRI AT S AT U con Y2,
b11+1b21=lal
In the last line we used A > NE and N > (el/z/el/2 . O

With the above preliminaries in hand, we can now begin estimating the new
stress.

4.8. Estimating the new stress

xJt jt je jt je .
Recall from (28) that the new stress R = Ry + Ry + Ry + R;, will be
decomposed into four terms. The terms R%e and Rff are symmetric tensors that
must solve the equations

ViR =0,VE+ Vi VE+ Vil

V»Rjz=8tV£~|—v~iV-Ve+VjVjvf (178)
RJK Z \va (V]VJ (179)
JAT

Observe that right hand sides of (178) and (179) both have frequency support
contained in the annulus

Fsupp (178) U Fsupp (179) € {B,NE < |p| S B,NE} C R3. (180)

This containment uses that the Fourier transform maps products to convolutions,
the containment Fsupp V; € (2B, NE < (n;/3)B, NE < |p| < 3n;B) NE]} for
n chosen appropriately in Sect. 4.2 (noting (50)), and the containment Fsupp v. C
{Ip| < (1/10)N1/2:} for ¢ chosen small in (98).

Now let Qa * be a right-inverse for the divergence operator with order —1
taking values in symmetric tensors. Let Q’ ¥ = Pry Qa * be the same operator
but localized to frequencies of order A by a Fourier multiplier P~; = xaj* whose
symbol is a smooth, rescaled cutoff function Y~y (p) = x~1(p/A) supported in
Fsupp x € {A/2 < |p| S A} with ~;.(p) = 1 on (180). We solve (178)—(179)
by setting

il il - 14 il
Ry = Q) D,V + VPVl Ry = 01, «[Ve(VIVL.

J#I
(181)

One example of such an order —1 inverse to the divergence is the Fourier-multiplier
whose symbol is

0l (n = (=0 (0l (» + 0L (1)

0L(p) = 1pI2pad®. Q15 (p) = IpI2(p78} + 64p") = 211 (07 p' pa).
(182)
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The properties we need are that Qa (p) is symmetrlc in j¢, degree —1 homoge-
neous, smooth away from 0, and satisfies (ip ;) Qa (p) = 8[ With these properties,
we have that thﬁ(h) is a rescaling of a Schwartz function with Qi,zx (p) =

A Yr(p/M) 04 (p/2), and that R1' and RIS defined in (181) solve (178)=(179)
and satisfy the containment (180). In physmal space, the kernel takes the form
Qé o (h) = A3 Qé ~1(Ah)) with wal a fixed Schwartz function. Conse-

quently, Qé,m (h) satisfies the hypotheses of Lemma 4.3 with A~ < A1 Apply-
ing Lemma 4.3 to (181) and using the estimates

— —1
ID Ve + VPVl o < T e;,/z +el/28el/? (183)
— —1
DDV + VPV o ST (T e;,/z +el/*Bel/?), (184)
71
which follow from (105) and (145), we obtain the estimate H [R7] S A~ e;,/ 2,
Turning now to RI’, we calculate that
Vi(VIVH = VIV vE= VIV sVIvvEL V]V sV (185)
VIViVi = (in)e ™Sty v g vl
= ((0)eMEFED $uIViEs + 0] 8V eV, (186)

where we have used v{ = ﬁ{ + Sv{, V&, = VE; +8VE; and ﬁ{Vjéj =0.
%
Using (185)—(186), Propositions 4.3, 4.7, and 4.8, and that E < pA for B), large
and N > (ey/e,), we obtain the estimates
VIV VEllco S Mbel)? - 1+ el - byel)> < hbe, (187)
IV/V;V}lico S hbey + 07 Bel/?)helf?) + el/? - [Bel/?1 S hbey.  (188)

We may also apply D; to (186) and use the product rule (noting D, e'*¢1 78 = ()
to obtain that

o N w—1 * * w— 1%
ID:V/V;iVilco S At (be‘/2 Lte)/* b)ey> SAT b, (189)
. . —1 —1x%

IDAVIVVillco S AT bqu +7 Be, SAT  be,. (190)

Here we have again used the bounds of Propositions 4.3,4.7, and 4.8 in combination.
Applying Lemma 4.3 for (181) with A~! < A~! and using (183)—(184) and
(188), (190), we obtain
_ _ _ x—1 12 * *
H[R7]+ HIRHI SA™'T e,/ +bey < bey (191)
HIR71+ HIRu1 S By 2 (e}/?/e}/?N)! e,

In particular, for B, sufficiently large we can ensure that

IRTllco + IRullco < 1073 (e} je,N) e, (192)
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Using that V{ = ¢/*7v{ + 8V and (98), (111), an even better C” estimate holds
for the term

Ry = Y [0/ — vV} + Vi@ —vH1+ (RI* — RIY
1

. ) )
IRy llco < 1073 (el/2/N)ey/> + [lv = vellcoll Y 8Villeo + 2007 (e, /N)
1

je - _ -
IR} llco < 1072(e}/?/N)ey/* + A(e)/*/N)B; ' (eff?/N) < 107" (e}/?/N)e,/?
(193)
for B, sufficiently large. Also, using Proposition 4.10 and the product rule of
Lemma 4.2, we have
H[Ry] S Hlv — v lHIVI+ HIR — R 5 (e)/*/N)ey> + (e)/? e/ *) ey /N)
S (e)?/N)e,/>. (194)
The last term we must estimate is Rée. ‘We write Rg;e = P8[j2€ *]+R[j2l o] +R[];*]+Eée,
with I?él the lower order term calculated in line (82). By Proposition 4.9 and
Lemma 4.2, we then obtain

H[P]+ H[Rj4] < e, HI[Rp4] S e (195)

ALRs] < max | A8VAAVI+ AWV, + HBv A + v |

o~ * _
HIRs) S 117" Bey/ ey + bey/*iey/?) S By (el ey N) e,
(196)

172, 1/2

* _
The last inequality uses that A = By NE, b = byoB, ' (ey /e;;/zN)l/z, and (19).
We have now proved our desired estimates for P, R4}, R34 and R[’é o =

Eée + R,{f + R# + Rff that will be sufficient for the bounds required in Lemma 3.1.
We now move on to defining and estimating the new unresolved flux density and

E3 *
current K and ¢.

4.9. Calculating the unresolved flux density and current

In this section, we define and estimate the new unresolved flux density and

sk *
current, k and ¢.
According to the definition of a dissipative Euler—Reynolds flow, we must write

*
the new resolved energy flux density D = D[;j, }*7] in the form
* * % - 4 xJ *
D =Dk +Vj[uR 1+Vj¢ —Uu, (197)
xJ jt jt jt it .
where R = Ry + Ry + Ry + Ry, is exactly the new stress that has been

L * J
estimated in Sect. 4.8, v o= vi+Vland D, = (9, + v V;). To see that this goal
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may be accomplished, we must properly rewrite the terms introduced in Sect. 4.1 in
lines (34), (40)—(42). In the process, we will frequently encounter the vector field

e sl ¢ ¢ ¢ 1 : .
Vii=v —v; =V 4+ (v° — v;), which we note satisfies the bound

HIV] < HIV]+ Hv — vl < e}/, (198)

where we used Propositions 4.9 and 4.10 (specifically H[v — ve] < ell)/z/N) and
172, 172
N = (/e

We construct K to have the form K = Kr + ky + kg, where Ky = Kk — K¢
appears in D, g in (42), k, is defined in (83), and ky will be extracted by writing
the term (35) in the following form

ﬁT = ﬁTA + ﬁTK + ﬁTB

2
Dy :=Di((v —ve) - V) = Di(xp).

2
Bra = Do - V)4V, [(M + pev) w] , (199)

In (199) we have chosen the kyy = (v — ve) - V part of K = kf, + &y + k1. Now
(44), (83), (199) give

DL + Di(kc — ke) + D =Dylr + K + k] — Dye(t)
= Dy[K] — V; [k V7] — Dye(r). (200)

Recalling that lj = p — Dye(t), we see already the terms B,;ck and —l>i that are
required in (197). We find the remaining terms by manipulating the components of
(34)—(39) such as.

Ds=V; [ve (Z VivE+ Psit ¢ Rﬂ)} =V, [ve(RY + (R* — R
I

Ds = V[0 (RY + (RI* — RI)] = V;[Ve(RY + (RI* — RIY)). (201)

Our general aim will be to absorb terms such as the latter terms in (201) into the
k
new unresolved flux current ¢. However, the particular term (201) poses a difficulty

. *
as the term V; Rée is in fact too large to be absorbed into the current ¢. We will

treat this difficulty later in Sect. 4.10. For now we move on to the flux term Dy,
which we treat as follows:

'ﬁH:Vj vy ZV/V}
J#I
D= VivaViVi+ D Vilw—v)eV] Vi + Dy, (202)
J£T J#I



Nonuniqueness and Existence of Continuous, Globally Dissipative Euler Flows 1275

Dup =Y veeVi(ViV))
J#I

° 179 14 il j €
DPus "L veeViRE = Vi[vee R — REV jvee. (203)

We expand Dr using that |02 = |ve|? +2(v — ve) - v + |v — ve|? to obtain

2
Dr =Dy (VY + Vj[ve((v) —vH)VE + VIt —v)))]

|vel? ; v — vel? ;
+V; —  tPe Vi) +V; (T-F(P—pev) v/

Dr = 8,0V + V[Vl 1+ v, ((ﬁ + p> V/)

Dr = Dra+ Di[(v—ve) - V] + Dra, (204)
2
° 199 i vV —V .
Brs "L ViR 1+ Y, [(—' : - pev>) VJ} . (205)

For the term Dy 4 appearing in (199), (204), we calculate, using that V; Vi=0

Dra=Di(ve - V) + UEEV'/Vjvf + VjVjpeU
= vee (D, VE+ VIV + VDl + Vipe,)

o (178) ”) —
Dra = vetVRy + Ve(Dyvl + Vipe,)

= V;[vee R — Vivee RY + Ve(V; R + 0Lw, v)). (206)
In the last line, we have used the Euler—Reynolds equations for v! (mollified by the
kernel yx). The term Qﬁ[v, v] = vl V; vf — Xe ¥ (vj V; vz) is the commutator that

arises from this mollification, which we encountered previously in line (168).
From these calculations, we have isolated terms of the form Vj[vengZ] or

V;[ve R7*] for all of the terms R/* € {Rs, Ry, Ry, Rm = Rly, + (RI* — RL"))
k %
that compose the new stress R. Since we have specified x and M (see (200)), our goal

J
of achieving the form (197) will be accomplished if we choose a &S that satisfies

A S S R S SN B 207

=gty +or oy o+ +or (207)

Vel = —V;[ViR}] (208)

Vil = vjvd( A R{f) —V[V,RIY (209)
J#I

Vigy = —Vve Ry + Vo(V;RIC + 0fv, v]) — V;[Ve Ry 1, (210)

and we recalling that (p{ is defined in (69), the remaining terms satisfy

. 0 . [lv—v |2 .
‘P,jv, = —VeRIJ‘,I + Z(U - Ue)EVIJ VJZ + (Te +(p— Peu)> V721
JAT
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2
Vigl =-V; (KV])+ZDt< 2V1)+Vj ((%+ )(vj —vg))

J#I

(212)

Vieh =Vi[ 3 nevivE+ PV + @l — o). @13)
1.J,K¢T

The above equations have been derived from (201), (202)—(203) ,(204)—(206),
(200), (41)—(42), and (40).

4.10. The main term in the unresolved flux current

As in the statement of Lemma 3.1, we require that <ﬂ have the form §0 =

*J ]
) + PG where <,0 1 is the larger term, which takes values in ker dx? and has

size eg/ 2, Whlle <,0 Gl is the smaller term, which is requlred to have size < ey 1/ 26(;.

We define <p [24] tO have two parts, one bemg the term (p(z) from (69), and the other
will be extracted from the term —V, R in (208).
The term —V, R presents a special difficulty. Naively, one might try to absorb

%J xJ xJ
this term into the new ¢ = = 9 + Y6} However, the main part of the term

Ve Rél = Vy[P 8’22*] R[JZ{k 1+ ..., though it does take values in ker dx?, is too
large to be acceptable Most seriously, it is impossible to achieve the inequality
e(r)™3/ 2||Vg[P3[2* lco < 8 required in the definition of §-well-preparedness, as
the term V, PS[2 | is already proportional to e(t)3? . O(1) by design. This term
therefore threatens the entire success of being able to continue the iteration.

What saves us from this difficulty is that, even though the term V, Péff*] is
not permissibly small, the divergence of this vector field exhibits an important
cancellation. To see this fact, recall the formula for 624 = e1 ® e1 + (e3 ® €3)/2
expressed following line (61). Recall also that VéI € {((1,0,0)),whilev; = n;y; fl
takes values in ((1, 0, 0))~ = ((0, 1, 0), (0, 0, 1)). Combining these together, we
find

(Vié1010)85,, =0
VilVePsly, 1= Y (0e™ 1,600 Psly, + ...
1
vj[vgps[ff* = > (0™ (Vi v + (Svj.g,)u,g)Pa[Jf*] +..
1

(214)

Taking advantage of the cancelation in (214) will be crucial for closing the estimates
of Sect. 4.11. _
For the next term V; [V, R[Z* ] within V[V, Rge], the same cancellation is not

*J
available. In this case, we will absorb the term into the new Py which is reasonable
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since the term takes values in ker dx? (using that R[JzZ 4 takes values in ker dx? ®
ker dx?) and has a permissible order of magnitude < e(l/ Ze R-

The final term within V, Rée that presents a difficulty is the term V, R[jf*]. This

%J
term cannot be absorbed into P as it does not take values in ker dxz, and its order

1/2

*J
of magnitude ey “er is too large to be absorbed into the lower order term ¢,

1/2

which cannot be any larger than < e, “eg to continue the iteration. What allows

us to treat this term is a combination of the above ideas. Namely, using that R[J;*]

takes values in ker dx3 ® ker dx>, we can decompose this tensor using projection
operators 7, and 7 on ker dx? ® ker dx3. We require for these operators that,
on ker dx3 ® ker dx?, we have 7, + m = 1, and 7 takes values in the span of
(e1 ® e1, e2 ® ez) while y takes values in the span of (e] ® e2 + €2 ® e1). For
7| R[3 +» We have a cancellation similar to that of the pressure term:

VilVem Rl 1 = Y (0e* (V&1 Gvpe + GV gnviom R, + - 215
1

where we used that (Vjé] ﬁlg)nHRg*] =0.

. ]
What remains is the term Vp (77« R[J;*]), which can be safely absorbed into ¢,

as follows. Note that V¢ takes values essentially in ker dx! in that we can write
VI‘Z = V‘Z + BVK, where Ve = e’ké’v takes values in ker dx! = (2, €3). On the

other hand, 7w« R [3 «] takes values in (e] ® e2 + €2 ® e1) and hence maps ker dx! to
(e1) C ker dx2. Therefore, if we now define

%] j jt
Pra =¥ — Ve R[Z* VUTX [3*] (216)

. . =R . j
with (p(jz), R[Jli] as in (70), (72) and V¢ = > Vf, we have that ;?[2] takes values in
ker dx? as desired.

J -~
With (2[2] chosen we can now verify the condition of (§, C)-well-preparedness

in Definition 4.1 for the new dissipative Euler—Reynolds flow. Recall from (72),
w il ) .

(84), (46) that the main term in the new stress Ry = PB{;*] + R[];*] expands to

become

w L it % jl
Ry = —(2e(t)/3)8j5,9 + Rp2o (217)
o j jt jt
Rp2e) = (2k1Ge) + t(Rp2e1 + RiGe))d(0yy + Rize) + T21R{G ) (218)
e!2(0) = 2(Koeg) e 1 1 gy i o100 (0): (219)

«1/2 «1/2
where the last formula is as in (117). We will setthenew e (f)tobee () =

2/3@1/2(t). We set the parameter Ew to be E(p = (4/3)K0e£, which is the constant
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value obtained by e(t) on the 1nterval t < sup I[G] + 10~ 2(_461/ 2) I Note in
particular that gw > c- e(,,, since e(p = Ceg.
To check condition (88), observe from our choice of ¢, < 1073 (Ee, l/ 2) ! that

*

k .
R[20] and g|2] are supported in
*k ~ - —
supp, (Rpol, @12) C Ippy o= {t +7 ¢ 1 € [jy, 1] <107 (Bey/») ™"} (220)

while we have supp, e'2(1) c f[G*] = {t <sup f[G] + (Eel/z)_1/40} as desired
in (25).
We next check (89). Recall that the new frequency energy levels have the form

(* a) (aNE gew) for some C > B, > lasin (21). In particular, since

**/ 1 4om 1/2v-1
b ) =< 107%(Bey )™ forClargeenough andN>e /e ,wehave

that e(t) takes on the constant value g‘p on the interval t < sup 1[2] + (Be, y—1

by our choice of €; < 10~ 3E el/ )=, which immediately implies the bounds (89)
w—1/2

for e and Z(p.

We now confirm that the crucial smallness condition (88) holds for Ky chosen

*
sufficiently large depending only on L. Recall thate(t) = E is constant and equal to

2

- - * 51/2
its maximum value on the interval / [’2] ={t <suplp+ (E;U )} where condition
(88) is required. We will assume the following bound:

max [V co + max I18vsllco < 107%0¢)/2. (221)

The bound (221) will follow easily from (143), (147) and j < B; /> by later taking

B, large depending on our choice of K. Assuming (221), we have for all ¢ I~[’2]
that

IViico < 1) Villeo + 1) Villeo < AIE @)l co + lle' 20l co + /)
1€Z Iet
(222)

e ViR ) = B/2)e)) VR, ) (223)

* i (222),(87) _
le@) 2 (VeRb,Dllco < Ae) P (lle@) ' Pllco + e/ *er,

- (224)

where the constant A, which varies line by line, crucially does not depend on the
3/2 1/2

choice of K. Recalling that e,/ = e,/ “eg (hence e, > eg) and the constant

value of e(t) = 4Kpe, = ||e(t)||Co the right hand side of (224) is bounded by

A(K, Ty K, 3/ 2) for some A independent of Kj. Taking Ko large, we can bound
_ * ~

(224) by 5/40. We may also bound e(r) ~3/2|| VR [3*] llco for € I}, by 8/40 for

K sufficiently large by a simpler version of the same argument.
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Using the bounds || R 20]llco < Aeg and ||g0(2) lco < Ae(p/ with A independent
of Ky, the latter deriving from go(z) = n[g]go[G ¢1» we finally choose K large enough
such that, for all ¢ € 1[2],

_ _ * _ _ _ _ —
&0 IRpalllco + 20 lpe)llco < AKoep) ' er + (Koey) 2e/? < §/10.
(225)

This choice of K( guarantees the smallness condition (88) and also the stated
inequality (116).

We are now ready to prove the bounds (90), (87), which must be checked for
the new frequency energy levels (E, ;v) = (6N g, 6e(p) where C > By > lis
a large constant to be chosen at the conclusion of the proof. Since we have that

e(t) < 2,;, the CY bound in (90) follows from the smallness condition (88) so it is
enough to prove (90) for 0 < r + |a| < L. We will use the weighted seminorm

—~ * 51/2 % —lal *
H[F]:= max (Be, )™ max & [ViD/F|co (226)
0<r<1 0O<lal+r<L

o~

and the property that E[F] < 6_IBAE[F] < C_IBAITI[F] where é[F] is de-

fined as in Lemma 4.2, which follows from E = 63)\_ 1) and ?v = 6e(p. Using
Lemma 4.2 and (218) we obtain

ko ok - %k *
HIRpoll S HIRpol Ser Se
3 - *
Hlpe)] < Hlgigal Sec Se,,

HIVeRY, + Vertu R S HIVAALRY ] + HIVHIRY,)
¥3/2

< 12 12, -
Segertey e(;_2g(p

Assuming c large enough compared the above implied constants and B;,, we obtain
—~ ~ k) 3/2 R
H[Rppoy] < 2—1% and g[&?m] < 2—1E¢ , which is sufficient for the 0 < r+a| <
L cases of the desired bound (90).

S*]/2 **1/2 *1/2 ES
The desired bound (87) of ||Dt lco <(Ee, )Se(p forO <s <2ande, :=

Ce£ follows by taking C large and using the bounds || B,Sel/z Olleo S (Eell/z)s 2

sk

and the fact that e(¢) = (2/3)e(¢) depends only on ¢. This bound proves (85)t(90)
for stage 2 with the new frequency energy levels, the time intervals Ij2] € I[G4],
and the function (2/3)e(?).

4.11. Estimating the unresolved flux density and current

J
With our choice of ;?[2] made in (216) and the list of terms (207), (69) in hand,
we are now ready to estimate the components of the unresolved flux density and
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] ] ]
current, « and $ = @+ ¥}, beginning with «. the leading order terms /c 1 and

*J
Pr2-

Recall the decomposition of K= K1+ Ky +xg with kg defined in (83). We de-
compose /cL as K[2]+KL6,Where K[z] = (1/2)8]g(P8[2*] + [2*]) = (I/Z)SJgR
and we set K[G] = krG + km + k. We will use the following estimates, stated in

terms of the weighted norms of Lemmas 4.1, 4.2.

Proposition 4.11. The following bounds hold for all M > L with constants that
may on M

Hixp) S HM VL)) S ey (227)
Hikro) S HMPlkr6] Su e (228)
Hixrl + Hlkre,] S HM Vel + HY Vlcre,1 S ey (229)
Hikp — Kkre,] S (eg/N) (230)
— %

Hlkg] < eG- (231)

Proof. The bound (227) for ;[2*] follows from the bounds for P and R[jze 4 in
Proposition 148 and (106)—(107). For «; g we apply (106)-(107) to (F,hr) =
(R3], er) and use Proposition 4.11 to obtain

AMDey6) S A D[R] +max A D(so,] (YD [or] + A Disvy))
+ mlax I-—I(M’l)[Svl] (I:I(M’l)[vl] + I:I(M’l)[<§v1]>
HM V61 < eg + (BiN) e, + be(p <eg (232)

12, 12

/ey ~"N)'/2. The bound (229) for k; now

follows fromk; = K 21K LG, while (229) for k¢, follows by applying (106)—(107)
to (F, hp) = (kr, e,) (Which satisfies the bounds required of Proposition 4.1 thanks
to (229) for k1 ). Similarly, we may apply Proposition 4.10 to (F, hr) = (kL, ep)
to obtain (230).

Recalling /?[G] =krG + (k —k¢) + (v —ve) - V and applying Proposition 4.10
to k and v gives

where we have used (19) and b < (ey

—
Hixig)] S ec + (e)* fe)/ ) (ep/N) + (e)*/NYey/* Se. (233)

where we used again (19) . O

5 J 5J
We now turn to estimating the components of ¢ . The main term ¢, has been

. . -y %3/2 3/
estimated in Sect. 4.10 by H[¢1 S e, < e

¢, 2, which is the desired bound for
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*J xJ xJ
this term. We gather the remaining terms into ¢ = ¢ — ¢|,;, which will require
a more involved treatment.

% J *J . ; .
The terms in ¢1g) can be gather(?d into three types ¥y = ‘pleM] +¢[JGA]+‘/’[]GB] )
“Type M” terms arise from errors in mollifications. We estimate these as follows

Proposition 4.12. Let (p[JG M be the sum of terms in (211)—(213) that are in di-
vergence form and involve mollification errors of the form F — F¢ or F — Fg,.
Then

Hl¢{gm] S (eve,*/N) S e)/%eq. (234)
where the second inequality follows from the assumption (19).
Proof. We start by bounding <p,{,, in (211) using Proposition 4.10
Hlgy) < HIVeR}; )+ max Hlv — v HIViHV,)

+ (H[v —vel* + H[p — pe, DH[V]
Hlg} 1 < HIVIH — vl HIV] + HIR — R + ()2 /N)e,
+ ((ey/?/N)* + (ey/N))ey/?
Sep(el?/N) + el (e)? /el D) ey IN) + (ev/NYel? < evel? /N

The mollification errors in (212) including the terms from K = KL+ (k— Ke)+(v—
ve) -V may be bounded using Lemma 4.2 (including the inequality H[F] < H[F]),
and Proposition 4.10 to give

j Vi Ve
Oy = V'l —ke)+(v—v) - V]+ T+K (v —ve)

7 12 65/2 €y 611)/2 172
Hlpem] < ey i (—) 1]
~ /2 ©
e} N N

+ (HIV] + Hlx)(€)?/N) S el?e,/N.

The bound H[x] < e, follows from (16)~(17) and NE = A > E, Be,” <
Ae(lp/z for N > ell,/z/e(lp/z.
The mollification error in (213) is then bounded by
Hlp! — ¢l1 5 (e}/* /el (e2*IN) S elf?e, /N, (235)
where we have used Proposition 4.10 for ¢/ . O

We next consider terms of “Type A”, which are those terms found in (69),

(207)—(213) that are already in the divergence form V; @/ for some @/ obeying the

required bound H[37] < eé/ 2e.
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Proposition 4.13. The term go[’G Al identified within the course of the following proof
as the sum of Type A terms obeys the bound H[gigajl S e}ﬁ/ 26(;.

The proof will make use of the inequality

-1
AT e, +be3/2)< eq, (236)

which follows from b = bo(el/z/(el/zB N)'/2 %= B,NE, T = Z (Eey
and (19).

Proof. From (69), we isolate the term @{'69) defined as the sum of terms of the

form 0(3 vV vk) (including terms that are higher order in Sv 1) or of the form
OV -V - V) (including terms that are higher order in §Vy). These terms are
bounded by

Hlgo)] < max H[Svr(Hlvs]+ HISvs) (v + HlSox D

+ max H[SV/I(H[V,1+ H[SV;D)(H[Vk] + H[8Vk])
— ] * - -
H[fﬂ(j@)],ﬂbeé e, + (BLNE)'E 1/2 “ey <be3/2 <e/ eG.

1/2 172, 172

In the last line we used our choice of b = (ey /(el/zB N)Y2, N > e,
and (19).
We next isolate the acceptable divergence-form terms in (209)—(210), which

we bound using (191)

/ey

H[-VeR}j1+ H[-VeR}'] S HIVI(H[Ry] + H[R7))
HI=VeRI 1+ AI=ViRJ S el (bey) S e eq.
In the last line we uspd (198) and (236).
The term —V Rél in (208) contains various type A terms. These terms may be
identified by first decomposing R.' = P8[’2Z] + R[/ZE* + R[’;* + RSG, where R:IQZG
contains terms of the form O (§vjvy), O (8 vyvy) along with quadratic terms in dvy

J
or dvy. Several terms in (208) have already been incorporated into the 97?[2] chosen
in (216). The remaining terms in(208) will satisfy

. y .
Vigsg = —VilVeP8h, + Ve Ris, ) (237)
iy = —8Vim R, — ViRl (238)
SVE=>"("1bv)) + 8V, (239)

I

We can bound (239) by H[SV] < Zel/z + (B, N) ! 1/2 < Zeé,/z, where we use
that H[8v;] < b, while H[e'*¢] < 1. (The last estimate follows from D,e!*%! = 0
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and || V;e/*é1|| .o <z A1l which can be checked by replacing (F, hr) = (vy, eé,ﬂ)
by (F,hr) = (1, 1) in the computation of line (151).)

We now obtain using (236) and b < (B, N)~!for N > e]/z/e:/z the bound
Hlpsal S HISVIH[Rpw] + +H[VIHSv1(H[v;] + H[Svr])
+ H[V1H[8v/1(H[v/] + H[Sv/])
- * *
Hlpsal S bey/*ec +e)/*(bey + (BLN)'ey)

*
< beg/2 < e;}/ze(;.

This bound concludes our estimates for the type A, divergence form terms. O

4.12. Solving the divergence equation for the unresolved flux current

wJ
We now calculate and estimate the remaining error terms in ¢ , which are all of
“Type B”, meaning that they require solving the divergence equation V;¢/ = U in
order to obtain an appropriate estimate. We gather all these terms into <pJG p)» Where

*J
P61 = (p G m+ (p[G At cp[G p is the lower order part of the new unresolved flux

current (0 ,and (p[G M1 9"[G Al have been defined and bounded in Propositions 4.12,
4.13. We require gole p to satisfy the following:

(p[]GB] = (p[jMB] + (p[jLH + 9"[]HB + (pJTB] + (p[]QB] + (p[]KB] + 9"[]7’31 (240)
Ol = (P — Pe)(V/ — Ve5 ) = (kL — K1)V
j 14
— () — vk - Ve(ﬂuR (3 — Rijo) (241)
V]‘P[]LH] = vj[(Pev + KLev)V ] (242)
24 il
Vilpr = —VjlViPe,8ly, ] — Vi[VeR](] (243)
Viplp =i vel( S wivh - Ry - R”Z) (244)
J#I
Violrs = Ve(ViRI + 0Lv. oD, QLlv. v] = vEVav! — xe * Xe * (0" Vav©)
(245)
; — (V-
Vit =D Di ( > ) (246)
J#I
Vietrn =il 2 (Voevivi] (47)
1,J,K¢T

Here Rﬁf = Xe * Xe * 7| R[]f*] is the mollification of 7, R[];*] in space using the
frequency-localized kernel y. that was also used to define v.. The reason we have
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mollified each of P, «; and 7| R[/f*] is to arrange that all of the equations (242)—
(247) have frequency support on |p| > A/3:

Fsupp (242)—(247) C {|p| > (B, NE)/3} C R3. (248)

This observation uses the fact that x.* localizes to frequencies of size |p| <
N~-YLZ < 1072B; N E while each V; is localized to frequency 27 1n;B,NE <
|p| < 2n;B) N E from the presence of P in (51), and also uses that the Fourier
transform maps products to convolutions, and the various cascade conditions (50),
(63) that constrain the n; to ensure the above products of high frequency terms all
have frequency support in {|p| > ByNE}.

Similarly to Sect. 4.8, we take advantage of this frequency localization as fol-
lows. Choose an order —1 right inverse to the (scalar) divergence equation Q- x
and choose a Fourier multiplier P~) = xaj* whose symbol is a rescaled Schwartz
function of the form X~y (p) = x~1(p/A) With x~x(p) = 1 for all p in (248). Let
our solution to V;¢/ = U be defined to be

7 = PuQ/ U =0, +U. (249)

For example, if we use the standard solution operator given by the Fourier multiplier
Q7 with symbol

0/ (p) = (—=lpI~2p/, (250)

then (249) solves V j(;j = U whenever Fsupp U is contained in (248). Further-
more, the kernel of QL,\* is a rescaled Schwartz function with Fourier transform
A~ 5=1(p/») O’ (p/A), which has the form QLA (h) = 27" [A3 QL (Ah)] in phys-
ical space for the Schwartz function QLI. We may thus apply Lemma 4.3 with
Al < 17! to the operator in (249). Doing so gives the following estimates.

Proposition 4.14. Every term in (240) including ga[JG p) Satisfies the estimate
1/2
H[</) [GB] ] €y €G-

Proof. We start by estimating the term in (241) using Lemmas 4.2 and Propo-

sition 4. 10 (Note that Proposmon 4.1 and therefore Proposition 4.10 apply to

F = JTHR[3*] = JT”JT[’;]R[GE] with hp = eg. 14)

H[‘/’[MB]] S H[VI(HIP — P, + Hlkp — kLe,]

+H [m,R[m _ R“e]) + Hlv — v HlxL] (251)
iy as-30) | "
H[(p[MB]] S €y ((EK/N)—F(GZG/N))—F((?U /N)eg
(19)

Se)?ey/N S e;/zeG. (252)

14 Here we use the calculation of line (152) to deduce the bounds for D; from those of D;.
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As for the remaining terms in (242)—(247), to apply Lemma 4.3 we need only
estimates on Ho[U] := max{||U]| co, ()Le;,/z)_l ||5,U||Co}, where U is the right
hand side of the equation. We denote the right hand sides of equations (242)—(247)
by U[LH]7 U[HB]v ey U[TB]- The bounds for (244) and (246) are

- - _ w1
AUes) S max D, VAHIVI ST ey (253)

- a75) -1 (236)
Hlgpp] S 27 't ey < e(:,/zec. (254)

U llco S ||Vv€|lco(nllajx IVilicollVsllco + IRullco + | RT |l co)
(145),(191)
S (BePe,

ID:Utpilleo S ID:(Vve)lcoey + (Eey/?) (max [ D, Villcol| Vs leo
+ 1Dt Rezllco + 1D Ry ll co)
(105),(145),(191) —1 *
< (Bel’*e, + (Eel/P (T e, + hey?bey) < hey/*(Bey e,

7 1=, 1/2 TSRS
Hloapl SA7 (Bey ey, SATT ey S e,/ eq. (255)

~

In line (253) we used Proposition 4.9, which relies the bounds for 5,2 V7 in (145).
In lines (254) and (255) we applied Lemma 4.3 with A=! < A1

We now consider (242). Using the divergence free property V; VI =0, this
term becomes

ULu = Vj(VjPe,, + VikLe,)s
DiUiny = DV (VjPe, + Vikre,) + VI (VD Pe, + V;DikLe,)
— Vvl VI (VaPe, + VakLe,),

which leads to the following estimates (using Proposition 4.1 for F' € {P, x} and
h F = ew):

1ULellco S VoIV Pellco + 1VkLe, o) S e/ *(Eey)

o~ e =" e
ID:Umlieo S Y ID; Vllco(IDy Va Pe,llco + D7 VakLe, ll c0)
rit+r=1
p— *_1
ID:UiLmlico ST e/ (Bey)
7 1 1/2 1,1/2 52 1/2
Hloira] S A~ (Ee(p/ )eg,SN_ e(p/ ey S e(/ eG.

We turn now to (245). We will use the following bounds for the commutator
term:

10, vlllco S Eeo/N, D QL. vlico S Eeyey/>. (256)
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The CP estimate in (256) was proved already by _taking (F,ey) = (v, ei/ 2) in
lines (170), (173). We will establish the bound for D, Qf in Sect. 4.13. For now we
proceed assuming (256) to obtain

1Uirsllco S IVIcoUIVRe llco + 1 Qcllco) S ey/* (B, + E(ey/N))

ID:Uirsilico S Y 1D, Vieo(IDy VRe,llco + 1D} QELv, vl co)
r1+r2—1

o Bey + E(ey/N)) + ¢,/ (E?eve,/?)
[he,/*le,/*(Ee, + E(ey/N))

*
r(e

Z/\ A

Hlpirp)] S 27" ey)/*(Bey + E(ey/N) S N~ 'e)/? < e,/ %ec.

We now consider (247). For this term, the key cancellation arises by using that
V; VJ/ = 0 and the calculation in line (261)

Ut = Z vy V (Vi - Vi) = Z [f][/JKT] +8Ui17k1)]
1,J,K¢T 1,J,K¢T
Ukt = (ir)e'™s j(V E1 + ViEg) (vg - vg) + ey ]V (vr -vk) (257)
SUkT) =8V]V;(Vi - Vg) + vjv.,(av, Vi) +VIVi(Vp-8Vk)  (258)

For the lower order term (258) we obtain the following estimates using the formula
D;V;F =V;DF — VjvdVyF and the inequality max{|| F|| co, At IVF]co} <
H[F]

18U kTillco S A max H[SV/I(H[V,1+ H[SV,D)(H[Vk]+ H[8Vk])
AN~ y e)>ey)? e SN (259)

S
1DV ko S ) max ALD;' 6V, 1(HID; Vi
ri+r2=1

+ H[D8V;)(H[VVk]+ H[VSVk])
+ [IVvellcor max H[8VI1(H[V,]14 H[SV,1)(H[Vk]

+ H[8Vk])
(145)—(147) s—1

_ -1
DUkl S AT NT'e)? <t (ubed?) (260)
For the leading order term (257), we use that ﬁﬂVj& = ﬁ§ Vjék = 0 to obtain

Uikt = (in)e™ ](fWJEI +8VEx)(vr - vg)
+ (0™ 50 (V1 + Vi) vy - vk) + 0]V vy - ) (261)

. 38 —1y 12
10k Tillco S Amax(flvrlicolldVEslico + lvrligolldvslico + 27 vrligol Vosllco)

° *3 -1,3 ¥ 3
10k 11llco S AMbe, + N™7ey) < Abey, (262)
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e~ - —" 2
1D Upxrilen S ) max {kllDtlvlllco 1Dy V&Il collvg [0
ri+r=1
Y =72
1D} vr leo 1Dy Vs llcollv o

— -1 %

ID:Opskrillen S (BelHnel> ST (ubey). (263)
To obtain (263) we applied D, to the formula (257) and used Proposition 4.7 and that

-1 1
b Eel* =7 . Applying Lemma 4.3 with A~' < A~ and using (257)~(263)

we obtain

7 * 339 1)
Hlpre) Sbe)? 5 e)f’eq. (264)

The last term we must bound is the solution to (243). For this term, we rely on the
cancellation explained in lines (214) and (215) (replacing P > P, and | R[J;*] —

by their frequency-localized versions and noting that R|| ¢ still takes values in
the span of (e] ® e, e2 ® e2)). We decompose

Upry = —Uipryy — Urpry
¢ e 7
Urpriy = VjVe(Pe, 8, + R”€) Urpra) = Ve(Vj Pe,8l + Y, Rﬁé) (265)

We bound the lower order term using the bounds of Proposition 4.1 applied to
P, 70 Ri34

1Utpr2illco S IVIco(1V Pe,llco + IV Rjellco) S ey/*(Eey) (266)

We then expand the main term in (265) as Urpri) = >, lof[pm] + 8UprI)
with

° . i 14 14 14 14
Utpry = ()€™ V 161010 (Pe, 8 + Rj)s 8Uipri = V;8Vie(Pe, 83 + Rj)
(267)

We bound the lower order term using
I8Utpriillco S IV8Villco(llPe, llco + I1Ryellco) S AL Eeg/?le,  (268)
We treat the main term using the observations of lines (214) and (215) to find that
Uipriy = (0™ (V& Bvn)e + 8V E1010) (P, + R

o A ~ *
10prN N co S A8V Ico + 18VELllcollvrlco) (I Pe,llco + I Ryellco) S Albey/*leg .
(269)

Combining (266), (268), (269) with & < b for N > (et /el/?). b ~ (el/?/

1/2N)1/2 we obtain

IUtprillco S Belf2e, + rbel?e, < Al 1 (270)
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To bound the advective derivative of U|p g}, we introduce the weighted C' norm
Hi[F] := max{||F||co, 2~ [V Fllco}, @71)

noting the properties | VF ||co < AH([F], Hi[F+G] < Hi[F]1+ H[G], H1[FG]
< Hi[FIH[G]. B
Using these properties and commuting V; with D,, we obtain

- Y j e i€ i€ j €
D, Uipgry = Vi[Di[Ve(Pe,8{, + R{OT = V0 ValVe(Pe, 8, + Rj]

lle lle

IDiUiprillco S Y AHID; VI (F1[D] P, 1 + Hi[D] Ry

ri+r=1

+ IVvellco - AH [VI(H [ Pe, ] + Hi[R)e])

— *— 71 * 12
ID:Uprillco S Y- AT e)2liT el + 1(BeyPey/ e,

ri+r=1
_ w1 w1
ID:Uiprilico ST ey/?e, ~ [hey/?1[T ey, (272)

Using (270), (272) and applying Lemma 4.3 with A~! < A~!, we obtain

; 30 1 B9,
Hlgrpril S A~ [Abe +1 el S e,/ ep. (273)
This estimate concludes the proof of Proposition 240. O

4.13. A commutator estimate for the advective derivative

In this section we establish a general commutator estimate to establish inequality
(256), which states that ||5t Qﬁ [v, v]|lco eve(p/ . This bound follows by taking

N

(F, hF) tobe (v, 611)/2) in Proposition 4.15 below and noting that N > (e, /ey) by
(19). The proposition will involve the weighted semi-norm

R IVa Dy Fllco
HJ[F]= max max —12 (274)
0<r<RO<r+|a|<L "‘\a\(ue / )
It will later be useful to note the comparison inequality
HIF] < (ey/ey) H,IF], (275)

which uses that . > N E and that N > (e, /e,,)¥/? from (19) implies ()Le(},/z)_1 <

1= 1/2 =
(ev/e) " (Bey'®) ™.
As in Sect. 4.5, we let x, be a mollifier at length scale €x 1= N~
co < 1, that satisfies the vanishing moment condition fR3 h®xe (h)ydh = 0 for

Lg-1,

1 < |a| < L. We define XE = Xe, * Xe, and note that the same vanishing moment
condition holds for )?e, as can be shown using the formula f f (h))? c(h)ydh =

<&
[ F+2)xe. () xe, (2)dydz. We will use only the case where X is exactly the
mollifier used in Sect. 4.5 to define v and ¢y = c; is the parameter specified in
that section.
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Proposition 4.15. If L > 2, ﬂi[F] < hp and )?e = Xe, * Xe, 15 as above, then

1D, Qclv. Flllco < N™HL(Bel/2) 2,
< <
Oclv, F]:nga(Xe*G)—Xe*[v“VaF] (276)

We remark that the implied constant depends only on the particular Schwartz func-
tion that is rescaled to define the mollifying kernels and will be independent of the
choice of ¢p, ¢; < 1 in the mollifying parameters since the proof will avoid having
any losses due to differentiating the mollifiers.

Proof. We decompose Q. and its advective derivative into
a M M a a
Qc[F1 = [veVa, Xex](F) + Xe * [(vg —v") Vo F]

D, Q[F] = (E[vzva, )?e*](F))

J— Lol iod J—
+ ([Dz, Xex][(ve — v“)VuF]> + (Xe * [De[ (v — v“)VaF]])
D, Qc[F]:= (Th) + (To) + (T3).
‘We first consider the term 73, for which we obtain the bounds

D([VyF1=VyD/F — V0lVyF,  |D/[VaFllco < (Bel/*)(Ehp)
lw—=vellco < N~'el?, ID;(v—vollco S NG el/? (277)
T3 S DA — vV Flllco S NHVE(Ee/ ) hp. (278)

Here we obtained (277) by taking (F, hF) to be (v, 611)/2) in lines (164)—(173) and
recalling (97).
We record the estimate [|G[lco < N~!(Zey/*)hy satisfied by G := (v* —

v9)V, F. Our desired bound for 75 can be achieved from this estimate by integrating
by parts in the & variable as follows

— © o
=T = =D, Xe*1G = —[v¢ Va, Xex1G

/ (W (x + ) — v (X)) VaG (x4 )X () 279)
]R3

_ /3(1}?()6 1) — 00 ()G (x + h)VaX e (h)dh
R

1
—/ / Yyl (x + o h)G(x + WPV, X o (h)dhdo
0 JR3

~

<N Y Eel ) hp. (280)

< M < (a2 n—1m,1/2
IT2llco S IVvellco Gl colllAlIV X el sy S (Ee,/ )N Ee/“hp) - 1

Here we used that V,v¢ = 0, although the same estimate would follow without
this cancellation.
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Using the notation [D;,]L := D,L — LD, to denote the commutator operation,
we expand 77 as

— o o —

Ty = [D¢, v¢ Va, XexI(F) + [v¢ Va, Xex1(Di F) = Tig + Tip + T2 (281)
— o o

Tig = [Ds, ¢ Va, Xex¥1(F),  Tip = [V¢Va, X*1(D, F). (282)

To treat T7;, we replace F in the derivation of inequality (173) by U = D, F to
express T1j in the form

3 (zaj)‘ ///M Vi, Vov' (x + 1o h)[Va, VaUl(x + oh)
dn ‘

KPR B X (h)dh o (1—o) L2718z do,

where the sum runs over multi-indices with |a1| + |d2| = L — 1 and the bounds of
integration for dr and do are from O to 1.

The number of derivatives of U appearing when |dz| + 1 = L and |d;| = 0
exceeds the number we control, but we can observe that o[V, V,Ul(x + oh) =
MV,[Vz U (x + oh)]. Integrating by parts in & and using that V,v¢ = 0, we
express the integrals appearing in such terms in the form

- /// [Vz,Ul(x 4+ ah)Vpv® (x + to W)V [hPh®2 X o (h)]dh (1—0)E 27181z do,
R3
From the above two formulas, we obtain a bound of

a1 ,1/29r mlda|+2 ,1/2 LY
ITwllco S Y (B 28R 2e 2R ]|k X 1
a1 |+|az|=L—1

<o <
+1EF e 21 e AR IE T K el 4+ NAIEV X el )
ITipllco < (€L 8L + L=V 8L (Be!2)2hp < NTIFL(Bel/2)2hp.  (283)

The last term to consider is the term Tp,, which we decompose as Tj, =
—T11 — T2, where

— —_— . o
T = / DL+ ) = Dl )V F(x + X ()i (284)
R
. <
T = /z Wd(x + h) — v (X)) Vavi(x +h)ViF(x + h) X (h)dh. (285)
R,
The term 77 can be rewritten by Taylor expanding as in (172) to have the form

Z (Z“l 6;)! /// ValvthU (x +10h)[V5,Va F1(x +oh)

hbh”' h% . (h)dh o (1—o)E=2¢l@1l 47 do,

where the sum runs over multi-indices with |d;| + |d2| = L — 1 and the bounds
of integration for dt and do are from O to 1. In the cases where |a;| = L — 1, we
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observe that To' Vg, v, D; vi(x+t0h) = (h)Vb[V;,lEt v¢(x 4+ toh)] and integrate
by parts in & to write the integrals in such terms in the form

— /// Vz, Div? (x + toh) MV, I:[VQF](x + oh)h?h® )?g(h)} dh
]R3
(1—0)L721L72dtd0.

The bounds we deduce from the above two formulas are the same as those in (283),
thus yielding the desired bound of || T [|co S N+ (Eell,/z)zhp for this term.

We may similarly Taylor expand the term 7, as a finite linear combination of
terms of the form

/// Vz, Vvl (x + To h)[Va, (Yol Vi F)](x + o h)hbh®
R3
Wy (hydh o (1—0) 271814z do,

where the multi-indices satisfy |a; |+ |a2| = L — 1 and the bounds of integration for
dr and do are fromOto 1. In this case, we do not have any terms involving derivatives
VHE S NTHEe ).

Itnow follows that || Ty [|co S N~ I+7 (Ee v )2h F since we have already proved
this estimate for the term 75 appearing in (281). With this bound we have concluded
the proof of Proposition 4.15. O

beyond order L, and we obtain ||T12||C0 S € :L(’“

4.14. Verifying the conclusions of the Main Lemma

In this section, we verify all of the conclusions of Lemma 3.1.
The choice of § > 0 depending on L is made in the concluding paragraph of

Sect. 4.4.
xJt s Jl w Jl % JL
The bounds in (21) for the components of R = = Rp+ Rz + Rig) of k =

xJ
K[z] +K (6] and of </) =9 2] + <p ) follow from the bounds we have already proven.
The bound || Rig)llco < (et /(el/zN))l/ze(p for Rig) = REC + RI¢ + RIE 4+ R,
follows by combining the estimates (192) and (193), using the comparison inequal-
ity IfI [F] < H[F] of Lemma 4.2 and taking B, sufficiently large in (196). The

remalnlng bounds on derivatives of R[G] and the bounds on the other components
Jjt jt
of R (namely R[2] P8 2*] + R[z* and R 3*] follow from (194), (195),

(196) for all C sufficiently large compared to BA. The bounds for the components

K = /?[2] + ;ck[(;] follow from (227), (231), using again that I;[F] < H[F] and
~ J

taking C large compared to B;,. The bounds on the components of (;;[2] follow from

. Y $3/2 _ 35 . .
the inequality H[¢ ] < ¢, < e/~ proven in Sect. 4.10, while the bounds for

J ~
é[G] follow from Propositions 4.12, 4.13 and 4.14 after taking C sufficiently large.
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¢
We obtain the bounds in (21) for v o= v! + V¢ as follow: using (14), (145),

andA > NZE, N > e,lj/z/e;)/z, we have forall 1 < |a| < L that

* ~lal 1/2 al 1/2 al 1/2
IVavlico < Vavllco + VaVllco S Eflel/? + aldlel/> < allel/2.

~

~ ldl41/2
For C sufficiently large compared to B), we obtain ||Va;||co < é ?U for all
l<lal<L.

To establish (21) for;; = p+ P, we first recall the seminorms ﬂc[ -1, EQ[ -]of
Lemma 4.2 and (274). We now apply Lemma 4.2 and the bounds (14)—(15), (195)
and (275) with F = p to obtain

HIP) < HIp) + HIP] < H[p) + A[P]

HIP) < (en/e,) " Ho[p] + HIP] < (ev/e)) 'ev + ey < ey

This bound achieves our desired estimate for [*7 after taking C sufficiently large.

The conditions of (5, C )-well-preparedness (for stage [2]) as defined in Defini-
tion 4.1 have all been checked throughout the course of Sect. 4.10. It is clear from
the formula (117) that e(¢) depends only on the given frequency-energy levels, L
and Ij¢) since K¢ depends only on L.

The bound (22) on ||V o follows from (145). Using that V¢ = P, V¢ is
localized to frequencies of the order A = B, N E, we have for any smooth test
function ¢, (¢, x) that

/qbg(t,x)Ve(t,x)dx:/ Pype(t, x)VE(t, x)dx
T3 T3

sup H/ Ge(t, x)VE(t, x)dx
t T3

S sup | Pxage (@, DIV Il co
t

STl sup IV (e, ey,
t

which implies (23) for B, sufficiently large.
Since I*L —u = —Dy,e(?) as stated after (44) and De(t) = d,e(t) < 0 as

*
required in (43), it is clear that 4 — 1 is non-negative and also depends only on the
given frequency-energy levels, L and I[g]. We arranged for e(f) to be constant on

~ * ~
a neighborhood of /[y, so we have that © = u on I|G).

The choices of Ijj117 and Ijg4) stated in (24)—(25) coincide with those of
Sect. 4.10. From the overall construction, we have that V¢ as well as all the com-

ponents of ( ]*?, /?, ;5) have support contained in supp, e(), and the latter support is
contained in IjG4] by the remarks of Sect. 4.10.

The final remaining task is to construct the second dissipative Euler—Reynolds
flow vﬁ =+ Vf. Let J be any subinterval of 1~[1] with length |J| > (Eell,/z)_l.

Choose an index I* € Zg from the “larger waves” such that the lifespan interval
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{|t — t(I*)| < t} is entirely contained in J. This choice is possible since T <

10~ (2e/*)~!, and the union of the lifespan intervals covers J.

We define vﬁ by simply replacing the wave Vf* by its negation —Vf*, and its
conjugate VI-Z* by _V;* throughout the entire construction. In other words, vé =

¢
v — 2Vf* - 2V1§*. Making this replacement disturb does not disturb any estimate

or important equality obtained in the construction. Most importantly, the equation
(81) remains satisfied since the summation ) _, Tx v{ v_f that appears there remains
unchanged if one replaces any of the amplitudes vf by its negation. It is also clear
that making this change affects the values of (;, ;) and the components of the new

( 1*2, ;, ;Z’) only within the interval {|t —# (I*)| < t} C J that contains the lifespan of
Vf* and its conjugate and not elsewhere. This observation implies the containment
(26). What remains to prove is the lower bound (27) for

[Ts lua(t, x) — v(t, x)[2dx = 4/TS |Vie + Vi *dx. (286)

Since the frequency supports of Vf* and its conjugate are disjoint, VIZ* and Vlf*

are L2-orthogonal. Using that V{ = V{ + 8V}, V} = ¢"*/v! and that the v} = vi
are real-valued, we then have that

/ Vi 4+ Vi P = / Vi + [V 2dx = 2/ jure (1, x)dx
T3 T3 T?
+ ZRG/ 286V - Vs — |5VI*|2)dx
']1‘3

For B;, chosen sufficiently large, the last term may be bounded using Proposition 4.8
by

2 sup Re/ 8V - Vix — |8V [P)dx| < AL(BiN) " le, <47 'N"le,. (287)
t T3

Achieving inequality (287) together with the desired bound on || 13[(;] |co are the
last requirements we impose on the parameter B;. We thus specify B at this point
to be any sufficiently large value (depending on all previous choices of parameters)
to ensure the estimates stated so far, and to ensure that . = B, N E is an integer-
multiple of 2. The final constants C, C; are then allowed to be large depending
on the implied upper bound for B, (although this condition is not necessary for
CpL). 3 3 X .
Recall now the form of vf = él/z(t)n,wff, where ff = f;Z — V&2 fr -
VE Ve At time r* = 1(I%), we have that 17« (t*) = 1, ff(*,x) = f}, and
vf* = él/z(t*)yp« (r*, x)ff* . We obtained alower bound of y; > 1/4foralll € Tk
at the end of Sect. 4.4. We also have that e(t) > 10_2g¢ > 10_2M_1e(p for all

t € Ij1), which follows from the C? bound in (89). Combining these observations,
we obtain
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2 / o2 (1%, x)dx =2 / et |yr (1%, 0) 21 fre12dx = 273 1072 f« M Le,.
T2 T2
(288)

We note that the directions f 1 chosen at the end of Sect. 4.4 are all nonzero vectors.
We may therefore require C; > 2 - 10? max ; B | f | =2 to finalize the choice of
Cr. Combining (286), (287), and (288), we obtain the desired lower bound stated
in (27). This bound concludes the proof of Lemma 3.1.

5. Extensions to general dimensions

In this section we discuss how our approach may be adapted to other dimensions

n # 3.

The above proof can be extended very directly to higher dimensions n > 3. To

< *
accomplish this extension, we redefine the sets Bg < ker dx! and B R < ker dx?
so that equation (61) becomes

DY e =9,

feBr 2eBr

n
2 f®f=ez®ez+§(1/2)(ej®ej), 289)
fEBR =

n
Y i®i=er®@er+ Y (1/2)(e; ®e)).
gegR j=3

<&
Tl}e;sAe sets now have.cardinality #Br = #E‘R = n(n — 1)/2 so that the tensors
(f7f5 . o and (g/8% . « may form bases for the vector spaces kerdx! ®
feBr 8€BRr

ker dx', ker dx? ® ker dx? respectively.

The key observations from linear algebra that we require to carry out the other
parts of the construction remain true. Namely, since every element of R? @ R¢ may
be written as a sum of three tensors that belong to ker dx' @ kerdx! forl <i < 3,
we may construct projection operators 771y, 772), 73y on R ® R? that take values
respectively in ;) € ker dx’ ® kerdx’ and preserve the subspace of symmetric
tensors while satisfying 71y 4+ m(2) +7(3) = Id on R3®R3 . Similarly, since every
element of R belongs to ker dx! + ker dx?, there exist projections 7y}, 7[2) with
values in ker dx! and ker dx? that satisfy 7r(j} + 72 = Id on R¢,

One sees also that the important cancellations of lines (214) and (215) still hold
once one makes the appropriate modifications in defining the terms. Namely, the
projection operators 7y and 7 on ker dx? ® ker dx3 should be chosen such that
7| takes values in the span (e; ® ¢;);x3 + {¢; @ ej +e; ® e;);, jx1 While 7 takes
valuesin (e; ®ej+e;®ey) j+1. With these choices, one maintaines the cancellation
of line (215) (namely that 7| R|34] takes values orthogonal to dx!'® (el)l), while
7« R[34) maps ker dx! to the span of {e7) C ker dx? as desired.



Nonuniqueness and Existence of Continuous, Globally Dissipative Euler Flows 1295

Extending the above proof to dimension d = 2 would require substantially
more work. The main issue is that even in two dimensions one requires waves to
take values in three distinct hyperplanes (such as ker dx!, ker dx?, ker dx? above) in
order to span the space of symmetric tensors (as in the decomposition R? @ RY =
>3 kerdx! ® kerdx! if d > 3). However, a decomposition such as (289) in
dimension 2 would require the directions of the different stages to be orthogonal,
which would limit the number of allowed directions to only 2. The closest analogue
to (289) would be to choose distinct rational lines ker du!, ker du?, ker du? in R?
for which there exists a decomposition of the form

jt _ Jjt Jjt
8" = 8[ + 5[2] + 5[3],

with 8/ = f/f'. f € kerdu', 8y = §7§%. § € kerdu® and 83 = hih’, h €
ker du all nonzero. The existence of adecomposition of 87¢ of thls form is equlva-
lent to the existence of vectors f g, h spanning the lines ker du!, ker du?, ker du?
such that the angle between each pair of vectors is obtuse. (One concrete exam-
ple would be to take du! = dx!, du?> = d(x! + 2x?), du? = d(x' — 2x?) with

f = (V3/2)e2, 8 = (1/v/8)(2e1 — 2) and . = (1/+/8)(~2e1 — €2).) One would
then hope to perform the iteration as above with waves taking values essentially
in the periodic sequence of subspaces (ker du!, ker du?, ker du?, ker du!, .. .). The
difficulty this approach faces is that the cancellation of line (214) no longer appears
to be available in the presence of such additional terms. For this reason we have
not been able to extend our results to two dimensions without incurring a loss of
regularity and we leave the consideration of the two-dimensional case for future
work.

6. Proof of the Main Theorem

With the Main Lemma, Lemma 3.1, now proven we proceed to the proofs of
Theorems 4 and 5.

The proof of Theorems 4 and 5 will proceed by iteratively applying Lemma 3.1
to obtain a sequence of dissipative Euler—Reynolds flows (v, p, R, «, ¢, i) ) that
converge uniformly to an Euler flow that satisfies the local energy inequality. The
size of the error and the growth of frequencies during the iteration are dictated by
the bound (21), which we restate here as

* * * * *
E & % CR ., 1/3.2/3
12 12 , ey :=ejep . (290)
{CNH Cey Cey Ceg (N"V(er/? /ey ))‘/Zew] Lo

The sequence of (compound) frequency-energy levels will be dictated by specifying
that eG, (k+1) = Z~'ec. () for some large constant Z.!> We will therefore choose

12, 1/2 .
N =N = Zz(ev/ /ew/ ) (k) (e(p/e(;)%k) when applying Lemma 3.1.

15 Taking Z to depend on k would be important for achieving an endpoint type result as in
[36].
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The fact that the evolution rule (290) contains the term e, = e, "ey "~ that
couples together distinct energy levels introduces some additional complexity into
the iteration compared to previous schemes. To approach this issue, we introduce
the notation Q,, = (ey/ey), Qpy = (ep/ey), Opr = (ey/er), etc. to denote
the quotients of the corresponding energy levels, and we write Ly, = log Qyy,
Lyr = log QyRr, etc. to denote their natural logarithms. We also write Lg = log eg,
Lz =log&,Lz =logZand Lg = log C. We will write Qf,]fg, L(k) etc. when we
wish to consider the dependence of the parameters on the stage k of the iteration,
and will often suppress this dependence. In the above notation, for example, we
have N = Z? Qll, Q? oG suppressing the dependence on k.

We will mainly work with the variables Qyy, Q¢ rather than Qg and Qrg

to simplify some calculatlons The equations Qyp, = (e Jer)*? = Q2/ 3 and

Q7 (ew/ 13,023 /eg) = Q o R Q rG allow us to convert between the two pairs. In

* w 1/3 % 13, A % 2/3 23
the new variables we have Q6 = Q g OrG = Q c(CZ), Q(p(p Qur = 2,6

and E = CZle/2 QngéG E k). We write these rules in matrix notation as

Ly 1000007 Lz 0
Lg ~11 000 0] L 0
Ly 1 01/30 0 0 || Lyc La
Loy =1 0023000||Ly| T|0 (291)
Lyy 000 100][Ly, 0
Lz 202 2121 g Lo

(k+1) (k)

We let L i) denote the column vector of parameters in (291) and T denote the 6 x 6
matrix appearing above. In terms of the difference operator 8 fix) := fu+1)— f)
equation (291) may be rewritten as a difference equation L) = (T — 1) L) +
Lz(e3 + eg). We then derive the identity

158(k)LG + lla(k)Lg(; + 55(k)L¢£ + 5(]()Lv(p + 28(k)L3 = 13L6. (292)

The coefficients 15 and 2 appearing in (292) will ultimately lead to the regularity
1/15 for the iteration. This equation may be obtained by locating the row vector
[0, 15,11, 5, 1, 2] in the row null space of (T — 1), and applying this vector to the
difference equation for L ).

To ensure the iteration proceeds in a well-defined way, it is necessary that we
check that the parameter N chosen above satisfies the admissibility conditions (19)
assumed in the Main Lemma. To do so it is only necessary to check the latter two

inequalities in (19), since the first inequality, which requires N > Qngl/ 2 =

(O Q3/ 2 QyG, follows from the latter two by taking their geometric mean. The
latter inequalities will be addressed in Sect. 6.1 below.

After establishing sufficient conditions on the parameters to ensure a well-
defined iteration, the proofs of Theorems 4 and 5 will be completed in the concluding
Sect. 6.3.
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6.1. Admissibility conditions and asymptotics for continuing the iteration

In this section we consider the admissibility conditions in (19) for the parameter
N = ZZQ%ZQ;G. The main result of this section is to isolate a range of initial
parameters that satisfy the conditions in (19) and allow the iteration to proceed by
induction in a well-defined way. We will use the notation u to indicate the transpose
of a column or row vector u.

Asremarked in the previous section, we need only check the latter two inequali-

tiesin (19), since these imply the first one. These inequalities may be writtenas N >
1/2 1/2 3/2 1/2
04 0200 = Quf 03,02 and N = Q)7 where N = Z20,(7 02,02 In

logarithmic form these conditions become

2Ly — L<p£ >0, 2L7 + 2L£G + 2L(p£ — Lv<p > 0. (293)

We write I, = [Lz, LyG, Ly, Lw]t to denote the column vector of logarithms of

these parameters, which evolves according to the equation L 1) = T L) + L ce2
that in matrix notation becomes

Ly 10 007[ Lz 0
Lo | 117300 || Lya Le
Loy =lo02/300|| L, | T o0 (294)
Lup Jgepry  LO O TOTL Lup 0

Observe that T has eigenvalues (1, 1/3, 0, 0), and that the 1-eigenspace is the span
of the vector ¢ = [1,3/2,1,1]" € ker(T — 1). The crucial point in checking the
condition (293) is that ¢ (and hence any positive multiple of ¢) satisfies (293) with
strict inequality. The positive linear span of ¢ is on the other hand not invariant
under the affine transformation (294), so we cannot perform an induction with
parameters in the span of ¢. However, as the following Proposition shows, if we
start with parameters sufficiently close to the positive span of ¢ and Z is sufficiently
large, then (293) will remain satisfied.

Proposition 6.1. (Admissible truncated sector) There existrg € (0, 1/2)and Z > 1
such that the truncated sector defined by

C:={LeR*:L=Lz(¢+¢), e1=0, maxl|g| <ro, Lz > Lz} (295)
l

is contained in the set of solutions to (293) and is mapped to itself by the affine
transformation (294).

Proof. Recall that both inequalities in (293) hold with strict inequality for ¢ =
[1,3/2, 1, 1]". We may therefore choose ry € (0, 1/2) such that forall ¢ € R* with
max; |&;| < ro the vector ¢ + ¢ also satisfies both inequalities in (293). With this
choice of rop we have that every vector in C also satisfies the conditions in (293),
since the value of Lz > Lz > 0 is positive and the conditions are linear.
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Now suppose L =1L 7z(¢ + €) belongs to the truncated sector C defined in
(295). Applying the affine transformation in (294) and recalling that 7¢ = ¢, we
have

TL + Lgey = Lz(¢ + :S‘k), §:=Te + LEILgez. (296)

Computing with the matrix T in (294) and using €1 = 0, we have that ;1 =0
and we calculate ;2 = &/3+ L}ng. We thus obtain |§2| < ro/3 + LEng.
For Z chosen sufficiently large, we have L}ng < LE] L& < 2ro/3 and hence

|2] < ro. We also have that |e3] = 2|e2|/3 < 2rg/3 < ro and |&4] = [e3] < ro.
These inequalities together imply that T'L + Lze; belongs to C as desired. O

At this point, it is also useful to make the following observation on the limiting
behavior of L ):

Proposition 6.2. If lo,(k) evolves by the rule (294), then limg_ o Z(k) exists and
limy 00 8y L (k) = 0, where 8¢y Ly := Lk+1) — L)

Proof. Let Ii(k) obey (294). Then the first component Lz = e’lli(k) remains
constant in k, which implies that Ls = nLz, where n > 0 is constant in k.
With this observation, we can re-write the parameter evolution as the iteration
of a fixed matrix, rather than an affine map. That is, for all k¥ we obtain that
Loy = T,f Loy, T, = (T + neze}). Note that T}, is lower triangular with a diag-
onal consisting of the eigenvalues (1, 1/3, 0, 0). As a consequence, limg_, T,;‘
exists and is equal to the T),-invariant projection onto its 1-eigenspace. It fol-
lows that i(w) = limg oo i(k) = limy_, T,;‘li(o) exists, and as a consequence

limy 00 8 Lty = Lioo) = Loy =0. .

We will also use the following estimates on the decay rates of the time scale
and the error:

Proposition 6.3. There exists Z; > 0 such that for all Z > Z, if L) evolves
according to (291) and lo,(o) belongs to the set C in (295), we have for all k > 0
that

1/2 1/2

34 1)2 —1/4
27y 1) = €ty =20 (297)
- 12 o 12 o 12
ZEEe, k) = By gy = Z7Bwe, i (298)

Proof. Note that e, 1) = Q(pg QQGeG,(k). Using (292), (294) and (295) we have
Sy logey, () =L +8uyLop + 3w Ly
= (=Lz) + ((2/3)LyG — Lyyp) + (Lz + Lg — (2/3)Lyc)
=—Lyp+Le=—Lz(1+ &)+ Lg,

where |e24)| < ro < 1/2. For sufficently large Z > Z; we have —(3/2)L; <
Sy log ey, (ky < —(1/2)Lz, yielding (297). To obtain (298), we start by noting that
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— 1/2
—8 l0g(Bae, ) = —(1/2)Bw) L + 860 Loc + 8o Lyy + 8 Lug) — o L

where L) is the column vector of parameters in (292). Using that L) obeys the
evolution equation ) L) = (T — 1)L + Lg(e3 + eg), where T is the matrix
in (291), we obtain

— 1/2
~80) log(Ewyey &) = (—1/2) (14.0,4,4,0,01Lg) +3L¢)
8y 10g(Be, i) = 2Lz +2LyG + 2Ly + (3/2) L
=2L7(1+3/2+&q) + 1 +&34)) +2L¢.

Using that max; |g;)| < 1/2, we obtain Lz < ¢, log(E(k)ei/(zk)) < 9Ly for
L > Z, sufficiently large. This bound implies the desired estimate (298). O

6.2. The Approximation Theorem

We now state our Approximation Theorem, which immediately implies Theo-
rems 4 and 5.

Theorem 7. (Approximation Theorem) Let o < 1/15. Then there exists a constant
Cy > O such that the following holds. Suppose that 29 > 1 and Eg > 0 are
positive, that [ is an interval having length |I~| > 8(EOE(1)/2)_1, and that f(o), i(])
are nonempty subintervals of I such that sup i(o) + (EOE&/Z)_1 < sup i(l). Let
(v, p, R, k, ¢, )o be a dissipative Euler—Reynolds flow on I x T3 with compound
frequency energy levels to order 2 bounded by (2, ey, ey, er, eg)o = (Eo, Eo, Eo,
Ey, Eo) satisfying supp; (R, k, ¢)o < i(o).

Then there is a family (vg, pg) of weak solutions to the incompressible Euler
equations on IxT3 of class v € Cf', that is parameterized by € 2N and has the
following properties:

1. For each B, (vg, pp) satisfies the local energy inequality (2) with a common
dissipation measure g = —[8,(|v,3|2/2)+Vj((|v,3|2/2+pﬂ)vé)] = oo >0
that is independent of .

2.0nl () X T3, the weak solutions (va, pa) are all identically equal to each other.

3. On Iy x T3, the dissipation measure o = 1) coincides with the initial
dissipation measure.

4. For all B € 2N, the support of (vg, pg) is contained in {t < sup i(l) +
(BE)/H )N 1.

5. The map B +— vg is a homeomorphism of 2N onto its image in CY..

6. The image (vg) geon has positive Hausdorff dimension as a subspace ofC,L)% (Ix
T3).

7. We have supgepn [lvg — vollco < CoEy”.
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We refer to the proof of Theorem 7 below for a review of the topology of 21V

Theorems 4 and 5 follow immediately from Theorem 7 by taking the initial
dissipative Euler-Reynolds flow to be identically O, the Egp > 1, Ep > 0 to be
arbitrary positive numbers, setting / = R, and taking Ig) = (—o0, 1), Iy =
(—00, 2) in the case of Theorem 4 or taking I() = (—00, 1), I(1) = (—00, o0) in
the case of Theorem 5.

The first step in the proof of the Approximation Theorem will be to observe that
the initial dissipative Euler—Reynolds flow can be made (8, M)-well-prepared for
a suitable choice of energy increment function and a (larger) choice of frequency
energy levels belonging to the admissible region (295) without making changes to
the velocity field. The lemma involves a parameter Z that will be chosen to be a
large constant (depending on «) at the end of the argument.

Lemma 6.1. There exists Z; > 0 such if (v, P, R, x, @, w)o are as in Theorem 7
and if Z > Z, there is a smooth function ez : I — R>o and a dissipative Euler—
Reynolds flow of the form (v, p, R, R, @, )0y that is (8, Z%)-well-prepared for
stage I with respect to the compound frequency energy levels given by

(B, e, e, er, ¢6) ) := (Bo, Z'*Eo, Z°/*Eo, ZEy, Ey), (299)

the pair of intervals (i[10]7 i[Go]), i[]()] = {t < sup i(])}, i[G()] = {t < sup i(]) +
( 0E1/2
fort < supl(l) +471(E 0k,

Y=}, and the function ez. One may arrange that o) (t, x) = poy(t, x)
1/2, -1
)~

During this proof we will ignore the subscripts in writing (v, p, R, k, ¢, i) =
(v, p, R, k, 9, W)o.

Proof. We recall the notation D[v, p] := 8, (|v|*/2) + V;((|v|*/2 + p)v/) for the
resolved kinetic energy density. We set p = p + P with P to be determined. Recall
also the notation §[1,] = €3 ® e3 + (e2 ® €2)/2 and that s/t = 5’Z Bha 5[2* Starting
with D[v, p] = Dk + V;[vg R/ + ngp-/ — w and using the Euler—Reynolds
equations (10), we obtain for any choice of non-increasing function e : I — Rxo
the following equalities

vt + V(v + VEp = V(P8I + R (300)
Dlv, pl = Di(k — (1/2)tr(8[14))ez (1) + V;[ve(P8/* + RIY)]
+ Vgl — (301)

by setting i = pu — (1/2)tr(8[1.9)dez (1) = 0.
Define f(’ 1) = {t < sup Ih+27'E oEl/z) ]}andsetélz/2(t) = Zl/4Eé/2nm*
1 ,~, (t), where n.,(¢) is a standard, non-negative mollifier in ¢ with support in

1] < (80E,/*)~". Define R}, = P8/}, + R}, and choose P = —ez(r), which
implies that

Ry = (1/2)8,0(P8]), + RI) = ki — (1/2)ez (0te(S14). (302)
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‘We may now define the new d1s51pat1ve Euler—Reynolds flow (v, p, R, %, (p ) with
p and ji defined as above, Ry} = ez(t)c?]l] + R[l], Rjg = ez(t)é[z* + Rjg

R[/é] = R[G]’ K[l] as in (302), K [G] = K[G]> and (p = 9[1]» (p[z] = ¢[2]- We set
e, = ZY/2 E¢ and observe that e, = Z _zew (0) as deﬁned in (299). The conditions

of (8, Z%)-well-preparedness for I?[jfo] R[Jl] in Definition 4.1 with the above
choices of tensor fields and parameters translate to

supp, (R11, ¢1) S Irioj. supp; ez < Iigoy

1D (1)l co < (B 027/4E1/2) (Z52Ep)'2,

ez MR llco + e > llepnllco <3, if 1 < sup Ijio) + (B0 Z"*Ey/*)™!
1D} le; > Ol co < 10(B0Z"*Ey/*)* (22 Eg) ™ if 1 < sup Ijio) + (B Z"*Ey/*) ™!

= 1/2\r
(Z'2E0)' V2 D} Rinlleo + V2 D ernlleo < Elf(B0Z"/*Ey*)Y (22 Eg)¥?

forall0 < s <2,andall0 <r < 1,0 < r + |a| < 2. Note that the above
conditions are clear from construction for Z sufficiently large using the bounds
assumed on (v, p, R, k, ¢, 1). Similarly, the estimates (14)—(17) for the frequency
energy levels (299) are also clear from construction for Z sufficiently large using
the bounds assumed on (v, p, R, k, ¢, ;). With this estimate we obtain Lemma 6.1.
O

We now proceed with the proof of Theorem 7.

Proof of Theorem 7. Leta < 1/15andlet Eg, Ey, (i, i(o), f(l)), (v, p, R, k, ¢, W)o
be as in the assumptions of Theorem 7. Let Z be a large constant that will be spec-
ified at the end of the proof. Let (E, ey, €y, er, eG)(0) be the compound frequency
energy levels specified in line (299) and define the dissipative Euler—Reynolds flow
(v, p, R, k, @, 1) (0) to be the (v, p, E K, @, 1) obtained in Lemma 6.1 with Z as
above.Let L) = [Lz, LG, LG Lygs Lo, Lzl and Loy =1[Lz.LyG. Lyy. Lyl
be the vectors of parameter logarithms following the notation of Sect. 6.1.

From (299), we obtain that L) = Lz[1,3/2,1,1] = Lz¢ lies in the 1-
eigenspace of the matrix T in (294). Since i(o) lies in the admissible truncated
sector (295), we may apply Lemma 3.1 repeatedly to obtain a sequence of dissipative
Euler-Reynolds flows (v, p, R, k, ¢, 1)) with compound frequency energy levels
below (E, ey, €y, er, eG) (k) that evolve according to the equation (291). Moreover,
Lemma 3.1 allows us to construct many possible such sequences of Euler—Reynolds

flows by providing two choices of dissipative Euler—Reynolds flows (either vor v2)
at each stage of the iteration. We take advantage of this freedom by lefting N be the
set of non-negative integers and let 2 be its power set; i.e., each 8 € 2" is a subset
of N. We endow 2 with its natural product topology, which is compact, Hausdorff
and metrizable (in fact 2 is homeomorphic to the Cantor set). In this topology a
sequence ) in 2N converges to 8 € 2 when lim sup /) = Un ﬂj>n BY) and
liminf ) = M, U, B are both equal to § (in other words, the sequence

BY) converges pointwise ‘when viewed as maps f8 (). N — {0, 1}). The symmetric
difference operation SAB = (8 N B°) U (B N B¢), which is addition mod 2 if we
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view B and f as maps into Z /27, makes 2" a locally compact abelian group with
identity element @, and one has the following property characterizing convergence
of sequences in the topology of 2:

BY) — Bin2N as j — oo if and only if min(8’AB) — coinNas j — co.
(303)

To each B € 2N we associate a sequence of dissipative Euler—Reynolds flows
(v, p, R, &, @, 1) g, (k) together with a sequence of frequency energy levels (2, e,
€y, €R, €G) (k)» intervals i[lk], i[le and non-negative functions e () as follows.
We first define the sequence of frequency energy levels, intervals, and non-negative
functions. We let (2, ey, ey, er, €G) () be defined as in (299) and take I[ 101> 1I[Goj
and e(g) = ez as given by the Lemma. The sequence of frequency energy levels is
then dictated by the evolution rules (290)—(291), and coincides with the result of
repeatedly applying Lemma 3.1 with Ny = Zz(ei/ 2 /eé,/ 2)(k) (ey /eg);,{)z chosen
as in Sect. 6. The sequence of frequency energy levels together with the initial
e (1), f[ 10] and f[Go] determine the sequence of non-negative functions e ()
and intervals i[lk], i[Gk] obeying (24)—(25) that arises from repeatedly applying
Lemma 3.1 with the above choice of N(y).

Letting Ig) be as in Theorem 7, we set £* = sup /(g) +2~ (E()Eé/z)’1 and we
define Ji;) to be the open interval (r* — (E(k)ewlj’/fk))’l, 4 E(k)ei’/(zk)). We note
that f(k) is an open interval of length |f(k)| > (E(k)ei{(zl())_l that is contained in

i[]()] - i[]k] forall k > 0.

We now define the sequence of Euler—Reynolds flows (v, p, R, &, ¢, (), k) as-
sociatedto 8 € 2N as f()Nllows.We let (v, p, R, k, @, i) g,(0) be the dissipative Euler—
Reynolds flow (v, p, R, k, ¢, [i)(0) in the conclusion of Lemma 6.1. We define
(v, p, R, K, 0, ), (k+1) inductivelybyapplyingLemma6 Ito (v, p, R, K, @, B, k)
with the choice of Ny = Z2(e,1,/2/e¢/ ) (k) (e(p/ec)(k) and taking I[lk [Gk] and
positive function e() as above. If k + 1 ¢ B we choose (v, p, R, k, ¢, W)g, (k+1) =

(;, ;, I*Q, ;ck, 5, lj)ﬁ,(k), while if k + 1 € B we choose (v, p, R, k, @, (1) g, (k+1) =
(v2, P2, Ra, K2, @2, 02) g, (k) taking f(k) - f[lk] as above. In either case, the dissi-
pation measure (1) is the same and independent of 8. Note that N, satisfies
the admissibility conditions (19) for all k > 0 by Proposition 6.1 since the initial
frequency energy levels belong to the admissible truncated sector (295). This fact
together with the (S , M)-well-preparedness of (v, p, R, k, ¢, ) g, ) justifies the
application of the Main Lemma.

For each B € 2V, the sequence of velocity fields Vg(k) converges uniformly
as k — oo to a bounded, continuous vector field vg on [ x T3, as follows from
g+ — vawllco < CLe(p/ and (297). Since Rp) converges uniformly to 0
(again by (297)), we have that (vg, pg) solve the incompressible Euler equatlons

where pg € D' (IxT?is equal to the weak limit pg = limg 00 A™ (WV (R/S(k)_
/]5 *) f}(k)) Note that we may assume without loss of generality that the sequence

of approximate pressures is equal to pgx) = A~ (WV (Rﬂ(k) é(k)vé(k)) by
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adding a constant if necessary to replace each pg) by its integral O representa-
tive. With this normalization, we have that the convergence pg = limy—. oo pg(x)
occurs strongly in L? for all p < by Calder6n-Zygmund estimates and the
uniform convergence of (R Bk — ﬁ(k) Vg (k)) (in fact the convergence holds also
in Holder spaces). In particular pg € L? for all p < oo, making Dlvg, pgl =
Bt(|vﬁ|2/2) + Vj[(lvﬂ|2/2 + pﬁ)vé)] a well-defined distribution for all 8.

We now verify that the limiting Euler flows (vg, pg) must satisfy the lo-
cal energy inequality (2) for all 8 and all have the same dissipation measure
—Dlvg, pgl = Moo = limg_ oo (), Which is equal to the weak limit o =
—limk_)oo[at(lv,g(k)|2/2)+Vj((|v/3(k)|2/2+p,3(k))vé(k))].The fact that D[vg, pgl
is equal to this weak limit follows from the strong L? convergence of the prod-
ucts including pﬁ(k)vé(k) as in the previous remark above. The fact that the limit
is non-negative as a distribution (and hence given by a measure), and is equal to
Moo = limg_o0 k) < O follows from (12) by observing that the functions on
the right hand side of the relaxed local energy inequality (11) all converge weakly
to 0 in D" as k — oo. Specifically, since the vg) are uniformly bounded in
C° and (Rp k), KBk @B(k)) converge to 0 unlformly, the functions D;kgk) =
k) + Vj (v? (k)/c,g(k)) Vil(vgwy)eR (k)] and ngoﬁ(k) in the relaxed energy in-
equality (11), (12) all converge weakly to 0 in D’ as k — oo.

The solutions constructed above all coincide on /gy x T3. To see this equality,
note that (by induction on k& and the local dependence properties of Lemma 3.1)
the dissipative Euler—Reynolds flows (v, p, R, «, ¢, 14) g, k) are all equal outside of
the interval

k
- - 4 - — 1/2 (—
Jw = {t0+t ttp € Joy, It] = Z(E‘(/')ev,/(j)) 1},
=1

which does not intersect I, (0) by (298) when Z is taken sufficiently large.
We claim that the map 8 +— vg is injective when restricted to N2 — (B €
N B N {0, 1} = @}. To see this fact, suppose Bi, B2 € 2N+2 are distinct and
let k* = min 81 AB; be the smallest integer that belongs to exactly one of 1, .
Then, letting Vgx) = vgx+1) — Vak)» We have by (22) and (297)

e, — vgalle, 2 = vy — vgaany e,z — D Ve llco + 11 Ve llco)
k>k*

_ 1/2
> llug ) — Va2 — D 227 ACLe /m
k>k*+1

1/2
lvsr — vasllc,2 = gy — vgaanlle 2 —4CL 214 w/<k*>

1/2
From (27) with M = C we have [[vg, i) — vy lle,r2 = ((CLO) ™' = Ngt))
w/ ) Using that N+ > Z and taking Z sufficiently large we obtain
— 1/2 .
lvg, — vplle,z = 27 (CLO) P /0y. K =min(BiAB).  (304)
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It follows that vg, # vg, forall B; # B2 in 2N+2: ., the map B — vg isinjective.

We claim furthermore that, if @« < 1/15 and Z > Z,, is sufficiently large, then
B +— vg is a continuous map from 2% into C . We first note that for all k such
that e, ) < 1 we have the bound

IVuga llco + 18 vy llco < IV llco + 1Drvpiyllco + lvgi lcoIVug@ ll co
< ClIVugwllco + IVpgwllco + IIVRp@)llco

- 1/2 — - 1/2
< C(Be,/py + Beww) < CEwyey . (305)

where C depends on supg ;. [[vg) [l co- Using (298), we bound Vg = vpi+1) —
vg(k) for large k by

172
Ve llco = Cre,
- 12 - 12
IVVewyllco + 10: Ve llco < Cd(kﬂ)ev,/(kﬁ) < Cng(k)eu,/(k)'

Interpolating, we obtain that ||V llce, < C Z(Ee,ﬂ/ 2 / e(l,/ 2)%;{]3) for some con-

stant Cz depending on Z and the C above. We let Hy ) := (Ee}/ 2 e(lp/ 2)“6;@),

which we estimate as follows using the notation L) = [Lz, L, LyG. Loy, Ly,
Lglyy and Lay = [Lz, LyG, Lyg, Lugl{,, of Sect. 6.1

10g Huy = (1/2)[LG + Ly + Lgy + (1 + ) Lyy] + oLz
8k log Hogry = (1/2)84) LG + ad@yLz + 08¢ L))
=—(1/15 - )8 Lz + (1/2)8w L + (1/15)84) Lz + 08w L)
8k 10g Hgy = —(1/15 — )y Lz + (1/30)[0, 15, 11,5, 1, 2180y L e
+ 08¢y Loy )
=—(1/15—a)dpLz + (13/30)Ls +o(1),  ask — oo.

In the last line we used equation (292) and the fact from Proposition 6.2 that
184y Lay] — 0 as k — oo. Since —8q)Lzg < —Lz and @ < 1/15, we have
for all Z > Z, sufficiently large (depending on C and «) that S(kylog Hyky <
—1log 10 + o(1) as k — oo. In particular, there exists ko € N such that for all
k > ko we have Hyy < 9~ *%0) f, 1. This estimate implies that every vector
field vg is of class Cffx, and also that the map 8 — vg from 2Nt Cffx is continuous,
since it implies the estimates

luglice, < llvollce, + D IVawllce, < lolles, + D CzHay < 0

k=0 k>0
log —vgllce, < D IWVpwlee, = Y. CzHaw. (306)
k>min(B1 AB2) k>min(B1AB2)

Since (306) goes to 0 as min(B; AB>) tends to oo, we obtain continuity of the map
B+ vg by (303).

Since 2M*2 is a compact topological space (homeomorphic to a Cantor set),
Cff . is Hausdorff, and we have shown that 8 — vy is injective on 2N+2, it follows
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that the map B +— vg is a homeomorphism onto its image in C{, when restricted
to 2N*2. Identifying 2+ with 2V defines the map vg of Theorem 7.

Now fix a particular value of Z > Z , that s sufficiently large to guarantee all of
the preceding estimates. We claim that the image of (vg) geon+2 restricted to oN+2
has positive Hausdorff dimension as a subspace of C,L%. To establish this claim,
we show that there exist positive numbers § = §z > 0, g > 0 and ap > 0 such
that whenever there is a covering {vg : B € 2N+2} C Uie[ By, (vg;) of the image
by open balls of radius r; < €p in C, tL% centered at points in the image, we have a
lower bound of

0<ag= ) riZ. (307)

iel

We may assume without loss of generality that the collection of balls I in the
covering is countable. The estimate (307) then shows that the Hausdorff dimension
of the space {vg : B € 2N+2Y (viewed as a subspace of CtLi) is at least 6.

We recall the notation [k] := {0, 1, ..., k} and we introduce the “basic cylin-
ders” defined by

N — g eV pnik—11=0), BatF.=(gec2V . (BAB)
Nlk—11=9), k>1,8e2"

For any k > 1, the set 2N is the union of 2% disjoint basic cylinders N =
Uscp—1 BA2N*K Moreover, every basic cylinder has the form AN = (B N

[k — 1])A2N+k, where B N [k — 1] is finite. Every basic cylinder is therefore both
closed (by (303)) and open (as its complement is closed), and its Haar measure
is equal to (BA2NTF) = (B N [k — 1)) A2NFKY = 1, 2NHK) = 27K when we
endow 2" with the natural Haar measure 4 of unit total mass. The collection of all
basic cylinders 8 A2NHK where B is finite and k > 1, can be visualized as forming
a countable basis for the topology of 2.

Suppose now that we have a covering {vg : B € 2872} C ;o By, (vp,) €
C,L2 with max; r; < €g, where ¢y := 4’1(C1‘6‘\)’1/2e1/2 For each i € I define
ki e N to be the largest integer that satisfies r; < 4~ 1(C C) 1/2 1/(2k* . By the
lower bound (304), every vg € By, (vg;) satisfies min(BAB;) > ki , or equivalently

2N+k?

belongs to the basic cylinder B € B; A . We therefore obtain the inequalities

Lwia(B) < 3 15,y (B) < D1, v (B,

iel iel
-2 _ AN+ —k
272 = sz Iz dp < ;u(ﬂl A2NHRy = ;2 . (308)

On the other hand, by the choice of k7 and (297) we have also a lower bound of

1/2 —3(k* 1/2 .
ri = ety z ez WA foralli e 1, (309)
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where ¢ := 471(C.C)"!/? > 0. Combining (308) and (309), we obtain the de-
sired bound (307) with §7 = ;1 llgg((?) for some ap > O that depends explicitly on
Cr, 6, ey, 0) and Z.

We remark that the calculation of line 308 can be viewed as a purely combina-
torial statement taking place on a finite quotient of 21 when the collection of balls

1 is finite, but relies on the use of measure theory to handle the case of a countably
infinite 7.

The last bound we require is that supgyn2 [[vg — vollco < axEé/ 2 with C,

depending on «. This bound follows from the choice of e;{ (20) < Cq4 Eé/ 2 in (299),

12 . . .
the bound || V) ”C.O < CLew_{(k) in (22) for Vg = vgk+1) — Vg (k)» and inequality
(297) for ey, (k). With this estimate we have concluded the proof of Theorem 7. O

6.3. Density of Wild Initial Data for Conservative Solutions

As the final application of Theorem 7 that we consider here, we state the fol-
lowing theorem, which proves the density of “wild” initial data of class C“ for
a < 1/15. The theorem is in the spirit of [27], which extended a similar theorem
of [52], where an analogous L? density result is obtained for solutions with kinetic
energy below that of the initial data and having Holder regularity @ < 1/5. Our
approach to Theorem 8 turns out to be considerably simpler than the approach to
the analogous result in [27] (in particular we avoid the use of time-dependent es-
timates and the notion of an adapted subsolution), but at the expense of having a
nonuniform time interval of existence for the corresponding solutions.

Theorem 8. (Density of wild initial data) For any « < 1/15, there is a set of vector
fields Fy, on'T? such that the C° closure of Fy, consists of all continuous, divergence
free vector fields Uy: T3> — R3, and such that for every vy € F, there exists an
open interval I containing 0 and uncountably many vector fields (vg) geon of class
Cr (I x T3) that satisfy the incompressible Euler equations on I x T> with initial

data vf (0, x) = vo(x) for all B € 2N and satisfy the local energy equality (3) on
I x T,

Proof. Let iy : T3 — R3 be a smooth, divergence free vector field, and let T
be a bounded open interval containing O such that a unique, smooth solution to
the Euler equations (v, p) having initial data v(0, x) = vg exists on the interval
21 x T3. Let Ey > 0 be any positive number and choose E large enough such that
the dissipative Euler—Reynolds flow defined by (v, p, R, k, ¢, i) with zero error
terms (R, «, ¢, w)o = (0, 0, 0, 0) has compound frequency energy levels bounded
by (Eo, Eo, Eo, Eo, Eg) to order 2 in €Y. (Such a choice is possible since all the
error terms are O and since (v, p) and their partial derivatives are uniformly bounded
onl x T3

Applying Theorem 7 with f(o) = {t < (1/2)sup I} and f(l) = I (taking Eg
larger if necessary), we obtain an uncountable family of weak solutions (vg, pg) geon

in the class (vg) € C{', that all share the same initial data (being equal on I()) and
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share a uniform bound of supgeon flvg — 17||C? < Cqy Eé/z. These solutions also
WX

satisfy the local energy equality (3) on I by our choice of i( = I and po = 0.
We now take F, to be the union of all initial data arising from the above
construction over all choices of smooth divergence free g on T> and Eg > 0. It
is clear that the C° closure of F,, contains all smooth, divergence free vy, since
Eo > 0is arbitrary and the common initial data of the family vg constructed above
converges uniformly to vy as Eq tends to 0. By approximation, every continuous,
divergence free o on T> belongs to the C° closure of F,. The other properties
stated for F,, are immediately approved from the construction. O
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