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Abstract—This paper focuses on downlink channel state in-
formation (CSI) acquisition. A frequency division duplex (FDD)
of massive MIMO system is considered. In such systems, the
base station (BS) obtains the downlink CSI from the mobile
users’ feedback. A key consideration is to reduce the feedback
overhead while ensuring that the BS accurately recovers the
downlink CSI. Existing approaches often resort to dictionary-
based or tensor/matrix decomposition techniques, which either
exhibit unsatisfactory accuracy or induce heavy computational
load at the mobile end. To circumvent these challenges, this work
formulates the limited channel feedback problem as a quantized
and compressed matrix recovery problem. The formulation
presents a computationally challenging maximum likelihood
estimation (MLE) problem. An ADMM algorithm leveraging
existing harmonic retrieval tools is proposed to effectively tackle
the optimization problem. Simulations show that the proposed
method attains promising channel estimation accuracy, using
a much smaller amount of feedback bits relative to existing
methods.

Index Terms—channel state information, matrix/tensor recov-
ery, quantization, compression

I. INTRODUCTION

In multiple-input-multiple-output (MIMO) communication

systems, downlink channel state information (CSI) at the base

station (BS) is vital for many tasks including multiplexing,

beamforming, and resource allocation [1], [2]. In the massive

MIMO systems, the number of antennas at the base sta-

tion/mobile users can easily reach tens or hundredsÐi.e., the

downlink channel matrix can be of very high dimension [1],

[3]. Under such circumstances, acquiring accurate downlink

CSI at the BS becomes a challenging task. Particularly, in

frequency division duplex (FDD) systems, downlink CSI on

the BS side is usually acquired from mobile users’ feedback

[4], [5], as channel reciprocity does not hold in FDD systems.

However, transmitting back the full channel matrix to the BS is

not viable, as it incurs high feedback overhead; see discussions

in [6], [7].

Central to the implementation of an FDD massive MIMO

system is a downlink CSI acquisition strategy using limited

user feedback. Quantization and compression are most widely

considered techniques for this purpose. A classic way is to
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apply vector quantization (VQ) on the (Rayleigh) channel

matrix; see, e.g., [5]. Both mobile user and BS maintain a

common VQ dictionary. The channel matrix is quantized as

a codeword in the dictionaryÐand only the codeword is fed

back to the BS [8], [9]. For angular channel models that is

often used in massive MIMO systems, one can exploit the fact

that the channel is sparse in the spatial angular domain [1],

[6], [10], [11]. By applying grid discretization on the spatial

angle, the channel estimation problem can be formulated as a

compressed sensing (CS) problem [6], [10]. These approaches

often exhibit unsatisfactory recovery accuracy, as neither the

codewords nor the discretized spatial domain could fully

capture the downlink CSI. Another line of work estimates

the key parameters of the downlink channel at the mobile

end, leveraging the parsimonious angular parametrization us-

ing tensor/matrix decomposition and harmonic retrieval tech-

niques; see, e.g., [7], [12]±[14]. However, these approaches

render heavy computational loads on the mobile end, which

is undesired for various reasons, e.g., energy consumption

considerations and hardware limitations.

In this paper, we revisit the limited feedback-based CSI

acquisition problem in FDD massive MIMO systems. Our pro-

posed scheme is as follows: the mobile user first compresses

the channel matrix using a random compression matrix, and

then quantizes the compressed channel matrix with random

dithering. The quantized and compressed channel matrix is

then transmitted back to the BS. This way, no complex

computation is involved at the user end, and the amount of the

feedback bits is under control. On the BS side, we propose

to recover the downlink channel matrix using maximum-

likelihood estimation (MLE)Ðwhich is in accordance with our

random compression/quantization strategy. The MLE problem

presents an optimization challenge due to its array manifold-

enforcing nonconvex constraints. We propose an alternating

direction method of multipliers (ADMM) to tackle the MLE

problem. By a careful variable-splitting design, each ADMM

subproblem can be efficiently tackled, leveraging existing

effective harmonic retrieval solvers and quantzied compressive

sensing tools. We showcase the effectiveness of the proposed

approach through numerical simulations.



Fig. 1: Quantized and compressed channel CSI feedback

II. PROBLEM STATEMENT

A. Channel Model

We consider a frequency division duplex (FDD) massive

MIMO system, where BS and each mobile user have N trans-

mit antennas and M receive antennas, respectively. Suppose

that both the BS and the user are equipped with uniform

linear arrays. The downlink channel from BS to a user can

be characterized by the following multipath model [1]:

H =

K
∑

k=1

βkar(θk)at(ϕk)
H = Ar(θ)Diag(β)At(φ)

H , (1)

where K is the number of paths, βk ∈ C is the path loss of

path k, and ar and at are the steering vectors at the user and

BS sides, respectively, which are defined as

ar(θ) = [1, e−j 2πd

λ
sin(θ), . . . , e−j 2πd

λ
sin(θ)(M−1)]⊤,

at(ϕ) = [1, e−j 2πd

λ
sin(ϕ), . . . , e−j 2πd

λ
sin(ϕ)(N−1)]⊤,

in which d is inter-antenna spacing, λ is the carrier wavelength,

θk and ϕk are the angle of arrival at the user and angle of

departure at the BS, respectively. In (1), we have used the

notation θ = [θ1, . . . , θK ]⊤, φ = [ϕ1, . . . , ϕK ]⊤, and β =
[β1, . . . , βK ]⊤; in addition, Diag(x) forms a diagonal matrix

with x being the diagonal elements.

The BS needs the downlink CSI, i.e., H , to perform many

tasks, such as beamforming and resource allocation [1], [2],

[4]. In FDD systems, the mobile user can acquire H in

the training phase and send it back to the BS via feedback

channel; see Fig. 1 for an illustration. However, H is a high-

dimensional matrix in massive MIMO systems, which may

incur high overhead if the feedback is done naÈıvely.

B. Existing Approaches

From (1), it is seen that H can be represented by K

paths, which exhibits sparsity in the spatial angular domain.

As a result, the works in [6], [10] proposed to feed back a

compressed version of H , and let the BS recover it via a

compressive sensing(CS)-based formulation. For example, the

work in [6] approximated H via spatial discretization, i.e.,

H ≈ DrGDH
t , (2)

where

Dr = [ar(θ1), . . . ,ar(θL)], Dt = [at(ϕ1), . . . ,at(ϕL)]

are the steering vector dictionaries formed by discretizing

angle [0, π] using L grids, and G is a sparse matrix whose

(i, j)th entry being nozero ªactivatesº the ith and jth columns

of Dr and Dt, respectively. The BS receives a compressed

version of H and uses a CS-based formulation to recover the

sparse G. A caveat lies in the tradeoff between approximation

accuracy and model complexity. Increasing L can improve

the approximation accuracy in (2), but the dimension of G

increases quadratically with L. Thus, this approach often

exhibits unsatisfactory CSI estimation accuracy if the number

of feedbac bits is limited, as will be seen in the simulations.

Another line of work exploited the fact that H resides on

the Vandermonde array manifolds parameterized by (θ,β,φ),
and to use tensor/matrix methods and harmonic retrieval

algorithms to estimate the parameters at the user side [7], [12]±

[14]. Then, the mobile user sends the parameters to the BS.

These methods usually show better recovery performance, as

the angular domain is not discretized. But the computational

burden on the user side is often quite high, as estimating

(θ,β,φ) from H per se is a highly nontrivial optimization

problem. Note that from a system design viewpoint, letting

mobile users carry out heavy computations is not desired, as

the mobile devices only have limited energy supplies and the

hardware is less powerful compared to the BS.

C. Quantized and Compressed Feedback

In this work, we propose a CSI estimation method via

exploiting the manifold structure of H as in [7], [14], but

our method shifts the computational burden to the BS.

To proceed, let

h = vec(H̃), H̃ =

[

ℜ(H)
ℑ(H)

]

∈ R
2M×N . (3)

We first compress h by a random matrix A ∈ RR×2MN with

R ≪ 2MN , whose elements follow ai,j ∼ N (0, 1). The

compressed channel measurements are expressed as follows:

r = Ah. (4)

Then, we apply quantization with random dithering to r and

get

y = Q(r + v), (5)

where Q is an elementwise uniform quantizer with 2D
quantization levels {±b,±3b, . . . ,±(2D − 1)b}, 2b is the

quantization interval, and v ∼ N (0, σ2I) is artificially added

noise. For signal quantization, it is well-known that adding

a certain amount of artificial noise v may have a ªditheringº

effect and enhances the recovery performance. This is because

signal correlation together with the noise perturbation help

retain information (e.g., whether or not the unquantized signal

value is close to the bin boundary) lost in the quantization

process; see [15]. The mobile user feeds back y, rather than H

itself, to the BS. Assuming that y is received by the BS without

losses, the BS recovers H from y, given the knowledge of A

and Q.



III. PROPOSEE CSI RECOVERY ALGORITHM

We adopt maximum-likelihood estimation (MLE) at the BS

to recover H . Under (3)-(5), the ML estimator is given by

min
θ,β,ϕ

−
R
∑

i=1

log
[

Φ
( b̄i − a⊤

i h

σ

)

− Φ
(bi − a⊤

i h

σ

)]

s.t. Ω(θ,β,φ) = H,

(6)

where Ω(θ,β,φ) represents the model in (1) of the channel

matrix H , Φ is the cumulative distribution function (CDF) of

standard Gaussian distribution, and ai is the ith row of A.

The estimator finds the model parameters that maximize the

likelihood of yi residing in the quantization interval [bi, b̄i].
Problem (6) can be regarded as a structured matrix recovery

problem, where the latent factors of H are generated over

array manifolds. We see that the manifold constraint poses

great challenge in algorithm design.

Problem 6 is a nontrivial manifold-constrained nonconvex

optimization problem. We propose an ADMM algorithm [16]

to tackle (6). The augmented Lagrangian function associated

to problem (6) can be expressed as

LΛ(Γ,U) =−
R
∑

i=1

log
[

Φ
( b̄i − a⊤

i h

σ

)

− Φ
(bi − a⊤

i h

σ

)]

+ ⟨Λ,H −U⟩+
ρ

2
∥H −U∥2F ,

(7)

where Γ = (θ,β,φ), U = Ω(Γ), Λ is the Lagrangian dual

variable, ρ > 0 is a pre-specified stepsize parameter. At the

ℓth iteration, the ADMM algorithm has the following updates:

Γ
ℓ+1 =argmin

Γ

1

2
∥U − (Hℓ +

1

ρ
Λ

ℓ)∥2F , (8a)

s.t. Ω(Γ) = U

Hℓ+1 =argmin
H

−
R
∑

i=1

log
[

Φ
( b̄i − aT

i h

σ

)

− Φ
(bi − aT

i h

σ

)]

+ ⟨Λℓ,H −U ℓ+1⟩+
ρ

2
∥H −U ℓ+1∥2F , (8b)

Λ
ℓ+1 = Λ

ℓ + ρ(Hℓ+1 −U ℓ+1). (8c)

Note Problems (8a) and (8b) are still nontrivial optimization

problemsÐyet each of them admits efficient off-the-shelf

solvers.

A. Harmonic Retrieval for Problem (8a)

Problem (8a) is known as a 2D harmonic retrieval (HR)

problem in the literature, which has been widely studied [17]±

[19]. We adopt the RELAX method [18] to find a solution,

which mainly uses 2D FFT. We outline how RELAX is applied

to problem (8a). Note the fact that

vec(Ar(θ)Diag(β)At(φ)
H) =

K
∑

k=1

a∗
t (ϕk)⊗ ar(θk)βk,

where ⊗ is the Kronecker product and ∗ denotes the complex

conjugate. Problem (8a) can be rewritten as

min
θ,β,φ

∥

∥

∥
ξ −

K
∑

k=1

a∗
t (ϕk)⊗ ar(θk)βk

∥

∥

∥

2

2
,

where ξ = vec(H + 1
ρ
Λ).

RELAX updates (θ,β,φ) in a coordinate-wise fashion. In

each step, given {θj , ϕj , βj}j ̸=k, RELAX updates (θk, ϕk, βk).
Define

ξk = ξ −
∑

j ̸=k

a∗
t (ϕj)⊗ ar(θj)βj .

Then, the optimization problem with respect to (θk, ϕk, βk) is

given by

min
θk,ϕk,βk

∥ξk − a∗
t (ϕk)⊗ ar(θk)βk∥

2
2. (9)

The optimal βk to (9) given other parameters is β̂k =
(at(ϕk)⊗ar(θk))

Hξk

MN
. By substituting β̂k back into (9), we get

(θk, ϕk) = arg max
θk,ϕk

|(a∗
t (ϕk)⊗ ar(θk))

Hξk|
2,

which can be solved by 2D FFT; see [18] for more details. As

seen, the subproblem with respect to (θk, ϕk, βk) for each k

can be efficiently solved. The RELAX algorithm is shown in

Algorithm 1.

Algorithm 1 RELAX for 2D Harmonic Retrieval [18]

1: Input: β = 0

2: for i = 1, . . . ,K do

3: repeat

4: for k = 1, . . . , i do

5: ξk = ξ −
∑i

j ̸=k a
∗
t (ϕj)⊗ ar(θj)βj

6: solve max
θk,ϕk,βk

∥ξk − a∗
t (ϕk)⊗ ar(θk)βk∥

2
2

7: end for

8: until {θk, ϕk, βk}
i
k=1 converges

9: end for

B. EM Algorithm for Problem (8b)

Problem (8b) is an unconstrained convex optimization prob-

lem, which can be solved by proximal gradient method [20]

or expectation-maximization (EM) algorithm [21], [22]. We

apply the EM algorithm to tackle (8b). The EM algorithm

relies on the following variational inequality

− log
[

Φ
( b̄i−aT

i h

σ

)

−Φ
(bi − aT

i h

σ

)]

≤
1

2σ2
|zi−aT

i h|
2+c,

where

zi = a⊤
i h̄+ σ

ϕ(
b
i
−aT

i
h̄

σ
)− ϕ(

b̄i−aT

i
h̄

σ
)

Φ(
b̄i−aT

i
h̄

σ
)− Φ(

b
i
−aT

i
h̄

σ
)

for some h̄, and equality holds when h̄ = h; ϕ is the proba-

bility density function of standard Gaussian distribution and c

is a constant irrelevant to h. Let t be the EM iteration index.



For solving (8b), each EM iteration involves the following two

iterative steps:

E-step : zt+1
i = a⊤

i h
t + σ

ϕ(
b
i
−aT

i
ht

σ
)− ϕ(

b̄i−aT

i
ht

σ
)

Φ(
b̄i−aT

i
ht

σ
)− Φ(

b
i
−aT

i
ht

σ
)
,

M-step : ht+1 = argmin
h

1

2σ2
∥Ah− zt+1∥2

+ ⟨Λℓ,H −U ℓ+1⟩+
ρ

2
∥H −U ℓ+1∥2F

= (
1

2σ2
A⊤A+

ρ

2
I)−1(

1

σ2
A⊤zk+1 − λk + ρuℓ+1),

(10)

where λ = vec(Λ), u = vec(U). When the EM algorithm

converges, e.g., ∥ht+1 − ht∥2 ≤ ϵ for some ϵ > 0, we output

hℓ+1 = ht+1.

To summarize, the overall channel feedback and recovery

scheme is shown in Algorithm 2. One can see that most of

computations are carried out at the BS end, which is desired.

Algorithm 2 Channel Feedback and Recovery Scheme

1: input channel H

2: mobile user:

3: compress channel by r = Ah,

4: quantize channel by y = Q(r + v),
5: send y to the BS.

6: BS:

7: initializations of H0 and Λ
0

8: repeat

9: solve (8a) by Algorithm 1 to get Γℓ+1,

10: solve (8b) by EM (10) to get Hℓ+1,

11: update Λℓ+1 by (8c),

12: until some convergence criterion is satisfied.

IV. SIMULATION

First, we consider the case where the quantizer Q only uses

one bit, i.e., binary quantization. We consider the following

benchmark algorithms: 1) CS formulation solved by proximal

gradient [6], termed as ªCS-PGº and 2) CS formulation

solved by EM and matching pursuit [10], termed as ªEM-

MPº. For these methods, we discretzie [0, π] into 256 equi-

spaced intervals. We need to mention that CS-PG [6] and

EM-MP [10] were not proposed under the same feedback

scheme in Algorithm 2; we repurpose them to handle the

feedback scheme in Algorithm 2 for the sake of performance

comparison.

The MIMO channel size is (M,N) = (16, 16). The number

of paths K = 4. The noise power is 30dB. Fig. 2 shows the

normalized mean squared error (NMSE) performance under

different number of compression measurements R. The NMSE

is defined as

NMSE =
∥

∥

∥

Ĥ

∥Ĥ∥F
−

H

∥H∥F

∥

∥

∥

2

F
,

where Ĥ is the output of considered algorithms.

100 150 200 250 300 350 400 450 500

no. of measurements,R

10-2

10-1

100

101

M
S

E

proposed

CS-PG

EM-MP

Fig. 2: NMSE performance of considered algorithms

It is seen that the proposed algorithm achieves better re-

covery performance. Notably, the proposed method attains an

NMSE ≤ 10−1 when R = 200 bits of feedback are used, while

the most competitive baseline (i.e., CS-PG) could not attain

the same NMSE using R ≤ 450. This presents a substantial

overhead saving by more than 50%.

In this case, transmitting h under float-16 format will

require over 8, 000 bits. We see that our proposed approach

attains reasonable performance when the number of compres-

sion measurements R = 300, which requires only 300 bits.

As a result, over 95% feedback overhead is saved.

Next, we test the performance of proposed algorithm with

respect to different levels of quantization and the different

number of compression measurements. Fig. 3 shows the

performance under two different problem sizes. First, it is

seen that with increasing compression measurements R, the

recovery performance gets betterÐas expected. Second, if

each measurement of y is quantized using more bits, the

performance of the proposed method is further enhanced.

More specifically, our empirical results suggest that using 3-

bit quantization and R = 200 compression measurements is

more preferable than using 1-bit quantization and R = 600Ð

as shown in Fig. 3. Note that both strategies feed back the

same amount of bits, but the 3-bit quantization may make the

recovery problem less challenging.

V. CONCLUSION

In this paper, we revisited the limited feedback based CSI

estimation problme in FDD massive MIMO systems. We

proposed a random quantization and compression strategy

and an MLE-based CSI recovery algorithm at the user end

and the BS side, respectively. Like prior works using CS-

based formulation, our feedback strategy only requires the

user to perform relatively simple matrix-vector multiplication

operations. However, our recovery accuracy is substantially

higher than those of the compressive sensing-based baselines.
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