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Abstract—This paper focuses on downlink channel state in-
formation (CSI) acquisition. A frequency division duplex (FDD)
of massive MIMO system is considered. In such systems, the
base station (BS) obtains the downlink CSI from the mobile
users’ feedback. A key consideration is to reduce the feedback
overhead while ensuring that the BS accurately recovers the
downlink CSI. Existing approaches often resort to dictionary-
based or tensor/matrix decomposition techniques, which either
exhibit unsatisfactory accuracy or induce heavy computational
load at the mobile end. To circumvent these challenges, this work
formulates the limited channel feedback problem as a quantized
and compressed matrix recovery problem. The formulation
presents a computationally challenging maximum likelihood
estimation (MLE) problem. An ADMM algorithm leveraging
existing harmonic retrieval tools is proposed to effectively tackle
the optimization problem. Simulations show that the proposed
method attains promising channel estimation accuracy, using
a much smaller amount of feedback bits relative to existing
methods.

Index Terms—channel state information, matrix/tensor recov-
ery, quantization, compression

I. INTRODUCTION

In multiple-input-multiple-output (MIMO) communication
systems, downlink channel state information (CSI) at the base
station (BS) is vital for many tasks including multiplexing,
beamforming, and resource allocation [1], [2]. In the massive
MIMO systems, the number of antennas at the base sta-
tion/mobile users can easily reach tens or hundreds—i.e., the
downlink channel matrix can be of very high dimension [1],
[3]. Under such circumstances, acquiring accurate downlink
CSI at the BS becomes a challenging task. Particularly, in
frequency division duplex (FDD) systems, downlink CSI on
the BS side is usually acquired from mobile users’ feedback
[4], [5], as channel reciprocity does not hold in FDD systems.
However, transmitting back the full channel matrix to the BS is
not viable, as it incurs high feedback overhead; see discussions
in [6], [7].

Central to the implementation of an FDD massive MIMO
system is a downlink CSI acquisition strategy using limited
user feedback. Quantization and compression are most widely
considered techniques for this purpose. A classic way is to
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apply vector quantization (VQ) on the (Rayleigh) channel
matrix; see, e.g., [5]. Both mobile user and BS maintain a
common VQ dictionary. The channel matrix is quantized as
a codeword in the dictionary—and only the codeword is fed
back to the BS [8], [9]. For angular channel models that is
often used in massive MIMO systems, one can exploit the fact
that the channel is sparse in the spatial angular domain [1],
[6], [10], [11]. By applying grid discretization on the spatial
angle, the channel estimation problem can be formulated as a
compressed sensing (CS) problem [6], [10]. These approaches
often exhibit unsatisfactory recovery accuracy, as neither the
codewords nor the discretized spatial domain could fully
capture the downlink CSI. Another line of work estimates
the key parameters of the downlink channel at the mobile
end, leveraging the parsimonious angular parametrization us-
ing tensor/matrix decomposition and harmonic retrieval tech-
niques; see, e.g., [7], [12]-[14]. However, these approaches
render heavy computational loads on the mobile end, which
is undesired for various reasons, e.g., energy consumption
considerations and hardware limitations.

In this paper, we revisit the limited feedback-based CSI
acquisition problem in FDD massive MIMO systems. Our pro-
posed scheme is as follows: the mobile user first compresses
the channel matrix using a random compression matrix, and
then quantizes the compressed channel matrix with random
dithering. The quantized and compressed channel matrix is
then transmitted back to the BS. This way, no complex
computation is involved at the user end, and the amount of the
feedback bits is under control. On the BS side, we propose
to recover the downlink channel matrix using maximum-
likelihood estimation (MLE)—which is in accordance with our
random compression/quantization strategy. The MLE problem
presents an optimization challenge due to its array manifold-
enforcing nonconvex constraints. We propose an alternating
direction method of multipliers (ADMM) to tackle the MLE
problem. By a careful variable-splitting design, each ADMM
subproblem can be efficiently tackled, leveraging existing
effective harmonic retrieval solvers and quantzied compressive
sensing tools. We showcase the effectiveness of the proposed
approach through numerical simulations.
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Fig. 1: Quantized and compressed channel CSI feedback

II. PROBLEM STATEMENT
A. Channel Model

We consider a frequency division duplex (FDD) massive
MIMO system, where BS and each mobile user have N trans-
mit antennas and M receive antennas, respectively. Suppose
that both the BS and the user are equipped with uniform
linear arrays. The downlink channel from BS to a user can
be characterized by the following multipath model [1]:

K
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k=1
where K is the number of paths, 5, € C is the path loss of
path k, and a, and a; are the steering vectors at the user and
BS sides, respectively, which are defined as
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in which d is inter-antenna spacing, ) is the carrier wavelength,
0, and ¢y are the angle of arrival at the user and angle of
departure at the BS, respectively. In (1), we have used the
notation @ = [0,...,0x]", ¢ = [¢1,...,0K]", and B =
[81,...,BK]"; in addition, Diag(z) forms a diagonal matrix
with z being the diagonal elements.

The BS needs the downlink CSI, i.e., H, to perform many
tasks, such as beamforming and resource allocation [1], [2],
[4]. In FDD systems, the mobile user can acquire H in
the training phase and send it back to the BS via feedback
channel; see Fig. 1 for an illustration. However, H is a high-
dimensional matrix in massive MIMO systems, which may
incur high overhead if the feedback is done naively.

B. Existing Approaches

From (1), it is seen that H can be represented by K
paths, which exhibits sparsity in the spatial angular domain.
As a result, the works in [6], [10] proposed to feed back a
compressed version of H, and let the BS recover it via a
compressive sensing(CS)-based formulation. For example, the
work in [6] approximated H via spatial discretization, i.e.,

H ~ D,,GD{{ , (2)
where

D, =[a;(01),...,a,(01)], D: = lai(¢1),...,a:(¢r)]

are the steering vector dictionaries formed by discretizing
angle [0, 7] using L grids, and G is a sparse matrix whose
(i, j)th entry being nozero “activates” the ith and jth columns
of D, and D, respectively. The BS receives a compressed
version of H and uses a CS-based formulation to recover the
sparse G. A caveat lies in the tradeoff between approximation
accuracy and model complexity. Increasing L can improve
the approximation accuracy in (2), but the dimension of G
increases quadratically with L. Thus, this approach often
exhibits unsatisfactory CSI estimation accuracy if the number
of feedbac bits is limited, as will be seen in the simulations.

Another line of work exploited the fact that H resides on
the Vandermonde array manifolds parameterized by (0, 3, ¢),
and to use tensor/matrix methods and harmonic retrieval
algorithms to estimate the parameters at the user side [7], [12]-
[14]. Then, the mobile user sends the parameters to the BS.
These methods usually show better recovery performance, as
the angular domain is not discretized. But the computational
burden on the user side is often quite high, as estimating
(0,8, ¢) from H per se is a highly nontrivial optimization
problem. Note that from a system design viewpoint, letting
mobile users carry out heavy computations is not desired, as
the mobile devices only have limited energy supplies and the
hardware is less powerful compared to the BS.

C. Quantized and Compressed Feedback

In this work, we propose a CSI estimation method via
exploiting the manifold structure of H as in [7], [14], but
our method shifts the computational burden to the BS.

To proceed, let

h =vec(H), H = [%(H)} € RPMXN, 3)

S(H)

We first compress h by a random matrix A € REX2MN yjth
R < 2MN, whose elements follow a;; ~ N(0,1). The
compressed channel measurements are expressed as follows:

r = Ah. “4)

Then, we apply quantization with random dithering to = and
get
y=9Q(r+v), &)

where Q is an elementwise uniform quantizer with 2D
quantization levels {£b,£3b,...,+£(2D — 1)b}, 2b is the
quantization interval, and v ~ N (0, 0%1) is artificially added
noise. For signal quantization, it is well-known that adding
a certain amount of artificial noise v may have a “dithering”
effect and enhances the recovery performance. This is because
signal correlation together with the noise perturbation help
retain information (e.g., whether or not the unquantized signal
value is close to the bin boundary) lost in the quantization
process; see [15]. The mobile user feeds back y, rather than H
itself, to the BS. Assuming that y is received by the BS without
losses, the BS recovers H from y, given the knowledge of A
and Q.



III. PROPOSEE CSI RECOVERY ALGORITHM

We adopt maximum-likelihood estimation (MLE) at the BS
to recover H. Under (3)-(5), the ML estimator is given by

_aT
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where Q(0, 8, ¢) represents the model in (1) of the channel
matrix H, ® is the cumulative distribution function (CDF) of
standard Gaussian distribution, and a; is the ith row of A.
The estimator finds the model parameters that maximize the
likelihood of y; residing in the quantization interval [b;, b;].
Problem (6) can be regarded as a structured matrix recovery
problem, where the latent factors of H are generated over
array manifolds. We see that the manifold constraint poses
great challenge in algorithm design.

Problem 6 is a nontrivial manifold-constrained nonconvex
optimization problem. We propose an ADMM algorithm [16]
to tackle (6). The augmented Lagrangian function associated
to problem (6) can be expressed as
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where T' = (0,8, ¢), U = Q(T), A is the Lagrangian dual

variable, p > 0 is a pre-specified stepsize parameter. At the
lth iteration, the ADMM algorithm has the following updates:

1 1
P =argmin o||U — (H"+;Af)||%, (8a)

st. QM) =U

where ® is the Kronecker product and * denotes the complex
conjugate. Problem (8a) can be rewritten as

K 2
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where £ = vec(H + 1 A).

RELAX updates (68,3, ¢) in a coordinate-wise fashion. In
each step, given {6, ¢;, 5;} 1, RELAX updates (0, o, Br).
Define

&=£-) aj(4;) @a.(0,)8;
ik
Then, the optimization problem with respect to (0y, ¢k, Bk ) is
given by

min_ & — a; (4x) ® a,(0x)Bx 3. ©)
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The optimal 6}}6 to (9) given other parameters is Bk =
(a‘(‘l)’“)%f;;\,(o’“)) &: . By substituting 3), back into (9), we get

(Ok, Pr) = arg max (@} (¢r) @ a,(01)) T €x|%,

which can be solved by 2D FFT; see [18] for more details. As
seen, the subproblem with respect to (6, ¢, Bx) for each k
can be efficiently solved. The RELAX algorithm is shown in
Algorithm 1.

Algorithm 1 RELAX for 2D Harmonic Retrieval [18]
1: Input: 3=0

2. fori=1,...,K do

3:  repeat

4 for k=1,...,7do

5 € 5 Zj;ék at (¢j)®ar( )6]

6: solve max & — af(dx) @ ar(0r)Bk3
Ok, 01,8k

7 end for

8 until {0k, dr, B }i_, converges

9: end for

e a3 s o (M) —a (Bt
i=1
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(8b)
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Note Problems (8a) and (8b) are still nontrivial optimization
problems—yet each of them admits efficient off-the-shelf
solvers.

A. Harmonic Retrieval for Problem (8a)

Problem (8a) is known as a 2D harmonic retrieval (HR)
problem in the literature, which has been widely studied [17]—
[19]. We adopt the RELAX method [18] to find a solution,
which mainly uses 2D FFT. We outline how RELAX is applied
to problem (8a). Note the fact that

K
vec(A,(0)Diag(3) Za (#r) @ a,(0k) Br,
k=1

B. EM Algorithm for Problem (8b)

Problem (8b) is an unconstrained convex optimization prob-
lem, which can be solved by proximal gradient method [20]
or expectation-maximization (EM) algorithm [21], [22]. We
apply the EM algorithm to tackle (8b). The EM algorithm
relies on the following variational inequality

flog[q)(@) -

where

b, —alh 1
(2 )| s g lei—al bl e,
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for some h, and equality holds when h = h; ¢ is the proba-
bility density function of standard Gaussian distribution and ¢
is a constant irrelevant to h. Let ¢ be the EM iteration index.



For solving (8b), each EM iteration involves the following two
iterative steps:
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where A = vec(A), u = vec(U). When the EM algorithm
converges, e.g., |k — ht||; < € for some € > 0, we output
R+l — pt+1

To summarize, the overall channel feedback and recovery
scheme is shown in Algorithm 2. One can see that most of
computations are carried out at the BS end, which is desired.

Algorithm 2 Channel Feedback and Recovery Scheme

1: input channel H
2: mobile user:
3:  compress channel by » = Ah,

4:  quantize channel by y = Q(r + v),

5 send y to the BS.

6: BS:

7:  initializations of H° and A°

8 repeat

9 solve (8a) by Algorithm 1 to get T'‘*1,
10: solve (8b) by EM (10) to get H**!,
11: update A1 by (8c),

12:  until some convergence criterion is satisfied.

IV. SIMULATION

First, we consider the case where the quantizer Q only uses
one bit, i.e., binary quantization. We consider the following
benchmark algorithms: 1) CS formulation solved by proximal
gradient [6], termed as “CS-PG” and 2) CS formulation
solved by EM and matching pursuit [10], termed as “EM-
MP”. For these methods, we discretzie [0, 7] into 256 equi-
spaced intervals. We need to mention that CS-PG [6] and
EM-MP [10] were not proposed under the same feedback
scheme in Algorithm 2; we repurpose them to handle the
feedback scheme in Algorithm 2 for the sake of performance
comparison.

The MIMO channel size is (M, N) = (16, 16). The number
of paths K = 4. The noise power is 30dB. Fig. 2 shows the
normalized mean squared error (NMSE) performance under
different number of compression measurements R. The NMSE
is defined as

H H H2

NMSE:H =
|H|r [HlF

)
F

where H is the output of considered algorithms.
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Fig. 2: NMSE performance of considered algorithms

It is seen that the proposed algorithm achieves better re-
covery performance. Notably, the proposed method attains an
NMSE < 10! when R = 200 bits of feedback are used, while
the most competitive baseline (i.e., CS-PG) could not attain
the same NMSE using R < 450. This presents a substantial
overhead saving by more than 50%.

In this case, transmitting h under float-16 format will
require over 8,000 bits. We see that our proposed approach
attains reasonable performance when the number of compres-
sion measurements R = 300, which requires only 300 bits.
As a result, over 95% feedback overhead is saved.

Next, we test the performance of proposed algorithm with
respect to different levels of quantization and the different
number of compression measurements. Fig. 3 shows the
performance under two different problem sizes. First, it is
seen that with increasing compression measurements R, the
recovery performance gets better—as expected. Second, if
each measurement of y is quantized using more bits, the
performance of the proposed method is further enhanced.
More specifically, our empirical results suggest that using 3-
bit quantization and R = 200 compression measurements is
more preferable than using 1-bit quantization and R = 600—
as shown in Fig. 3. Note that both strategies feed back the
same amount of bits, but the 3-bit quantization may make the
recovery problem less challenging.

V. CONCLUSION

In this paper, we revisited the limited feedback based CSI
estimation problme in FDD massive MIMO systems. We
proposed a random quantization and compression strategy
and an MLE-based CSI recovery algorithm at the user end
and the BS side, respectively. Like prior works using CS-
based formulation, our feedback strategy only requires the
user to perform relatively simple matrix-vector multiplication
operations. However, our recovery accuracy is substantially
higher than those of the compressive sensing-based baselines.
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