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Abstract—We develop approximate estimation methods for exponential
random graph models (ERGMs), whose likelihood is proportional to an
intractable normalizing constant. The usual approach approximates this
constant with Monte Carlo simulations; however, convergence may be ex-
ponentially slow. We propose a deterministic method, based on a variational
mean-field approximation of the ERGM’s normalizing constant. We com-
pute lower and upper bounds for the approximation error for any network
size, adapting nonlinear large deviation results. This translates into bounds
on the distance between true likelihood and mean-field likelihood. Monte
Carlo simulations suggest that in practice, our deterministic method per-
forms better than our conservative theoretical approximation bounds imply,
for a large class of models.

I. Introduction

THIS paper studies variational mean-field methods to ap-
proximate the likelihood of exponential random graph

models (ERGMs), a class of statistical network formation
models that has become popular in sociology, machine learn-
ing, statistics, and, more recently, economics. While a large
part of the statistical network literature is devoted to mod-
els with unconditionally or conditionally independent links
(Graham, 2017; Airoldi et al., 2008; Bickel et al., 2013),
ERGMs allow for conditional and unconditional dependence
among links (Snijders, 2002; Wasserman & Pattison, 1996).
These models have recently gained attention in economics
because several works have shown that ERGMs have a mi-
croeconomic foundation. In fact, the ERGM likelihood nat-
urally emerges as the stationary equilibrium of a poten-
tial game, where players engage in a myopic best-response
dynamics of link formation (Blume, 1993; Mele, 2017;
Badev, 2013; Chandrasekhar, 2016; Chandrasekhar & Jack-
son, 2014; Boucher & Mourifie, 2017), and in a large class
of evolutionary games and social interaction models (Blume,
1993; Durlauf & Ioannides, 2010).

Estimation and inference for ERGMs are challenging be-
cause the likelihood of the observed network is propor-
tional to an intractable, normalizing constant that cannot
be computed exactly, even in small networks. Therefore,
exact maximum likelihood estimation (MLE) is infeasible.
The usual estimation approach, the Markov chain Monte
Carlo MLE (MCMC-MLE), consists of simulating many net-
works using the model’s conditional link probabilities and
approximating the constant and the likelihood with Monte
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Carlo methods (Snijders, 2002; Koskinen, 2004; Chatterjee &
Diaconis, 2013; Mele, 2017). Estimates of the MCMC-MLE
converge almost surely to the MLE if the likelihoods are well
behaved (Geyer & Thompson, 1992). However, recent litera-
ture has shown that the simulation methods used to compute
the MCMC-MLE may have exponentially slow convergence,
making estimation and approximation of the likelihood im-
practical or infeasible for a large class of ERGMs (Bhamidi,
Bresler, & Sly, 2011; Chatterjee & Diaconis, 2013; Mele,
2017). An alternative is the maximum pseudo-likelihood es-
timator (MPLE), which finds the parameters that maximize
the product of the conditional link probabilities of the model.
While MPLE is simple and computationally fast, the proper-
ties of the estimator are not well understood, except in special
cases, when some regularity conditions are satisfied (Boucher
& Mourifie, 2017; Besag, 1974); in practice MPLE may give
misleading estimates when the dependence among links is
strong (Geyer & Thompson, 1992). Furthermore, since the
ERGMs are exponential families, networks with the same
sufficient statistics will produce the same MLE but may have
different MPLE.

Our work departs from the standard methods of estima-
tion, proposing deterministic approximations of the likeli-
hood, based on the approximated solution of a variational
problem. Our strategy is to use a mean-field algorithm to
approximate the normalizing constant of the ERGM at any
given parameter value (Wainwright & Jordan, 2008; Bishop,
2006; Chatterjee & Diaconis, 2013). We then maximize the
resulting approximate log likelihood with respect to the pa-
rameters. To be concrete, our approximation consists of us-
ing the likelihood of a simpler model with independent links
to approximate the constant of the ERGM. The mean-field
approximation algorithm finds the likelihood with indepen-
dent links that minimizes the Kullback-Leibler divergence
from the ERGM likelihood. Using this likelihood with inde-
pendent links, we compute an approximate normalizing con-
stant. We then evaluate the log likelihood of our model, where
the exact normalizing constant is replaced by its mean-field
approximation.

Our contribution is the computation of exact bounds for
the approximation error of the normalizing constant’s mean-
field estimate. Our proofs use the theoretical machinery of
Chatterjee and Dembo (2016) for nonlinear large deviations
in models with intractable normalizing constants. Using this
powerful tool, we provide explicit lower and upper bounds
to the error of approximation for the mean-field, normalizing
constant. The bounds depend on the magnitude of the param-
eters of our model and the size of link externalities (Mele,
2017; Boucher & Mourifie, 2017; Chandrasekhar, 2016;
DePaula, 2017). The result holds for dense and moderately
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sparse networks. Remarkably and conveniently, the mean-
field error converges to 0 as the network becomes large. This
guarantees that for large networks, the log-normalizing con-
stant of an ERGM is well approximated by our mean-field
log-normalizing constant.

The main implication of our main result is that we can
compute bounds to the distance between the log likelihood
of the ERGM and our approximate log likelihood; these also
converge in sup-norm as the network grows large. As a conse-
quence, we can use the approximated likelihood for estima-
tion in large networks. If the likelihood is strictly concave, it
is possible to show that our approximate estimator converges
to the maximum likelihood estimator as long as the network
grows large. Furthermore, because our bounds may not be
sharp, in practice convergence could be faster than what is
implied in these results.

While our method is guaranteed to perform well in large
graphs, many applications involve small networks. For ex-
ample, the school networks data in the National Longitudi-
nal Study of Adoloscent Health (Add Health) (Boucher &
Mourifie, 2017; Moody, 2001; Badev, 2013) or the Indian
villages in Banerjee et al. (2013) include on average about
200 to 300 nodes. To understand the performance of our esti-
mator in practice, we perform simple Monte Carlo exercises
in networks with a few hundred nodes, comparing mean-field
estimates to MCMC-MLE and MPLE. Our Monte Carlo re-
sults show that in practice, our estimator works better than
the theoretical results suggest, for networks with 50 to 1,000
nodes. The median mean-field approximation point estimates
are close to the true parameters but exhibit a small bias. Both
MCMC-MLE and MPLE show a larger variability of point
estimates for the two-stars and triangle parameters, measured
as median absolute deviation. When we increase the network
size, all three estimators improve, as expected. We conclude
that our method’s performance is comparable to available
estimators in small networks. While our code can be made
faster by exploiting efficient matrix algebra libraries and par-
allelization, the CPU time for estimation is comparable to
the estimators implemented in the ergm package in R for
networks with fewer than 200 nodes.

The main message of our theoretical results and Monte
Carlo simulations is that the approximate mean-field ap-
proach is a valid alternative to existing methods for estima-
tion of a large class of ERGMs. We note that our theoretical
bounds may not be sharp, and in practice the mean-field al-
gorithm may have better performance than what is implied
by our conservative results, as confirmed by our Monte Carlo
experiments.

To the best of our knowledge, this paper is one of the first
works in economics to use mean-field approximations for
approximate estimation of complex models. We show that
our application of variational approximations has theoreti-
cal guarantees, and we can bound the error of approxima-
tion. While similar deterministic methods have been used to
provide an approximation to the normalizing constant of the
ERGM model (Chatterjee & Diaconis, 2013; Amir, Pu, &

Espelage, 2012; Mele, 2017; He & Zheng, 2013; Aristoff &
Zhu, 2018), we are the first to characterize the variational
approximation error for a model with covariates and its com-
putational feasibility.

Our technique can be applied to other models in eco-
nomics and social sciences. For example, models of social
interactions with binary decisions as in Blume (1993), Badev
(2013), and Durlauf and Ioannides (2010); models for bun-
dles (Fox & Lazzati, 2017); and models of choices from
menus (Kosyakova et al., 2020) have similar likelihoods with
intractable normalizing constants. Therefore, our method of
approximation may allow estimation of these models for large
sets of bundles or menu choices.

The rest of the paper is organized as follows. Section II
presents the theoretical model and variational approxima-
tions. Section III contains the main theoretical results and
the error bounds. Section IV presents the Monte Carlo results,
and section V concludes. All the proofs are in the appendix.
Additional results, Monte Carlo simulations, and discussions
are in the online appendix.

II. Network Formation Model and Variational Methods

A. Exponential Random Graph Models

The class of exponential random graphs is an important
generative model for networks and has been extensively used
in applications in many disciplines (Wasserman & Pattison,
1996; Jackson, 2010; DePaula, 2017; Mele, 2017; Moody,
2001; Wimmer & Lewis, 2010; Amir et al., 2012). In this
paper we consider a model with nodal covariates, two-stars,
and triangles.

Our model assumes that the network consists of n het-
erogeneous nodes, indexed by i = 1, . . . , n; each node is
characterized by an S-dimensional vector of observed at-
tributes τi ∈ X := ⊗S

j=1X j , i = 1, . . . , n. The sets X j can
represent, for example, age, race, gender, and income.1 Let α

be an n × n symmetric matrix with elements αi j := ν(τi, τ j ),
where ν : X × X → R is a symmetric function, and let β and
γ be scalars. For ease of exposition, we focus on the case in
which the attributes are discrete and finite, but our results hold
when this assumption is relaxed and the number of attributes
is allowed to increase with the size of the network.

The likelihood πn(g, α, β, γ) of observing the adjacency
matrix g depends on the composition of links, the number of
two-stars, and the number of triangles

πn(g; α, β, γ) = exp
[
Qn(g; α, β, γ)

]
∑

ω∈Gn
exp

[
Qn(ω; α, β, γ)

] , (1)

1For instance, if we consider gender and income, then S = 2, and we can
take ⊗2

j=1X j = {male, female} × {low, medium, high}. The sets X j can be
both discrete and continuous. For example, if we consider gender and in-
come, we can also take ⊗2

j=1X j = {male, female} × [$50,000, $200,000].
Below we restrict the covariates to be discrete, but we allow the number of
types to grow with the size of the network.
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where the function Q is called a potential function and takes
the form

Qn(g; α, β, γ) =
n∑

i=1

n∑
j=1

αi jgi j + β

2n

n∑
i=1

n∑
j=1

n∑
k=1

gi jg jk

+ 2γ

3n

n∑
i=1

n∑
j=1

n∑
k=1

gi jg jkgki, (2)

and c(α, β, γ) :=∑ω∈Gn
exp

[
Qn(ω; α, β, γ)

]
is a normaliz-

ing constant that guarantees that the likelihood, equation (1),
is a proper distribution. The second and third terms of the po-
tential function, equation (2), are the counts of two-stars and
triangles in the network, rescaled by n. We rewrite equation
(1) as

πn(g; α, β, γ) = exp
{
n2
[
Tn(g; α, β, γ) − ψn(α, β, γ)

]}
, (3)

where Tn(g; α, β, γ) = Qn(g; α, β, γ)n−2 is the potential
scaled by n2, and the log-normalizing constant (scaled by
n2) is

ψn(α, β, γ) = 1

n2
log
∑
ω∈Gn

exp
[
n2Tn(ω; α, β, γ)

]
, (4)

and Gn := {ω = (ωi j )1≤i, j≤n : ωi j = ω ji ∈ {0, 1}, ωii =
0, 1 ≤ i, j ≤ n} is the set of all binary matrices with n
nodes. The rescaling of the potential and the log-normalizing
constant is necessary for the asymptotic results, to avoid the
explosion of the potential function as the size of the network
grows large.

B. Microeconomic Equilibrium Foundations

ERGMs caught the attention of economists because recent
work proves a behavioral and equilibrium interpretation of
the likelihood, equation (3).2 In fact, these likelihoods nat-
urally arise as the equilibrium of best-response dynamics in
potential games (Blume, 1993; Monderer & Shapley, 1996;
Butts, 2009; Mele, 2011).

To be concrete, we consider the following game. Play-
ers’ payoffs are a function of the composition of direct links,
friends’ popularity, and the number of common friends. The
utility of network g for player i is given by

ui(g, τ) =
n∑

j=1

αi jgi j + β

n

n∑
j=1

n∑
k=1

gi jg jk

+ γ

n

n∑
j=1

n∑
k=1

gi jg jkgki. (5)

2Butts (2009), Mele (2017), Chandrasekhar and Jackson (2014), Boucher
and Mourifie (2017), Badev (2013), and DePaula (2017).

Each player forms links with other nodes, maximizing util-
ity (see equation 5), but taking into account the strategies of
other players. We can show that this game of network forma-
tion converges to an exponential random graph in a stationary
equilibrium, under the following assumptions:3 (a) the net-
work formation is sequential, with only two active players in
each period; (b) two players meet over time with probability
ρi j := ρ(τi, τ j, g−i j ) > 0, where g−i j indicate the network
g but link gi j , and these meetings are i.i.d. over time; and
(c) before choosing whether to form or delete a link, players
receive an i.i.d. logistic shock (εi j1, εi j0). At time t , the link
gt

i j is formed if

ui(g
t
i j = 1, gt−1

−i j, τ) + u j (g
t
i j = 1, gt−1

−i j, τ) + εt
i j1

≥ ui(g
t
i j = 0, gt−1

−i j, τ) + u j (g
t
i j = 0, gt−1

−i j, τ) + εt
i j0.

Mele (2017) shows that such a model is a potential game
(Monderer & Shapley, 1996) with potential function given
by equation (2). The probability of observing network g in
the long run is given by equation (3) (theorem 1 in Mele,
2017); thus equation (3) describes the stationary behavior of
the model. In the long run, we observe the pairwise stable net-
works with high probability, where no pair of players wants
to form or delete a link.4

C. Variational Approximations

The constant ψn(α, β, γ) in equation (4) is intractable be-
cause it is a sum over all 2(n

2) possible networks with n nodes;
if there are n = 10 nodes, the sum involves the computation of
245 potential functions, which is infeasible.5 In the literature
on exponential family likelihoods with intractable normaliz-
ing constant, this problem is solved by approximating the nor-
malizing constant using Markov chain Monte Carlo (Snijders,
2002; Mele, 2017; Goodreau, Kitts, & Morris, 2009; Koski-
nen, 2004; Caimo & Friel, 2011; Murray et al., 2006). How-
ever, Bhamidi et al. (2011) have shown that such methods
may have exponentially slow convergence for many ERGM
specifications.

We propose methods that avoid simulations, and we find an
approximate likelihood qn(g) that minimizes the Kullback-
Leibler divergence KL(qn|πn) between qn and the true
likelihood πn:

KL(qn|πn) =
∑
ω∈Gn

qn(ω) log

[
qn(ω)

πn(ω; α, β)

]

3See Mele (2017) or Badev (2013) for more technical details and vari-
ants of these assumptions. See also Chandrasekhar (2016), DePaula (2017),
Chandrasekhar and Jackson (2014), and Boucher and Mourifie (2017).

4In online appendix E, we provide more details about the microeconomic
foundation of the model for interested readers.

5See Geyer and Thompson (1992), Murray, Ghahramani, and MacKay
(2006), and Snijders (2002) for examples.
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=
∑
ω∈Gn

qn(ω)
[

log qn(ω) − n2Tn(ω; α, β, γ)

+ n2ψn(α, β, γ)
] ≥ 0. (6)

With some algebra we obtain a lower bound for the constant
ψn(α, β, γ),

ψn(α, β, γ) ≥ Eqn

[
Tn(ω; α, β, γ)

]+ 1

n2
H(qn) := L(qn),

where H(qn) = −∑ω∈Gn
qn(ω) log qn(ω) is the entropy of

distribution qn, and Eqn

[
Tn(ω; α, β, γ)

]
is the expected value

of the rescaled potential, computed according to the distribu-
tion qn.

To find the best likelihood approximation, we minimize
KL(qn|πn) with respect to qn, which is equivalent to finding
the supremum of the lower-bound L(qn), that is,

ψn(α, β, γ) = sup
qn∈Qn

L(qn)

= sup
qn∈Qn

{
Eqn

[
Tn(ω; α, β, γ)

]+ 1

n2
H(qn)

}
,

(7)

where Qn is the set of all the probability distributions on Gn.
We have transformed the problem of computing an intractable
sum into a variational problem, that is, a maximization
problem.

In general, problem (7) has no closed-form solution; thus,
the literature suggests restricting Qn to be the set of all com-
pletely factorized distribution,6

qn(g) =
∏
i, j

μ
gi j

i j (1 − μi j )
1−gi j , (8)

where μi j = Eqn (gi j ) = Pqn (gi j = 1). This approximation is
called a mean-field approximation of the discrete exponential
family. Straightforward algebra shows that the entropy of qn

is additive,

1

n2
H(qn)

= − 1

2n2

n∑
i=1

n∑
j=1

[
μi j log μi j + (1 − μi j ) log(1 − μi j )

]
,

and the expected potential can be computed as

Eqn

[
Tn (ω; α, β, γ)

] =
∑

i

∑
j αi jμi j

n2
+ β

∑
i

∑
j

∑
k μi jμ jk

2n3

+ γ
2
∑

i

∑
j

∑
k μi jμ jkμki

3n3
.

6See Wainwright and Jordan (2008) and Bishop (2006).

The mean-field approximation leads to a lower bound of
ψn(α, β, γ), because we restricted Qn, and the simpler varia-
tional problem is to find an n × n symmetric matrix μ(α, β, γ)
that solves

ψn(α, β, γ) ≥ ψMF
n (μ(α, β, γ))

= sup
μ∈[0,1]n2 :μi j=μ ji,∀i, j

{
1

n2

∑
i, j

αi jμi j + β

2n3

∑
i, j,k

μi jμ jk

+ 2γ

3n3

∑
i, j,k

μi jμ jkμki − 1

2n2

n∑
i=1

n∑
j=1

[
μi j log μi j

+ (1 − μi j ) log(1 − μi j )
]}

. (9)

The mean-field problem is in general nonconvex and the max-
imization can be performed using any global optimization
method (e.g., simulated annealing or Nelder-Mead).7

III. Theoretical Results

A. Convergence of the Variational Mean-Field
Approximation

For finite n, the variational mean-field approximation con-
tains an error of approximation. In the following theorem, we
provide a lower and an upper bound to the error of approxi-
mation for our model:

Theorem 1. For fixed network size n, the approximation er-
ror of the variational mean-field problem is bounded as

C3(β, γ)

n
≤ ψn(α, β, γ) − ψMF

n (μ(α, β, γ))

≤ C1(α, β, γ)

(
log n

n

)1/5

+ C2(α, β, γ)

n1/2
, (10)

where C1(α, β, γ), C2(α, β, γ) are constants depending on α,
β, and γ, and C3(β, γ) is a constant depending only on β, γ:

C1(α, β, γ) := c1 ·
(

max
i, j

|αi j | + |β|4 + |γ|4 + 1

)
,

C2(α, β, γ) := c2 ·
(

max
i, j

|αi j | + |β| + |γ| + 1

)1/2

·(1 + |β|2 + |γ|2)1/2,

C3(β, γ) := |β| + 4|γ|,

where c1, c2 > 0 are some universal constants.

7See Wainwright and Jordan (2008) and Bishop (2006) for more details.
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The constants in theorem 1 are functions of the param-
eters α, β, and γ. The upper bound depends on the max-
imum payoff from direct links and the intensity of payoff
from indirect connections. The lower bound only depends on
the strength of indirect connections payoffs (popularity and
common friends, that is, β and γ). One consequence is that
our result holds when the network is dense but also when it is
moderately sparse, in the sense that |αi j |, |β|, and |γ| can have
moderate growth in n instead of being bounded, and the dif-
ference of ψn and ψMF

n goes to 0 if C1(α, β, γ) grows slower
than n1/5/(log n)1/5 and C2(α, β, γ) grows slower than n1/2 as
n → ∞. For example, if maxi, j |αi j | = O(nδ1 ), |β| = O(nδ2 ),
|γ| = O(nδ3 ) where δ1 < 1

5 and δ2, δ3 < 1
20 , then ψn − ψMF

n
goes to 0 as n → ∞. But if the graph is too sparse, for exam-
ple, |β| = �(n), |γ| = �(n), then ψn cannot be approximated
by ψMF

n .
Our main theorem 1 implies that we can approximate the

log likelihood of the ERGM using the mean-field approxi-
mated constant.

Proposition 1. Let �n(gn, α, β, γ) be the log likelihood of the
ERGM,

�n(gn, α, β, γ) := n−2 log (πn(gn, α, β, γ))

= Tn(gn, α, β, γ) − ψn(α, β, γ),

and �MF
n (gn, α, β, γ) be the mean-field log likelihood ob-

tained by approximating ψn with ψMF
n :

�MF
n (gn, α, β, γ) := Tn(gn, α, β, γ) − ψMF

n (α, β, γ).

Then for any compact parameter space �,

0 ≤ sup
α,β,γ∈�

[
�MF

n − �n
] ≤ sup

α,β,γ∈�

C1(α, β, γ)n−1/5(log n)1/5

+ sup
α,β,γ∈�

C2(α, β, γ)n−1/2. (11)

Proposition 1 shows that as the network size grows large,
the mean-field approximation of the log likelihood �MF

n is
arbitrarily close to the ERGM log likelihood �n. This ap-
proximation is similar in spirit to the MCMC-MLE method,
where the log-normalizing constant is approximated via
MCMC to obtain an approximated log likelihood (Geyer
& Thompson, 1992; Snijders, 2002; DePaula, 2017; Moller
& Waagepetersen, 2004). The main difference is that our
approximation is deterministic and does not require any
simulation.

Note that �MF
n = Tn − ψMF

n and �n = Tn − ψn. If �n con-
verges to �∞ uniformly on a compact parameter space �, then
so does �MF

n . If �n, �
MF
n , and �∞ are continuous and strictly

concave, θ̂n, θ̂MF
n , the unique maximizers of �n and �MF

n , will
converge to the unique maximizer of �∞ and hence θ̂n − θ̂MF

n
will go to 0 as n → ∞. In the online appendix, we provide
further results on the behavior of the mean-field approxima-

tion as n → ∞, where we discuss the convergence of the log
constant.8

The result in proposition 1 can be used to bound the dis-
tance between the mean-field estimate and the maximum like-
lihood estimate for any network size rather than for large
n. However, such bounds require additional and stronger
assumptions on the shape of the likelihood. Indeed, in ap-
pendix B, we show that a sufficient condition for computing
the bound is a strongly concave likelihood. Under such as-
sumption, we can use the bound in proposition 1 for the log
likelihood to provide a bound on the distance between MLE
and mean-field estimator for any network size n. However,
these bounds may not be sharp, and therefore we consider
them very conservative. In the next section, we show via
Monte Carlo simulation that in many cases, our estimator
performs better than the bounds would imply.

IV. Estimation Experiments

To understand the performance of the variational ap-
proximation in smaller networks, we perform some Monte
Carlo experiments. We compare the mean-field approxima-
tion with the standard simulation-based MCMC-MLE (Geyer
& Thompson, 1992; Snijders, 2002) and the MPLE (Besag,
1974). Our method converges in n2 steps, while the MCMC-
MLE may converge in en2

steps. The MPLE usually converges
faster.

A. Approximation Algorithm for the Normalizing Constant

We implemented our variational approximation for a few
models in the R package mfergm, available in Github.9 We
follow the statistical machine learning literature and use an
iterative algorithm that is guaranteed to converge to a local
maximum of the mean-field problem (Wainwright & Jordan,
2008; Bishop, 2006). The algorithm is derived from first-
order conditions of the variational mean-field problem.

Let μ∗ be the matrix that solves the variational problem
(9). If we take the derivative with respect to μi j and equate
to 0 we get

μ∗
i j =

{
1 + exp

[
− 2αi j − βn−1

n∑
k=1

(
μ∗

jk + μ∗
ki

)

− 4γn−1
n∑

k=1

μ∗
jkμ

∗
ki

]}−1

. (12)

The logit equation (12) characterizes a system of equations
whose fixed point is a solution of the mean-field problem. We

8The strict concavity of the likelihood is closely related to the identifica-
tion of parameters in ERGM models, for which there is a lack of general
results (see Mele, 2017; Chatterjee & Diaconis, 2013; Aristoff & Zhu, 2018
for examples in special cases).

9See https://github.com/meleangelo/mfergm , with instructions for instal-
lation and few examples.
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can therefore start from a matrix μ and iterate the updates in
equation (12) until we reach a fixed point, as described in
algorithm 1.

Algorithm 1: Approximation of Log-Normalizing Constant.

Fix parameters α, β, γ, and a relatively small tolerance value
εtol . Initialize the n × n matrix μ(0) as μ

(0)
i j

iid∼U [0, 1], for all
i, j. Fix the maximum number of iterations as T . Then for
each t = 0, . . . , T :

Step 1. Update the entries of matrix μ(t ) for all i, j =
1, . . . , n:

μ
(t+1)
i j =

{
1 + exp

[
− 2αi j − βn−1

n∑
k=1

(
μ

(t )
jk + μ

(t )
ki

)

− 4γn−1
n∑

k=1

μ
(t )
jk μ

(t )
ki

]}−1

. (13)

Step 2. Compute the value of the variational mean-field log
constant ψMF (t )

n as

ψMF (t )
n =

∑
i

∑
j αi jμ

(t )
i j

n2
+ β

∑
i

∑
j

∑
k μ

(t )
i j μ

(t )
jk

2n3

+ γ
2
∑

i

∑
j

∑
k μ

(t )
i j μ

(t )
jk μ

(t )
ki

3n3

− 1

2n2

n∑
i=1

n∑
j=1

[
μ

(t )
i j log μ

(t )
i j

+ (1 − μ
(t )
i j ) log(1 − μ

(t )
i j )
]
.

Step 3. Stop at t∗ ≤ T if: ψMF (t∗ )
n − ψMF (t∗−1)

n ≤ εtol . Other-
wise go back to step 1.

The algorithm is initialized at a random uniform matrix
μ(0) and iteratively applies the update, equation (1), to each
entry of the matrix, until the increase in the objective function
is less than a tolerance level. Since the problem is concave
in each μi j , this iterative method is guaranteed to find a local
maximum of equation (9).10 In our simulations we use a tol-
erance level of εtol = 0.0001. To improve convergence, we
can restart the algorithm from different random matrices, as
usually done with local optimizers.11 This step is easily par-
allelizable, thus preserving the order n2 convergence, while

10There are other alternatives to the random uniform matrix. Indeed a
simple starting value could be the set of conditional probabilities of the
model at parameters α, β, γ. We did not experiment with this alternative
method.

11In the Monte Carlo exercises, we have experimented with different num-
bers of restarts of the iterative algorithm. However, it is not clear what would
be the optimal number of restarts. A fixed number of restarts could be sub-
optimal. It seems reasonable to increase this number as the network grows
larger.

the standard MCMC-MLE is an intrinsically sequential al-
gorithm and cannot be parallelized.

B. Monte Carlo Design

All the computations in this section are performed on
a PC Dell T6610 with 6 Quad-core Intel i7 (48 threads)
and 64 GB RAM. We test our approximation using 1,000
simulated networks. Each node i has a binary attribute xi,

xi
iid∼ Bernoulli(0.5). Let zi j = 1 if xi = x j and zi j = 0 other-

wise.

tz(g) := 1

n2

n∑
i=1

n∑
j=1

gi jzi j; t−z(g) := 1

n2

n∑
i=1

n∑
j=1

gi j (1 − zi j ),

te(g) := 1

n2

n∑
i=1

n∑
j=1

gi j; ts(g) := 1

n3

n∑
i=1

n∑
j=1

n∑
k=1

gi jg jk; tt (g)

:= 1

n3

n∑
i=1

n∑
j=1

n∑
k=1

gi jg jkgki, (14)

where te(g), ts(g), and tt (g) are the fraction of links, two-stars,
and triangles, respectively. And tz(g) and t−z(g) are the frac-
tions of links of the same type and different type, respectively.
The log likelihood of the model �n(g; α, β, γ) is

�n(g, x; α, β, γ) = α1tz(g) + α2t−z(g) + (β/2)ts(g)

+ (2γ/3)tt (g) − ψn(α1, α2, β, γ). (15)

For computational convenience, we rewrite model (15) in
a slightly different but equivalent way,

�n(g, x; α̃, β, γ) = α̃1te(g) + α̃2tz(g) + (β/2)ts(g)

+ (2γ/3)tt (g) − ψn(α1, α2, β, γ), (16)

where we have defined α̃1 := α2 and α̃2 := α1 − α2. We use
specification (16) in our simulations.12

To generate the artificial networks, we draw i.i.d. attributes
xi ∼ Bernoulli(0.5), initialize a network with n nodes as an
Erdos-Renyi graph with probability p = eα̃1/(1 + eα̃1 ), and
then run the Metropolis-Hastings network sampler using the
simulate.ergm command in the R package ergm to sam-
ple 1,000 networks, each separated by 10,000 iterations, and
after a burn-in of 10 million iterations.13 The MCMC-MLE

12There are other small differences in how we have specified the model
and how we have setup computations using the statnet package in R,
which can affect the comparability of the simulation results, in particular
the normalizations of the sufficient statistics. This is handled by our mfergm
package to guarantee comparability of the estimates obtained with MCMC-
MLE, MPLE, and mean-field approximate inference.

13The code is available in the Github package mfergm, and the function
is simulate.model#, where # stands for the model number: 2 is the model
with γ = 0, 3 is the model with β = 0, and 4 is the model with β �= 0 and
γ �= 0.
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TABLE 1.—MONTE CARLO ESTIMATES: COMPARISON OF THREE METHODS

TRUE PARAMETER VECTOR: (α̃1, α̃2, β, γ) = (−2, 1, 1, 1)

MCMC-MLE Mean Field MPLE

α̃1 α̃2 β γ α̃1 α̃2 β γ α̃1 α̃2 β γ

n = 50
median −2.002 1.024 0.716 −2.042 −2.000 0.998 1.000 0.999 −1.957 1.016 0.118 −0.584
mad 0.295 0.238 3.412 26.132 0.044 0.040 0.012 0.012 0.268 0.179 3.261 16.540

n = 100
median −1.991 0.991 0.886 1.183 −2.002 0.995 1.001 0.999 −1.974 0.991 0.713 1.020
mad 0.197 0.117 2.324 16.150 0.020 0.017 0.005 0.005 0.178 0.085 2.237 10.478

n = 200
median −2.000 1.000 1.043 0.438 −2.003 0.995 1.001 0.999 −1.990 1.000 0.853 0.657
mad 0.127 0.064 1.686 10.627 0.009 0.009 0.002 0.002 0.125 0.046 1.613 7.950

n = 500
median −2.000 1.001 1.000 0.706 −2.002 0.994 1.016 0.992 −1.994 1.001 0.912 0.762
mad 0.084 0.033 1.090 6.962 0.007 0.008 0.023 0.011 0.074 0.023 0.945 4.691

Results of 1,000 Monte Carlo estimates using three methods. MCMC-MLE is the Monte Carlo maximum likelihood estimator of Geyer and Thompson (1992), as implemented in ergm in R, with a stochastic
approximation algorithm (Snijders, 2002). Mean Field is our method. MPLE is the maximum pseudo-likelihood estimate. Each network is generated with a 10 million run of the Metropolis-Hastings sampler of the
ergm command in R, sampling every 10,000 iterations. mad is the median absolute deviation.

TABLE 2.—MONTE CARLO ESTIMATES: COMPARISON OF THREE METHODS

TRUE PARAMETER VECTOR: (α̃1, α̃2, β, γ) = (−3, 2, 1, 3)

MCMC-MLE Mean Field MPLE

α̃1 α̃2 β γ α̃1 α̃2 β γ α̃1 α̃2 β γ

n = 50
median −3.041 2.064 0.743 −0.512 −3.007 1.993 1.000 3.000 −3.026 2.083 0.215 1.764
mad 0.476 0.424 3.811 25.109 0.026 0.026 0.013 0.014 0.514 0.401 3.593 16.538

n = 100
median −3.006 2.015 0.932 0.587 −3.011 1.989 1.000 2.999 −2.991 2.018 0.682 1.773
mad 0.261 0.206 2.538 17.905 0.016 0.016 0.008 0.008 0.259 0.194 2.364 12.123

n = 200
median −3.012 2.007 1.069 2.807 −3.011 1.988 1.000 2.999 −3.005 2.011 0.932 2.988
mad 0.158 0.117 1.822 11.360 0.008 0.008 0.004 0.004 0.156 0.109 1.714 8.144

n = 500
median −2.998 2.000 0.951 3.047 −3.011 1.988 1.002 2.999 −2.998 2.001 0.921 3.117
mad 0.096 0.061 1.276 7.191 0.003 0.003 0.002 0.002 0.083 0.049 1.077 5.378

See the notes for table 1.

estimator is solved using the stochastic approximation
method of Snijders (2002), where each simulation has a burn-
in of 100,000 iterations of the Metropolis-Hastings sampler
and networks are sampled every 1,000 iterations. The other
convergence parameters are kept at default of the ergm pack-
age. The MPLE estimate is obtained using the default param-
eters in ergm. To be sure that our results do not depend on
the initialization of the parameters, we start each estimator at
the true parameter value, thus decreasing the computational
time required for convergence. All the code is available in
Github for replication.

C. Results

The first model has true parameter vector (α̃1, α̃2, β, γ) =
(−2, 1, 1, 1), and the summaries of point estimates are re-
ported in table 1. We show results for n = 50, 100, 200, and
500, reporting median and median absolute deviation (mad)
of point estimates for each parameter.

The median estimates of the mean-field approximation are
quite stable and exhibit a small bias, as is well known in
the literature (Wainwright & Jordan, 2008; Bishop, 2006).
The median results for MCMC-MLE and MPLE are quite

precise for α̃1 and α̃2 but vary a lot for β and γ, as shown by
the large median absolute deviation. Nonetheless the median
point estimates of β and γ are slowly converging to the true
parameter vector as n increases.14 Therefore, the mean-field
approximation provides estimates in line with MPLE and
MCMC-MLE, with more reliability for β and γ in these small
sample estimation exercises.

The second set of results is for a model with parameters
(α̃1, α̃2, β, γ) = (−3, 2, 1, 3; see table 2). The pattern is sim-
ilar to table 1. Indeed the mean-field estimator seems to work
relatively well in most cases, especially for the estimates of
β and γ. For parameters α̃1, α̃2 our mean-field estimator (me-
dian) bias persists as n increases. Finally, we also report a
simulation with a larger network with n = 500, 1,000 in table
3. The results are the same as the other tables, and the mean-
field approximation is robustly close to the true parameter
values in most simulations.

Monte Carlo experiments suggest that our approximation
method performs well in practice. We conclude that in most

14Some of the bias in the mean-field approximation may be due to the fact
that we only initialize μ once in these simulations.
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TABLE 3.—MONTE CARLO ESTIMATES: COMPARISON OF THREE METHODS

TRUE PARAMETER VECTOR: (α̃1, α̃2, β, γ) = (−3, 1, 2, 1)

MCMC-MLE Mean Field MPLE

α̃1 α̃2 β γ α̃1 α̃2 β γ α̃1 α̃2 β γ

n = 500
median −3.001 0.998 2.028 −19.034 −3.000 1.000 2.000 1.000 −2.996 1.000 1.488 −7.923
mad 0.086 0.065 7.205 165.600 0.011 0.011 0.0001 0.0001 0.078 0.044 6.345 84.681

n = 1,000
median −2.999 1.004 1.809 −0.716 −3.000 1.000 2.000 1.000 −2.999 1.002 1.757 0.540
mad 0.057 0.037 4.891 125.293 0.005 0.005 0.0001 0.0001 0.049 0.022 4.113 61.328

See the notes for table 1. The case with n = 1,000 contains only 500 Monte Carlo replications.

cases the mean-field approximation algorithm works better
than our conservative theoretical results suggest.15

V. Conclusion and Future Work

We have shown that for a large class of exponential random
graph models (ERGM), we can approximate the normalizing
constant of the likelihood using a mean-field variational ap-
proximation algorithm (Wainwright & Jordan, 2008; Bishop,
2006; Chatterjee & Diaconis, 2013; Mele, 2017). Our theo-
retical results use nonlinear large deviations methods (Chat-
terjee & Dembo, 2016) to bound the error of approximation,
showing that it converges to 0 as the network grows.

Our estimation method consists of replacing the log-
normalizing constant in the log likelihood of the ERGM with
the value approximated by the mean-field algorithm; we then
find the parameters that maximize such approximate log like-
lihood. Since our approximated constant converges to the true
constant in large networks, the approximate log likelihood
converges to the correct log likelihood in sup-norm, as the
network becomes large. If the likelihoods are well behaved
and not too flat around the maximizers, we can also show that
our estimate converges to MLE.

Using an iterative procedure to find the approximate mean-
field constant, we compare our method to MCMC-MLE
and MPLE (Snijders, 2002; Boucher, 2015; Besag, 1974;
DePaula, 2017) in a simple Monte Carlo study for small net-
works. The mean-field approximation exhibits a small bias,
but the median estimates are similar to MCMC-MLE and
MPLE. Theoretically, our method converges in a number of
steps proportional to the number of potential links of a net-
work, while MCMC-MLE could be exponentially slow.

While these results are encouraging, there are several open
problems and possible research directions. First, it is not clear
that the mean-field estimates are consistent. Our small Monte
Carlo seems to indicate that there is a persistent bias term,
but there is no general proof in this setting along the lines of
Bickel et al. (2013) for stochastic block models. Second, it is
not clear that the ERGM model is identified for all parameter
values. Indeed some results in this literature suggest other-
wise (Chatterjee & Diaconis, 2013; Mele, 2017; Boucher &
Mourifie, 2017). A promising research avenue for the future

15While these results are encouraging, in the appendix, we report some
examples of nonconvergence of the mean-field algorithm, mostly due to our
iterative algorithm getting trapped in a local maximum in some simulations.

is the use of the large n mean-field approximation to under-
stand identification, similar to what has been done with graph
limits in Chatterjee and Diaconis (2013). Third, while the
mean-field approximation is simple and we are able to com-
pute the approximation errors, our lower and upper bounds
may not be sharp. This raises the question of whether there is
another factorization (as in structured mean field) that leads
to better approximations and faster convergence (Xing, Jor-
dan, & Russell, 2003). We hope that our work will stimu-
late additional research and more applications of this class of
approximations.

Appendix: Proof of Theorem 1

In this proof we endeavor to follow closely the notation in
Chatterjee and Dembo (2016). Suppose that f : [0, 1]N → R
is twice continuously differentiable in (0, 1)N , so that f and
all its first- and second-order derivatives extend continuously
to the boundary. Let ‖ f ‖ denote the supremum norm of f :
[0, 1]N → R. For each i and j, denote

fi := ∂ f

∂xi
, fi j := ∂2 f

∂xi∂x j
, (A1)

and let

a := ‖ f ‖, bi := ‖ fi‖, ci j := ‖ fi j‖. (A2)

Given ε > 0, D(ε) is the finite subset of RN so that for any
x ∈ {0, 1}N , there exists d = (d1, . . . , dN ) ∈ D(ε) such that

N∑
i=1

( fi(x) − di)
2 ≤ Nε2. (A3)

Let us define

F := log
∑

x∈{0,1}N

e f (x), (A4)

and for any x = (x1, . . . , xN ) ∈ [0, 1]N ,

I (x) :=
N∑

i=1

[xi log xi + (1 − xi) log(1 − xi)]. (A5)

In the proof, we rely on theorem 1.5 in Chatterjee and
Dembo (2016) that we reproduce in theorem 2

D
ow

nloaded from
 http://direct.m

it.edu/rest/article-pdf/105/1/113/2066687/rest_a_01023.pdf?casa_token=ScnAzk0Aum
0AAAAA:W

eKidm
5a2yg2L4q0dTukw

fm
M

tO
VR

nFqvw
E7sew

SEI_502_W
m

1Q
A9M

gEcgb_Q
6G

f6a0H
Am

tU
N

H
A by Florida State U

niversity user on 09 January 2023



APPROXIMATE VARIATIONAL ESTIMATION FOR A MODEL OF NETWORK FORMATION 121

Theorem 2 (Chatterjee & Dembo, 2016). For any ε > 0,

sup
x∈[0,1]N

{ f (x) − I (x)} − 1

2

N∑
i=1

cii ≤ F

≤ sup
x∈[0,1]N

{ f (x) − I (x)} + E1 + E2, (A6)

where

E1 := 1

4

(
N

N∑
i=1

b2
i

)1/2

ε + 3Nε + log |D(ε)|, (A7)

and

E2 := 4

⎛
⎝ N∑

i=1

(acii + b2
i )+ 1

4

N∑
i, j=1

(ac2
i j +bib jci j +4bici j )

⎞
⎠

1/2

+ 1

4

(
N∑

i=1

b2
i

)1/2 ( N∑
i=1

c2
ii

)1/2

+3
N∑

i=1

cii + log 2. (A8)

We will use the theorem 2 to derive the lower and upper
bound of the mean-field approximation problem. Our results
extend theorem 1.7. in Chatterjee and Dembo (2016) from the
ERGM with two-stars and triangles to the model that allows
nodal covariates. Notice that in our case, the N of the theorem
is the number of links: N = (n2). Let

Zn :=
∑

xi j∈{0,1},xi j=x ji,1≤i< j≤n

× e
∑

1≤i, j≤n αi j xi j+ β

2n

∑
1≤i, j,k≤n xi j x jk+ 2γ

3n

∑
1≤i, j,k≤n xi j x jkxki (A9)

be the normalizing factor and also define

Ln := sup
xi j∈[0,1],xi j=x ji,1≤i< j≤n

{
1

n2

∑
i, j

αi jxi j + β

2n3

∑
i, j,k

xi jx jk

+ 2γ

3n3

∑
i, j,k

xi jx jkxki − 1

n2

∑
1≤i< j≤n

[xi j log xi j

+ (1 − xi j ) log(1 − xi j )]

}
. (A10)

Notice that n−2Zn = ψn and Ln = ψMF
n .

For our model, the function f : [0, 1](
n
2) → R is defined

as

f (x) =
n∑

i=1

n∑
j=1

αi jxi j + β

2n

n∑
i=1

n∑
j=1

n∑
k=1

xi jx jk

+ 2γ

3n

n∑
i=1

n∑
j=1

n∑
k=1

xi jx jkxki. (A11)

Then we can compute that

a = ‖ f ‖ ≤
n∑

i=1

n∑
j=1

|αi j | + 1

2
|β|n2 + 2

3
|γ|n2

≤ n2

[
max

i, j
|αi, j | + 1

2
|β| + 2

3
|γ|
]

. (A12)

Let k ∈ N, and H be a finite simple graph on the vertex
set [k] := {1, . . . , k}. Let E be the set of edges of H and |E |
be its cardinality. For a function T : [0, 1](

n
2) → R,

T (x) := 1

nk−2

∑
q∈[n]k

∏
{�,�′}∈E

xq�q�′ , (A13)

Chatterjee and Dembo (2016, lemma 5.1) showed that for
any i < j, i′ < j′,∥∥∥∥ ∂T

∂xi j

∥∥∥∥ ≤ 2|E |, (A14)

and

∥∥∥∥ ∂2T

∂xi j∂xi′ j′

∥∥∥∥ ≤
{

4|E |(|E | − 1)n−1 if |{i, j, i′, j′}| = 2 or 3,

4|E |(|E | − 1)n−2 if |{i, j, i′, j′}| = 4.

(A15)

Therefore, by equation (A14), we can compute that

b(i j) =
∥∥∥∥ ∂ f

∂xi j

∥∥∥∥ ≤ 2 max
i, j

|αi j | + 2|β| + 8|γ|. (A16)

By equation (A15), we can also compute that

c(i, j)(i′ j′ ) =
∥∥∥∥ ∂2 f

∂xi j∂xi′ j′

∥∥∥∥

≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4
(

1
2 |β|2(2 − 1) if |{i, j, i′, j′}| = 2 or 3,

+ 2
3 |γ|3(3 − 1)

)
n−1

4
(

1
2 |β|2(2 − 1) if |{i, j, i′, j′}| = 4,

+ 2
3 |γ|3(3 − 1)

)
n−2

=
{

4 (|β| + 4|γ|) n−1 if |{i, j, i′, j′}| = 2 or 3,

4 (|β| + 4|γ|) n−2 if |{i, j, i′, j′}| = 4.

(A17)

Next, we compute that

∂ f

∂xi j
= 2αi j + ∂

∂xi j

[
β

2n

n∑
i=1

n∑
j=1

n∑
k=1

xi jx jk

+ 2γ

3n

n∑
i=1

n∑
j=1

n∑
k=1

xi jx jkxki

]
. (A18)
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Let T1 and T2 be defined as

T1(x) := 1

n

n∑
i=1

n∑
j=1

n∑
k=1

xi jx jk,

T2(x) := 1

n

n∑
i=1

n∑
j=1

n∑
k=1

xi jx jkxki. (A19)

Then we have

∂ f

∂xi j
= 2αi j + β

2

∂T1

∂xi j
+ 2γ

3

∂T2

∂xi j
. (A20)

Chatterjee and Dembo (2016, lemma 5.2) showed that for the
T1 and T2 defined above, there exists a set D1(ε) and D2(ε)
satisfying the criterion (A3) (with f = T1 and f = T2) so that

|D1(ε)| ≤ exp

{
C̃12434n

ε4
log

C̃22434

ε4

}

= exp

{
C̃164n

ε4
log

C̃264

ε4

}
, (A21)

|D2(ε)| ≤ exp

{
C̃13434n

ε4
log

C̃23434

ε4

}

= exp

{
C̃138n

ε4
log

C̃238

ε4

}
, (A22)

where C̃1 and C̃2 are universal constants. We define

D(ε) :=
{

2αi j + β

2
d1 + 2γ

3
d2 : d1 ∈ D1

(
2

β
· ε√

2

)
,

d2 ∈ D2

(
3

2γ
· ε√

2

)
, 1 ≤ i ≤ j ≤ n

}
. (A23)

Hence, D(ε) satisfies criterion equation (A3) and

|D(ε)| ≤ 1

2
n(n + 1)

∣∣∣D1

(√
2ε/β

)∣∣∣ · ∣∣∣D2

(
3ε/2

√
2γ
)∣∣∣

≤ 1

2
n(n + 1) exp

{
C̃164β4n

4ε4
log

C̃264β4

4ε4

}

× exp

{
C̃13826γ4n

34ε4
log

C̃23826γ4

34ε4

}
. (A24)

Therefore, by recalling E1 from equation (A7), we get

E1 = 1

4

⎛
⎝(n

2

) ∑
1≤i< j≤n

b2
(i j)

⎞
⎠

1/2

ε + 3

(
n

2

)
ε + log |D(ε)|

≤
[

1

4

(
2 max

i, j
|αi j | + 2|β| + 8|γ|

)
+ 3

](
n

2

)
ε

+ log

(
1

2
n(n + 1)

)
+ C̃164β4n

4ε4
log

C̃264β4

4ε4

+ C̃13426γ4n

ε4
log

C̃23426γ4

ε4

≤ C1(α, β, γ)n2ε + C1(α, β, γ)n

ε4
log

C1(α, β, γ)

ε4

= C1(α, β, γ)n9/5(log n)1/5, (A25)

by choosing ε = ( log n
n )1/5, where C1(α, β, γ) is a constant

depending only on α, β, γ:

C1(α, β, γ) := c1

(
max

i, j
|αi j | + |β|4 + |γ|4 + 1

)
, (A26)

where c1 > 0 is some universal constant. To see why we
can choose C1(α, β, γ) as in equation (A26) so that equa-
tion (A25) holds, we first notice that it follows from equation
(A25) that we can choose C1(α, β, γ) such that C1(α, β, γ) ≥
max{c̃1 maxi j |αi j | + c̃2|β| + c̃3|γ| + c̃4, c̃5β

4, c̃6γ
4}, where

c̃1, c̃2, c̃3, c̃4, c̃5, c̃6 > 0 are some universal constants. Note
that max{c̃1 maxi j |αi j | + c̃2|β| + c̃3|γ| + c̃4, c̃5β

4, c̃6γ
4}

≤ c̃1 maxi j |αi j | + c̃2|β| + c̃3|γ| + c̃4 + c̃5β
4 + c̃6γ

4 ≤
c1(maxi, j |αi j | + |β|4 + |γ|4 + 1) for some universal constant
c1 > 0. Thus, we can take C1(α, β, γ) as in equation (A26).

We can also compute from equation (A8) that

E2 = 4

( ∑
1≤i< j≤n

(ac(i j)(i j) + b2
(i j) )

+ 1

4

∑
1≤i< j≤n,1≤i′< j′≤n

(
ac2

(i j)(i′ j′ ) + b(i j)b(i′ j′ )c(i j)(i′ j′ )

+ 4b(i j)c(i j)(i′ j′ )
))1/2

+ 1

4

⎛
⎝ ∑

1≤i< j≤n

b2
(i j)

⎞
⎠

1/2

×
⎛
⎝ ∑

1≤i< j≤n

c2
(i j)(i j)

⎞
⎠

1/2

+ 3
∑

1≤i< j≤n

c(i j)(i j) + log 2,

so that

E2 ≤ 4

{(
n

2

)(
n

(
max

i, j
|αi j | + 1

2
|β| + 2

3
|γ|
)

4(|β| + 4|γ|)

+
(

2 max
i, j

|αi j | + 2|β| + 8|γ|
)2
)

+ 1

4
n2

[
max

i, j
|αi j | + 1

2
|β| + 2

3
|γ|
]

·
[(

n

2

)(
n − 2

2

)
42(|β| + 4|γ|)2n−4
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+
((

n

2

)2

−
(

n

2

)(
n − 2

2

))
42(|β| + 4|γ|)2n−2

]

+
(

2 max
i, j

|αi j | + 2|β| + 8|γ|
)

·
(

max
i, j

|αi j | + 1

2
|β| + 2

3
|γ|
)

·
[(

n

2

)(
n − 2

2

)
4(|β| + 4|γ|)n−2

+
((

n

2

)2

−
(

n

2

)(
n − 2

2

))
4(|β| + 4|γ|)n−1

]}1/2

+ 1

4

(
n

2

)(
2 max

i, j
|αi j | + 2|β| + 8|γ|

)
4(|β| + 4|γ|)n−1

+ 3

(
n

2

)
4(|β| + 4|γ|)n−1 + log 2

≤ C2(α, β, γ)n3/2,

where we used the formulas for a, b(i j) and c(i j)(i′ j′ ) that we
derived earlier and the combinatorics identities:

∑
1≤i< j≤n,1≤i′< j′≤n,|{i, j,i′, j′}|=4

1=
∑

1≤i< j≤n

∑
1≤i′< j′≤n,|{i, j,i′, j′}|=4

1 =
(

n

2

)(
n − 2

2

)
,

∑
1≤i< j≤n,1≤i′< j′≤n,|{i, j,i′, j′}|=2 or 3

1 =
(

n

2

)2

−
(

n

2

)(
n − 2

2

)
,

and C2(α, β, γ) is a constant depending only on α, β, γ that
can be chosen as

C2(α, β, γ) := c2

(
max

i, j
|αi j | + |β| + |γ| + 1

)1/2

× (1 + |β|2 + |γ|2)1/2, (A27)

where c2 > 0 is some universal constant.
Finally, to get lower bound, notice that

1

2

∑
1≤i< j≤n

c(i j)(i j) ≤ 1

2

(
n

2

)
4(|β| + 4|γ|)n−1 ≤ C3(β, γ)n,

(A28)

where C3(β, γ) is a constant depending only on β, γ, and we
can simply take C3(β, γ) = |β| + 4|γ|.
Proof of Proposition 1. We can approximate ψn by ψMF

n as
seen in theorem 1, and as a result, we can approximate the

log likelihood as follows:

�n(g, α, β, γ) := 1

n2
log(πn(g, α, β, γ))

= Tn(g, α, β, γ) − ψn(α, β, γ),

by the mean-field log likelihood:

�MF
n (g, α, β, γ) := Tn(g, α, β, γ) − ψMF

n (α, β, γ).

Then the difference between the mean-field likelihood and
the ERGM likelihood is bounded uniformly over g ∈ G, for
any α, β, γ:

0 ≤ �MF
n (g, α, β, γ) − �n(g, α, β, γ)

≤ C1(α, β, γ)n−1/5(log n)1/5 + C2(α, β, γ)n−1/2.

Therefore, for any compact �, we have

0 ≤ sup
α,β,γ∈�

[
�MF

n (g, α, β, γ) − �n(g, α, β, γ)
]

≤ sup
α,β,γ∈�

[
C1(α, β, γ)n−1/5(log n)1/5 + C2(α, β, γ)n−1/2]

≤ sup
α,β,γ∈�

C1(α, β, γ)n−1/5(log n)1/5

+ sup
α,β,γ∈�

C2(α, β, γ)n−1/2.

This proves the result. �
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