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E fficient inventory management in the face of product variety is an important part of retail operations management. In
this study, we analyze the optimal stocking policy for a retailer, in a setup with a single horizontally differentiated pro-

duct with an arbitrary number of product variants, stochastic demand, and two-level consumer choice. The demands for
individual product variants are negatively correlated conditional on the total demand. We assume that each customer will
purchase one unit of a preferred product variant, if it is in stock, and will seek to buy a second choice product, if the former
is not in stock. We formulate an exact model, with Poisson customer arrivals. In order to maintain tractability and character-
ize an optimal policy analytically, we develop a benchmark model which does not explicitly account for the stochastic nat-
ure of customer arrival times. In this model, which is a heuristic approximation of the exact model, we find simple
conditions under which the objective of maximizing expected profit is jointly concave in the stocking levels of the product
variants; under these conditions we prove that the optimal stocking levels are simply scaled versions of the optimal
newsvendor quantities. We then analytically establish a connection between the exact and benchmark models. We develop
a dynamic Monte Carlo simulation experiment to gain further insights on the impact of different performance measures on
the effectiveness of the optimal policy in the benchmark model and its performance in reference to the exact optimal policy.
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1. Introduction

Retailers often have to make critical inventory and
assortment related decisions when they offer a wide
selection of products, or different varieties of the same
product. Customer service in retail operations in
terms of product availability (probability of no stock-
out) is a key measure of service level, and is an essen-
tial part of the retailer’s competitive strategy. We
study an optimal inventory stocking problem of sev-
eral product variants within a product category. The
distinct product variants are horizontally differenti-
ated from each other. This is a common scenario in
retail and grocery outlets, where retailers stock sev-
eral different variants of the same product within a
certain category. As a motivating example consider a
retailer stocking T-shirts of a certain brand which has
different colors (variants). The retailer manages the
inventory of T-shirts and wishes to stock each color

(variety) so as to maximize the expected profit. The
total demand of the product, in this case T-shirts, in a
single period is random. We assume that each cus-
tomer will purchase one unit of a preferred product
variant, if it is in stock, and will seek to buy a second
choice product, if the former is not in stock. In the
above setting with different variants, the demands for
product variant i and j (different colored T-shirts) are
negatively correlated, conditional on the sum of the
demands of each variety being equal to the total
demand D, which is a random variable with a known
(but arbitrary) distribution. The retailer has to take
into account the substitution effect in the inventory
stocking decision, in addition to the price and cost
structure of the product varieties.
Past research has underlined that inventory man-

agement with dynamic substitution poses a signifi-
cant challenge as it is dependent on the stochastic
nature of customer arrival times. We first develop an
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exact, dynamic model in which customers arrive
stochastically according to a Poisson process and pur-
chase their preferred product variant if it is in stock,
or else may substitute and purchase their second
choice product variant if available. We formulate the
corresponding optimization problem as maximizing
the solution of a multi-dimensional integral equation,
for a single period,1 thus highlighting the complexity
of the exact model. Our model also considers a disu-
tility cost associated with any purchase of a second
choice item by a customer.
We then propose a benchmark model, a heuristic

approximation of the exact model which allows us
to maintain tractability and characterize an optimal
policy analytically. This model does not explicitly
account for the stochastic nature of customer arri-
val times at the store to purchase items, and
assumes that the first choice demands are satisfied
ahead of the second choice demands. We establish
a connection between the exact model and our
benchmark model to highlight the nature of the
approximation.
The benchmark model provides an effective tool for

inventory management in the case of substitutable
products within a category. We find simple condi-
tions under which the objective of maximizing
expected profit in the benchmark model is jointly con-
cave in the stocking levels of the product variants;
under this condition we prove that the optimal stock-
ing levels in the benchmark model are simply the
optimal newsvendor quantities multiplied by a scale
factor. After exploring the theoretical properties of
the benchmark model, we develop a dynamic simula-
tion experiment to illustrate the impact of customer
heterogeneity, costs and other performance measures
on how well the optimal benchmark policy performs
in reference to the exact optimal policy. We itemize
our main contributions below.

• Our general benchmark model (fully stochastic
model) makes no structural assumptions about
the consumer choice process by which pre-
ferred and second choice products are selected;
the first choice and second choice proportions
are allowed to be random, without any distri-
butional restrictions.

• We consider a special case of the general
benchmark model in which the preferred
choices lead to fixed (deterministic) propor-
tions pi of the total demand to be associated

with variant i, while the second choice propor-
tions are random; we call this the semi-stochastic
model. In this model, we find a simple condition
on prices and costs under which the optimal
product stocking level of variety i in the bench-
mark model is equal to the optimal newsvendor

quantity multiplied by pi (the proportion of cus-

tomers whose first choice is product variant i).
• The optimal stocking quantities are in general

not the optimal newsvendor quantities; our
benchmark model provides an efficient heuris-
tic by identifying simple conditions under
which the solution to the inventory problem
with substitution is to simply stock the classic
newsvendor quantities multiplied by a scale
factor, which we refer to as the scaled newsven-
dor quantities. This is, we hope, is an interesting
contribution; the practical implication of this
finding is that purchasing managers do not
need recourse to complex optimization soft-
ware to solve the product stocking problem
under product variety in many cases.

• In the fully stochastic model we prove that the
optimal stocking policy differs from the scaled
newsvendor solution, thus highlighting the
impact of stochasticity of first and second choices
on the optimal policy in the benchmark model.

• Finally, we develop a dynamic simulation to gain
insight into the substitution effect and illustrate
the impact of choice fractions, costs, and other
performance measures on the effectiveness of the
optimal benchmark policy and its performance in
reference to the exact optimal policy. The simula-
tion results show that the optimality gap associ-
ated with the scaled newsvendor solution is of
the order of only 1% to 3% at reasonably high ser-
vice levels, as desired in a retail setting.

The rest of the paper is organized as follows. In sec-
tion 2, we review the relevant literature. In section 3,
we describe our modeling framework, then present
the exact and benchmark models. We analyze the
benchmark model in section 4, and also establish a
connection between the exact and benchmark models.
In section 5 we develop a dynamic simulation experi-
ment to gain further insights and understand the
effectiveness of the benchmark policy under different
scenarios of total demand, choice preferences, rev-
enue, and cost parameters. Finally, in section 6, we
make a few closing remarks summarizing our contri-
butions and making some suggestions for further
research in this area.

2. Literature Review

We briefly review the literature on multi-item inven-
tory management for substitutable items. Specifically,
we review works that study optimal inventory stock-
ing policies in situations where a product consists of
several varieties, consumers may prefer some vari-
eties over others (e.g., each consumer may have a
rank ordering of the varieties), and consumers may
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substitute a first choice option with a less preferred
option in case the first choice product variant is
not available. Inventory management problems with
demand substitution have been extensively studied.
Initial research in this area includes Mcgillivray and
Silver (1978), Parlar and Goyal (1984), who study
dynamic substitution model for two products. Paster-
nack and Drezner (1991) obtain the optimal stocking
policy for two products with full substitution. Ernst
and Kouvelis (1999) use a stylized model to study the
problem for two products which are not direct substi-
tutes, and can be sold independently or as a package.
They use numerical analysis to obtain optimal stock-
ing levels and provide insights into the effect of
demand correlation. Other relevant papers under this
set of problems with dynamic substitution include
Parlar (1988) and Rajaram and Tang (2001) who
obtain numerical results using an algorithm for multi-
ple products.
The papers that are most closely connected with

our work are Smith and Agrawal (2000), Netessine
and Rudi (2003), and Nagarajan and Rajagopalan
(2008); we describe their models and results in detail
and explain precisely how our work extends their
findings.
Smith and Agrawal (2000) study a single-period

problem with substitution. The setting is retail, and
the model focuses on a given item type and its close
substitutes, comprising a fixed set E. The total number
of customers demanding an item (of some type) is
random, and each customer is assumed to demand
exactly one unit of some item. If the demanded item
(say of type i∈E) is not in stock, the customer will
attempt to purchase a unit of item type j∈E. If item
type j is unavailable, the customer will leave without
purchasing an item. A fixed probability distribution
governs the probability that a customer has second
choice j, given that she has first choice i. The problem
is to choose the inventory levels for each item type. It
is assumed that the base-stock level for each item is
set so as to satisfy a fixed, exogenously given service
level. The model is dynamic, in that it tracks the arri-
val of customers according to a random demand pro-
cess, and this makes the model formidable to solve
analytically. Therefore, the authors focus on develop-
ing approximate solutions. The authors also formu-
late a joint assortment-and-stocking-level model, in
which the subset of items from the set E as well as
their inventory levels need to be determined jointly;
they do this using first choice probabilities and a sub-
stitution matrix.
Netessine and Rudi (2003) study a similar model,

under both centralized and decentralized optimiza-
tion regimes. The demand vector for the item set fol-
lows a continuous multivariate joint distribution. A
deterministic fraction αij of customers will attempt to

purchase their second choice item j if their first choice
item i is not in stock; if both item types are out of
stock, the customer will not purchase any item. Item
costs and prices are in general distinct. In the central-
ized model, the authors show that the objective func-
tion may not be concave. They also show that the
newsvendor solution for each item does not in general
optimally solve the multivariate optimization prob-
lem. The authors obtain a necessary optimality condi-
tion for both the centralized and decentralized
(competitive) models.
Nagarajan and Rajagopalan (2008) derive the opti-

mal inventory policy in both single-period and multi-
period scenarios for substitutable products with nega-
tively correlated demands. In their benchmark model,
there are two products with deterministic total
demand D. The substitution effect is captured by a
parameter γ (0 < γ < 1); a fixed proportion γ of cus-
tomers buy their second choice item if their first
choice item is not in stock. Assuming symmetric costs
and prices, they show that the expected profit func-
tion is jointly concave in the stocking levels of the two
products, and find explicit formulas whereby the
optimal stocking levels—which have a newsvendor
like structure—can be found. Under asymmetric
costs, the authors show that the objective function is
no longer always jointly concave. A generalization of
the model to the case of an arbitrary number of items
is briefly discussed. In this case, a fraction γi will sub-
stitute their second choice item for their first choice
item in case the latter is out of stock, and the second
choice fraction associated with each item is assumed
to be equal. Their analysis is mostly limited to two
products, and the N-product case is quite restrictive.
In the multi-period setting only specific cases are con-
sidered.
The second stream of literature related to the

multi-item inventory management problem for sub-
stitutable items is assortment planning with substi-
tution. Static substitution models have been
extensively studied. Static substitution is one in which
a consumer choice is only dependent on the assort-
ment (set of alternatives) and is not dependent on
product availability or on-hand stock. One of the ear-
liest papers on assortment planning was by Pentico
(1974), who considers probabilistic demand with
downward substitution and obtains the optimal pol-
icy using a dynamic programming formulation. For a
comprehensive survey of research on assortment
planning, we refer readers to Kök et al. (2015).
Another relevant paper on the static substitution
model is van Ryzin and Mahajan (1999), who use a
multinomial logit model with static substitution and
assumes identical cost parameters. Most of the above
papers assume that the consumer choice model is
known. Cachon et al. (2005) develop consumer choice
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models and methods for finding assortments that
optimally balance revenue expansion with opera-
tional costs and incorporates search cost. Gaur and
Honhon (2006) consider a single-period problem
using location choice models to represent consumer
demand and obtain optimal assortment and inventory
decisions. They use heuristics to solve the problem
under dynamic substitution. Topaloglu (2013) studies
a joint stocking and product offer problem via a
multinomial logit choice model with static substitu-
tion. The problem is formulated as a nonlinear pro-
gram, which is intractable owing to the large number
of decision variables. They propose an alternate for-
mulation based on the structure of the multinomial
logit model where the objective function is separable,
and solve it through a dynamic program.
Another stream of related literature is dynamic (or

stockout based) substitution which is based on avail-
ability of products. Mahajan and van Ryzin (2001a,
2001b) study an inventory planning and assortment
problem where customers choose dynamically based
on current availability. The consumer choice is based
on utility maximization. They use a sample path anal-
ysis to analyze structural properties of the expected
profit function and propose a stochastic gradient algo-
rithm. Kök and Fisher (2007) develop an algorithmic
process to study assortment planning problem and
present a procedure for estimating substitution
parameters. They propose iterative optimization
heuristics for solving the assortment planning prob-
lem. Honhon et al. (2010) determine the optimal
inventory and assortment levels in a single-period set-
ting with stockout-based substitution. The model con-
siders stochastic demand with fixed proportion of
customer types which can result from utility maxi-
mization. The paper develops an efficient dynamic
programming algorithm, and establishes structural
properties of the value function of the dynamic pro-
gram to characterize multiple local maxima. The
numerical tests show that the heuristics perform bet-
ter than previous methods. Akçay et al. (2020) study a
single-period inventory planning problem for a cate-
gory of substitutable products. Their model accounts
for the stochastic nature of customer arrivals, and
thus considers dynamic substitution. They formulate
a stochastic optimization model that minimizes the
total stocking cost subject to service level require-
ments. Considering the challenges involved in solving
the problem, they propose a novel optimization
model which can accommodate several common
stockout-based substitution schemes. There is some
related work which considers inventory and pricing
with substitution. Xu et al. (2016) consider a two pro-
duct flexible substitution problem to explore the inter-
action between price discounts and substitution. The
paper develops a stochastic dynamic formulation to

show that the optimal policy has a threshold struc-
ture. Other relevant work which also considers
adjusting price and inventory management in the
presence of dynamic substitution includes Dong et al.
(2009) and Hopp and Xu (2008).
The above papers provide several insights, and

some consider implementing efficient algorithms to
find the optimal stocking levels when simple formu-
las are not available. However our model and analysis
which we discuss in the next section yield some novel
insights compared with past work.

3. Single-Period Model with Two-Level
Consumer Choice

We study the stocking policy of a retailer who has
to decide on the stocking quantities of different vari-
eties of a given product within a product category,
in the face of random customer demand over a
given planning period. The retailer managing the
inventory has a single replenishment opportunity at
the start of the period. The total demand of the pro-
duct, summed over all the varieties, is a positive
valued random variable D. There are K different
varieties of the product, which are indexed as i =
1, 2, . . ., K. Each customer will only buy one unit of
a specific product variant, if it is in stock. Customers
are choosy, and have a strong preference for the
specific product variant (first choice) they prefer to
buy. However, each customer may substitute and
purchase a second choice item if their preferred first
choice item is not in stock. The individual demands
for each product variant i and j (different colored
T-shirts) are negatively correlated conditional on
the total demand, as the sum of the demands of
each variety is equal the total demand D, which is
a random variable with a known (but arbitrary)
distribution. At the end of the period, the retail
store calculates its profit using the cost structure
stated below. We assume equal unit costs and
prices for all product variants in our model. This is
a reasonable assumption for horizontally differenti-
ated product varieties and is consistent with past
work (Gaur and Honhon 2006, Nagarajan and Raja-
gopalan 2008).
The unit cost of each product variety stocked is c,

and the selling price is s. Any unsold or leftover
inventory at the end of the selling period is sold to a
discount store at c0 per unit, where c0 < c. So there is
a loss of c � c0 for each item that is leftover. On the
other hand the store imputes an opportunity cost of
s − c for each item that was demanded but not in
stock. Hence stocking too many items as well as stock-
ing too few items is sub-optimal. We make the follow-
ing standard assumption s > c > c0 > 0. The
retailer’s objective is to choose stocking quantities for
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each product variant so as to maximize the expected
profit. The retailer stocks xi units of product variety i.
All the customers are assumed to act independently
of each other. If the preferred first choice is available
(in stock), the customer purchases it otherwise the
customer exercises his or her second choice and sub-
stitutes to the other variant if it is in stock. Thus lost
sales can be either due to stockout of the preferred
first choice and customers not finding their second
choice option in stock, or customers are not willing to
substitute and do not have a second choice option.
Since each customer who purchases his or her sec-

ond choice variant experiences a disutility as the pre-
ferred first choice was not available, the firm
attaches a cost cp > 0 for every unit of product that

was purchased and was the customer’s second
choice rather than first. The cost can be seen as a
penalty cost or a measure of loss of goodwill as the
first choice of the customer was not available. Every
unit sold as second choice as a result of substitution
generates a profit s � c � cp > 0. The impact of this

penalty cost on the overall profit formulation is sig-
nificant. Past work such as Netessine and Rudi
(2003) does not explicitly model this substitution
cost. Although Nagarajan and Rajagopalan (2008) do
not include this substitution cost in their formula-
tions, they mention that such a cost can be incorpo-
rated and that it will correspondingly change their
optimal solution. The cost of substitution plays a cru-
cial role in the profit formulation as without this
penalty cost, the profit earned from a unit stock is
the same irrespective of whether that unit is sold as
a first or second choice. The inclusion of the penalty
cost requires us to take into account whether an
available stock is used to satisfy a first choice or sec-
ond choice demand. In practice demand for a pro-
duct as a first or second choice is dependent on the
stochastic arrival times of the customers. Thus in the
presence of dynamic substitution, an available unit
of stock can be used to satisfy a demand originating
from second choice ahead of satisfying a first choice
demand. Although a retailer cannot infer from the
sale of a product whether the sale is first or second
choice, this distinction is crucial when considering a
substitution cost in the overall expected profit.
The optimal stocking policy under dynamic substi-

tution depends on the stochastic nature of customer
arrival times and the stocking level of different pro-
duct variants at the time of customer arrival. As
noted in past work (e.g., Gaur and Honhon 2006),
analytically characterizing an optimal policy under
dynamic substitution is intractable. In the next sec-
tion 3.1, we formulate the exact model with Poisson
customer arrivals. All proofs are included in the
appendix and online electronic companion.

3.1. Exact Model with Poisson Arrivals
The exact model with Poisson customer arrivals can
be formulated as follows. Let us first consider a
single-period model with the length of the period
being T > 0.

– Stocking levels x1, x2, . . ., xK are implemented,
where xi ∈∪ f0g for i = 1, . . ., K.

– Customers arrive according to a Poisson pro-
cess with constant rate λ > 0. Customer #1
enters, and picks her preferred option. The firm
registers a profit of s − c for the sold item.

– Customers continue to arrive till the end of the
period with time T > 0. For any customer, the
probability that her preferred option is item i is
pi. If her preferred option is in stock, she pur-

chases it, and the firm registers a profit of s − c.
Otherwise, she substitutes to her second choice
with probability pij with ∑j≠ipij ≤ 1 if her second

choice is available or she will not purchase any-
thing. If the second choice is available, the firm
registers a profit s� ct� cp.

– Any unsold or leftover inventory at the end of
the period is sold to a discount store at c0 per
unit resulting in a loss of c� c0 for each unit
that is leftover.

The exact model with the stochastic arrival of cus-
tomers results in three levels of stochasticity with ran-
dom demand, first choice and substitution second
choice probabilities. Let Vðx1, . . ., xK; tÞ denote the
firm’s total profit for the single period given that at
time t, where 0 ≤ t ≤ T, there is an initial stocking of
x1, . . ., xK at time t, where x1, . . ., xk ∈∪ f0g such that

Vðx1, . . ., xK; tÞ :ð∪ f0gÞK�½0, T�!.

PROPOSITION 1. The optimal stocking levels are given by

x�1, . . ., x
�
K

� � ¼ arg max
x1,...,xK≥0

V x1, . . ., xK; 0ð Þ, (1)

where Vðx1, . . ., xK; tÞ solves a (K + 1)-dimensional
integral equation:

V x1, . . ., xK; tð Þ ¼ 1� e�λðT�tÞ� �
� ∑

i:xi>0

piðs� cÞ þ 1� e�λðT�tÞ� �
� ∑

i:xi¼0

pi ∑
j:x j>0

pij s� c� cp
� �� e�λðT�tÞ

� ∑
K

i¼1

xi c� c0ð Þþ ∑
i:xi>0

pi

ZT
t

λe�λðu�tÞ

�V x1, . . ., xi�1, xi � 1, xiþ 1, . . .,ð
xK; uÞdu

þ ∑
i:xi¼0

pi ∑
j:x j > 0

pij

ZT
t

λe�λðu�tÞ
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�V x1, . . ., xj�1, x j � 1, xjþ1, . . .,
�

xK; uÞdu, ð2Þ

for any x1, . . ., xK ∈∪ f0g and any 0 ≤ t ≤ T.

We can see from Proposition 1 that Vðx1, . . ., xK; tÞ
solves a (K + 1)-dimensional integral Equation (2),
and we do not expect (2) to yield a simple closed
form solution, so we have to rely on Monte Carlo
simulations or numerically solving (2) to find the
optimal stocking levels. An alternate version of the
exact model considering discretized Poisson process
which has been used in past literature such as
Dong et al. (2009) can also be developed. The
online electronic companion includes details of the
discretized Poisson process model. The above anal-
ysis in the single-period model carries over to the
multi-period and infinite horizon setting as well.
The details can be found in the online electronic
companion.
As evident from the above formulation, gaining fur-

ther insights or solving the problem analytically with
the exact model is challenging. To circumvent this
problem, we now develop a benchmark model, to be
able to characterize an optimal policy analytically.

3.2. Benchmark Model
Let Di be the demand for product variant i from first
choice, that is, the number of customers whose first

preference is variety i such that ∑K
i¼1Di¼D. The total

demand D is assumed to have a continuously differen-
tiable density function f(y) > 0 and a distribution func-
tion H(y), y ≥ 0. As before the retailer stocks xi units of
product variety i, where xi ≥ 0 are real valued.
The consumer choice process: Our model is robust to

the process by which customers exercise their choices.
For example, every customer can be heterogeneous in
choosing a specific product variant based on their
idiosyncratic preferences. No matter how and why
the customers make the choices they do, it will lead to
certain proportion of customers preferring a product
variant as their first choice or second choice (substitu-
tion); these choice proportions are random in our
model. However, the stochastic nature of customer
arrival is not considered in the benchmark model,
which we discuss next.
Fully stochastic model: In our general fully stochastic

model, we have

Di ¼ DPi, 1 ≤ i ≤ K,

where Di is the demand of product variety i from
first choice, the fractions Pi ∈ ð0, 1� are stochastic and

∑K
i¼1Pi¼1. The demand of product variety i from

second choice is given by ∑j≠iðDj�x jÞþPji. That is if

the demand Dj for variety j exceeds the supply x j of

variety j, then a stochastic fraction Pji ∈ ½0, 1� will

choose variety i as the second choice. The second
choice fractions satisfy ∑j≠iPij ≤ 1, as some cus-

tomers might not have a second choice or not find
the second choice option in stock. We assume
that D, Pi’s and Pji’s are independent of each other.

We note that the full stochastic model makes no
assumptions about the choice process; every choice
process will result in some version of the fully
stochastic model. We specialize the general model
as follows.
Semi-stochastic model: In this model we assume that

Di ¼ Dpi, 1 ≤ i ≤ K,

That is to say that there is a fraction pi among all the

customers who would choose variety i if it was in
stock. Therefore, Di can be interpreted as the demand
of product variety i from first choice; the actual
number of units of product variety i sold will consist
of customers who prefer this variant as well as cus-
tomers who would rather have bought some other
variant. The demand of product variety i from second

choice is given by ∑j≠iðDj�x jÞþpji. That is if the

demand Dj for variety j exceeds the supply x j of vari-

ety j, then a fraction pji will choose variety i as the sec-

ond choice. In the semi-stochastic model, the fractions
pji may be random while the pi > 0 are deterministic.

However, we note that the faction of customers
purchasing product variant i (which includes both first
and second choice purchases) is random. In the next
section we analyze the benchmark model to character-
ize an optimal policy analytically and then establish a
connection between the benchmark and the exact
model.

4. Analysis

We proceed to analyze the semi-stochastic model first,
followed by the fully stochastic model. We shall high-
light the impact of stochasticity of first and second
choices on the optimal policy. We emphasize that when
we write ‘optimal policy” in this section, we mean “optimal
policy in the benchmark model” as opposed to the optimal
policy in the exact model.

4.1. Semi-Stochastic Model
In this sub-section we shall assume that pji is fixed.

However, we shall see in the following section that all
the results go through even when the pji’s are random

(please see Theorem 4). Given the supplies, that is, the
stocking decision of the retailer x1, . . ., xK, the
expected profit of the firm is given by:
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We can interpret Equation (3) as follows. When the
stock xi is less than the first choice demand Di, the
entire stock xi can be sold, and the profit is ðs � cÞxi,
which gives the fourth term in Equation (3). When the
stock xi is greater than the first choice demand Di

but less than the sum of the first choice demand Di

and the second choice demand for variety i,

∑j≠iðDj�x jÞþpji, the first choice demand Di brings in

a profit ðs � cÞDi, and the second choice demand
brings a profit ðs � c � cpÞðxi�DiÞ, where xi � Di is

all that is available for the second choice demand,
which gives the third term in Equation (3). This is a
best-case scenario, since the partitioning of the sold

units represented by Diþ∑j≠iðDj�x jÞþpji into first

choice and second choice sales depends on the
stochastic nature of customer arrival times at the store
to purchase items. Finally, when the stock xi is greater
than the sum of the first choice and the second choice
demands, the first choice demand brings in a profit
ðs � cÞDi and the second choice demand brings a

profit ðs � c � cpÞ∑j≠iðDj�x jÞþpji, which gives the

first term in Equation (3). There is still left over

inventory xi � Di�∑j≠iðDj�x jÞþpji which is sold

at a discount c0, resulting in a loss ðc � c0Þ
ðxi�Di�∑j≠iðDj�x jÞþpjiÞ, which gives the second

term in Equation (3).
Note: We do not explicitly model the interaction

between the order of customer arrivals and the stock-
ing policy in the benchmark model in order to main-
tain tractability and characterize an optimal policy
analytically. For tractability, we assume that the first
choice demands are satisfied before the second choice
demands. This is a strong assumption, so in section
4.3, we establish a connection with the exact model.
The retailer’s objective is to decide how much to

stock for each variety so as to maximize the expected
profit; thus the optimization problem is:

max
x1, ...,xK≥0

Fðx1, . . ., xKÞ:

Fðx1, . . ., xKÞ :¼ ∑
K

i¼1

 ðs� cÞDi þ ðs� c� cpÞ∑
j≠i
ðDj � x jÞþpji

 !
1xi>Diþ∑

j≠i
ðDj�x jÞþpji

" #

� ∑
K

i¼1

 ðc� c0Þ xi �Di � ∑
j≠i
ðDj � x jÞþpji

 !
1xi>Diþ∑

j≠i
ðDj�x jÞþpji

" #

þ ∑
K

i¼1

 ðs� cÞDi þ ðs� c� cpÞðxi �DiÞ
� �

1Di≤xi≤Diþ∑
j≠i
ðDj�x jÞþpji

" #

þ ∑
K

i¼1

 ðs� cÞxi1xi<Di
½ �: (3)

THEOREM 1. The optimal ðx�1, . . ., x�KÞ satisfies the
equations:

ðs� c0Þ
ZGiðx�1,...,x�KÞ

0

fðyÞdyþðs� cp� c0Þ∑
‘≠i

ZG‘ðx�1,...,x�KÞ

x�
i
pi

pi‘fðyÞdy

þcp

Zx�ipi
Giðx�1,...,x�KÞ

fðyÞdy¼ s� c, 1 ≤ i ≤ K,
(4)

where Gi is defined via the equations:

xi ¼ Gipi þ ∑
j≠i
ðGip j � x jÞþpji, 1 ≤ i ≤ K: (5)

REMARK 1. For the special case when there is no
second choice, that is, pji ≡ 0, then Gi ¼ xi=pi and

the optimal x�i satisfies

ðs� c0Þ
Zx�ipi
0

fðyÞdy ¼ s� c,

which is precisely the newsvendor solution scaled
up by pi. We shall refer to this solution as the

scaled newsvendor solution and the correspond-
ing order quantities as the scaled newsvendor
quantities.

Before discussing Theorem 1, we characterize Gi

(defined in Equation (5)) in a more explicit form in the
following lemma.

LEMMA 1. In Theorem 1, Gi (defined in Equation (5))
can be characterized as

Gi ¼
xi þ∑Ki

j¼1xπðjÞpπðjÞi
pi þ∑Ki

j¼1pπðjÞpπðjÞi
, 1 ≤ i ≤ K,
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where π is a permutation of {1, 2, . . ., K} such that
xπð1Þ
pπð1Þ

≤ xπð2Þ
pπð2Þ

≤⋯≤ xπðKÞ
pπðKÞ

, and

Ki :¼ max k∈ f1, . . ., Kg : xπðkÞ
pπðkÞ

≤
xi þ∑k

j¼1xπðjÞpπðjÞi
pi þ∑k

j¼1pπðjÞpπðjÞi

8<
:

9=
;,

1 ≤ i ≤ K,

are functions of ðxkÞKk¼1.

Theorem 1 gives a necessary condition for the opti-
mal stocking policy. We note that the second and
third terms on the left-hand side of Equation (4) cap-
ture the effect of substitution (second choice). The the-
orem shows that when substitution is taken into
consideration then the scaled newsvendor solution is
not necessarily optimal. The optimal stocking quan-
tity is adjusted up or down based on the penalty cost
or whether there is high degree of substitution from
product i, that is, when pi‘ is large, as a stockout of

product i does not necessarily result in a lost sale with
substitution.
Remark 1 explains that in the absence of a sec-

ond choice, the optimal stocking levels for the
product options are simply the corresponding
scaled newsvendor quantities. The next order of
business is to investigate how the optimal stocking
levels change when customers exercise a second
choice option. Theorem 2 states that under certain
conditions, the scaled newsvendor quantities remain
optimal.

THEOREM 2.

(a) Suppose Fðx1, . . ., xKÞ is jointly concave in

ðx1, . . ., xKÞ∈K
þ. Then the optimal stocking quan-

tity of each product variant is given by the scaled
newsvendor solution.

(b) Suppose the condition

ðs� cp � c0Þ∑
‘≠i
pi‘ � cp < 0

is satisfied for every 1 ≤ i ≤ K. Then Fðx1, . . ., xKÞ
is jointly concave in ðx1, . . ., xKÞ∈K

þ, and the
optimal stocking quantity of each product variant
is given by the scaled newsvendor solution.

We provide some insight into the condition in
Theorem 2 that must be fulfilled in order for the opti-
mal solution to be the scaled newsvendor quantities.
Note that cp represents a penalty cost that the firm

imposes for every unit that represents a second choice

purchase by a customer. We introduce a parameter θ
such that

cp ¼ θðs� cÞ:

Since s − c presents the profit that the firm makes
on the sale of a unit, it is reasonable to assume that
0 < θ < 1. The higher the value of θ, greater is the
desire of the firm to reduce the frequency of occur-
rence of the event of having customers pick their
second choice product instead of their preferred
product. The following corollary can be easily
derived from Theorem 2(b).
We define

f�:¼ ðs� cÞ
ðs� cÞ þ ðc� c0Þ ¼

s� c

s� c0
:

Note that f� is equal to the critical fractile in the
classic newsvendor formula; therefore, it is the per-
centile of the demand distribution that corresponds
to the scaled newsvendor solution.

COROLLARY 1. Suppose θ f� ≥ 0:5. Then the optimal
stocking quantity of each product variant is given by the
scaled newsvendor solution.

The existing literature (e.g., Smith and Agrawal
2000) states that a retail firm will typically target f� to
be around 0.9. In this case, Corollary 1 implies that if
θ > 0.56, then the optimal solution is the scaled
newsvendor solution. Note that θ > 0.56 means that
the firm is very keen on having a satisfied customer
base. If a customer buys a second choice variant, the
firm levies a stiff penalty on itself on the profit margin
from such a sale. This example suggests the following
rule of thumb: a firm that is sensitive to the disutility
of customers having to avail themselves of their
second choice product variant should optimally stock
the scaled newsvendor quantities when the target ser-
vice level is sufficiently high. While target service
levels in a retail setting are generally high as sug-
gested by several studies and market research (Gruen
et al. 2002), it might not be the case for low margin
products. So if f�¼ 0:5 or lower, which could cer-
tainly be the case for low margin products, then
Corollary 1 does not apply; we would require θ ≥ 1,
which is infeasible, by definition.

4.2. Fully Stochastic Model
Given the supplies, that is, the stocking decision of
the retailer x1, . . ., xK, the expected profit of the firm is
given by:
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where the expectations are not only over D, but also
over Pi’s and Pji’s. The retailer’s objective is to decide

how much to stock for each variety so as to maximize
the expected profit; thus the optimization problem is:
maxx1;...;xKFðx1, . . ., xKÞ.
By following the same argument as in the semi-

stochastic model (section 4.1), we can show the fol-
lowing result.

THEOREM 3. The optimal ðx�1, . . ., x�KÞ satisfies the equa-
tions:

ðs� c0Þ
ZGiðx�1, ...,x�K ;PÞ

0

fðyÞdy

2
64

3
75

þ ðs� cp � c0Þ ∑
‘≠i

ZG‘ðx�1, ...,x�K ;PÞ

x�
i
Pi

Pi‘fðyÞdy

2
6664

3
7775

þ cp

Zx�iPi
Giðx�1, ...,x�K ; PÞ

fðyÞdy

2
6664

3
7775¼ s� c, 1 ≤ i ≤ K,

(7)

where the expectations are taken over Pi’s and Pi‘’s and
Gi ¼ Gið�;PÞ emphasizes the dependence on Pi’s and
Pji’s and is defined via the equations:

xi ¼ GiPi þ ∑
j≠i
ðGiP j � x jÞþPji, 1 ≤ i ≤ K: (8)

Note that if Pi ≡ pi, Pji ≡ pji, that is, the distribu-

tion of Pi is the Dirac delta distribution δPi ¼ pi
and

the distribution of Pji is δPji ¼ pji
, then it reduces

to the semi-stochastic model that we studied
earlier in section 4.1, and Theorem 3 reduces to
Theorem 1.

If there is no second choice available, the model
reduces to the (stochastic) newsvendor problem, that
is, Pji ≡ 0, then Gi ¼ xi=Pi and the optimal ðx�1, . . ., x�KÞ
satisfies the equations:

ðs� c0Þ
Zx�iPi
0

fðyÞdy

2
6664

3
7775 ¼ s� c, 1 ≤ i ≤ K: (9)

Next, we assume that Pi ≡ pi are deterministic

whereas Pji’s are possibly stochastic. We have the fol-

lowing result.

THEOREM 4. Assume that Pi ≡ pi, 1 ≤ i ≤ K.

(a) Suppose Fðx1, . . ., xKÞ is jointly concave in

ðx1, . . ., xKÞ∈K
þ. Then the optimal stocking quan-

tity of each product variant is given by the scaled
newsvendor solution.

(b) Suppose with probability one, ðs � cp � c0Þ
∑‘≠iPi‘ � cp < 0 for every 1 ≤ i ≤ K, then

Fðx1, . . ., xKÞ is jointly concave in ðx1, . . ., xKÞ∈
K

þ, and the optimal stocking quantity of each
product variant is given by the scaled newsvendor
solution.

REMARK 2. The above results indicate that if the
first choice fractions Pi’s are deterministic, then
the previous results for the semi-stochastic model
hold regardless of the stochasticity of the second
choice fractions Pji’s. In particular, Corollary 1 still

holds.

Next, we will show that if the first choice fractions
Pi’s are fully stochastic, then the optimal solution to
the second choice problem cannot be the (stochastic)
newsvendor solution (9), with a precise statement
given in the following theorem.

Fðx1, . . ., xKÞ

:¼ ∑
K

i¼1

 ðs� cÞDPi þ ðs� c� cpÞ∑
j≠i
ðDPj � x jÞþPji

 !
1xi>DPiþ∑

j≠i
ðDPj�x jÞþPji

" #

� ∑
K

i¼1

 ðc� c0Þ xi �DPi � ∑
j≠i
ðDPj � x jÞþPji

 !
1xi>DPiþ∑

j≠i
ðDPj�x jÞþPji

" #

þ ∑
K

i¼1

 ðs� cÞDPi þ ðs� c� cpÞðxi �DPiÞ
� �

1DPi≤xi≤DPiþ∑
j≠i
ðDPj�x jÞþPji

" #

þ ∑
K

i¼1

½ðs� cÞxi1xi<DPi
�, (6)
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THEOREM 5. Assume that the first choice fractions Pi’s
are fully stochastic in the sense that there exists some i ≠
j, such that Pi=Pj is stochastic. Then the optimal solution

to the second choice problem cannot be the (stochastic)
newsvendor solution (9).

The above analysis in the single-period model car-
ries over to the infinite horizon setting as well. In the
infinite horizon analysis, we rigorously prove that the
optimal policy is a base-stock policy, and then show
that the optimal base-stock levels are the scaled
newsvendor quantities under the same constraint on
costs and prices as in the single-period model. We
extend the analysis to the fully stochastic model in the
infinite horizon setting as well. The details of the infi-
nite horizon setting analysis is included in the online
electronic companion. We now establish a connection
between the benchmark and the exact model.

4.3. Connection between the Exact and Benchmark
Model
We have shown that scaled newsvendor quantities
remain optimal with substitution, depending on the
stochasticity of the first and second choice fractions. In
deriving our results, in order to maintain tractability
and characterize an optimal policy, our benchmark
model assumes that the first choice demand is always
satisfied first and the residual stock (if any) is used to
satisfy the second choice demand. However based on
the stochastic nature of customer arrival, the second
choice demand could certainly eat up a percentage of
the demand units that we ascribe to first choice
demand, and thereby deflate our profit function (by
ignoring penalty cost associated with second choice
demand). This scenario transpires when a particular
variant is out of stock, and the remaining customers
who come in all miss their first choice (since it has
already stocked out).
In our benchmark model we obtained explicit solu-

tions for the optimal stocking policy. Next, we discuss
the connection between the exact and the benchmark
model. We denote the number of units of type i
sold to the customers whose first choice is type i till

time t as S1i ðtÞ and the number of units of type i
sold to the customers whose second choice is type i

till time t as S2i ðtÞ, where 0 ≤ t ≤ T and 1 ≤ i ≤ K.

Then ðS11ðtÞ, S21ðtÞ, S12ðtÞ, S22ðtÞ, . . ., S1KðtÞ, S2KðtÞÞ is a 2K-
dimensional continuous-time Markov process with

the state space ð∪ f0gÞ2K that can be fully character-
ized by the infinitesimal generator:

Lf S11, S
2
1, S

1
2, S

2
2, . . ., S

1
K, S

2
K

� �
¼ ∑

K

i¼1

λpi fðS1i þ 1Þ � fðS1i Þ
� �

1S1i þS2i<xi

þ ∑
K

i¼1

∑
j≠i
λpipij fðS2j þ 1Þ � fðS2jÞ

� �
1S1i þS2i ≥ xi

1S1jþS2j<x j
,

(10)

where we used fðS j
i Þ, 1 ≤ i ≤ K, j = 1, 2, to denote

fðS11, S21, S12, S22, . . ., S1K, S2KÞ with an emphasis on the

dependence on S
j
i to ease the notation.

Given the supplies, that is, the stocking decision of
the retailer x1, . . ., xK, the expected profit of the firm is
given by:

Fðx1, . . ., xKÞ ¼ ∑
K

i¼1

 ðs� cÞS1i ðTÞ
� �

þ ∑
K

i¼1

 ðs� c� cpÞS2i ðTÞ
� �

� ∑
K

i¼1

ðc� c0Þ xi � S1i ðTÞ � S2i ðTÞ
� �

: ð11Þ

We do not expect (11) can be computed in
closed form and one has to rely on numerical
methods, such as Monte Carlo simulations, to com-
pute Fðx1, . . ., xKÞ. In Proposition 1, we have shown
that

Fðx1, . . ., xKÞ ¼ Vðx1, . . ., xK; 0Þ, (12)

where Vðx1, . . ., xK; tÞ satisfies a (K + 1)-dimensional
integral Equation (2) which does not yield a simple
closed-form solution. Thus an alternative to Monte
Carlo simulation is to numerically solve the inte-
gral Equation (2). Since neither (11) or (2) yields
closed-form solution, it is natural for us to turn to
the simplified benchmark model as an approxima-
tion of the exact model to characterize the optimal
policy.
Assume Di’s are independent Poisson random vari-

ables with mean λpi. Then, in the exact model, Di is

the total demand for product variant of type i as
the first choice from customers within the time period

[0, T], and D ¼ ∑K
i¼1Di is the total demand within the

time period [0, T]. In our benchmark model, we
assume D follows a continuous random variable and
set Di ¼ Dpi in the semi-stochastic model and

Di ¼ DPi in the fully stochastic model.
Next, we recall that in our semi-stochastic model in

section 4.1,
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which matches the last term in (13). Hence, we
conclude that our semi-stochastic model is an
approximation of the exact model by using the
approximation:

S1i ðTÞ≈minfDi, xig, (16)

S2i ðTÞ≈min xi �Di, ∑
j≠i
ðDj � x jÞþpji

( )
1xi≥Di

: (17)

Finally, the same connections between the exact
model and the fully stochastic model hold by replac-
ing Di ¼ Dpi by DPi, pji by Pji in Equations (16) and

(17). The online electronic companion also contain
details of the connection between the exact model for-
mulation with discretized Poisson arrival process and
the exact model in section 3.1.

5. Computational Study with a
Dynamic Simulation Model

In the previous sections, we have seen that the
newsvendor solution for stocking policy may not be

optimal in the presence of substitution. We have
demonstrated under various scenarios of random
demand and stochastic choice fractions that the scaled
newsvendor solution remains optimal when the
demands for different product varieties are negatively
correlated. Our theoretical analysis in section 3.2 does
not model the dynamic nature of customer arrival in
real time, and also might seem restrictive as we make
certain assumptions in obtaining the optimal policy
as the scaled newsvendor solution. In this section, we
present a dynamic simulation of precisely this situa-
tion. Getting closed-form solution with the exact
model in section 3.1 is challenging, thus we resort to
extensive numerical analysis to further understand
the impact of the assumptions in the benchmark
model and explore if our results are reasonably
robust.
The goal of this computational study is to analyze

the impact of customer heterogeneity, costs, perfor-
mance measures, and other real world scenarios as
would be present in a retail setting. Specifically, we
want to examine how well our benchmark approach
performs in these scenarios where gaining additional
insights with our analytical model is challenging. In
this computational study, we simulate a scenario

Fðx1, . . ., xKÞ ¼ ∑
K

i¼1

 ðs� cÞminfDi, xig½ �

þ ∑
K

i¼1

 ðs� c� cpÞ∑
j≠i
ðDj � x jÞþpji � 1xi>Diþ∑

j≠i
ðDj�x jÞþpji

" #

þ ∑
K

i¼1

 ðs� c� cpÞðxi �DiÞ � 1Di ≤ xi ≤Diþ∑
j≠i
ðDj�x jÞþpji

" #

� ∑
K

i¼1

 ðc� c0Þ xi �Di � ∑
j≠i
ðDj � x jÞþpji

 !
1xi>Diþ∑

j≠i
ðDj�x jÞþpji

" #
: (13)

In the semi-stochastic model, we approximate S1i ðTÞ
by minfDi, xig and S2i ðTÞ by

∑
j≠i
ðDj � x jÞþpji � 1xi>Diþ∑

j≠i
ðDj�x jÞþpji þ ðxi �DiÞ � 1Di≤xi≤Diþ∑

j≠i
ðDj�x jÞþpji

¼ min xi �Di, ∑
j≠i
ðDj � x jÞþpji

( )
1xi≥Di

: (14)

We can compute that

xi � S1i ðTÞ � S2i ðTÞ ¼ xi �minfDi, xig �min xi �Di, ∑
j≠i
ðDj � x jÞþpji

( )
1xi≥Di

¼ xi �Di � ∑
j≠i
ðDj � x jÞþpji

 !
1xi>Diþ∑

j≠i
ðDj�x jÞþpji : (15)
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where a retail outlet stocks substitutable products.
We consider random demand with stochastic propor-
tions of customers preferring a specific product vari-
ant based on individual customer choice. The
substitution between the product variants depends
on the stochastic nature of customer arrival thus it
incorporates stockout-based substitution. The opti-
mization process is that for each and every possible
combination of stocking level of the product variants
we compute the profits. We then compare these
profits to find the maximum profit and note the corre-
sponding optimal stocking level. Due to the computa-
tional complexity involved in regard to the possible
number of stocking levels based on the customer arri-
val pattern and number of product variants, we
restrict ourselves to two and four products. Next, we
describe the simulation setup and problem parame-
ters used in this study.
1. Demand: The total random demand for the prod-

ucts D, is drawn from a distribution. The customer
demand during a selling period with length T = 1 is
best simulated using a Poisson distribution with mean
λ. Our goal is to see how well the optimal policy
derived earlier in the benchmark model matches to
those obtained from the simulation. For consistency
with our theoretical model, we approximate the total
demand for the products as a normal distribution with

parameters (mean μ = λ, standard deviation σ ¼ ffiffiffi
λ

p
).

We randomly draw from this distribution to denote
the demand for a given period, and our insights are
based on this distribution. At the end of this section,
we extend our analysis to consider a Poisson demand
distribution, and find that the insights are consistent.
In the simulation, we only consider integer values;
thus the randomly drawn demand value is rounded to
the closest integer. Given a random demand we search
for the optimal stocking level of the products which
maximizes the profit. For any demand realization
drawn from this distribution, there can be more than

104 possible combinations of stocking levels for two

products and 108 for four products when the mean
demand λ = 100. We only consider integer values for
the stocking levels. A total of 1000, random demand
realizations were considered for the simulation to
compute the average percentage gap between the sim-
ulation results and the policy derived earlier. For each
demand realization all possible combinations of stock-
ing levels of the product variants were considered to
search for the optimal stocking quantity which maxi-
mizes the profit. For example, in case of two products,
if the randomly drawn demand is 108, then there can

be at most 1082 possible combinations of stocking
levels of the two products. Next we describe the pre-
ferred choice for a product variant and the dynamic
substitution process.

2. Preferred choice: For a random demand realization
D = d, each customer m = 1, . . ., d has a preferred
first choice among the product variants. Thus the
individual demands for the product variants are neg-
atively correlated. Every customer is randomly
assigned any one of the product variants as their pre-
ferred first choice (drawn from a distribution), thus
creating a sample path of random arrivals and prefer-
ences. If the preferred first choice is available the cus-
tomer purchases it and it is noted as a first choice sale.
The stocking levels of the product variants are
updated accordingly. For example, in case of two
products, suppose the stocking level for the two pro-

duct variants is x1 and x2 when the mth customer
arrives. The preferred first choice for customer “m” is
variety 1, which is in stock. Then the customer pur-
chases it, and the stocking levels are updated to

ðx1 � 1Þ and x2 for the next—that is the ðm þ 1Þth cus-
tomer. Thus the stocking levels are updated dynami-
cally for each customer.
3. Substitution: In the event that the preferred pro-

duct variant is not available when customer “m”
arrives, then she randomly chooses to substitute to
her second choice item if it is in stock. This process
is also stochastic; we randomly assign whether a
customer is willing to substitute or not in case of a
stockout. If the second choice item is available and
the customer substitutes to purchase it, we note it
as second choice sale and update the stocking levels
accordingly. Thus a lost sale can be either because a
customer is not willing to substitute in case of
stockout of their preferred product variant or wants
to substitute but there is no available stock for the
second choice product variant. To illustrate, in case
of two products suppose the stocking level for the
two product variants is x1 ¼ 0 and x2 when cus-
tomer “m” arrives. The preferred first choice for
customer “m” is the first variety which is out of
stock. The customer may choose to substitute
(which is determined randomly for every arriving
customer in case of stockout) and purchase the sec-
ond variant. Then the stocking levels are updated

to x1 ¼ 0 and ðx2 � 1Þ for the ðm þ 1Þth arriving
customer. In case the customer does not substitute,
then it results in a lost sale and the stocking levels
remain at x1 ¼ 0 and x2 for the next arriving cus-
tomer. Thus, the second choice substitution is com-
pletely stochastic, and is contingent on whether the
preferred first choice product is in stock and the
random process of customers willing to substitute
based on the availability of second choice item.
Essentially the stochastic second choice fractions are
dependent on the stocking decision of the retailer
and the preferred choices of the customers arriving
before a particular customer.
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4. Revenue and cost parameters: Several previous
studies such as Smith and Agrawal (2000) and
Gruen et al. (2002) state that in a retail setting, the
target service levels are around 90% to 98%. Nagara-
jan and Rajagopalan (2008) observe similar service
levels in their program with the grocery industry.
Extensive market research and similar studies in a
retail setting by Gruen et al. (2002) suggest that the
percentage of stockouts usually ranges between 5%
and 10%, with a worldwide average at about 8%. In
line with the above empirical evidences, the price
and cost parameters were chosen to achieve a
newsvendor ratio in the range 0.85 − 0.95, which is
generally an acceptable measure of service level for
retailers. For instance the price and costs are set
as s = (28, 29, 30, 31, 32), c = 15, cp ¼ 9 and c0 ¼
ð12:70, 13:09, 13:33, 13:60, 14:10Þ. Table 1 below pre-
sents the average percentage gap in profit relative to
the simulation for the stocking policy based on our
analytical model for different service levels. We also
present the average gap in optimal inventory levels
of the product variants between scaled newsvendor
quantities and those obtained from the simulation.
5. Solution and insights: The above setup creates a

sample path of random arrivals and preferences for a
demand realization D drawn from the distribution.
The solution approach is to compute the profit for
each and every possible combination of stocking
levels of the products for the realized demand and
sample path. This is done by an iterative loop for
every arriving customer and based on their preferred
choices (which is stochastic) the stocking levels are
updated dynamically. We can then determine the left-
over inventory for a given stocking level and also
whether a unit is sold as a first or second choice. We
compute the profits for all possible stocking levels
and compare them to search for the maximum profit
and the corresponding stocking quantity. This process

is repeated for 103 demand realizations for every ser-
vice level (newsvendor ratio).
Profit and Inventory gap: The above results show that

the optimal policy based on our analytical model

(scaled newsvendor quantity) with demand correla-
tion and substitution performs reasonably well. The
average percentage gap in profit is between 1% and
3% and the policy performs better at higher service
levels. Since we considered every possible stocking
levels of the products, we are able to compare the
optimal inventory levels with the stocking quantity
based on our analytical model for each product vari-
ant. We find that the scaled newsvendor policy can
carry lower or higher inventory than the optimum
level obtained from the simulation. However, on
average, the scaled newsvendor policy tends to over-
stock and carries a higher inventory. As seen in the
above table, the average inventory gap for each pro-
duct variant increases with higher service levels. In
terms of the stocking ratio, the scaled newsvendor
policy varies between 0.83 and 1.26 times the optimal
inventory obtained from the simulation. These results
are based on the stochastic nature of customer arrival
and their random choices. The benchmark policy in
our analytical model is based on service level, which
is the newsvendor quantity multiplied by a scale fac-
tor and does not explicitly account for the stochastic
nature of customer arrival. As a result at higher ser-
vice levels the scaled newsvendor policy on an aver-
age tends to stock more. The overstocking at higher
service levels leads to more products being sold as
first choice resulting in a higher profit. This explains
why the percentage gap in optimal profit is low at
higher service levels. Next we analyze the effect of
customer heterogeneity and also consider a wider
range of service levels.
Customer heterogeneity: In the above analysis, the

first choice preferences assigned to each customer is
randomly drawn from a distribution. The random
choices are generated in a manner that for every arriv-
ing customer there is an equal likelihood of choosing
any one of the products as the preferred choice, that
is, Prob.(choosing product i) = Prob.(choosing pro-

duct j) = 1
K, where K is the number of product vari-

ants. This represents the case when customers are
most heterogeneous. However, in practice certain
product variants tend to be more popular and thus a
larger proportion of customers would prefer that vari-
ant as their first choice. So, next we explore the effect
of customer preference heterogeneity.
To capture this, the first choice preferences are

drawn from a distribution which is skewed such that
there is a higher probability of a customer choosing a
specific product. Thus on an average a larger propor-
tion of the customers will prefer a specific product. In
Table 2, we present the results based on customer
preference heterogeneity. The first row is when cus-
tomers are most heterogeneous and as we move
down the table the customers become more

Table 1 Average Gap in Inventory Levels and Percentage Gap in Profit
(λ = 100)

Service
levels

K = 2 K = 4

% Profit
difference

Avg.
inventory

gap
% Profit
difference Avg. inventory gap

0.85 2.65 (5.06, 5.05) 2.63 (2.39, 2.42, 2.48, 2.52)
0.88 2.18 (5.39, 5.42) 2.24 (2.69, 2.72, 2.64, 2.48)
0.90 1.88 (6.55, 6.47) 1.92 (3.02, 2.96, 3.11, 3.16)
0.92 1.43 (6.97, 7.03) 1.59 (3.28, 3.22, 3.34, 3.41)
0.95 1.01 (7.82, 7.86) 1.06 (3.92, 3.82, 3.83, 3.89)
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homogeneous with higher proportions of the cus-
tomers preferring a specific product variant over
the other. To further illustrate, in case of two prod-
ucts the first row is when every arriving customer
has Prob.(choosing product 1) = Prob.(choosing
product 2) = 0.5 and the last row is when every arriv-
ing customer has Prob.(choosing product 1) = 0.9,
Prob.(choosing product 2) = 0.1. Thus on an average
a larger proportion of customers will choose the first
product.
The percentage gap in optimal profit relative to

the simulation for the scaled newsvendor policy is
fairly consistent for a given service level irrespec-
tive of customer preference heterogeneity. This is
because the scaled newsvendor policy takes into
account these choice probabilities in its formulation
as the first choice proportions Pi’s are modified
accordingly. In the above analysis the stochastic sec-
ond choice fractions, Pij’s ranged from 0.13 to as

high as 0.52, and we observe that the substitution
fractions are dependent on customer preference
heterogeneity, that is, the first choice proportion of
the customers. In general the average substitution
fractions vary to a larger extent when the customer
preference is more homogeneous. The second choice
substitution proportions due to stockout depends
on the product category and brand value (Gruen et
al. 2002). For example, snacks, perishables, and
daily necessities like paper towel have a higher sub-
stitution percentage than cosmetics. In a product
category consumers may substitute to another vari-
ant within the same or a different brand. Typically
these values on an average ranges between 15% and
45% and our simulation outcomes are in line with
empirical evidence.
Demand characteristics: We now extend our analysis

to consider lower service levels and examine the
impact of mean demand and variability on the opti-
mal percentage gap. While high service levels is
desired, this might not always be the case for certain
category of products. The cost and revenue parame-
ters are chosen for a wide range of service levels
ensuring all feasibility conditions such as positive
margin from substitution sale, that is, s � c � cp > 0,

underage and overage costs are satisfied. At low ser-
vice levels the profit margin or underage costs are rel-
atively small thus the impact of penalty cost becomes
more significant, that is, high value of θ. This scenario
which can be the case for low margin products, the
profit is severely impacted due to substitution result-
ing from stockout. We consider the case when cus-
tomers are most heterogeneous, that is, for every
arriving customer, there is an equal likelihood of
choosing any one of the products.
In Figure 1, we see that the optimal policy based

on our theoretical model performs better with
larger mean demand and is also consistent with
earlier results that the gap improves at higher ser-
vice levels. The percentage gap decreases at a fas-
ter rate with higher demand at low service levels.
In all the above analysis we consistently find that
optimum policy based on the benchmark model on
an average tends to overstock and this varies based
on customer heterogeneity and demand variability.
As the benchmark model tends to hold higher
levels of inventory we also analyzed the impact of
the overstocking cost. For this analysis we hold the
underage cost to be the same for all product vari-
ants but vary the overage cost based on c0. We
find that our policy performs better with lower
overage cost as c0 increases. A low overage cost
corresponds to high service levels at which the
benchmark model tends to perform better as seen
in our earlier analysis. We obtain similar insights
as the above reported results.
Next, we analyze how the policy performs under

different profit margin and overage costs across the
product variants and its interaction with the customer
choice probabilities, that is, we investigate the interac-
tion between asymmetric service levels and customer
heterogeneity between the product variants. In this
analysis we consider two products in order to restrict
the number of possible combinations while searching
for the optimal solution.

Interaction effects: In this scenario, a less popular
product based on customer preference can have a
higher service level and vice-versa. From Table 3, it is
evident that there is an interaction between the

Table 2 Effect of Preference Heterogeneity on Percentage Gap in Profit (λ = 100)

Number of
products (K) Choice probabilities

Service levels

0.80 0.83 0.85 0.88 0.90 0.92 0.95

2 (0.50, 0.50) 3.38 3.03 2.65 2.18 1.88 1.43 1.01
(0.70, 0.30) 3.29 2.91 2.69 2.28 1.93 1.56 1.05
(0.90, 0.10) 3.34 3.08 2.70 2.27 1.89 1.53 1.08

4 (0.25, 0.25, 0.25, 0.25) 3.25 2.96 2.63 2.24 1.92 1.59 1.06
(0.40, 0.30, 0.20, 0.10) 3.39 3.01 2.67 2.11 1.87 1.55 1.07
(0.50, 0.30, 0.15. 0.05) 3.36 3.08 2.74 2.17 1.93 1.51 0.94
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service levels of the two products and customer
heterogeneity. The percentage gap in profit is consis-
tent when both products have the same service level
for different customer heterogeneity. However, for
asymmetric service levels of the two products, when a
larger proportion of customers prefer a product vari-
ant with higher service level, the percentage gap in
profit decreases compared to when there is an equal
likelihood of customers choosing any one of the two
products. The opposite is seen when a larger propor-
tion of customers prefer a product variant with lower
service level. The analysis highlights that the optimal
policy based on the analytical model performs better
at higher service levels and when customers are more
homogeneous in preferring the product with higher
service levels.

We now extend our analysis by considering a Pois-
son distribution to examine if there is any significant
difference because of the continuous demand distri-
bution assumption in our benchmark model analysis.
Table 4 below presents the average gap in optimal
inventory levels and percentage profit difference in
case of a Poisson distribution. Consistent with our
earlier results we find that the benchmark policy per-
forms better at higher service levels and on an aver-
age tends to overstock as compared to the optimal
inventory levels from the simulation.
Next we consider customer preference heterogene-

ity under Poisson. Similar to our earlier results the
percentage gap in optimal profit under the bench-
mark policy is consistent for a given service level
regardless of the choice probabilities. Table 5 below
presents the percentage profit difference in case of a
Poisson distribution based on customer preference
heterogeneity.

Figure 1 Effect of Service Level and Demand Variability on Percentage Gap in Profit

Table 3 Asymmetric Service Level and Preference Heterogeneity
(λ = 100)

Service levels Demand proportions

Product 1 Product 2

P 1 = 0:3,
P 2 = 0:7

P 1 = P 2 = 0:5

P 1 = 0:7,
P 2 = 0:3

P1 < P2 P1 > P2

0.80 0.80 3.39 3.33 3.28
0.80 0.85 2.76 2.93 3.13
0.80 0.90 2.46 2.62 2.84
0.80 0.95 1.54 1.92 2.58
0.85 0.85 2.62 2.66 2.61
0.85 0.90 2.05 2.29 2.41
0.85 0.95 1.42 1.78 2.04
0.90 0.90 1.81 1.87 1.80
0.90 0.95 1.22 1.44 1.56
0.95 0.95 1.07 1.08 1.05

Table 4 Average Gap in Inventory Levels and Percentage Gap in Profit
under Poisson (λ = 100)

Service
levels

K = 2 K = 4

% Profit
difference

Avg.
inventory

gap
% Profit
difference Avg. inventory gap

0.70 4.69 (2.22, 2.19) 4.78 (1.12, 1.04, 1.07, 1.08)
0.75 4.23 (3.69, 3.71) 4.27 (1.77, 1.72, 1.83, 1.85)
0.80 3.54 (4.28, 4.46) 3.46 (2.01, 2.17, 2.07, 2.03)
0.85 2.68 (4.77, 4.69) 2.61 (2.52, 2.54, 2.52, 2.43)
0.90 1.92 (6.61, 6.67) 1.83 (3.07, 3.17, 3.15, 3.35)
0.95 1.04 (8.24, 8.27) 1.10 (4.44, 4.58, 4.55, 4.61)
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Finally we examine the effect of demand variability
and lower service levels under Poisson when cus-
tomers are most heterogeneous. As seen earlier, with
larger mean demand the benchmark policy performs
better and the percentage gap decreases at a faster
rate with higher mean demand at lower service levels
(Figure 2).

6. Concluding Remarks

In this study, we have extended past work on the
problem of selecting the optimal stocking levels of hor-
izontally differentiated product variants. The paper
considers the demand for different product variants to
be negatively correlated, and studies the impact of
substitution between the products. Customers substi-
tute one product variant for another if their first choice
option is not in stock. We develop an exact model in
which customers arrive stochastically according to a
Poisson process. In order to characterize an optimal
policy analytically, we propose a general benchmark
model in which demand, first choice and second
choice proportions, are stochastic. We identify

conditions under which the optimal stocking policy in
the benchmark model is the scaled newsvendor solu-
tion and show that this depends on the stochasticity of
the first and second choices. We then establish a con-
nection between the exact and benchmark models.
The dynamic simulation accounts for the stochastic

nature of the customer arrival and choice process. In
the computational study, we examine the impact of
choice fractions, costs, and other performance mea-
sures on the optimal policy as compared to the bench-
mark model to better understand the impact of our
modeling assumptions on the optimality gap. Our
results have practical implications in a retail setting,
where a retailer has to decide on optimal stocking
levels of different product variants within a category.
Correlated demand and substitution across different
product variants in a retail setting is quite common,
and we have been able to find simple conditions on
price and cost when the optimum stocking policy is
given by the scaled newsvendor solution. Future
extensions of this work include adding the effect of
demand correlation and customer arrival process in
the assortment decision.

Table 5 Effect of Preference Heterogeneity on Percentage Gap in Profit under Poisson (λ = 100)

Number of
products (K) Choice probabilities

Service levels

0.70 0.75 0.80 0.85 0.90 0.95

2 (0.50, 0.50) 4.69 4.23 3.54 2.68 1.92 1.04
(0.70, 0.30) 4.76 4.26 3.51 2.63 1.87 1.09
(0.90, 0.10) 4.66 4.18 3.44 2.71 1.89 1.08

4 (0.25, 0.25, 0.25, 0.25) 4.78 4.27 3.46 2.61 1.83 1.10
(0.40, 0.30, 0.20, 0.10) 4.71 4.34 3.32 2.72 1.88 1.07
(0.50, 0.30, 0.15. 0.05) 4.74 4.30 3.38 2.67 1.93 1.06

Figure 2 Effect of Service Level and Demand Variability on Percentage Gap in Profit under Poisson
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Appendix

PROOF OF PROPOSITION 1. If x1, . . ., xK > 0, then we
have

Vðx1, . . ., xK; tÞ ¼ ∑
K

i¼1

pi

ZT
t

λe�λðu�tÞ s� cþ Vðx1, . . .,ð

xi�1, xi � 1, xiþ1, . . ., xK;uÞÞdu

� ∑
K

i¼1

xiðc� c0Þ
Z∞
T

λe�λðu�tÞdu: (A1)

First we elaborate on how we obtained Equation (A1).
Recall that customers arrive according to a Poisson
process with arrival rate λ > 0. The arrival time of the
first customer has probability density function

λe�λðu�tÞ for arrival at time u ≥ t. If t ≤ u ≤ T, then at
time u, with probability pi, the customer purchases a

product of type i, which is available given that xi > 0.
The seller collects a profit s − c, and the available
number of units for product i reduces to xi � 1 from
xi, and by the strong Markov property, the expected
profit for the seller at time u after selling a product of
type i is given by Vðx1, . . ., xi�1, xi � 1, xiþ1, . . ., xK; uÞ,
which explains the first term on the right-hand side of
Equation (A1). If u > T, then no customer arrives
before the end of the period, and thus the firm has to

sell the remaining stocks ∑K
i¼1xi at a loss ðc � c0Þ for

each unit, which explains the second term on the
right-hand side of Equation (A1).
Next, we can simplify Equation (A1) such that for

any x1, . . ., xK > 0

Vðx1, . . ., xK; tÞ ¼ 1� e�λðT�tÞ� �
∑
K

i¼1

piðs� cÞ � e�λðT�tÞ

� ∑
K

i¼1

xiðc� c0Þ þ∑
K

i¼1

pi

ZT
t

λe�λðu�tÞ

�Vðx1, . . ., xi�1, xi � 1,

xiþ1, . . ., xK;uÞdu: (A2)

More generally, for any x1, . . ., xK ∈∪ f0g and
any 0 ≤ t ≤ T, we have

Vðx1, . . ., xK; tÞ

¼ ∑
i:xi>0

pi

ZT
t

λe�λðu�tÞ s� cþ Vðx1, . . ., xi�1, xi � 1,ð

xiþ1, . . ., xK; uÞÞdu

þ ∑
i:xi¼0

pi ∑
j:x j>0

pij

ZT
t

λe�λðu�tÞ s� c� cp þ Vðx1, . . .,
�

x j�1, x j � 1, x jþ1, . . ., xK;uÞÞdu

� ∑
K

i¼1

xiðc� c0Þ
Z∞
T

λe�λðu�tÞdu, (A3)

To obtain Equation (A3), recall that customers
arrive according to a Poisson process with arrival
rate λ > 0 and with probability pi, a customer’s first

preferred product is of type i. We consider the arri-
val time of the first customer whose probability

density function is λe�λðu�tÞ for u ≥ t. If t ≤ u ≤ T,
and the customer’s first choice of type i is avail-
able, that is, xi > 0, then we obtain the first part in
the right-hand side of Equation (A3) following the
argument for Equation (A1). If type i products are
not available, that is, xi ¼ 0, then with probability
pij, the customer will substitute to the second

choice product type j if they are available, that is,
x j > 0, we can use similar argument as Equation

(A1) to obtain the second part in the right-hand
side of Equation (A3). Finally, if u > T, then the
third part in the right-hand side of Equation (A3)
can be obtained in the same way as the second
part in the right-hand side of Equation (A1).
Moreover, by simplifying Equation (A3), we have

for any x1, . . ., xK ∈∪ f0g and any 0 ≤ t ≤ T,

Vðx1, . . ., xK;tÞ
¼ 1� e�λðT�tÞ
� �

∑
i:xi>0

piðs� cÞ

þ 1� e�λðT�tÞ
� �

∑
i:xi¼0

pi ∑
j:x j>0

pijðs� c� cpÞ

�e�λðT�tÞ ∑
K

i¼1

xiðc� c0Þ

þ ∑
i:xi>0

pi

ZT
t

λe�λðu�tÞVðx1, . . ., xi�1, xi � 1,

xiþ1, . . ., xK;uÞdu þ ∑
i:xi¼0

pi ∑
j:x j>0

pij

ZT
t

λe�λðu�tÞ
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�Vðx1, . . ., x j�1, x j � 1, x jþ1, . . ., xK;uÞdu:
(A4)

Hence, we conclude that the optimal stocking levels
are given by

ðx�1, . . ., x�KÞ ¼ arg max
x1, ...,xK≥0

Vðx1, . . ., xK;0Þ, (A5)

where Vðx1, . . ., xK;tÞ solves a (K + 1)-dimensional
integral Equation (A4). □

PROOF OF THEOREM 1. The function Fðx1, . . ., xKÞ
defined in Equation (3), can be simplified and re-
written as:

which yields that we can further simplify
Fðx1, . . ., xKÞ as
Fðx1,...,xKÞ

¼ ðs�c0Þ∑
K

i¼1

 ðDi�xiÞ�1xi>Diþ∑
j≠i
ðDj�xjÞþpji

" #

þðs�cp�c0Þ∑
K

i¼1

 ∑
j≠i
ðDj�xjÞþpji �1xi>Diþ∑

j≠i
ðDj�xjÞþpji

" #

þcp∑
K

i¼1

 ðDi�xiÞ�1Di≤xi≤Diþ∑
j≠i
ðDj�xjÞþpji

" #
þðs�cÞ∑

K

i¼1

xi:

(A7)

As stated earlier Di ¼ Dpi and recall that f(y) is the

probability density function of demand D, which is
assumed to be continuously differentiable, thus the
objective function Fðx1, . . ., xKÞ can be stated as:

Fðx1, . . ., xKÞ

¼ ∑
K

i¼1

 ðs� cÞDi þ ðs� c� cpÞ∑
j≠i
ðDj � x jÞþpji

 !
1xi >Diþ∑

j≠i
ðDj�x jÞþpji

" #

� ∑
K

i¼1

 ðc� c0Þ xi �Di �∑
j≠i
ðDj � x jÞþpji

 !
1xi >Diþ∑

j≠i
ðDj�x jÞþpji

" #

þ ∑
K

i¼1

 ðs� cÞDi þ ðs� c� cpÞðxi �DiÞ
� �

1Di ≤ xi ≤ Diþ∑
j≠i
ðDj�x jÞþpji

" #

þ ∑
K

i¼1

½ðs� cÞxi� �∑
K

i¼1

½ðs� cÞxi1xi ≥ Di�

¼ ∑
K

i¼1

 ðs� cÞðDi � xiÞ þ ðs� c� cpÞ∑
j≠i
ðDj � x jÞþpji

 !
1xi >Diþ∑

j≠i
ðDj�x jÞþpji

" #

� ∑
K

i¼1

 ðc� c0Þ xi �Di �∑
j≠i
ðDj � x jÞþpji

 !
1xi >Diþ∑

j≠i
ðDj�x jÞþpji

" #

þ ∑
K

i¼1

 ðs� cÞðDi � xiÞ þ ðs� c� cpÞðxi �DiÞ
� �

1Di ≤ xi ≤ Diþ∑
j≠i
ðDj�x jÞþpji

" #

þ ∑
K

i¼1

½ðs� cÞxi�

¼ ∑
K

i¼1

 ðs� c0ÞðDi � xiÞ þ ðs� c� cpÞ∑
j≠i
ðDj � x jÞþpji

 !
1xi >Diþ∑

j≠i
ðDj�x jÞþpji

" #

þ ðc� c0Þ ∑
K

i¼1

 ∑
j≠i
ðDj � x jÞþpji � 1xi >Diþ∑

j≠i
ðDj�x jÞþpji

" #

þ ∑
K

i¼1

 cpðDi � xiÞ1Di ≤ xi ≤ Diþ∑
j≠i
ðDj�x jÞþpji

" #
þ ∑

K

i¼1

½ðs� cÞxi�, (A6)
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Fðx1, . . ., xKÞ ¼ ðs� c0Þ ∑
K

i¼1

 ðDpi � xiÞ � 1xi>Dpiþ∑
j≠i
ðDpj�x jÞþpji

" #

þðs� cp � c0Þ ∑
K

i¼1

 ∑
j≠i
ðDpj � x jÞþpji � 1xi>Dpiþ∑

j≠i
ðDpj�x jÞþpji

" #

þ cp ∑
K

i¼1

 ðDpi � xiÞ � 1Dpi≤xi≤Dpiþ∑
j≠i
ðDpj�x jÞþpji

" #
þ ðs� cÞ ∑

K

i¼1

xi, (A8)

which is equivalent to

Fðx1, . . ., xKÞ ¼ ðs� c0Þ ∑
K

i¼1

Z
xi > ypiþ∑

j≠i
ðyp j�x jÞþpji

ðypi � xiÞfðyÞdy

þðs� cp � c0Þ ∑
K

i¼1

Z
xi > ypiþ∑

j≠i
ðyp j�x jÞþpji

∑
j≠i
ðyp j � x jÞþpjifðyÞdy

þ cp ∑
K

i¼1

Z
ypi≤xi≤ypiþ∑

j≠i
ðyp j�x jÞþpji

ðypi � xiÞfðyÞdyþ ðs� cÞ ∑
K

i¼1

xi: (A9)

Recall fromEquation (5) thatGiðx1, . . ., xKÞ is defined as
the value of y such that xi ¼ ypi þ∑ j≠iðypj � xjÞþpji. Then

Fðx1, . . ., xKÞ ¼ ðs� c0Þ ∑
K

i¼1

ZGiðx1, ...,xKÞ

0

ðypi � xiÞfðyÞdy

þðs� cp � c0Þ ∑
K

i¼1

ZGiðx1, ...,xKÞ

0

∑
j≠i
ðyp j � x jÞþpjifðyÞdy

þ cp ∑
K

i¼1

Zxi
pi

Giðx1, ...,xKÞ

ðypi � xiÞfðyÞdyþ ðs� cÞ ∑
K

i¼1

xi, (A10)

which implies that

∂F

∂xi
¼ �ðs� c0Þ

ZGiðx1, ...,xKÞ

0

fðyÞdy

þ ðs� c0Þ ∑
K

‘¼1

∂G‘

∂xi
G‘ðx1, . . ., xKÞp‘ � x‘
� �

fðG‘ðx1, . . ., xKÞÞ

� ðs� cp � c0Þ ∑
K

‘¼1

∂G‘

∂xi
G‘ðx1, . . ., xKÞp‘ � x‘
� �

fðG‘ðx1, . . ., xKÞÞ

� ðs� cp � c0Þ∑
‘≠i

ZG‘ðx1, ...,xK Þ

xi
pi

pi‘fðyÞdy

� cp

Zxi
pi

Giðx1, ...,xKÞ

fðyÞdy� cp ∑
K

‘¼1

∂G‘

∂xi
G‘ðx1, . . ., xKÞp‘ � x‘
� �

fðG‘ðx1, . . ., xKÞÞ þ ðs� cÞ

¼ � ðs� c0Þ
ZGiðx1 , ...,xKÞ

0

fðyÞdy� ðs� cp � c0Þ∑
‘≠i

ZG‘ðx1 , ...,xKÞ

xi
pi

pi‘fðyÞdy

� cp

Zxi
pi

Giðx1, ...,xK Þ

fðyÞdy þ ðs� cÞ:

(A11)
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Finally, let us show that the optimal ðx�1, . . ., x�KÞ
satisfies the first-order condition. Given any x j, j ≠ i,

we can compute that

∂F

∂xi

				
xi¼0

¼ s� c> 0,

since Gi ¼ 0 when xi ¼ 0. Moreover, as xi ! ∞,
Gi ! ∞ and thus

∂F

∂xi

				
xi¼∞

¼ �ðs� c0Þ þ s� c ¼ c0 � c< 0,

and hence the optimal x�i ∈ ð0,∞Þ, and the optimal
ðx�1, . . ., x�KÞ satisfies the first-order condition
∂F
∂xi

jðx1; ...; xKÞ ¼ ðx�
1
; ...;x�

K
Þ ¼ 0, 1 ≤ i ≤ K, which gives

Equation (4). The proof is complete. □

PROOF OF LEMMA 1. First, we notice that the right-
hand side of Equation (5) is monotonically increas-
ing in Gi, it is zero when Gi ¼ 0 and infinity when
Gi ¼ ∞, and thus there exists a unique positive
value Gi that solves this equation. Note that

ðGip j � x jÞþ ¼ Gip j�x j for any
x j

p j
≤Gi so that we

obtain

Gi ¼
xi þ∑j:x j=p j≤Gi

x jpji

pi þ∑j:x j=pj≤Gi
p jpji

:

Since there exists a unique positive Gi, there
exists a unique set Si ⊆ f1, 2, . . ., Kgnfig such

that
x j

p j
≤

xi þ∑ j∈Si
x jpji

pi þ∑ j∈Si
p jpji

if and only if j∈ Si. Then, we

get

Gi ¼
xi þ∑j∈ Si

x jpji
pi þ∑j∈ Si

p jpji
, 1 ≤ i ≤ K,

where the set Si is a function of ðxkÞKk¼1.
There exists a permutation π of {1, 2, . . ., K} such

that
xπð1Þ
pπð1Þ

≤ xπð2Þ
pπð2Þ

≤⋯≤ xπðKÞ
pπðKÞ

. Then Si¼fπð1Þ, πð2Þ, . . .,
πðKiÞg for some unique 1≤Ki ≤K, so that

Gi ¼
xi þ∑Ki

j¼1xπðjÞpπðjÞi
pi þ∑Ki

j¼1pπðjÞpπðjÞi
, 1 ≤ i ≤ K,

where

Ki :¼ max k∈ f1, . . ., Kg :
xπðkÞ
pπðkÞ

≤
xi þ∑k

j¼1xπðjÞpπðjÞi
pi þ∑k

j¼1pπðjÞpπðjÞi

8<
:

9=
;

is a function of ðxkÞKk¼1. The proof is complete. □

Before we proceed to the proof of Theorem 2, let us
first recall a standard lemma characterizing concave
functions.

LEMMA 2. The function q : n ↦ is concave if and
only if the function r : ↦, defined as r(t) =
q(x + tv), is a concave function of the single real variable
t, where the domain of r(�) is the set of points t such that
x + tv belongs to the domain of q(�).

Now, we are ready to prove Theorem 2.

PROOF OF THEOREM 2. We present a consolidated
proof of both parts of the theorem, in two steps.
First, in Step 1, we shall show that under the
stated condition, the objective function is jointly
concave in the decision variables. Then, in Step
2, we shall show that when the objective func-
tion is concave, the newsvendor solution is opti-
mal.
Step 1: Recall that from the proof of Theorem 1,

we have

Fðx1, . . ., xKÞ ¼ ðs� c0Þ ∑
K

i¼1

ZGiðx1, ...,xKÞ

0

ðypi � xiÞfðyÞdy

þ ðs� cp � c0Þ ∑
K

i¼1

ZGiðx1, ...,xKÞ

0

∑
j≠i
ðyp j � x jÞþpjifðyÞdy

þ cp ∑
K

i¼1

Zxi
pi

Giðx1, ...,xKÞ

ðypi � xiÞfðyÞdyþ ðs� cÞ ∑
K

i¼1

xi:

Recall from Equation (5) that Gi is defined via the
equations

xi ¼ Gipi þ∑
j≠i
ðGip j � x jÞþpji, 1 ≤ i ≤ K:

Let us define for any t such that

ðx1 þ tz1, . . ., xK þ tzKÞ∈K
þ:
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gðtÞ :¼ F ðx1 þ tz1Þ, . . ., ðxK þ tzKÞð Þ

¼ ðs� c0Þ ∑
K

i¼1

ZGi ðx1þtz1Þ, ...,ðxKþtzKÞð Þ

0

ðypi � ðxi þ tziÞÞfðyÞdy

þ ðs� cp � c0Þ ∑
K

i¼1

ZGi ðx1þtz1Þ, ...,ðxKþtzKÞð Þ

0

∑
j≠i
ðyp j � ðx j þ tz jÞÞþpjifðyÞdy

þ cp ∑
K

i¼1

Zxiþtzi
pi

Gi ðx1þtz1Þ, ...,ðxKþtzKÞð Þ

ðypi � ðxi þ tziÞÞfðyÞdyþ ðs� cÞ ∑
K

i¼1

ðxi þ tziÞ: (A12)

We can compute that

∂g

∂t
¼ �ðs� c0Þ ∑

K

i¼1

ZGi ðx1þtz1Þ, ...,ðxKþtzKÞð Þ

0

zifðyÞdy

þ ðs� c0Þ ∑
K

‘¼1

∂G‘

∂t
ðG‘ ðx1 þ tz1Þ, . . ., ðxK þ tzKÞð Þp‘ � ðx‘ þ tz‘ÞÞ

� f G‘ ðx1 þ tz1Þ, . . ., ðxK þ tzKÞð Þð Þ

� ðs� cp � c0Þ ∑
K

‘¼1

∂G‘

∂t
ðG‘ ðx1 þ tz1Þ, . . ., ðxK þ tzKÞð Þp‘ � ðx‘ þ tz‘ÞÞ

� f G‘ ðx1 þ tz1Þ, . . ., ðxK þ tzKÞð Þð Þ

� ðs� cp � c0Þ ∑
K

i¼1

∑
‘≠i

ZGi ðx1þtz1Þ, ...,ðxKþtzKÞð Þ

x‘þtz‘
p‘

z‘p‘ifðyÞdy

� cp ∑
K

i¼1

Zxiþtzi
pi

Gi ðx1þtz1Þ, ...,ðxKþtzKÞð Þ

zifðyÞdy

� cp ∑
K

‘¼1

∂G‘

∂t
ðG‘ ðx1 þ tz1Þ, . . ., ðxK þ tzKÞð Þp‘ � ðx‘ þ tz‘ÞÞ

� f G‘ ðx1 þ tz1Þ, . . ., ðxK þ tzKÞð Þð Þ þ ðs� cÞ ∑
K

i¼1

zi,

which yields that

∂g

∂t
¼ �ðs� c0Þ ∑

K

i¼1

ZGi ðx1þtz1Þ, ...,ðxKþtzKÞð Þ

0

zifðyÞdy

� ðs� cp � c0Þ ∑
K

i¼1

∑
‘≠i

ZGi ðx1þtz1Þ, ...,ðxKþtzKÞð Þ

x‘þtz‘
p‘

z‘p‘ifðyÞdy

� cp ∑
K

i¼1

Zxiþtzi
pi

Gi ðx1þtz1Þ, ...,ðxKþtzKÞð Þ

zifðyÞdyþ ðs� cÞ ∑
K

i¼1

zi:

Ghosh, Paul, and Zhu: Stocking Under Random Demand and Product Variety
1026 Production and Operations Management 31(3), pp. 1006–1032, © 2021 Production and Operations Management Society



Furthermore, we can compute that

Recall from Equation (5) that Gi is defined via the
equations

xi ¼ Gipi þ ∑
j≠i
ðGip j � x jÞþpji, 1 ≤ i ≤ K:

This is equivalent to

xi
pi

¼ Gi þ ∑
j≠i

Gi �
x j

p j

 !þ
p j

pi
pji, 1 ≤ i ≤ K,

where

∑
j≠i

Gi �
x j

p j

 !þ
p j

pi
pji ¼ ∑

j≠i
max Gi �

x j

p j

, 0

 !
p j

pi
pji:

Define τ j :¼ Gi � x j

p j
. We consider the following

three cases. Note that Case 1, Case 2, and Case 3 are
mutually exclusive and collectively exhaustive.

Case 1: Suppose τ j ≤ 0, for every j ≠ i. Then it fol-

lows from the above equation that:

Giðx1, . . ., xKÞ ¼ xi
pi
, 1 ≤ i ≤ K:

For any t such that ðx1 þ tz1Þ, . . ., ðxK þ tzKÞ∈K
þ,

let

hðtÞ ¼ Gi ðx1 þ tz1Þ, . . ., ðxK þ tzKÞð Þ ¼ xi þ tzi
pi

, 1 ≤ i ≤ K:

Then we have

∂h

∂t
¼ ∂Gi

∂t
> 0:

Case 2: Suppose τ j > 0, for every j ≠ i. This

implies Gi >
x j

p j
, for every j ≠ i, and hence

∂
2g

∂t2
¼�ðs� c0Þ ∑

K

i¼1

∂Gi

∂t
zif Gi ðx1 þ tz1Þ, . . ., ðxK þ tzKÞð Þð Þ

� ðs� cp � c0Þ ∑
K

i¼1

∑
‘≠i

∂Gi

∂t
f Gi ðx1 þ tz1Þ, . . ., ðxK þ tzKÞð Þð Þ � z‘

p‘
f

x‘ þ tz‘
p‘


 �� 

z‘p‘i

� cp ∑
K

i¼1

zi
pi
f

xi þ tzi
pi


 �
� ∂Gi

∂t
f Gi ðx1 þ tz1Þ, . . ., ðxK þ tzKÞð Þð Þ

� 

zi

¼�ðs� cp � c0Þ ∑
K

i¼1

∂Gi

∂t
zif Gi ðx1 þ tz1Þ, . . ., ðxK þ tzKÞð Þð Þ

� ðs� cp � c0Þ ∑
K

i¼1

∑
‘≠i

∂Gi

∂t
f Gi ðx1 þ tz1Þ, . . ., ðxK þ tzKÞð Þð Þ � z‘

p‘
f

x‘ þ tz‘
p‘


 �� 

z‘p‘i

� cp ∑
K

i¼1

zi
pi
f

xi þ tzi
pi


 �� 

zi

¼�ðs� cp � c0Þ ∑
K

i¼1

∂Gi

∂t
zif Gi ðx1 þ tz1Þ, . . ., ðxK þ tzKÞð Þð Þ

� ðs� cp � c0Þ ∑
K

i¼1

∑
‘≠i

∂Gi

∂t
f Gi ðx1 þ tz1Þ, . . ., ðxK þ tzKÞð Þð Þ

� 

z‘p‘i

þ ðs� cp � c0Þ ∑
K

i¼1

∑
‘≠i

z‘
p‘

f
x‘ þ tz‘

p‘


 �� 

z‘p‘i � cp ∑

K

i¼1

zi
pi
f

xi þ tzi
pi


 �� 

zi

¼�ðs� cp � c0Þ ∑
K

i¼1

∂Gi

∂t
zif Gi ðx1 þ tz1Þ, . . ., ðxK þ tzKÞð Þð Þ

� ðs� cp � c0Þ ∑
K

i¼1

∑
‘≠i

∂Gi

∂t
f Gi ðx1 þ tz1Þ, . . ., ðxK þ tzKÞð Þð Þ

� 

z‘p‘i

þ ∑
K

i¼1

zi
pi
f

xi þ tzi
pi


 �� 

zi ðs� cp � c0Þ∑

‘≠i
pi‘ � cp

 !
:
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xi
pi

¼ Gi þ ∑
j≠i

Gi �
x j

p j

 !
p j

pi
pji, 1 ≤ i ≤ K,

which yields that

Gi ¼
xi
pi
þ∑j≠i

x j

p j

� �
p j

pi
pji

1þ∑j≠i
p j

pi
pji

, 1 ≤ i ≤ K:

For any t such that ðx1 þ tz1Þ, . . ., ðxK þ tzKÞ∈K
þ,

let

hðtÞ ¼ Gi ðx1 þ tz1Þ, . . ., ðxK þ tzKÞð Þ

¼
xþtzi
pi

þ∑j≠i
x jþtz j
p j

� �
p j

pi
pji

1þ∑j≠i
p j

pi
pji

, 1 ≤ i ≤ K:

Then we have

∂h

∂t
¼ ∂Gi

∂t
> 0:

Case 3: Suppose τ j ≤ 0, j ¼ i1, i2, . . ., im
and τ j > 0, j≠ i1, i2, . . ., im. Recall that Case 1, Case

2, and Case 3 are mutually exclusive and col-

lectively exhaustive. This implies that Gi ≤ x j

p j
,

j ¼ i1, i2, . . ., im if and only if Gi ¼ xi
pi
, 1 ≤ i ≤ K,

and Gi >
x j

p j
, j≠ i1, i2, . . ., im. The proof that ∂Gi

∂t > 0

is similar for Case 3 and is thus omitted. Moreover,
the following term is negative, that is,

∑
K

i¼1

zi
pi
f

xi þ tzi
pi


 �� 

zi ðs� cp � c0Þ∑

‘≠i
pi‘ � cp

 !
< 0,

which ensures that ∂
2g

∂t2
< 0. That is

ðs � cp � c0Þ∑‘≠ipi‘ � cp < 0 or cp >
ðs � c0Þ∑‘≠ipi‘
1 þ∑‘≠ipi‘

, for

every 1 ≤ i ≤ K, ensures the objective function
is jointly concave in the decision variables by
Lemma 2.
Step 2: The optimum stocking policy with substi-

tution, that is, the second choice model is character-
ized by the equations in Theorem 1. Recall from
Equation (5) that Gi is defined via the equations

xi ¼ Gipi þ ∑
j≠i
ðGip j � x jÞþpji, 1 ≤ i ≤ K:

This is equivalent to

xi
pi

¼ Gi þ ∑
j≠i

Gi �
x j

p j

 !þ
p j

pi
pji, 1 ≤ i ≤ K,

where

∑
j≠i

Gi �
x j

p j

 !þ
p j

pi
pji ¼ ∑

j≠i
max Gi �

x j

p j

, 0

 !
p j

pi
pji, 1 ≤ i ≤ K:

We separately treat the same three cases that we
did earlier, which are mutually exclusive and collec-

tively exhaustive. Recall that τ j ¼ Gi � x j

p j
.

Case 1: Suppose τ j ≤ 0, for every j ≠ i. This

implies Gi ≤ x j

p j
, for every j ≠ i so that Gi ¼ xi

pi
,

1 ≤ i ≤ K.
Case 2: Suppose τ j > 0, for every j ≠ i. This

implies Gi >
x j

p j
, for every j ≠ i, and hence

xi
pi

¼ Gi þ ∑
j≠i

Gi �
x j

p j

 !
p j

pi
pji, 1 ≤ i ≤ K,

which yields

Gi ¼
xi
pi
þ∑j≠i

x j

p j

� �
p j

pi
pji

1þ∑j≠i
p j

pi
pji

, 1 ≤ i ≤ K:

Case 3: Suppose τ j ≤ 0, j ¼ i1, i2, . . ., im and

τ j > 0, j≠ i1, i2, . . ., im.

Recall that Case 1, Case 2, and Case 3 are mutu-
ally exclusive and collectively exhaustive.

This implies that if Gi ≤ x j

p j
, j ¼ i1, i2, . . ., im, then

Gi ¼ xi
pi
, 1 ≤ i ≤ K, and if Gi >

x j

p j
, for j≠ i1, i2, . . ., im

then

xi
pi

¼ Gi þ ∑
j≠i1, i2, ...,im

Gi �
x j

p j

 !
p j

pi
pji,

which yields that

Gi ¼
xi
pi
þ∑ j≠i1;i2;...;im

x j

p j

� �
p j

pi
pji

1þ∑ j≠i1;i2;...;im
p j

pi
pji

:

The logic of the proof is as follows: we consider
the vector of newsvendor order quantities of the K
product variants and show that it also satisfies the
necessary conditions for an optimal solution to the
substitution model. We remark that if the objective
function is jointly concave in the stocking levels of
all the product variants, then the necessary condi-
tions are also sufficient.
Suppose the optimal stocking policy when there is

no second choice or substitution satisfies the equa-
tions defined in Theorem 1 which characterizes the
optimal stocking policy with substitution. The opti-
mal stocking policy without substitution is to stock
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the newsvendor quantity for each product variant
(Remark 1). Hence, we have

H
x�i
pi


 �
¼ s� c

s� c0
, 1 ≤ i ≤ K,

where H(�) is the distribution function of the
demand. This implies

x1
p1

¼ x2
p2

¼ ⋯ ¼ xK
pK

,

where we used the assumption that f(�) > 0 so that
H(�) is invertible.
We again separate our analysis into three cases,

exactly as before. Recall that τ j ¼ Gi � x j

p j
.

Case 1: When τ j ≤ 0, for every j ≠ i, we have

Gi ¼ xi
pi
, 1 ≤ i ≤ K, so that

G1 ¼ G2 ¼ ⋯ ¼ GK ¼ x1
p1

¼ x2
p2

¼ ⋯ ¼ xK
pK

:

Case 2: When τ j > 0, for every j ≠ i, we have

Gi ¼

xi
pi
þ∑j≠i

x j

p j

 !
p j

pi
pji

1þ∑j≠i

p j

pi
pji

¼
xi
pi
þ xi

pi


 �
∑j≠i

p j

pi
pji

1þ∑j≠i

p j

pi
pji

¼ xi
pi
, 1 ≤ i ≤ K,

which implies that

G1 ¼ G2 ¼ ⋯ ¼ GK ¼ x1
p1

¼ x2
p2

¼ ⋯ ¼ xK
pK

:

Case 3: When τ j ≤ 0, j ¼ i1, i2, . . ., im, we have

G1 ¼ G2 ¼ ⋯ ¼ Gm ¼ x1
p1

¼ x2
p2

¼ ⋯ ¼ xm
pm

,

and τ j > 0, j≠ i1, i2, . . ., im, we have

Gi ¼
xi
pi
þ∑j≠i1;i2; ...; im

x j

p j

� �
p j

pi
pji

1þ∑j≠i1;i2; ...; im
p j

pi
pji

¼
xi
pi
þ xi

pi

� �
∑j≠i1;i2; ...; im

p j

pi
pji

1þ∑j≠i1;i2; ...; im
p j

pi
pji

¼ xi
pi
:

Thus

G1 ¼ G2 ¼ ⋯ ¼ GK ¼ x1
p1

¼ x2
p2

¼ ⋯ ¼ xK
pK

:

We recall the left-hand side of the Equation (4)
from Theorem 1 is given by:

ðs� c0Þ
ZGiðx�1, ...,x�KÞ

0

fðyÞdyþ ðs� cp � c0Þ

�∑
‘≠i

ZG‘ðx�1, ...,x�KÞ

x�
i
pi

pi‘fðyÞdy

þ cp

Zx�ipi
Giðx�1, ...,x�KÞ

fðyÞdy,

for every 1 ≤ i ≤ K. As G‘ ¼ x‘
p‘

¼ xi
pi
¼ Gi, ‘≠ i, the

left-hand side of the Equation (4) reduces to

ðs� c0Þ
Zx�ipi
0

fðyÞdy, 1 ≤ i ≤ K:

Now

Zx�ipi
0

fðyÞdy ¼ H
x�i
pi


 �
¼ s� c

s� c0
,

where H(�) is the distribution function of the
demand. Thus the left-hand side reduces to (s − c),
which is equal to the right-hand side of the Equa-
tion (4) in Theorem 1. The proof is complete. □

PROOF OF COROLLARY 1. Since ðs � cp � c0Þ∑‘≠ipi‘ �
cp < 0, for every 1 ≤ i ≤ K, is a sufficient condition

for the optimal solution to be the scaled newsvendor
solution, the corollary will follow if

cp
ðs� cp � c0Þ ≥ 1: (A13)

We recall the definition

f� ¼ ðs� cÞ
ðs� cÞ þ ðc� c0Þ ¼

s� c

s� c0
:

Thus f� is equal to the critical fractile in the
classic newsvendor formula. We rewrite Equation
(A13) as

θ f�

ð1� θ f�Þ ≥ 1, (A14)
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which simplifies to

θ ≥
1

2 f�
:

The corollary follows. □

PROOF OF THEOREM 3. The proof is similar to Theo-
rem 1, hence omitted. □

PROOF OF THEOREM 4. Recall the assumption that
Pi ≡ pi and Pji’s are possibly stochastic. In this case,

the fractions for the first choice are deterministic
and the fractions for the second choice may be
stochastic. Then, we can easily check that the deter-
ministic newsvendor solution

ðs� c0Þ
Zx�ipi
0

fðyÞdy ¼ s� c, 1 ≤ i ≤ K, (A15)

such that
x�1
p1

¼ ⋯ ¼ x�K
pK

satisfies the Equation (7) with

Gi ≡ x�i =pi. The conclusions then follows from the

same arguments as in the proof of Theorem 2 for
the semi-stochastic model. □

PROOF OF THEOREM 5. First, we recall from Theo-
rem 3 that the optimal solution ðx�1, . . ., x�KÞ to
the second choice problem satisfies the first-order
condition:

ðs� c0Þ
ZGiðx�1, ...,x�K ;PÞ

0

fðyÞdy

2
64

3
75

þ ðs� cp � c0Þ ∑
‘≠i

ZG‘ðx�1, ...,x�K ;PÞ

x�i
Pi

Pi‘fðyÞdy

2
6666664

3
7777775

þ cp

Z
x�i
Pi

Giðx�1, ...,x�K ;PÞ

fðyÞdy

2
666664

3
777775 ¼ s� c, 1 ≤ i ≤ K,

(A16)

where the expectations are taken over Pi’s and Pi‘’s
and Gi ¼ Gið�;PÞ emphasizes the dependence on
Pi’s and Pji’s and is defined via the equations:

xi ¼ GiPi þ ∑j≠iðGiP j � x jÞþPji, 1 ≤ i ≤ K.

Let us prove by contradiction. Assume the opti-
mal solution was indeed the (stochastic)

newsvendor solution:

ðs� c0Þ
Zx�iPi
0

fðyÞdy

2
6664

3
7775 ¼ s� c, 1 ≤ i ≤ K: (A17)

Then, by plugging Equation (A17) into Equation
(A16), we get

ðs� c0Þ
ZGiðx�1, ...,x�K ;PÞ

0

fðyÞdy

2
64

3
75

þ ðs� cp � c0Þ ∑
‘≠i

ZG‘ðx�1, ...,x�K ;PÞ

x�i
Pi

Pi‘fðyÞdy

2
6666664

3
7777775

þ cp

Z
x�i
Pi

Giðx�1, ...,x�K ;PÞ

fðyÞdy

2
666664

3
777775

¼ ðs� c0Þ
Z
x�i
Pi

0

fðyÞdy

2
666664

3
777775, 1 ≤ i ≤ K, (A18)

which implies that

ðs� cp � c0Þ
ZGiðx�1, ...,x�K ;PÞ

x�
i
Pi

fðyÞdy

2
6664

3
7775

þ ðs� cp � c0Þ ∑
‘≠i

ZG‘ðx�1, ...,x�K ;PÞ

x�
i
Pi

Pi‘fðyÞdy

2
6664

3
7775 ¼ 0,

(A19)

for any 1 ≤ i ≤ K. Since the unit profit selling second
choice product s � c � cp > 0 and c > c0, we have

s � c0 � cp > 0 and Equation (A19) becomes:



ZGiðx�1, ...,x�K ;PÞ

x�
i
Pi

fðyÞdyþ∑
‘≠i

ZG‘ðx�1, ...,x�K ;PÞ

x�
i
Pi

Pi‘fðyÞdy

2
6664

3
7775

¼ 0, 1 ≤ i ≤ K: (A20)
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Since x�i ¼ GiPi þ ∑ j≠iðGiP j � x�jÞþPji, 1 ≤ i ≤ K,

we have Gi ≤ x�i =Pi and therefore

0 ¼ 

ZGiðx�1, ...,x�K ;PÞ

x�
i
Pi

fðyÞdyþ∑
‘≠i

ZG‘ðx�1, ...,x�K ;PÞ

x�
i
Pi

Pi‘fðyÞdy

2
6664

3
7775

(A21)

≤ 

Zx�iPi
x�
i
Pi

fðyÞdyþ∑
‘≠i

Zx�‘P‘
x�
i
Pi

Pi‘fðyÞdy

2
6664

3
7775 (A22)

¼  ∑
‘≠i

Zx�‘P‘
x�
i
Pi

Pi‘fðyÞdy

2
6664

3
7775 (A23)

¼ ∑
‘≠i
½Pi‘�

Zx�‘P‘
x�
i
Pi

fðyÞdy

2
6664

3
7775 ¼ 0, 1 ≤ i ≤ K, (A24)

where we used independence between Pi’s and Pi‘’s
and the equality



Zx�‘P‘
x�
i
Pi

fðyÞdy

2
6664

3
7775 ¼ 

Zx�‘P‘
0

fðyÞdy

2
6664

3
7775� 

Zx�iPi
0

fðyÞdy

2
6664

3
7775 ¼ 0,

(A25)

which holds since it follows from Equation (A17) that



Zx�1P1
0

fðyÞdy

2
6664

3
7775 ¼ 

Zx�2P2
0

fðyÞdy

2
6664

3
7775 ¼ ⋯ ¼ 

Zx�KPK
0

fðyÞdy

2
6664

3
7775 ¼ s� c

s� c0
:

(A26)

It follows from Equations (A21)–(A24) that the
inequality in Equation (A22) must be the equality,
which implies that with probability 1, we have
Gi ¼ x�i =Pi and G‘ ¼ x�‘ =P‘, for any ‘ ≠ i. Since

x�i ¼ GiPi þ ∑ j≠iðGiP j � x�jÞþPji, 1 ≤ i ≤ K, we have

that with probability 1,

∑
j≠i

x�i
Pi

P j � x�j


 �þ
Pji ¼ 0, 1 ≤ i ≤ K, (A27)

which implies that with probability 1,
x�
i

Pi
≤

x�j
P j
, 1 ≤ i,

j ≤ K, which further implies that with probability 1,

x�1
P1

¼ x�2
P2

¼ ⋯ ¼ x�K
PK

,

which leads to the contradiction since x�i are deter-
ministic and Pi, 1 ≤ i ≤ K are fully stochastic in the
sense that there exists some i ≠ j, such that Pi=Pj is

stochastic. The proof is complete.

Note
1The multi-period, and an infinite horizon setting formula-
tion is included in the online electronic companion. We
also develop an exact model in which customers arrive
stochastically according to a discretized Poisson (Ber-
noulli) process in the online electronic companion, which
can be viewed as a discrete-time approximation of the
exact model with Poisson customer arrivals.

References
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Electronic Companion - Stocking Under Random Demand and

Product Variety: Exact Models and Heuristics

Vashkar Ghosh 1, Anand Paul 2, Lingjiong Zhu 3

A Exact Model with Discretized Poisson Arrivals

We recall that in the exact model with Poisson customer arrivals (section 3.1), the objective function

involves solving a high-dimensional integral equation which is not analytically tractable (Propo-

sition 1). In this section, we introduce the exact model with Bernoulli customer arrivals which

serves as a discrete-time approximation of the exact model with Poisson arrivals. Solving the prob-

lem to be able to find simple analytical solutions still remains challenging. The objective function

involves an equation of linear recursion, which is in principle easier to solve numerically than a

high-dimensional integral equation. All proofs are in Section E

A.1 Single-period model

In this section, we consider a single period model with the length of the period being T > 0. Within

this time period [0, T ], we divide it into T/∆t sub-periods each with length ∆t > 0. Without loss of

generality, we assume that T/∆t is a positive integer. The customers arrive according to a Bernoulli

process in the sense that in each sub-period, with probability p = λ∆t, one customer arrives, and

with probability 1 − p = 1 − λ∆t, no customer arrives. This discrete-time Bernoulli process on

[0, T ] approximates the continuous-time Poisson process on [0, T ] as ∆t→ 0.

The exact model with Bernoulli (discretized Poisson) arrivals can be formulated as follows.

– Stocking levels x1, x2, . . . , xK are implemented, where xi ∈ N ∪ {0} for i = 1, . . . ,K.

– Customers arrive according to a Bernoulli (discretized Poisson) process. In each sub-period

[m∆t, (m + 1)∆], with m = 0, 1, 2, . . . , (T/∆t) − 1, with probability p = λ∆t, exactly one

customer arrives, and with probability 1− p = 1−λ∆t, no customer arrives. When customer

#1 enters, and picks her preferred option. The firm registers a profit of s − c for the sold

item.

1Department of Information Systems and Supply Chain Management, University of North Carolina, Greensboro;
v ghosh@uncg.edu

2Department of Information Systems and Operations Management, Warrington College of Business, University of
Florida; paulaa@ufl.edu

3Department of Mathematics, Florida State University; zhu@math.fsu.edu.
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– Customers continue to arrive till the end of the period with time T > 0. For any customer,

the probability that her preferred option is item i is pi. If her preferred option is in stock, she

purchases it, and the firm registers a profit of s− c. Otherwise, she substitutes to her second

choice with probability pij with
∑

j 6=i pij ≤ 1 if her second choice is available or she will not

purchase anything. If the second choice is available, the firm registers a profit s− c− cp.

– Any unsold or leftover inventory at the end of the period is sold to a discount store at c0 per

unit resulting in a loss of c− c0 for each unit that is leftover.

Let Vm(x1, . . . , xK) denote the firm’s total profit for the single period given that at the start

of time m∆t, there is an initial stocking of x1, . . . , xK at time m∆, so that there are (T/∆t)−m

sub-periods left till the end of the period T , with m = 0, 1, 2, . . . , T/∆t, where x1, . . . , xk ∈ N∪{0}

such that Vm(x1, . . . , xK) : (N ∪ {0})K → R, for every m = 0, 1, 2, . . . , T/∆t.

Proposition A.1. The optimal stocking levels are given by

(x∗1, . . . , x
∗
K) = arg max

x1,...,xK≥0
V0(x1, . . . , xK), (A.1)

where Vm(x1, . . . , xK), m = 0, 1, 2, . . . , T/∆t, solves a (K + 1)-dimensional recursive equation:

Vm(x1, . . . , xK) = (1− λ∆t)Vm+1(x1, . . . , xK)

+ (λ∆t)
∑
i:xi>0

pi (Vm+1(x1, . . . , xi−1, xi − 1, xi+1, . . . , xK) + s− c)

+ (λ∆t)
∑
i:xi=0

pi
∑
j:xj>0

pij (Vm+1(x1, . . . , xj−1, xj − 1, xj+1, . . . , xK) + s− c− cp) ,

(A.2)

with the terminal condition VT/∆t(x1, . . . , xK) = −
∑K

i=1 xi(c− c0).

We can see from Proposition A.1 that V (x1, . . . , xK ; t) solves a (K + 1)-dimensional recursive

equation (A.2), and we do not expect (A.2) to yield a simple closed form solution, so we have to

rely on Monte Carlo simulations or numerically solving (A.2) to find optimal stocking levels.

A.2 Connection to the exact model with Poisson arrivals

In this section, we discuss the connection between the exact model with Bernoulli (discretized

Poisson) arrivals to the exact model with Poisson arrivals (section 3.1). Let us recall that in the

2



exact model with Poisson arrivals, the optimal stocking levels are given by

(x∗1, . . . , x
∗
K) = arg max

x1,...,xK≥0
V (x1, . . . , xK ; 0), (A.3)

where V (x1, . . . , xK ; t) solves a (K + 1)-dimensional integral equation:

V (x1, . . . , xK ; t) =
(

1− e−λ(T−t)
) ∑
i:xi>0

pi(s− c) +
(

1− e−λ(T−t)
) ∑
i:xi=0

pi
∑
j:xj>0

pij(s− c− cp)

− e−λ(T−t)
K∑
i=1

xi(c− c0)

+
∑
i:xi>0

pi

∫ T

t
λe−λ(u−t)V (x1, . . . , xi−1, xi − 1, xi+1, . . . , xK ;u)du

+
∑
i:xi=0

pi
∑
j:xj>0

pij

∫ T

t
λe−λ(u−t)V (x1, . . . , xj−1, xj − 1, xj+1, . . . , xK ;u)du,

(A.4)

for any x1, . . . , xK ∈ N∪{0} and any 0 ≤ t ≤ T . By letting t = T in (A.4), we can see the terminal

value is given by

V (x1, . . . , xK ;T ) = −
K∑
i=1

xi(c− c0). (A.5)

If we differentiate both hand sides of (A.4) w.r.t. t, we obtain

∂

∂t
V (x1, . . . , xK ; t) = −λe−λ(T−t)

∑
i:xi>0

pi(s− c)− λe−λ(T−t)
∑
i:xi=0

pi
∑
j:xj>0

pij(s− c− cp)

− λe−λ(T−t)
K∑
i=1

xi(c− c0)

+ λ
∑
i:xi>0

pi

∫ T

t
λe−λ(u−t)V (x1, . . . , xi−1, xi − 1, xi+1, . . . , xK ;u)du

−
∑
i:xi>0

piλV (x1, . . . , xi−1, xi − 1, xi+1, . . . , xK ; t)

+ λ
∑
i:xi=0

pi
∑
j:xj>0

pij

∫ T

t
λe−λ(u−t)V (x1, . . . , xj−1, xj − 1, xj+1, . . . , xK ;u)du

−
∑
i:xi=0

pi
∑
j:xj>0

pijλV (x1, . . . , xj−1, xj − 1, xj+1, . . . , xK ; t). (A.6)
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By plugging (A.4) into (A.6), we get

∂

∂t
V (x1, . . . , xK ; t) = −

∑
i:xi>0

piλV (x1, . . . , xi−1, xi − 1, xi+1, . . . , xK ; t)

−
∑
i:xi=0

pi
∑
j:xj>0

pijλV (x1, . . . , xj−1, xj − 1, xj+1, . . . , xK ; t)

+ λ

V (x1, . . . , xK ; t)−
∑
i:xi>0

pi(s− c)−
∑
i:xi=0

pi
∑
j:xj>0

pij(s− c− cp)

 ,

which yields that

∂

∂t
V (x1, . . . , xK ; t) = −λ

∑
i:xi>0

pi (V (x1, . . . , xi−1, xi − 1, xi+1, . . . , xK ; t) + s− c)

− λ
∑
i:xi=0

pi
∑
j:xj>0

pij (V (x1, . . . , xj−1, xj − 1, xj+1, . . . , xK ; t) + s− c− cp)

+ λV (x1, . . . , xK ; t). (A.7)

We notice that in the exact model with Bernoulli (discretized Poisson) arrivals, (A.2) can be re-

written as:

Vm+1(x1, . . . , xK)− Vm(x1, . . . , xK)

∆t

= λVm+1(x1, . . . , xK)

− λ
∑
i:xi>0

pi (Vm+1(x1, . . . , xi−1, xi − 1, xi+1, . . . , xK) + s− c)

− λ
∑
i:xi=0

pi
∑
j:xj>0

pij (Vm+1(x1, . . . , xj−1, xj − 1, xj+1, . . . , xK) + s− c− cp) . (A.8)

Therefore, (A.8) is the Euler discretization of (A.7). Hence as ∆t→ 0, the objective function in the

exact model with Bernoulli (discretized Poisson) arrivals converges to the corresponding objective

function in the exact model with Poisson arrivals.

B Multi-Period Exact Model with Poisson Arrivals

In this section, we consider a multi-period model in the setting of the exact model with Poisson

customer arrivals (section 3.1). We assume that there are N periods in total and each period is of

length T > 0. We introduce a discount factor ρ ∈ (0, 1) and a holding cost h > 0 per unit for each
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product variant. At the end of the final period, any unsold unit will be sold at a loss c− c0.

Proposition B.1. For any n = 1, 2, . . . , N − 1, given any initial stocking x1, . . . , xK at the begin-

ning of the n-th period, the optimal stockings to be added to the inventory are given by

(y∗n1, . . . , y
∗
nK) = arg max

y1,...,yK≥0
Ṽn(x1 + y1, . . . , xK + yK ; 0), (B.1)

where Ṽn, n = 1, 2, . . . , N − 1 are defined backward recursively that satisfy the integral equations:

Ṽn(x1, . . . , xK ; t) =
(

1− e−λ(T−t)
) ∑
i:xi>0

pi(s− c) +
(

1− e−λ(T−t)
) ∑
i:xi=0

pi
∑
j:xj>0

pij(s− c− cp)

+ ρe−λ(T−t)V ∗n+1(x1, . . . , xK)− e−λ(T−t)
K∑
i=1

xih

+
∑
i:xi>0

pi

∫ T

t
λe−λ(u−t)Ṽn(x1, . . . , xi−1, xi − 1, xi+1, . . . , xK ;u)du

+
∑
i:xi=0

pi
∑
j:xj>0

pij

∫ T

t
λe−λ(u−t)Ṽn(x1, . . . , xj−1, xj − 1, xj+1, . . . , xK ;u)du,

(B.2)

for any x1, . . . , xK ∈ N ∪ {0} and any 0 ≤ t ≤ T , where

V ∗n+1(x1, . . . , xK) = max
y1,...,yK≥0

Ṽn+1(x1 + y1, . . . , xK + yK ; 0), (B.3)

for any x1, . . . , xK ∈ N ∪ {0} and ṼN satisfies the integral equation (2).

If we assume in Proposition B.1 that the initial stocking level at the beginning of the first period

is zero prior to making any decision, then the optimal expected profit of the firm at time zero is

given by V ∗1 (0, 0, . . . , 0). We do not expect (B.2)-(B.3) to yield a simple closed form solution, so we

have to rely on Monte Carlo simulations or numerically solving (B.2)-(B.3) to find optimal stocking

levels.

Finally, we remark that the exact model with Bernoulli (discretized Poisson) arrivals (section A)

can be extended to the multi-period case just as in the exact model with Poisson arrivals. We omit

the details here and do not include discussions on the multi-period case for the benchmark model

(section 3.2) since closed-form solutions do not seem to be available for the multi-period benchmark

model.
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C Infinite Horizon

C.1 Exact model with Poisson arrivals

In this section, we consider an infinite-horizon exact model with Poisson arrivals which is equivalent

to a multi-period model with N =∞ and each period has length T > 0. We recall that 0 < ρ < 1

is a discount factor so that the present value of 1 USD from the n-th period is ρn−1 USD and h > 0

is a holding cost per unit for each product variant.

Proposition C.1. Given any initial stocking x1, . . . , xK at time zero, the optimal stocking level is

given by

(y∗1, . . . , y
∗
K) = arg max

y1,...,yK≥0
Ṽ∞(x1 + y1, . . . , xK + yK ; 0), (C.1)

where Ṽ∞ satisfies the integral equation:

Ṽ∞(x1, . . . , xK ; t) =
(

1− e−λ(T−t)
) ∑
i:xi>0

pi(s− c) +
(

1− e−λ(T−t)
) ∑
i:xi=0

pi
∑
j:xj>0

pij(s− c− cp)

+ ρe−λ(T−t)V ∗∞(x1, . . . , xK)− e−λ(T−t)
K∑
i=1

xih

+
∑
i:xi>0

pi

∫ T

t
λe−λ(u−t)Ṽ∞(x1, . . . , xi−1, xi − 1, xi+1, . . . , xK ;u)du

+
∑
i:xi=0

pi
∑
j:xj>0

pij

∫ T

t
λe−λ(u−t)Ṽ∞(x1, . . . , xj−1, xj − 1, xj+1, . . . , xK ;u)du,

(C.2)

for any x1, . . . , xK ∈ N ∪ {0} and any 0 ≤ t ≤ T , where V ∗∞ satisfies

V ∗∞(x1, . . . , xK) = max
y1,...,yK≥0

Ṽ∞(x1 + y1, . . . , xK + yK ; 0), (C.3)

for any x1, . . . , xK ∈ N ∪ {0}.

It follows from Proposition C.1 that given the initial stocking levels x1, . . . , xK , the optimal

expected profit for the firm at time zero is given by V ∗∞(x1, . . . , xK) defined in (C.3). In particular,

if the stocking level is zero prior to making any decision about the initial stocking level at the

beginning of the first period, then the value function is given by V ∗∞(0, 0, . . . , 0). We do not expect

(C.2)-(C.3) to yield a simple closed form solution, so we have to rely on Monte Carlo simulations

or numerically solving (C.2)-(C.3) to find optimal stocking levels.
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Finally, we remark that we can extend the exact model with Bernoulli (discretized Poisson)

arrivals to the infinite-horizon case just as in the exact model with Poisson arrivals. We omit the

details here.

C.2 Benchmark model

We consider the same problem as in the previous section, but for the benchmark model setting

(section 3.2). At time zero, assume that there is a given inventory (a1, . . . , aK) where a1, . . . , aK ≥ 0

prior to any management decision, and let V (a1, . . . , aK) be its associated value function, that is the

expected present value of the profit of the firm over an infinite horizon given the initial inventory

(a1, . . . , aK)4. As in the single-period model, let us recall that the unit cost of each product variety

stocked is c, the selling price is s. We first consider the semi-stochastic model, whose first choice

demand for product variety i is Di, where Di = Dpi, and D is the total demand with a continuously

differentiable probability density function f(·) > 0, and the demand of product variety i from second

choice is given by
∑

j 6=i(Dj − xj)+pji. Let us define:

(x∗1, . . . , x
∗
K) := arg max

x1,...,xK≥0

{
− c

K∑
i=1

xi (C.4)

+
K∑
i=1

E

sDi + (s− cp)
∑
j 6=i

(Dj − xj)+pji

 1xi>Di+
∑

j 6=i(Dj−xj)+pji


−

K∑
i=1

E

h
xi −Di −

∑
j 6=i

(Dj − xj)+pji

 1xi>Di+
∑

j 6=i(Dj−xj)+pji


+

K∑
i=1

E
[
(sDi + (s− cp)(xi −Di))1Di<xi<Di+

∑
j 6=i(Dj−xj)+pji

]

+

K∑
i=1

E[sxi1xi<Di ] + ρc

K∑
i=1

E

xi −Di −
∑
j 6=i

(Dj − xj)+pji

+}.
We will show later that (x∗1, . . . , x

∗
K) is indeed an optimal base-stock policy.

Theorem C.1. For any ai ≤ x∗i , 1 ≤ i ≤ K, we have

V (a1, . . . , aK) = V (0, . . . , 0) + c
K∑
i=1

ai,

4In our model, there is no inventory prior to any management decision, and hence V (0, . . . , 0) is the value function
we need. We introduce a more general V (a1, . . . , aK) here only because we want to use dynamic programming.
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where

V (0, . . . , 0) =
1

1− ρ
max

x1,...,xK≥0

{
− c

K∑
i=1

xi (C.5)

+
K∑
i=1

E

sDi + (s− cp)
∑
j 6=i

(Dj − xj)+pji

 1xi>Di+
∑

j 6=i(Dj−xj)+pji


−

K∑
i=1

E

h
xi −Di −

∑
j 6=i

(Dj − xj)+pji

 1xi>Di+
∑

j 6=i(Dj−xj)+pji


+

K∑
i=1

E
[
(sDi + (s− cp)(xi −Di))1Di<xi<Di+

∑
j 6=i(Dj−xj)+pji

]

+

K∑
i=1

E[sxi1xi<Di ] + ρc

K∑
i=1

E

xi −Di −
∑
j 6=i

(Dj − xj)+pji

+},
and the optimal strategy is a base-stock policy (x∗1, . . . , x

∗
K).

Given a base-stock policy with base-stock levels (x1, . . . , xK), let R(x1, . . . , xK) be the expected

value (i.e. the expected present value of the profit of the firm over an infinite horizon) given that

there is zero inventory prior to any management decision at time zero and a base-stock policy

(x1, . . . , xK), then, we have the following result which computes R(x1, . . . , xK) and as a corollary

the value function equals to maximizing the expected value over all the base-stock policy and as a

result, the optimal policy is indeed a base-stock policy.

Theorem C.2.

R(x1, . . . , xK) =
1

1− ρ

K∑
i=1

E

sDi + (s− cp)
∑
j 6=i

(Dj − xj)+pji

 1xi>Di+
∑

j 6=i(Dj−xj)+pji


− 1

1− ρ

K∑
i=1

E

h
xi −Di −

∑
j 6=i

(Dj − xj)+pji

 1xi>Di+
∑

j 6=i(Dj−xj)+pji


+

1

1− ρ

K∑
i=1

E
[
(sDi + (s− cp)(xi −Di))1Di<xi<Di+

∑
j 6=i(Dj−xj)+pji

]
+

1

1− ρ

K∑
i=1

E[sxi1xi<Di ]

+
ρ

1− ρ
c

K∑
i=1

E

xi −Di −
∑
j 6=i

(Dj − xj)+pji

+− c

1− ρ

K∑
i=1

xi,
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so that V (0, . . . , 0) = maxx1,...,xK≥0R(x1, . . . , xK) and

(x∗1, . . . , x
∗
K) = arg max

x1,...,xK≥0
R(x1, . . . , xK).

In the next result, we solve for the optimal (x∗1, . . . , x
∗
K).

Theorem C.3. The optimal (x∗1, . . . , x
∗
K) satisfies the equations:

(s− cρ+ h)

∫ Gi(x
∗
1,...,x

∗
K)

0
f(y)dy + (s− cp − cρ+ h)

∑
`6=i

∫ G`(x
∗
1,...,x

∗
K)

x∗
i

pi

pi`f(y)dy (C.6)

+ cp

∫ x∗i
pi

Gi(x∗1,...,x
∗
K)
f(y)dy = s− c, 1 ≤ i ≤ K,

where Gi is defined via the equations:

xi = Gipi +
∑
j 6=i

(Gipj − xj)+pji, 1 ≤ i ≤ K. (C.7)

Finally, we can extend the result in Theorem C.3 to the setting of the fully stochastic model.

Theorem C.4. The optimal (x∗1, . . . , x
∗
K) satisfies the equations:

(s− cρ+ h)E

[∫ Gi(x
∗
1,...,x

∗
K ;P )

0
f(y)dy

]
+ (s− cp − cρ+ h)

∑
`6=i

E

[∫ G`(x
∗
1,...,x

∗
K ;P )

x∗
i

Pi

Pi`f(y)dy

]

+ cpE

∫ x∗i
Pi

Gi(x∗1,...,x
∗
K ;P )

f(y)dy

 = s− c, 1 ≤ i ≤ K,

where the expectations are taken over Pi’s and Pi`’s and Gi = Gi(·;P ) emphasizes the dependence

on Pi’s and Pji’s and is defined via the equations:

xi = GiPi +
∑
j 6=i

(GiPj − xj)+Pji, 1 ≤ i ≤ K.

Remark C.1. It follows from Theorem C.3 and the analysis in the single-period model that the

analogous results of Theorem 2 hold in the infinite horizon semi-stochastic model as well and it

follows from Theorem C.4 and the analysis in the single-period model that the analogous results of

Theorem 4 and Theorem 5 hold in the infinite horizon fully stochastic model as well.
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D Simulation Data Table for Figure 1 and 2

Number of
Products (K)

Demand
λ

Service Levels
0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

2
150 5.15 4.66 3.94 3.38 2.78 2.30 1.56 0.89
200 4.52 4.03 3.55 2.92 2.43 1.91 1.24 0.72
250 4.12 3.45 3.16 2.62 2.13 1.72 1.17 0.67

4
150 5.20 4.71 3.85 3.39 2.57 2.14 1.42 0.83
200 4.73 4.23 3.40 3.02 2.38 1.87 1.34 0.72
250 4.16 3.56 3.05 2.65 2.02 1.68 1.12 0.66

Table 1: Data Table Figure 1.

Number of
Products (K)

Demand
λ

Service Levels
0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

2
150 5.42 4.58 4.22 3.47 2.97 2.31 1.68 0.92
200 4.60 4.03 3.67 2.94 2.55 1.95 1.40 0.76
250 4.21 3.66 3.20 2.67 2.20 1.78 1.21 0.67

4
150 5.59 4.90 4.43 3.54 3.09 2.18 1.71 0.91
200 4.76 4.35 3.83 3.28 2.61 1.99 1.50 0.80
250 4.31 3.61 3.19 2.80 2.31 1.50 0.95 0.62

Table 2: Data Table Figure 2.

E Technical Proofs of Results in Sections A, B and C

Proof of Proposition A.1 In the sub-period [m∆t, (m + 1)∆t], with probability p = λ∆t, one

customer arrives, and with probability 1 − p = 1 − λ∆t, no customer arrives. In no customer

arrives, nothing happens during this sub-period, and the stock carries onto the next sub-period. If

one customer arrives, the probability that this particular customer’s preferred option is item i is pi.

If item i in stock, she purchases it, and the firm registers a profit of s−c. Otherwise, she substitutes

to her second choice with probability pij with
∑

j 6=i pij ≤ 1 if her second choice is available or she

will not purchase anything. If the second choice is available, the firm registers a profit s − c − cp.
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Therefore, we obtain the following recursion:

Vm(x1, . . . , xK) = (1− λ∆t)Vm+1(x1, . . . , xK)

+ (λ∆t)
∑
i:xi>0

pi (Vm+1(x1, . . . , xi−1, xi − 1, xi+1, . . . , xK) + s− c)

+ (λ∆t)
∑
i:xi=0

pi
∑
j:xj>0

pij (Vm+1(x1, . . . , xj−1, xj − 1, xj+1, . . . , xK) + s− c− cp) .

Finally, notice that if we are already at the end of last sub-period, all the remaining items will be

sold to a discount store at a loss of c− c0 for each unit and that gives us

VT/∆t(x1, . . . , xK) = −
K∑
i=1

xi(c− c0).

The proof is complete. �

Proof of Proposition B.1. Let Vn(x1, . . . , xK ; t) denote the firm’s total profit for the n-th

period given that time t has passed since the start of the n-th period, where 0 ≤ t ≤ T , there is

an initial stocking level x1, . . . , xK at time t. By following the result from the single period model

(Proposition 1), we have

VN (x1, . . . , xK ; t)

=
(

1− e−λ(T−t)
) ∑
i:xi>0

pi(s− c) +
(

1− e−λ(T−t)
) ∑
i:xi=0

pi
∑
j:xj>0

pij(s− c− cp)

− e−λ(T−t)
K∑
i=1

xi(c− c0)

+
∑
i:xi>0

pi

∫ T

t
λe−λ(u−t)VN (x1, . . . , xi−1, xi − 1, xi+1, . . . , xK ;u)du

+
∑
i:xi=0

pi
∑
j:xj>0

pij

∫ T

t
λe−λ(u−t)VN (x1, . . . , xj−1, xj − 1, xj+1, . . . , xK ;u)du, (E.1)

with the terminal condition VN (x1, . . . , xK ;T ) = −
∑K

i=1 xi(c− c0).

Next, consider n = 1, 2, . . . , N − 1. Suppose at the beginning of the n-th period, stocking levels
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are boosted by yn1, . . . , ynK , where n = 1, 2, . . . , N . Then, for any n = 1, 2, . . . , N − 1, we have

Vn(x1, . . . , xK ; t)

=
(

1− e−λ(T−t)
) ∑
i:xi>0

pi(s− c) +
(

1− e−λ(T−t)
) ∑
i:xi=0

pi
∑
j:xj>0

pij(s− c− cp)

+ ρe−λ(T−t)Vn+1(x1 + y(n+1)1, . . . , xK + y(n+1)K ; 0)− e−λ(T−t)
K∑
i=1

xih

+
∑
i:xi>0

pi

∫ T

t
λe−λ(u−t)Vn(x1, . . . , xi−1, xi − 1, xi+1, . . . , xK ;u)du

+
∑
i:xi=0

pi
∑
j:xj>0

pij

∫ T

t
λe−λ(u−t)Vn(x1, . . . , xj−1, xj − 1, xj+1, . . . , xK ;u)du. (E.2)

The result (E.2) essentially follows from the proof of Proposition 1 and the only part unique

here is the term ρe−λ(T−t)Vn+1(x1 + y(n+1)1, . . . , xK + y(n+1)K ; 0) − e−λ(T−t)∑K
i=1 xih, which is

obtained by considering the event that no customer arrives in the n-th period which occurs with

the probability e−λ(T−t), and then Vn+1(x1 + y(n+1)1, . . . , xK + y(n+1)K ; 0) gives the expected profit

at the beginning of the (n+ 1)-th period with the stocking levels increased by y(n+1)1, . . . , y(n+1)K ,

and −e−λ(T−t)∑K
i=1 xih computes the holding cost at the end of the n-th period if nothing is sold

during the n-th period, and finally the factor ρ is used the discount the value from the (n+ 1)-th

period to the n-th period.

Next, we consider the optimal stocking levels y∗n1, . . . , y
∗
nK for every n = 1, 2, . . . , N . Given any

initial stocking x1, . . . , xK at the beginning of the N -th period, we have

(y∗N1, . . . , y
∗
NK) = arg max

y1,...,yK
VN (x1 + y1, . . . , xK + yK ; 0), (E.3)

and we define

V ∗N (x1, . . . , xK) = max
y1,...,yK

VN (x1 + y1, . . . , xK + yK ; 0). (E.4)

Moreover, for any n = 1, 2, . . . , N − 1, given any initial stocking x1, . . . , xK at the beginning of the

n-th period we have

(y∗n1, . . . , y
∗
nK) = arg max

y1,...,yK
Ṽn(x1 + y1, . . . , xK + yK ; 0), (E.5)
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and

V ∗n (x1, . . . , xK) = max
y1,...,yK

Ṽn(x1 + y1, . . . , xK + yK ; 0), (E.6)

where Ṽn satisfies the integral equation:

Ṽn(x1, . . . , xK ; t) =
(

1− e−λ(T−t)
) ∑
i:xi>0

pi(s− c) +
(

1− e−λ(T−t)
) ∑
i:xi=0

pi
∑
j:xj>0

pij(s− c− cp)

+ ρe−λ(T−t)V ∗n+1(x1, . . . , xK)− e−λ(T−t)
K∑
i=1

xih

+
∑
i:xi>0

pi

∫ T

t
λe−λ(u−t)Ṽn(x1, . . . , xi−1, xi − 1, xi+1, . . . , xK ;u)du

+
∑
i:xi=0

pi
∑
j:xj>0

pij

∫ T

t
λe−λ(u−t)Ṽn(x1, . . . , xj−1, xj − 1, xj+1, . . . , xK ;u)du,

(E.7)

and ṼN := VN which is defined in (E.1). �

Proof of Proposition C.1. The infinite-horizon model can be viewed as a multi-period model

with N = ∞ and each period has length T > 0. Therefore, the result can be obtained following

similar argument as in the proof of Proposition B.1 and hence the proof is omitted here. �

Proof of Theorem C.1. We shall first prove that there exists an optimal base-stock pol-

icy; then, we shall restrict ourselves to the class of base-stock policies (x1, . . . , xK) and optimize

over (x1, . . . , xK) to find the optimal base-stock levels (x∗1, . . . , x
∗
K). At time zero, if there is a

given inventory (a1, . . . , aK) prior to any management decision, where a1, . . . , aK ≥ 0, then recall

that V (a1, . . . , aK) is the associated value function. Using the Bellman recursion from dynamic
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programming, we have

V (a1, . . . , aK) (E.8)

= max
y1,...,yK≥0

{
− c

K∑
i=1

yi

+

K∑
i=1

E

sDi + (s− cp)
∑
j 6=i

(Dj − aj − yj)+pji

 1ai+yi>Di+
∑

j 6=i(Dj−aj−yj)+pji


−

K∑
i=1

E

h
ai + yi −Di −

∑
j 6=i

(Dj − aj − yj)+pji

 1ai+yi>Di+
∑

j 6=i(Dj−aj−yj)+pji


+

K∑
i=1

E
[
(sDi + (s− cp)(ai + yi −Di))1Di<ai+yi<Di+

∑
j 6=i(Dj−aj−yj)+pji

]
+

K∑
i=1

E[s(ai + yi)1ai+yi<Di ]

+ ρEV

(a1 + y1 −D1 −
∑
j 6=1

(Dj − aj − yj)+pj1

+

,

. . . ,

aK + yK −DK −
∑
j 6=K

(Dj − aj − yj)+pjK

+)}
.

We claim that

V (a1, . . . , aK) = V (0, . . . , 0) + c
K∑
i=1

ai, (E.9)

where V (0, . . . , 0) has an expression given in equation (C.5).
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Plugging equation (E.9) into equation (E.8), we obtain

V (0, . . . , 0) + c
K∑
i=1

ai

= max
y1,...,yK≥0

{
− c

K∑
i=1

yi

+
K∑
i=1

E

sDi + (s− cp)
∑
j 6=i

(Dj − aj − yj)+pji

 1ai+yi>Di+
∑

j 6=i(Dj−aj−yj)+pji


−

K∑
i=1

E

h
yi −Di −

∑
j 6=i

(Dj − yj)+pji

 1yi>Di+
∑

j 6=i(Dj−yj)+pji


+

K∑
i=1

E
[
(sDi + (s− cp)(ai + yi −Di))1Di<ai+yi<Di+

∑
j 6=i(Dj−aj−yj)+pji

]
+

K∑
i=1

E[s(ai + yi)1ai+yi<Di ]

+ ρc
K∑
i=1

E

ai + yi −Di −
∑
j 6=i

(Dj − aj − yj)+pji

++ ρV (0, . . . , 0)

}
,

which is equivalent to

V (0, . . . , 0)

=
1

1− ρ
max

y1,...,yK≥0

{
− c

K∑
i=1

(ai + yi)

+

K∑
i=1

E

sDi + (s− cp)
∑
j 6=i

(Dj − aj − yj)+pji

 1ai+yi>Di+
∑

j 6=i(Dj−aj−yj)+pji


−

K∑
i=1

E

h
yi −Di −

∑
j 6=i

(Dj − yj)+pji

 1yi>Di+
∑

j 6=i(Dj−yj)+pji


+

K∑
i=1

E
[
(sDi + (s− cp)(ai + yi −Di))1Di<ai+yi<Di+

∑
j 6=i(Dj−aj−yj)+pji

]

+

K∑
i=1

E[s(ai + yi)1ai+yi<Di ] + ρc
K∑
i=1

E

ai + yi −Di −
∑
j 6=i

(Dj − aj − yj)+pji

+}.
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Let

(x∗1, . . . , x
∗
K) = arg max

x1,...,xK≥0

{
− c

K∑
i=1

xi

+
K∑
i=1

E

sDi + (s− cp)
∑
j 6=i

(Dj − xj)+pji

 1xi>Di+
∑

j 6=i(Dj−xj)+pji


−

K∑
i=1

E

h
xi −Di −

∑
j 6=i

(Dj − xj)+pji

 1xi>Di+
∑

j 6=i(Dj−xj)+pji


+

K∑
i=1

E
[
(sDi + (s− cp)(xi −Di))1Di<xi<Di+

∑
j 6=i(Dj−xj)+pji

]

+

K∑
i=1

E[sxi1xi<Di ] + ρc

K∑
i=1

E

xi −Di −
∑
j 6=i

(Dj − xj)+pji

+}.
Then, for any ai ≤ x∗i , 1 ≤ i ≤ K, we have

V (0, . . . , 0) =
1

1− ρ
max

x1,...,xK≥0

{
− c

K∑
i=1

xi

+
K∑
i=1

E

sDi + (s− cp)
∑
j 6=i

(Dj − xj)+pji

 1xi>Di+
∑

j 6=i(Dj−xj)+pji


−

K∑
i=1

E

h
xi −Di −

∑
j 6=i

(Dj − xj)+pji

 1xi>Di+
∑

j 6=i(Dj−xj)+pji


+

K∑
i=1

E
[
(sDi + (s− cp)(xi −Di))1Di<xi<Di+

∑
j 6=i(Dj−xj)+pji

]

+

K∑
i=1

E[sxi1xi<Di ] + ρc

K∑
i=1

E

xi −Di −
∑
j 6=i

(Dj − xj)+pji

+},
which is exactly the expression in equation (C.5). The proof is complete. �
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Proof of Theorem C.2. Using a base-stock policy (x1, . . . , xK), we have

R(x1, . . . , xK) = −c
K∑
i=1

xi +

K∑
i=1

E

sDi + (s− cp)
∑
j 6=i

(Dj − xj)+pji

 1xi>Di+
∑

j 6=i(Dj−xj)+pji


−

K∑
i=1

E

h
xi −Di −

∑
j 6=i

(Dj − xj)+pji

 1xi>Di+
∑

j 6=i(Dj−xj)+pji


+

K∑
i=1

E
[
(sDi + (s− cp)(xi −Di))1Di<xi<Di+

∑
j 6=i(Dj−xj)+pji

]

+
K∑
i=1

E[sxi1xi<Di ]− ρc
K∑
i=1

E

min

xi, Di +
∑
j 6=i

(Dj − xj)+pji




+ ρ

(
R(x1, . . . , xK) + c

K∑
i=1

xi

)
,

which implies that

R(x1, . . . , xK) =
1

1− ρ

K∑
i=1

E

sDi + (s− cp)
∑
j 6=i

(Dj − xj)+pji

 1xi>Di+
∑

j 6=i(Dj−xj)+pji


−

K∑
i=1

E

h
xi −Di −

∑
j 6=i

(Dj − xj)+pji

 1xi>Di+
∑

j 6=i(Dj−xj)+pji


+

1

1− ρ

K∑
i=1

E
[
(sDi + (s− cp)(xi −Di))1Di<xi<Di+

∑
j 6=i(Dj−xj)+pji

]
+

1

1− ρ

K∑
i=1

E[sxi1xi<Di ]

+
ρ

1− ρ
c

K∑
i=1

E

xi −Di −
∑
j 6=i

(Dj − xj)+pji

+− c

1− ρ

K∑
i=1

xi.

Therefore, by comparing with equation (C.5), we get

V (0, 0, . . . , 0) = max
x1,...,xK≥0

R(x1, . . . , xK), (E.10)

and by comparing with equation (C.4), we get

(x∗1, . . . , x
∗
K) = arg max

x1,...,xK≥0
R(x1, . . . , xK). (E.11)
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The proof is complete. �

Proof of Theorem C.3. We can rewrite R(x1, . . . , xK) as

R(x1, . . . , xK)

=
1

1− ρ

K∑
i=1

E

s(Di − xi) + (s− cp)
∑
j 6=i

(Dj − xj)+pji

 1xi>Di+
∑

j 6=i(Dj−xj)+pji


− 1

1− ρ

K∑
i=1

E

h
xi −Di −

∑
j 6=i

(Dj − xj)+pji

 1xi>Di+
∑

j 6=i(Dj−xj)+pji


+

1

1− ρ

K∑
i=1

E
[
(s(Di − xi) + (s− cp)(xi −Di))1Di<xi<Di+

∑
j 6=i(Dj−xj)+pji

]
+

s

1− ρ

K∑
i=1

xi −
c

1− ρ

K∑
i=1

xi

+
ρ

1− ρ
c

K∑
i=1

E

xi −Di −
∑
j 6=i

(Dj − xj)+pji

 1xi>Di+
∑

j 6=i(Dj−xj)+pji

 ,
which is equivalent to

R(x1, . . . , xK) =
s− cρ+ h

1− ρ

K∑
i=1

E
[
(Di − xi)1xi>Di+

∑
j 6=i(Dj−xj)+pji

]

+
s− cp − cρ+ h

1− ρ

K∑
i=1

E

∑
j 6=i

(Dj − xj)+pji1xi>Di+
∑

j 6=i(Dj−xj)+pji


+

cp
1− ρ

K∑
i=1

E
[
(Di − xi)1Di<xi<Di+

∑
j 6=i(Dj−xj)+pji

]
+
s− c
1− ρ

K∑
i=1

xi.

Let us recall that under our assumptions, Di = Dpi, 1 ≤ i ≤ K, and f(·) is the probability

density function of demand D, which is assumed to be continuously differentiable. Then the
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objection function R(x1, . . . , xK) becomes:

R(x1, . . . , xK) =
s− cρ+ h

1− ρ

K∑
i=1

E
[
(Dpi − xi) · 1xi>Dpi+∑

j 6=i(Dpj−xj)+pji

]
(E.12)

+
s− cp − cρ+ h

1− ρ

K∑
i=1

E

∑
j 6=i

(Dpj − xj)+pji · 1xi>Dpi+∑
j 6=i(Dpj−xj)+pji


+

cp
1− ρ

K∑
i=1

E
[
(Dpi − xi) · 1Dpi≤xi≤Dpi+∑

j 6=i(Dpj−xj)+pji

]
+
s− c
1− ρ

K∑
i=1

xi,

=
s− cρ+ h

1− ρ

K∑
i=1

∫
xi>ypi+

∑
j 6=i(ypj−xj)+pji

(ypi − xi)f(y)dy

+
s− cp − cρ+ h

1− ρ

K∑
i=1

∫
xi>ypi+

∑
j 6=i(ypj−xj)+pji

∑
j 6=i

(ypj − xj)+pjif(y)dy

+
cp

1− ρ

K∑
i=1

∫
ypi≤xi≤ypi+

∑
j 6=i(ypj−xj)+pji

(ypi − xi)f(y)dy +
s− c
1− ρ

K∑
i=1

xi.

Define Gi(x1, . . . , xK) as the value of y such that

xi = ypi +
∑
j 6=i

(ypj − xj)+pji. (E.13)

Then, we have

R(x1, . . . , xK) =
s− cρ+ h

1− ρ

K∑
i=1

∫ Gi(x1,...,xK)

0
(ypi − xi)f(y)dy (E.14)

+
s− cp − cρ+ h

1− ρ

K∑
i=1

∫ Gi(x1,...,xK)

0

∑
j 6=i

(ypj − xj)+pjif(y)dy

+
cp

1− ρ

K∑
i=1

∫ xi
pi

Gi(x1,...,xK)
(ypi − xi)f(y)dy +

s− c
1− ρ

K∑
i=1

xi,
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which implies that

∂R

∂xi
= −s− cρ+ h

1− ρ

∫ Gi(x1,...,xK)

0
f(y)dy

+
s− cρ+ h

1− ρ

K∑
`=1

∂G`
∂xi

(G`(x1, . . . , xK)p` − x`)f(G`(x1, . . . , xK))

− s− cp − cρ+ h

1− ρ

K∑
`=1

∂G`
∂xi

(G`(x1, . . . , xK)p` − x`)f(G`(x1, . . . , xK))

− s− cp − cρ+ h

1− ρ
∑
`6=i

∫ G`(x1,...,xK)

xi
pi

pi`f(y)dy − cp
1− ρ

∫ xi
pi

Gi(x1,...,xK)
f(y)dy

− cp
1− ρ

K∑
`=1

∂G`
∂xi

(G`(x1, . . . , xK)p` − x`)f(G`(x1, . . . , xK)) +
s− c
1− ρ

= −s− cρ+ h

1− ρ

∫ Gi(x1,...,xK)

0
f(y)dy − s− cp − cρ+ h

1− ρ
∑
`6=i

∫ G`(x1,...,xK)

xi
pi

pi`f(y)dy

− cp
1− ρ

∫ xi
pi

Gi(x1,...,xK)
f(y)dy +

s− c
1− ρ

.

Finally, let us show that the optimal (x∗1, . . . , x
∗
K) satisfies the first-order condition. Given any

xj , j 6= i, we can compute that
∂R

∂xi

∣∣∣∣
xi=0

=
s− c
1− ρ

> 0, (E.15)

since Gi = 0 when xi = 0. Moreover, as xi →∞, Gi →∞ and thus

∂R

∂xi

∣∣∣∣
xi=∞

= −s− cρ+ h

1− ρ
+
s− c
1− ρ

= −c− h

1− ρ
< 0, (E.16)

and hence the optimal x∗i ∈ (0,∞), and the optimal (x∗1, . . . , x
∗
K) satisfies the first-order condition

∂R
∂xi
|(x1,...,xK)=(x∗1,...,x

∗
K) = 0, 1 ≤ i ≤ K, which gives equation (C.6). The proof is complete. �

Proof of Theorem C.4. The proof is similar to Theorem C.3, hence omitted. �
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