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Highlights

• Pore-level multiscale method developed for deformation of fractured porous media.
• The method decomposes a porous solid into subdomains to decouple computations.
• The decomposition need not conform to cracks, removing a key previous barrier.
• Implications for fixed-crack versus evolving-crack problems are analyzed.
• Approximation errors can be estimated and controlled iteratively.
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Abstract

Pore-scale models are useful tools for understanding and upscaling the mechanical deformation of fractured porous
media. The highest fidelity solutions are obtained by direct numerical simulation (DNS), in which governing equations
are discretized and solved with a fine-grid solver (e.g., finite elements) on a 3D image (e.g., X-ray µCT) of a porous
sample. However, the downside of DNS is its high computational cost. We present a pore-level multiscale method
(PLMM) that approximates DNS efficiently and with controllable accuracy in modeling the linear elastic response of
porous solids with arbitrary microstructure and crack pattern. PLMM decomposes the solid into subdomains, over
which local basis and correction functions are built. These functions are then coupled with a global problem to yield
an approximate solution, whose errors can be iteratively corrected. A key feature of PLMM is that the decomposition
need not conform to the cracks, unlike a previous variant developed by the authors. This paves the way towards solving
crack nucleation and growth problems in the future without the need to dynamically update the decomposition. We
represent cracks diffusely using a phase-field variable and explore three strategies for capturing them through either
the basis or correction functions. The implications of each on convergence rate and computational cost are analyzed.

Keywords: Porous media, Pore-scale modeling, Multiscale method, Fracture mechanics, Phase-field method

1. Introduction

The deformation and failure of porous media is relevant to a wide range of applications from geologic CO2 seques-
tration, H2 storage, geothermal energy extraction, to the design of lightweight, high-strength biomimetic materials for
airplanes [1], armored vehicles [2], and thermo-acoustically insulated buildings [3]. In the subsurface, which moti-
vates the authors, fractures are induced by either human activity (e.g., fluid injection) or tectonic stresses. In either
case, they significantly impact the hydro-mechanical properties of a porous rock. To quantify these alterations, pore-
scale models are useful, because they can simulate deformation and failure at the scale of individual grains and pores
comprising the rock. The output from pore-scale models can be used to parameterize macroscopic models, which
would otherwise contain phenomenological constants [4]. Here, we focus on the elastic deformation of fractured
porous media at the pore scale, wherein cracks are assumed to be static.

With recent advances in X-ray µCT imaging [5, 6], combined with energy-dispersive X-ray spectroscopy [7–9],
the 3D microstructure and mineralogy of geologic porous samples can be captured in great detail. Such images serve
as inputs to pore-scale models, which divide into two categories: direct numerical simulation (DNS) and discrete-
element methods (DEM). In DNS, the governing equations are discretized on a Cartesian mesh that often coincides
with the image pixels. Neither the geometry nor the equations are simplified [10]. Examples include extended finite
element (XFEM) [11, 12], shifted boundary method [13, 14], immersed boundary finite volume [15, 16], phase-field
models [17–19], and peri-dynamics [20, 21]. The disadvantage of DNS is that it is computationally prohibitive for
analyzing large or many samples. To render computations tractable, in DEM, both the governing equations and
the microstructure of a porous sample are simplified [22–24]. The solid is replaced by an assembly of “particles”
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that have elementary shapes (e.g., spheres, polyhedral, clusters of spheres) [24–26], often assumed rigid. Failure is
modeled by breaking fictitious “bonds” between particles when forces exceed the material’s strength [23, 27]. Recent
extensions like FEM-DEM have removed the particle rigidity assumption of DEM [28, 29]. While useful in many
problems, DEM and its variants have two drawbacks [30, 31]: (1) They are ill-suited for the non-particulate and highly
heterogeneous porous rocks encountered in the deep subsurface; And (2) they lack a built-in mechanism to estimate
and control errors. The latter is because convergence to a fine-scale solution is undefined.

Recently, a pore-level multiscale method (PLMM) was proposed by the authors to approximate DNS efficiently
and with controllable accuracy [16] for the linear-elastic response of a fractured porous solid with arbitrary microstruc-
ture. The idea was to decompose the solid into subdomains, over which local fine-grid problems are solved to construct
basis and correction functions. The decomposition was done in such a way that subdomains corresponded to physical
grains in a granular medium (as in DEM), and interfaces between the subdomains to physical contacts between the
grains. The basis and correction functions were then coupled to each other with a small global problem in terms of
coarse-grid displacement unknowns defined at subdomain interfaces. PLMM was shown to yield an accurate initial
approximation to DNS that could be corrected up to any desired accuracy using an iterative strategy. Despite these
benefits, the method has three major drawbacks: (1) The decomposition must conform to cracks, which forbids sub-
domains from containing (or sustaining through later loading) any interior cracks; (2) The conformity could severely
degrade the quality of the multiscale approximation in cases where cracks do not coincide with physical contacts; And
(3) the iterative strategy does not correct errors near cracks, only away from them.

In this work, we reformulate PLMM [16] to remove the above limitations. The resulting algorithm approximates
DNS efficiently for arbitrary cracks patterns, which need not conform to the solid’s decomposition. Moreover, PLMM
errors are controllable throughout the domain. We represent cracks diffusely using a phase-field variable [32, 33],
but emphasize that a sharp-crack representation is equally applicable in PLMM [11, 15]. To solve evolving-crack
problems, a momentum equation must be coupled to a crack (or phase-field) evolution equation and solved repeatedly,
often in a staggered fashion, at each loading step. Here, we focus only on the momentum equation, since it is more
expensive to solve. However, anticipating the needs of solving evolving-crack problems in the future, we propose three
strategies for capturing cracks via basis and correction functions, which have important implications on convergence
and computational cost: (1) All cracks are captured by the bases (Strategy A); (2) No cracks are captured by the
bases (Strategy N); and (3) only some cracks, namely those that cross subdomain interfaces, are captured by the bases
(Strategy U). If cracks are static, Strategy A is the the fastest to converge. But if cracks are evolving, Strategy U is
more efficient. This is because basis (not correction) functions are the most accurate way of capturing cracks, but their
repeated update during crack evolution is costly. Strategy U strikes a delicate balance.

Multiscale methods for porous media are extensively developed at the continuum (or Darcy) scale. They include
the multiscale finite element (MsFE) [12, 34–41], multiscale finite volume (MsFV) [42–47]journal, and multiscale
mortar finite element (MoMsFE) [48–51] methods to solve elliptic/parabolic equations of flow and mechanics. At
the pore scale, multiscale methods are much less developed and have focused primarily on fluid flow [52–61]. The
PLMM herein builds on ideas originally developed for single-phase flow [59], two-phase flow [60], and compressible
gas flow [61]. A recent review of existing multiscale methods at the pore and Darcy scales can be found in [62].

The article is organized as follows: the governing equations approximated by PLMM are described in Section
2. Section 3 briefly overviews the fine-scale DNS solver employed. Section 4 discusses the algorithmic details of
PLMM. Specifically, local basis and correction problems are defined in Section 4.3, the global problem that couples
these local problems is formulated in Section 4.4, and the iterative strategy that corrects the PLMM errors is outlined
in Section 4.5. In Sections 5-6, we validate PLMM against DNS for various 2D and 3D microstructures and a wide
range of crack patterns. The results are discussed in Section 7 and the findings summarized in Section 8.

2. Problem description

Consider the porous domain Ω ⊂ RD with Lipschitz boundary ∂Ω, where D is the number of spatial dimensions;
as shown in Fig.1a. The open set Ω is partitioned into a solid phase Ωs and a void space Ωv such that Ω = Ωs∪Ωv∪Γw

and Ωs ∩ Ωv = ∅, where Γw = Ωv ∩ Ωs is the interface between Ωs and Ωv. The black lines shown in Fig. 1a are
possible cracks within Ωs. We consider the following linear elastic momentum equations on Ωs:

∇ · σ(u) = f (1)
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Figure 1: Schematic of a pore-scale image, its decomposition into grain grids, and contact grids. (a) The image Ω

consists of a solid phase Ωs (white), a void space Ωv (black), and cracks ΓF (black lines). (b) The solid Ωs is decom-
posed into grain grids Ωgi (randomly colored). (c) Contact grids Ωζk (cyan) cover interfaces, Γc j , between the grain
grids. (d) The displacement fields of two basis functions on Ωgi are shown, corresponding to normal (compressive)
and tangential (shear) BCs imposed (green arrows). (e) ∂Ωgi consists of Γ

gi
w (black) and Γ

gi
c1−9 (red) boundaries. The

unit normal, n, and unit tangents, {m1,m2}, on Γ
gi
c7 are shown. (f) The contact grids Ωζ1 , Ωζ2 , Ωζ3 , Ωζ4 (shades of cyan)

cover Γ
gi
c1,c9 , Γ

gi
c2−3 , Γ

gi
c4 , Γ

gi
c5−8 , respectively. The boundary ∂Ωζk consists of Γ

ζk
w (black) and Γ

ζk
g (red).

where f is the body force, ∇· the divergence operator, σ the stress tensor, and ε the strain tensor. The constitutive
stress-strain relation for an elastic material is:

σ(u) = C : ε(u) (2)

where ε(u)=∇su=1/2
(
∇u + ∇>u

)
and C= [Ci jkl] is the fourth-order stiffness tensor. Note ∇s denotes the symmetric

gradient operator, u the displacement field, and the superscript > transposition. For isotropic materials, C equals:

Ci jkl = λδi jδkl + µ(δikδ jl + δilδ jk) (3)

where λ and µ are called Lamé parameters. Substituting Eq.3 into Eq.2, we obtain:

σ(u) = λ tr(ε(u))I + 2µ ε(u) (4)

in which tr(ε) is the trace of ε.
Let ∂Ωs be partitioned into a Dirichlet ΓD and a Neumann ΓN subset, such that Ωs =ΓD ∪ ΓN and ΓD ∩ ΓN =∅. We

impose displacement boundary conditions (BCs) on ΓD and traction BCs on ΓN as follows:

u|ΓD = uD(x) (5a)

σ(u) · n|ΓN = tN(x) (5b)

where uD is the displacement on ΓD, and tN and n are the traction and outward-pointing normal on ΓN , respectively.
With reference to Fig.1a, we assume Γw⊂ΓN and set tN = 0 on Γw, which implies the pore pressure is zero.
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To represent cracks ΓF (⊂ Ωs), we use a continuous damage (or phase-field) variable α satisfying [33]:

α(x) =

 BGc
2l

(
1 − dist(x,ΓF )

l/2
)
, dist(x,ΓF) < l/2

0, dist(x,ΓF) ≥ l/2
(6)

where Gc is the fracture toughness, l is a length-scale parameter that controls the width of the diffuse crack, dist(x,ΓF)
is the distance from an arbitrary point x to ΓF , and B is a constant (=103 here). If α(x)=0, the solid is intact at point x,
and if α(x) = 1, it is fully damaged. In phase-field models, the variable α impacts the stress-strain Eq.2 by degrading
the stress tensor in certain directions (e.g., tension/shear but not compression) [63, 64]. Here, we choose an isotropic
degradation model for simplicity [32], because our goal is to develop a multiscale approximation of DNS:

σ(u) = g(α) C : ε(u) (7)

In Eq.7, g(α)= (1−α)2 is the degradation function. If the solid is fully damaged, g(α)=0 and a traction-free condition
is imposed on ΓF . If the solid is intact, g(α) = 1 and Eq.7 reduces to Eq.2. We note that more complex degradation
functions also exist and can be used in PLMM without loss of generality [65]. We also note that if an anisotropic
degradation model were used, PLMM would apply to the linearized form of the governing equations.

3. Single-scale modeling

The porous solid Ωs is often represented by a digitized image (e.g., X-ray µCT) at the pore scale, as shown by
Fig.1a. The pixels of this image can be used to construct a Cartesian fine grid, over which Eqs.1 and 7 are discretized
and solved with a fine-scale solver. The fine grid need not have the same size as the image pixels, and is often refined
along the coordinate directions. We choose the finite element method as our fine-scale solver, but note that others
apply equally throughout this work (e.g., finite volume [66]). We define single-scale modeling as the act of using
the fine-scale solver over Ωs without any approximation or domain decomposition. This yields the DNS reference
solution against which PLMM is later compared.

4. Multiscale modeling

We propose a pore-level multiscale method (PLMM) to approximate, and thereby accelerate, DNS. In PLMM, the
following steps are executed: (1) Ωs is decomposed into subdomains, or coarse grids, in a way that is non-conforming
to ΓF ; (2) Basis and correction functions are built on each coarse grid by numerically solving local fine-scale problems;
(3) The basis and correction functions are coupled by solving a global coarse-scale problem; And (4) a global fine-
scale solution to Eqs.1 and 7 on Ωs is obtained by assembling the coupled basis and correction functions. These
steps are detailed in Sections 4.1-4.4, which yield an initial approximation to DNS. In Section 4.5, we present an
iterative approach to correct the errors of this approximation to any desired level. We explore different strategies for
incorporating cracks into the basis and correction functions in Section 4.3.

4.1. Domain decomposition

To decompose Ωs, we modify the algorithm proposed by Mehmani et al.[16] slightly. The approach involves
applying watershed segmentation, a well-known morphological operation in image analysis [67], to Ωs. This partitions
Ωs into Ng non-overlapping subdomains, or grain grids, Ωgi such that Ωs =∪iΩ

gi , as shown in Fig.1b. Because of the
unique properties of watershed segmentation, the subdomains correspond to local enlargements (or grains) in Ωs, and
interfaces between subdomains correspond to local constrictions (or contacts) in Ωs. We refer to a shared interface
between two adjacent grain grids as a contact interface, Γc j . Notice from Fig.1b-c that ΓF is allowed to intersect Γc j . In
other words, the decomposition need not conform to the cracks, which is very different from, and much more flexible
than, the conforming decomposition proposed in [16]. The interested reader is referred to [5, 59, 67] for further details
on the watershed segmentation and domain decomposition.

We define another set of coarse grids, Ωζk , called contact grids that overlap and cover a thin neighborhood around
each contact interface, Γc j . As seen from Figs.1c and 1f, contact grids (cyan) do not cover all of Ωs (i.e., Ωs,∪kΩ

ζk ).

4



We create Ωζk by morphologically “dilating”, an operation in image analysis [68], the image pixels overlaying Γc j .
The thickness of Ωζk can be adjusted by the user, although ∼16 pixels has been shown to be sufficient in practice (8
per contact side) [16, 59]. More details on how Ωζk are constructed can be found in [59]. We refer to Ωgi and Ωζk as
coarse grids and note that they are aggregates of many fine grids, which, in this work, conform at Ωgi ∩ Ωζk . Such
conformity is not required by PLMM and different fine grids (e.g., unstructured) may, in principle, be used on Ωgi and
Ωζk as long as appropriate mappings between the two can be defined.

4.2. Mathematical notation

In the following sections, we adopt a notation similar to [16] to formulate PLMM. Let the indices gi, c j, ζk

enumerate entities associated with Ωgi , Γc j , Ωζk , respectively. The boundary ∂Ωgi is partitioned as ∂Ωgi = Γ
gi
w ∪ Γ

gi
c j ,

where Γ
gi
w = ∂Ωgi ∩ Γw is the void-solid interface (black in Fig.1e) and Γ

gi
c j = ∂Ωgi ∩ Γc j is a contact interface (red in

Fig.1e). Similarly, ∂Ωζk consists of Γ
ζk
w =∂Ωζk ∩ Γw (black in Fig.1f) and Γ

ζk
gi = ∂Ωζk ∩Ωgi , ∀gi (red in Fig.1f), where

the latter corresponds to the portion of ∂Ωζk that intersects the interior of grain grids (see also Fig.2). If ∂Ωgi or ∂Ωζk

intersect the bounding box of Ωs (=∂Ωs\Γ
w, i.e., four sides of Fig.1a), then the global BCs from Eq.5 are inherited.

Because two grain grids may share more than one contact interface (see Fig.2), and one contact grid may cover
multiple interfaces (see Figs.1-2), we define the following mappings between gi, c j and ζk: (1) Cgi = {c j |Γ

gi
c j , ∅}

is the index set of all Γc j that are subsets of ∂Ωgi ; (2) Gc j = {gi |Γ
gi
c j , ∅} is the index set of all grain grids sharing

Γc j . Since Γc j is shared by exactly two grain grids, Gc j has only two members (= {gi1 , gi2 }); (3) Zc j = {ζk |Γ
c j ⊆ Ωζk }

is the index set of all contact grids covering Γc j . Notice Zc j has only one member, which we denote by ζc j ; And (4)
Cζk = {c j |Γ

c j ⊆ Ωζk } is the index set of all contact interfaces covered by Ωζk . We use the symbol # is to denote the
number of members in a set. For example, #Cgi = 9 in Fig.1e, #Cζ4 = 4 in Fig.1f, #Gc j = 2, and #Zc j = 1. Finally, we
use Ng, Nc, Nζ to denote the total number of grain grids, contact interfaces, and contact grids in Ωs.

The terms fine-scale and coarse-scale refer to entities associated with the fine grid (Section 3) and coarse grid (Ωgi

or Ωζk ), respectively. Fine-scale variables are specified by superscript f , while coarse-scale variable by superscript o.
An entity is local if it is defined on only one coarse grid, and global if it is defined over the whole domain Ωs. To
simplify the exposition, we use a 2D notation to present all PLMM equations. For example, the symbol m is used to
denote the tangent vector on a boundary or interface (Fig.1e) . In 2D, m is a single vector, but in 3D, it consists of two
orthonormal vectors m1 and m2. We use the former compact notation to express tangential BCs.

2igW

jcG

zW k

(a)

(b)

(c)

k
g
zG

Figure 2: Schematic of a contact interface Γc j (green) between two grain grids Ωgi1 and Ωgi2 . Notice Γc j is one of two
shared contacts. Γ

gi1
c j corresponds to the − side of Γc j and Γ

gi2
c j to its + side. The global problem imposes continuity of

traction and displacement on Γc j . (c) The contact grid Ωζk (cyan) covers Γc j , among other contacts (red in b).
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4.3. Local problems

The goal of PLMM is to solve Eqs.1 and 7 restricted to each grain grid Ωgi :

∇ ·
(
g(α) C : ∇su f

gi

)
= f s.t.

u f
gi · n |Γgi

c j
= hgic j1(x) , ∀c j ∈ Cgi

u f
gi · m |Γgi

c j
= hgic j2(x) , ∀c j ∈ Cgi

(8)

where hgic j1(x) and hgic j2(x) are normal and tangential displacements on Γ
gi
c j , respectively, and x is the position vector

on Γ
gi
c j . Given the BCs on Γ

gi
w are stress-free (i.e., σ f

gi (u) · n = 0), we omit them from all subsequent local problems
for brevity. Note that in 3D, the tangential displacement BC in Eq.8 consists of two separate equations corresponding
to two orthonormal tangents on Γ

gi
c j . If Eq.8 is solved, the global fine-scale solution can be assembled from the local

solutions u f
gi on each grain grid Ωgi . However, because hgic j1(x) and hgic j2(x) are unknown, Eq.8 cannot be solved. To

make progress, we introduce the following localization assumption:

hgic jd(x) ≈ uo
gic jd , d = 1, ... ,D (9)

in which we have replaced the functions hgic j1(x) and hgic j2(x) with unknown scalars uo
gic j1

and uo
gic j2

. The latter are
referred to as coarse-scale unknowns. The localization assumption is justified by the fact that Γ

gi
c j corresponds to a

local constriction of Ωs (i.e., Γ
gi
c j has a small measure), which is a unique feature of the decomposition discussed in

Section 4.1. It is, therefore, reasonable to neglect the dependence of the BCs in Eq.8 on the position vector x.
Substituting Eq.9 into Eq.8, we obtain:

∇ ·
(
g(α) C : ∇su f

gi

)
= f s.t.

u f
gi · n |Γgi

c j
= uo

gic j1
, ∀c j ∈ Cgi

u f
gi · m |Γgi

c j
= uo

gic j2
, ∀c j ∈ Cgi

(10)

The main advantage of Eq.10 over Eq.8 is that the solution of the former can be written as the superposition of a set
of numerically-constructed basis functions, ϕ f

gickd, and one correction function, ϕ̃ f
gi

, on Ωgi :

u f
gi = ϕ̃ f

gi
+

∑
∀ck∈Cgi

D∑
d=1

uo
gickdϕ

f
gickd (11)

for arbitrary uo
gic jd

. In Sections 4.3.1-4.3.3, we present three approaches, referred to as Strategies A, N, and U, for
computing ϕ f

gickd and ϕ̃ f
gi

. They differ in the way the solution around cracks is captured. Section 4.4 outlines how uo
gic jd

is computed. Given u f
gi from Eq.11, PLMM produces a global approximate fine-scale solution via:

u f |Ωs =
∑
∀gi

u f
gi (12)

where each u f
gi is extended by zero outside of Ωgi .

4.3.1. Strategy A: include cracks in all basis functions
The simplest approach for computing ϕ f

gickd and ϕ̃ f
gi

is to solve the following basis problem:

∇ ·
(
g(α) C : ∇sϕ f

gickd

)
= 0 s.t.

ϕ
f
gickd · n |Γgi

c j
= δk jδ1d , ∀c j ∈ Cgi

ϕ f
gickd · m |Γgi

c j
= δk jδ2d , ∀c j ∈ Cgi

(13)

and the following correction problem:

∇ ·
(
g(α) C : ∇sϕ̃ f

gi

)
= f s.t.

ϕ̃
f
gi
· n |Γgi

c j
= 0 , ∀c j ∈ Cgi

ϕ̃ f
gi
· m |Γgi

c j
= 0 , ∀c j ∈ Cgi

(14)
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on Ωgi . In Eq.13, δk j, δ1d, and δ2d are the Kronecker delta. If d = 1, ϕ f
gickd corresponds to setting the normal displace-

ment on Γ
gi
ck to one, and the tangential displacement on Γ

gi
ck and the normal/tangential displacements on Γ

gi
c j ,∀ j,k∈Cgi

to zero. Similarly, if d = 2, only the tangential displacement on Γ
gi
ck is set to one, while all other displacement BCs on

all contacts are set to zero (Fig.1d). The basis problem accounts for inhomogeneities due to the BCs of Eq.10, and the
correction problem for the inhomogeneity caused by the body force f . If parts of ∂Ωgi intersect the external boundary
of Ωs (= ∂Ωs \Γ

w), then Eqs.13 and 14 inherit the global BCs in Eq.5. However, the right-hand side (RHS) of these
BCs is set to zero for Eq.13 (homogeneous) but not Eq.14 (inhomogeneous). Given ϕ f

gickd and ϕ̃ f
gi

from Eqs.13 and
14, it is easy to verify that Eq.11 satisfies Eq.10. We call this approach for computing ϕ f

gickd and ϕ̃ f
gi

Strategy A, a key
feature of which is that the degradation function, g(α), is included in the basis problems of all grain grids.

Remark 1. Eq.13 entails solving #Cgi×D linear systems on Ωgi , one per contact interface per normal/tangential BC,
whereas Eq.14 entails solving only one system. If cracks evolve, so does g(α), and the basis functions must be updated
at every loading step, which can become computationally expensive. To reap maximum speedup, basis functions must
be updated sparingly, which makes Strategy A best suited for fixed-crack, not evolving-crack, problems. Note the
basis and correction problems are fully decoupled across all grain grids and can be solved in parallel.

4.3.2. Strategy N: exclude cracks from all basis functions
Since updating basis functions in evolving-crack problems is expensive, a naïve strategy is to not update them at

all. In other words, we may altogether neglect the presence of cracks in formulating the basis problem on Ωgi :

∇ ·
(
C : ∇sϕ f

gickd

)
= 0 s.t.

ϕ
f
gickd · n |Γgi

c j
= δk jδ1d , ∀c j ∈ Cgi

ϕ f
gickd · m |Γgi

c j
= δk jδ2d , ∀c j ∈ Cgi

(15)

We call this Strategy N. Notice the degradation function, g(α), does not appear in Eq.15, and ϕ f
gickd corresponds to an

intact grain grid. Hence, Eq.15 need only be solved once. To account for cracks, a modified correction problem is
needed because if we substitute ϕ̃ f

gi
from Eq.14 into Eq.11, we obtain a u f

gi that does not satisfy Eq10; unless Ωgi is
intact. In other words, the following source residual:

Rs(u
f
gi ) = f − ∇ ·

(
g(α) C : ∇su f

gi

)
(16)

will be non-zero. To drive Rs to zero, we propose an iterative scheme in which the modified correction problem:

∇ ·
(
g(α) C : ∇sδϕ̃ f ,η

gi

)
= Rs(u

f ,η−1
gi ) s.t.

ϕ̃
f
gi
· n |Γgi

c j
= 0 , ∀c j ∈ Cgi

ϕ̃ f
gi
· m |Γgi

c j
= 0 , ∀c j ∈ Cgi

(17)

is solved to obtain the incremental correction function, δϕ̃ f ,η
gi

on Ωgi at iteration η. Notice the RHS of Eq.17 depends
on the reconstructed solution u f ,η−1

gi from the previous iteration. To compute it, we use a modified form of Eq.11:

u f ,η
gi = ϕ̃ f ,η

gi
+

∑
∀ck∈Cgi

D∑
d=1

uo,η
gickdϕ

f
gickd (18a)

ϕ̃ f ,η
gi

= γ δϕ̃ f ,η
gi

+ ϕ̃ f ,η−1
gi

(18b)

where γ is a relaxation parameter. We refer to iterations in η as source iterations, which we declare “converged” if
‖Rs(u

f ,η
gi )‖L2 < 10−12. We denote the total number of source iterations performed by ns. To start iterating, we set δϕ̃ f ,0

to zero, set ϕ̃ f ,0 to the solution of Eq.14, and compute u f ,0
gi from Eq.11 with ϕ̃ f ,0 substituting the correction function.

The only remaining unknown in Eq.18 is uo,η
gickd, whose computation we detail in Section 4.4.

Remark 2. In Section 6, we show that setting γ= 1 can cause source iterations to diverge if ΓF intersects any of the
contact interfaces of Ωgi . The remedy is to use a smaller γ ∈ (0, 1]. However, this slows convergence and the optimal
value of γ is not known a priori. Therefore, Strategy N is not attractive for arbitrary crack patterns.
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4.3.3. Strategy U: adaptively include cracks in some basis functions
An ideal formulation of basis and correction problems is one where basis functions are updated infrequently and

γ= 1 can be set in Eq.18 without source iterations diverging. As stated in Remark 2, Strategy N diverges if γ= 1 and
ΓF∩Γ

gi
c j ,∅ for some c j ∈Cgi . In such cases, we empirically found that including ΓF in the basis problem of Ωgi ensures

convergence (see Section 6). Concretely, we formulate the basis problem on Ωgi as follows:∇ ·
(
g(α) C : ∇sϕ f

gickd

)
= 0 , ΓF ∩ Γ

gi
c j , ∅ , ∃c j ∈ Cgi

∇ ·
(
C : ∇sϕ f

gickd

)
= 0 , ΓF ∩ Γ

gi
c j = ∅ , ∀c j ∈ Cgi

s.t.

ϕ
f
gickd · n |Γgi

c j
= δk jδ1d , ∀c j ∈ Cgi

ϕ f
gickd · m |Γgi

c j
= δk jδ2d , ∀c j ∈ Cgi

(19)

where the degradation function, g(α), is included if ΓF intersects at least one of the interfaces of Ωgi . The corre-
sponding correction problem then is Eq.14 (similar to Strategy A). If ΓF ∩ Γ

gi
c j =∅ for all c j ∈Cgi , then Eq.17 is used to

compute the correction function (similar to Strategy N). Note that if Ωgi does not contain any cracks (i.e., Ωgi∩ΓF =∅),
Eq.17 reduces to Eq.14 and converges in only one source iteration. We call this approach for computing basis and
correction functions Strategy U. In evolving-crack problems, the basis functions of Ωgi are updated only if ΓF crosses
one of its interfaces with adjacent grain grids. The rationale for the update is that the localization assumption in Eq.9,
thus the PLMM solution, degrades in accuracy. Having computed all basis and correction functions on Ωs via one of
Strategies A, N, and U, we proceed next to compute uo

gic jd
by solving a global problem. We note this global problem

is also needed as part of internal source iterations in Strategies N and U.

4.4. Global problem

Recall the coarse-scale unknown uo
gic jd

corresponds to the normal displacement if d =1, or the tangential displace-
ment if d = 2 (or 3 in 3D) on Γ

gi
c j , respectively. For compactness, define uo

gic j
= [uo

gic j1
, ..., uo

gic jD
]. To compute uo

gic j
,

we formulate a global problem by imposing momentum balance and kinematic constraints on all contact interfaces.
Let Γc j be shared between Ωgi1 and Ωgi2 with the two corresponding sides Γ

gi1
c j and Γ

gi2
c j (Fig.2b). The coarse-scale

displacements associated with each side are uo
gi1 c j

and uo
gi2 c j

, respectively, totalling 2×D unknowns. An equal number
of equations on Γc j are required to close the system. The first equation is a momentum (or force) balance:

to
gi1 c j

= to
gi2 c j

(20)

where to
gi1 c j

and to
gi2 c j

are integrated tractions on Γ
gi1
c j and Γ

gi2
c j , respectively. The second is displacment continuity:

uo
gi1 c j

= uo
gi2 c j

(21)

across Γc j , justified by the diffuse-crack representation adopted in Section 2.
To tranform Eqs.20 and 21 into an algebraic system in terms of uo

gic jd
, we must express to

gi1 c j
and to

gi2 c j
in terms of

uo
gic jd

. Following the approach of [16], we first derive an expression for to
gic j

defined on Γ
gi
c j and drop the superscripts

1 and 2 momentarily for convenience. We begin by upscaling the basis functions on Ωgi via:

ψ f
gickd = g(α) C : ∇sϕ f

gickd (22a)

to
gickc jd =

1
|Γc j |

∫
Γ

gi
c j

ψ f
gickd · ds (22b)

T o
gickd =

[
to
gickc j1 d, to

gickc j2 d, ...
]>

(#Cgi D)×1
(22c)

Bo
gi

=
[
T o

gick1 1 | ... |T
o
gick1 D |T

o
gick2 1 | ... |T

o
gick2 D | ...

]
(#Cgi D)×(#Cgi D)

(22d)

Eq.22a yields the fine-scale stress ψ f
gickd associated with ϕ f

gickd. Eq.22b computes the spatial average of ψ f
gickd along

Γ
gi
c j , where |Γc j | is the measure of Γc j . Eq.22c concatenates the 1×D coarse-scale tractions to

gickc jl d
,∀c jl ∈ Cgi , into a

(#Cgi D)×1 vector T o
gickd. Finally, Eq.22d assembles T o

gickl d
,∀ckl ∈ Cgi into a matrix Bo

gi
with size (#Cgi D)×(#Cgi D). In

effect, Eq.22 upscales the fine-scale basis functions ϕ f
gickd on Ωgi into the small matrix Bo

gi
.
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Analogously, we upscale the correction function on Ωgi via:

ψ̃
f
gi

= g(α) C : ∇sϕ̃ f
gi

(23a)

t̃o
gic j

=
1
|Γc j |

∫
Γ

gi
c j

ψ̃
f
gi
· ds (23b)

T̃ o
gi

=
[̃
to
gic j1

, t̃o
gic j2

, ...
]>
(#Cgi D)×1

(23c)

Eq.23a computes the fine-scale stress ψ̃
f
gi

associated with ϕ̃ f
gi

. Eq.23b computes a spatial average of this stress on Γ
gi
c j

to yield the 1×D traction vector t̃o
gic j

. Finally, Eq.23c concatenates these tractions into the (#Cgi D)×1 vector T̃ o
gi

. In
effect, Eq.23 upscales the fine-scale correction function ϕ̃ f

gi
on Ωgi into the small vector T̃ o

gi
.

Remark 3. Regradless of whether Strategy A, N, or U is used to compute the basis and correction functions, the
degradation function, g(α), must be included in the upscaling of ϕ f

gickd and ϕ̃ f
gi

via Eqs.22 and 23.

With Bo
gi

and T̃ o
gi

computed for Ωgi , we can now express the coarse-scale traction to
gic j

on Γ
gi
c j as a function of the

coarse-scale displacements uo
gic jl

, ∀c jl ∈Cgi via Eq.24a:

T o
gi

= Bo
gi

Uo
gi

+ T̃ o
gi

(24a)

Uo
gi

=
[
uo

gic j1
,uo

gic j2
, ...

]>
(#Cgi D)×1

(24b)

T o
gi

=
[
to
gic j1

, to
gic j2

, ...
]>
(#Cgi D)×1

(24c)

Eq.24a superposes the integrated tractions on Γ
gi
c j computed from the basis and correction functions on Ωgi . Notice Uo

gi

is a (#Cgi D)×1 vector of the coarse-scale displacements uo
gic jl

,∀c jl ∈Cgi . Similarly, T o
gi

is a (#Cgi D)×1 vector of the
coarse-scale tractions to

gic j1
,∀c jl ∈Cgi . Intuitively, Eq.24a is an upscaled representation of the mechanical response of

Ωgi , which relates the coarse-scale tractions on the grain grid’s interfaces to the displacements imposed on them. In
the literature, the matrix Bo

gi
has been referred to as a flux matrix [62].

Given Eq.24a, the momentum balance Eq.20 on Γc j can now be expressed as follows:(
Bo

gi1
Uo

gi1
+ T̃ o

gi1

)
c j

=
(
Bo

gi2
Uo

gi2
+ T̃ o

gi2

)
c j

(25)

where we have used the notation to
gil c j

= (T o
gil

)c j for l∈{1, 2}. Specifically, (T o
gil

)c j is the entry in T o
gil

that corresponds to
Γc j . Note that to

gil c j
not only depends on uo

gil c j
, but also on the coarse-scale displacements on all other contacts of Ωgil .

Concretely, Eq.25 depends on uo
gi1 cn

,∀cn ∈Cgi1 , and uo
gi2 cm

,∀cm ∈Cgi2 . The global problem is obtained by assemling
Eqs.25 and 21, written for all Γc j , into a single algebraic system:

R (U) = R
(
[uo

gic jd](2NcD)×1

)
= 0 (26)

The residual vector R(·) consists of (2NcD)×1 entries, which depend on the coarse-scale unknowns uo
gic jd

arranged
into a (2NcD)×1 vector U. Recall Nc is the total number of contacts interfaces. Since Eq.21 imposes continuity of
displacement across all Γc j , the number of coarse-scale unknowns can be halved from 2NcD to NcD.

We now summarize the steps in PLMM thusfar: (a) Solve local fine-scale basis and correction problems on all Ωgi

using Eqs.13 and 14 for Strategy A, Eqs.15 and 17 for Strategy N, or Eqs.19 and 17 for Strategy U, respectively; (b)
Solve the global problem, Eq.26, to obtain coarse-scale displacements uo

gic jd
on all Γc j ; (c) Reconstruct the fine-scale

solution u f
gi on each Ωgi via Eq.11 for Strategy A, and Eq.18 for Strategies N and U; And (d) assemble the global

fine-scale solution u f on Ωs via Eq.12. In Strategies N and U, source iterations between Steps (a) and (c) are required
to compute ϕ̃ f

gi
, and before proceeding to Step (d). The above steps for PLMM are detailed in Algorithm 1 and yield

an initial approximation to single-scale DNS, which we denote by A0, N0, or U0 depending on the strategy used to
compute basis and correction functions. We next discuss how to iteratively reduce the errors of this approximation.
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Algorithm 1: PLMM without boundary iterations (output: A0, N0, or U0)
Decompose Ωs into non-overlapping grain grids Ωgi

Do gi ∈ {1, ...,Ng}

Do c j ∈ Cgi

Do d ∈ {1, ...,D}
If (Strategy A), Solve Eq.13 to obtain basis functions ϕ f

gickd, End if
If (Strategy N), Solve Eq.15 to obtain basis functions ϕ f

gickd, End if
If (Strategy U), Solve Eq.19 to obtain basis functions ϕ f

gickd, End if
End do

End do
Solve Eq.14 to obtain correction function ϕ̃ f

gi
(= ϕ̃ f ,0

gi
in source iterations)

Upscale basis and correction functions via Eqs.22-23
End do
Solve global problem in Eq.26 to obtain uo

gic jd
,∀gi, c j, d

Reconstruct the local fine-scale solution u f
gi via Eq.11

Compute initial source residual R0
s via Eq.16

While (η < ns and Rηs > tols)→ source iterations
Solve Eq.17 to obtain incremental correction function δϕ̃ f ,η

gi

Update correction function ϕ̃ f ,η
gi

via Eq.18b (set γ=1 for Strategy A or U)
Solve modified global problem in Eq.26 to obtain uo,η

gic jd
,∀gi, c j, d

Reconstruct local fine-scale solution u f ,η
gi via Eq.18a

Update the source residual Rηs via Eq.16
End while
Assemble global fine-scale solution u f ,0 via Eq.12

4.5. Iterative correction

Errors in PLMM, measured against the single-scale solution, are due to the localization assumption, hgic jd(x) ≈
uo

gic jd
in Eq.10. To correct them, Eq.14 must be modified as follows:

∇ ·
(
g(α) C : ∇sϕ̃ f

gi

)
= f s.t.

ϕ̃
f
gi
· n |Γgi

c j
= hgic j1(x) − uo

gic j1
, ∀c j ∈ Cgi

ϕ̃ f
gi
· m |Γgi

c j
= hgic j2(x) − uo

gic j2
, ∀c j ∈ Cgi

(27)

where the BCs include information that is missing from Eq.14. If Eq.27 is solved instead of Eq.14, all in PLMM
errors would be removed and u f

gi obtained from Eq.11 would satisfy Eq.8 exactly. However, Eq.27 cannot be solved
because hgic j1(x) and hgic j2(x) are not known a priori. We therefore proceed to approximate them instead by adopting
an iterative scheme, similar to ideas in [16, 45, 59]. We refer to such corrective iterations as boundary iterations, to
differentiate them from the source iterations discussed in Section 4.3.

Remark 4. In Strategy A, replacing Eq.14 with Eq.27 would immediately yield an exact correction function. But in
Strategies N and U, the replacement would merely provide a more accurate initial guess to source iterations (Eq.18),
which ultimately converge to the exact correction function. In other words, Eq.17 would remain unaltered, implying
the BCs of Eq.27 stay fixed across source iterations. Because Eq.27 in unsolvable in practice, these statements apply
equally to the approximated form of Eq.27 presented below (i.e., Eq.29).

Let ω be the boundary iteration index. Starting from ω − 1, at which the global fine-scale solution u f ,ω−1 is
known, we proceed to compute u f ,ω. The initial guess u f ,0 is taken to be the initial appximation produced by PLMM
(Algorithm 1). To estimate the BCs of Eq.27, we first solve a contact problem on each contact grid Ωζk (Fig.1c):

∇ ·
(
g(α) C : ∇su f ,ω

ζk

)
= f s.t.

u f ,ω
ζk
· n |

Γ
ζk
g

= R
Γ
ζk
g

[
u f ,ω−1

]
· n

u f ,ω
ζk
· m |

Γ
ζk
g

= R
Γ
ζk
g

[
u f ,ω−1

]
· m

(28)
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where the operator R
Γ
ζk
g

[·] restricts u f ,ω−1 onto Γ
ζk
g . The BCs on Γ

ζk
w are stress-free (black in Fig. 2c), while the Dirichlet

BCs on Γ
ζk
g (red in Fig. 2c) are inherited from the fine-scale solution u f ,ω−1 at the previous iteration. If ∂Ωζk intersects

the external boundary of Ωs, that is ∂Ωζk ∩ (∂Ωs\Γ
w),0, then the global BCs from Eq.5 are inherited.

After u f ,ω
ζk

,∀ζk are computed, the correction problem Eq.27 is replaced by its approximated form:

∇ ·
(
g(α) C : ∇sϕ̃ f ,ω

gi

)
= f s.t.


ϕ̃ f ,ω

gi
· n |Γgi

c j
=

(
RΓ

gi
c j

[
u f ,ω
ζc j

]
−〈RΓ

gi
c j

[
u f ,ω
ζc j

]
〉

)
· n

ϕ̃ f ,ω
gi
· m |Γgi

c j
=

(
RΓ

gi
c j

[
u f ,ω
ζc j

]
−〈RΓ

gi
c j

[
u f ,ω
ζc j

]
〉

)
· m

(29)

where RΓ
gi
c j

[·] restricts u f ,ω
ζc j onto Γ

gi
c j . Recall ζc j is the index of the contact grid covering Γ

gi
c j (⊂ Γc j ). The operator

〈·〉 spatially averages its argument over Γ
gi
c j . Notice RΓ

gi
c j

[u f ,ω
ζc j ] · n and 〈RΓ

gi
c j

[u f ,ω
ζc j ]〉 · n approximate hgic j1(x) and uo

gic j1
in Eq.27, respectively. The same holds for the tangential BCs in Eq.29. Once ϕ̃ f ,ω

gi
is obtained from Eq.29, we can

compute u f ,ω using equations similar to Eqs.22-24. For brevity, we only list those that are updated by ω:

t̃o,ω
gic j

=
1
|Γc j |

∫
Γ

gi
c j

ψ̃
f ,ω
gi
· ds (30a)

T̃ o,ω
gi

=
[̃
t o,ω

gic j1
, t̃ o,ω

gic j2
, ...

]>
(#Cgi D)×1

(30b)

T o,ω
gi

= Bo
gi

Uo,ω
gi

+ T̃ o,ω
gi

(30c)

R (Uω) = R

(
[uo,ω

gic jd
](2NcD)×1

)
= 0 (30d)

u f ,ω |Ωs =
∑
∀gi

(
ϕ̃ f ,ω

gi
+

∑
∀ck∈Cgi

∑
∀d

uo,ω
gickdϕ

f
gickd

)
(30e)

Notice Bo
gi

and ϕ f
gickd, associated with the basis functions, remain unaltered by ω. The global fine-scale solution u f ,ω

obtained from Eq.30e converges to the single-scale solution as ω → ∞. Eqs.28 and 29 are fully decoupled across all
contact grids and grain grids and can be easily parallelized. Algorithm 2 summarizes the overall workflow of PLMM,
in which nb is the total number of boundary iterations performed. We denote the global fine-scale solution u f ,ω

obtained from Algorithm 2 by Aω, Nω, or Uω depending on the strategy used to compute basis/correction functions.

Algorithm 2: PLMM with boundary iterations (output: Aω, Nω, or Uω where ω > 0)

Compute initial approximation u f ,0 via Algorithm 1 (i.e., A0, N0, or U0)
Do ω ∈ {1, ..., nb}

Do ζk ∈ {1, ...,Nζ}

Solve Eq.28 to obtain contact-grid solution u f ,ω
ζk

(inherit BCs from u f ,ω−1)
End do
Do gi ∈ {1, ...,Ng}

Solve Eq.29 to obtain correction function ϕ̃ f ,ω
gi

(inhert BCs from
⋃

k u f ,ω
ζk

)
[Note: requires source iterations for Strategies N and U; see Algorithm 1]

End do
Solve global problem in Eq.30d to obtain uo,ω

gic jd
,∀gi, c j, d

Reconstruct and assemble global fine-scale solution u f ,ω via Eq.30e
End do

5. Validation set

We compare the proposed PLMM against single-scale DNS for different porous geometries shown in Fig.3. They
include a 2D disk pack (P2D) [16], a 2D sandstone (S2D) [69], and a 3D sandstone (S3D) [69]. All have Lamé
parameters λ = 8.3 GPa and µ = 44.3 GPa corresponding to α-quartz [16, 70]. In both P2D and S2D, the bottom
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boundary of the domain (y = 0) is fixed and a vertical-upward displacement of uD = 0.004 mm is applied to the top
boundary (y = Ly). In S3D, the domain is clamped on the right-back surface (x = 0) and a displacement of uD = 0.008
mm along the positive x-direction is imposed on the left-front surface (x= Lx). All other boundaries are stress-free.

The fine grids in Fig.3 coincide with the image pixels, which are 716 × 576 for P2D, 541 × 546 for S2D, and 134
× 136 × 142 for S3D. The phase-field length-scale parameter is set to l = 2h = 0.02 mm, where h is the fine-grid size,
and the fracture toughness to Gc = 2.7 × 10−3 kN/mm. Fig.3 also depicts the grain grids and contact grids of each
domain obtained from the decomposition algorithm of Section 4.1. The number of grain grids, Ng, and contact grids,
Nζ , are 76 and 127 for P2D, 121 and 145 for S2D and 43 and 52 for S3D, respectively. Contact grids are 16 pixels
wide in P2D and S2D, and 12 pixels wide in S3D.

Figs.4 and 5 depict the crack patterns considered in each domain. For P2D and S2D, they include: Pattern 1,
in which all cracks are confined to the interior of the grain grids, i.e., none crosses a contact interface; Pattern 2, in
which all cracks cross contact interfaces, i.e., none is confined solely to the interior of a grain grid; and Pattern 3,
which is a superposition of cracks in patterns 1 and 2. We use P2D-c1 and S2D-c1 to refer to pattern 1, P2D-c2 and
S2D-c2 to refer to pattern 2, and P2D-c3 and S2D-c3 to refer to pattern 3. For S3D, we only consider one crack pattern,
which consists of 20 elliptical cracks with different sizes and orientations placed randomly in the domain. Most cracks
intersect contact interfaces. This pattern is denoted by S3D-c20 and is most comparable to P2D-c3 and S2D-c3.

Crack pattern 2 in Fig.4 consists of two subgroups: (1) cracks parallel to contact interfaces, which sever adjacent
subdomains; and (2) cracks that strike interfaces at some angle. The latter presents a more significant challenge to
PLMM as the displacement along each interface is discontinous, invalidating the localization assumption in Eq.9.
Cracks in subgroup 1 may still preserve continuity. Hence, Fig.4 considers more cracks from subgroup 2.

P2
D

S2
D

S3
D

Domain Grain grid Contact grid

x

y

z

x y

Figure 3: Domains used to validate PLMM. From top to bottom: 2D disk pack (P2D), 2D sandstone (S2D), and 3D
sandstone (S3D). From left to right: domain image, grain grids (randomly colored), and contact grids (cyan).
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Crack pattern 1

P2
D

Crack pattern 2 Crack pattern 3

S2
D

Figure 4: Crack patterns considered for the P2D and S2D domains in Fig.3. Pattern 1: all cracks are confined to the
interior of grain grids, i.e., none crosses a contact interface. Pattern 2: all cracks cross contact interfaces, i.e., none is
solely confined to the interior of a grain grid. Pattern 3: superposes cracks from patterns 1 and 2.

Figure 5: Crack pattern considered for the S3D domain in Fig.3. (Left) Twenty elliptical cracks with different sizes
and orientations placed randomly inside the domain. (Right) A slice plot of the phase-field variable corresponding to
the cracks. The length-scale parameter is set to l=0.02 mm.
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6. Results

We solve Eqs.1 and 7 on the pore-scale domains in Fig.3 via PLMM and compare the solutions against single-scale
DNS. To quantify the PLMM errors, we define the following error metrics similar to [16, 59]:

Eχ
p =
‖χM − χS ‖

supΩs
‖χS ‖

× 100 , Eχ
2 =

(
1
|Ωs|

∫
Ωs

(Eχ
P)2dΩ

)1/2

(31)

In Eq.31, χ is a placeholder for either displacement u, volumetric strain ∇ ·u, or maximum shear stress σt . The
subscripts M and S refer to variables associated with PLMM and DNS, respectively. In Eq.31, Eχ

p measures the
relative pointwise error between PLMM and DNS, and Eχ

2 the relative L2-error, both expressed as percentages. In the
following sections, PLMM solutions are computed using Strategies A, N, and U (Section 4.3) for obtaining the basis
and correction functions, and different numbers of source and boundary iterations are considered (Section 4).

Before discussing the results, we note the PLMM errors (Eχ
p and Eχ

2 ) herein are the result of three contributions:

E = Eb + Es + E f (32)

where we have dropped the superscript χ and subscripts p and 2 for clarity. Eb represents errors that are corrected
by boundary iterations, Es errors corrected by source iterations, and E f errors reduced by only refining the fine grid.
Specifically, holding the fine-grid size, h, fixed, if the number of boundary, nb, and source, ns, iterations →∞, then
Eb and Es→ 0, respectively. The remaining error, E f , is due to fine-scale discretization differences between PLMM
and DNS near contact interfaces. This is caused by our specific implementation of PLMM and can, in principle, be
avoided [16, 59]. In Appendix A, we present a mesh convergence analysis that shows E f ∼O(h) for displacement.

6.1. Initial multiscale approximation vs. single-scale solution

Figs.6-7 compare the initial PLMM approximation U0 to single-scale DNS for P2D-c3 and S2D-c3. Results for N0
and A0 are similar and thus omitted. Since crack pattern 3 is more challenging than patterns 1 and 2, the latter results
are omitted too. Recall that U0 implies no boundary iterations are performed (nb = 0). Here, we set the number of
source iterations, ns, to be sufficiently large to ensure convergence (tols = 10−12). Figs.6-7 compare the displacement
magnitude |u|, volumetric strain |∇·u|, and maximum shear stressσt from PLMM and DNS. In all cases, the agreement
is very good. Fig.8 shows a similarly good agreement between U0 and DNS for the S3D-c20 domain.

6.2. Multiscale errors vs. boundary iterations

We next quantify the PLMM errors as a function of boundary iterations. Similar to Section 6.1, we set ns to be
sufficiently large to ensure source iterations converge (tols = 10−12). We continue to focus on Strategy U because the
results for Strategies A and N are similar. Fig.9 depicts pointwise errors for U0, U4, and U8 in P2D-c3. The errors
correspond to the displacement, u, volumetric strain, ∇·u, and maximum shear stress, σt . Focusing on U0, we see
that Eu

p<8%, E∇·up <1%, and Eσt
p <10% in most parts of the domain except near cracks and contact interfaces. The

errors near contacts are due to the localization assumption and are most obvious for ∇·u and σt . We note that the U0
errors correspond to the PLMM solution depicted in Fig.6. Focusing next on U4 and U8, we see that after 4 and 8
boundary iterations, respectively, errors decrease throughout the domain. The relative L2-error for displacement, Eu

2 ,
is 3.28% for U0, 2.20% for U4, and 2.00% for U8. The apparent stagnation in errors after U4 is due to the fine-grid
discretization error E f in Eq.32, which is O(h) and can be reduced only by refining the fine grid (see Appendix A).

Almost identical observations are made for S2D-c3 and S3D-c20 based on pointwise errors shown in Figs.10 and
11, respectively. Focusing on S2D-c3, the U0 errors are Eu

p < 10%, E∇·up < 0.8%, and Eσt
p < 10% in most parts of

the domain except near cracks and contact interfaces. However, after 4 and 8 boundary iterations, errors decrease
throughout the domain and Eu

2 drops from 8.08% for U0, to 4.87% for U4, to 3.60% for U8. The same trend is seen
for S3D-c20, where Eu

2 decreases from 2.80% for U0, to 1.66% for U4, to 1.57% for U8.
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Figure 6: Comparison between the multiscale approximation U0 and single-scale DNS for P2D-c3. From left to right,
the displacement magnitudes |u|, volumetric strains |∇ · u|, and maximum shear stresses σt are shown.
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Figure 7: Comparison between the multiscale approximation U0 and single-scale DNS for S2D-c3. From left to right,
the displacement magnitudes |u|, volumetric strains |∇ · u|, and maximum shear stresses σt are shown.
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Figure 8: Comparison between the multiscale approximation U0 and single-scale DNS for S3D-c20. From left to right,
the displacement magnitudes |u|, volumetric strains |∇ · u|, and maximum shear stresses σt are shown.

6.3. Multiscale errors vs. source iterations

In Section 6.2, we discussed PLMM errors for when ns is sufficiently large for source iterations to converge at each
boundary iteration. This is computationally wasteful, as smaller ns can still ensure convergence to the DNS solution.
Here, we analyze Strategies A, N, and U for different combinations of ns and nb to understand their convergence rates.
We focus only on S2D and P2D with crack patterns 1 and 2 due to the large number of simulations required.

Fig.12 depicts contour plots of Eu
2 versus ns and nb for Strategies A, N, and U applied to P2D-c1 and P2D-

c2. The following key observations can be made: (1) Regardless of the crack pattern, Strategy A does not require
any source iterations to converge, as expected from Section 4.3.1; (2) When all cracks are confined to the interior
of grain grids (pattern 1), Strategy U reduces to Strategy N, consistent with Eqs.19 and 15; (3) When all cracks
intersect contact interfaces, Strategy U reduces to Strategy A, consistent with Eqs.19 and 13; (4) In Strategies N and
U, source iterations need not fully converge for PLMM to converge to the DNS solution; And (5) convergence to the
DNS solution is slower in all Strategies when cracks intersect contact interfaces (pattern 2), because the localization
assumption (Eq.9) becomes degraded. Similar observations can be made for S2D-c1 and S2D-c2 from the contour
plots of Eu

2 shown in Fig.13. We note that Strategy A converges the fastest, in ∼8 boundary iterations, regardless of
the crack pattern, which is comparable to the results reported in [16] for intact domains.

In Figs.12 and 13, to ensure that source iterations in Strategy N converge in crack pattern 2, a relaxation parameter
of γ=0.3 was used in Eq.18b. In fact, larger values of γ caused Strategy N to diverge, as shown by Fig.14 for γ=0.6
and 0.9. We note that relaxing source iterations was deemed necessary only in Strategy N and in the presence of
cracks intersecting contact interfaces (patterns 2 and 3). In all other cases, γ= 1 was found sufficient and used. This
renders Strategies A and U, which do not require relaxation, superior to Strategy N, because not only does γ<1 slow
down convergence, but the exact value of γ cannot be determined a priori (at least based on this work).
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Figure 9: Pointwise errors (%) in displacement (Eu
p), volumetric strain (E∇·up ), and maximum shear stress (Eσt

p ) for the
PLMM solutions U0, U4, and U8 in the domain P2D-c3. The U0 plots correspond to Fig.6.

7. Discussion

7.1. Convergence rate for different strategies
Figs.12-14 show that Strategy A converges the fastest, followed closely by Strategy U. Strategy N is the slowest

to converge, and may even diverge if not relaxed in crack patterns 2 and 3. The reason for divergence is that when
cracks intersect contact interfaces, the localization assumption (Eq.9) becomes degraded and boundary iterations are
required to correct it. In addition, since cracks are excluded from the basis functions of Strategy N, source iterations
are needed to capture displacement discontinuities within grain grids. Hence, the correction problem (Eq.17) attempts
to correct too much, leading to an overshoot in the correction increment δϕ̃ f ,η

gi
. Relaxation tempers this increment,

thereby encouraging convergence. Strategies A and U, by contrast, include contact-intersecting cracks in their basis
functions, requiring only boundary iterations to correct for inaccuracies in the localization assumption. Therefore, the
correction problem has less to correct, obviating relaxation. If cracks are fully confined to the interior of grain grids
(pattern 1), the localization assumption is not degraded, and Strategies N and U require only source iterations to yield
an accurate approximate solution; because neither strategy includes interior-cracks in their basis problems. Strategy
A also includes interior cracks in its bases, and thus, does not even require source iterations.

7.2. Fixed-crack vs. evolving-crack problems
Given Strategy A converges the fastest, then why bother with Strategies N and U? If cracks are fixed, the answer

is: we should not. Strategy A is the most efficient computationally. But in problems where cracks evolve over many
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Figure 10: Pointwise errors (%) in displacement (Eu
p), volumetric strain (E∇·up ), and maximum shear stress (Eσt

p ) for
the PLMM solutions U0, U4, and U8 in the domain S2D-c3. The U0 plots correspond to Fig.7.

loading steps (or staggered iterations in phase-field models), Strategy A becomes prohibitively slow. This is because
as cracks nucleate and grow within grain grids, basis functions must be recomputed, which in turn entails solving
multiple local systems on the grain grids. Notice the Kronecker delta in the BCs of Eq.13. Put differently, frequent
recomputing of basis functions in an evolving-crack problem is a bad idea. Strategy N would have been the ideal
solution, because no basis updates are necessary. However, as we observed in Section 6.3, it performed poorly. This
leaves Strategy U as the preferred method for solving evolving-crack problems, because basis functions are updated
only when cracks cross contact interfaces, which is a far less frequent occurance.

7.3. Computational cost
Here, we analyze the algorithmic complexity of PLMM compared to DNS, deferring a complete numerical demon-

stration to future work. Assume Ωs consists of N f fine grids (FEM nodes here), partitioned into Ng grain grids, Nc

contact interfaces, and Nζ contact grids via the decomposition algorithm in Section 4.2. For simplicity, assume also
that the decomposition is balanced, meaning all grain grids, and separately all contact grids, consist of roughly the
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Figure 11: Pointwise errors (%) in displacement (Eu
p), volumetric strain (E∇·up ), and maximum shear stress (Eσt

p ) for
the PLMM solutions U0, U4, and U8 in the domain S3D-c20. The U0 plots correspond to Fig.8.

same number of fine grids. Let #Cgi denote the average number of contacts per grain grid, and f ζ be the fraction of
Ωs covered by contact grids. As seen from Fig.3, f ζ is generally small (= 0.28 for P2D and S2D). Assume we solve
all linear systems with the same solver, whose wall-clock time T scales as O(nβ), where n is the number of degrees
of freedom in the system and β ∈ (1, 3) is the computational complexity of the solver [71]. The wall-clock times of
DNS (TS ) and PLMM (TMnb

), where nb is the number of boundary iterations, can be estimated as:

TS = O(N f D)β (33a)

TM0 = Tbasis + Tcorr + Tglob + ns (Tcorr f F + Tglob) (33b)

TMnb
= TM0 + nb (Tcont + Tcorr + Tglob + ns (Tcorr f F + Tglob)) (33c)
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where

Tbasis = O(N f D/Ng)β × (Ng#Cgi D/Pbasis) (33d)

Tcorr = O(N f D/Ng)β × (Ng/Pcorr) (33e)

Tcont = O(N f D f ζ/Nζ)β × (Nζ/Pcont) (33f)

Tglob = O(NcD)β (33g)

The wall-clock times Tbasis, Tcorr, Tcont and Tglob correspond to solving the basis problem (Eq.13, 15, or 19), correc-
tion problem (Eq.14, 17, or 29), contact problem (Eq.28), and global problem (Eq.26 or 30d) in PLMM, respectively.
Pbasis, Pcorr and Pcont denote the number of processors used to solve the basis, correction, and contact problems (=1 if
serial computing). Because these local problems are decoupled, the maximum number of processors that can be used
in each case is Pbasis = Ng#Cgi D, Pcorr = Ng, and Pcont = Nζ . In Eq.33b-c, f F is the fraction of grain grids that contain
cracks not captured by the basis functions; thus requiring source corrections. In DNS, the total number of unknonws
is N f D, whereas in PLMM, it is (N f + Nc)D. The extra NcD unknowns are due to coarse-scale displacements defined
at the contact interfaces, which are continuous due to Eq.21 (i.e., factor of 2 not required). The increase in unknowns
is negligible because Nc�N f (e.g., Nc/N f =10−3 in S2D).

If Strategy A is used to compute basis/correction functions, ns = 0 because no source iterations are needed, and
f F =0 because cracks are included in all basis functions. Since Tglob and Tcont are negligible compared to Tbasis and
Tcorr, we can approximate TM0 ≈Tbasis+Tcorr and TMnb

≈Tbasis+(nb+1)Tcorr. The blue contour lines in Fig.13 of
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Figure 12: Relative L2-errors (%) in displacement (Eu
2 ) plotted for different combinations of source (ns) and boundary

(nb) iterations in the P2D-c1 and P2D-c2 domains using Strategies A, N, and U.
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Figure 13: Relative L2-errors (%; red contours) in displacement (Eu
2 ) plotted for different combinations of source (ns)

and boundary (nb) iterations in the S2D-c1 and S2D-c2 domains using Strategies A, N, and U. Blue contours corre-
spond to measured wall-clock times in seconds. Optimal (ns, nb)-pairings are marked by green triangles. Diagonal
and vertical green lines correspond to ns =nb and ns =0, respectively; the approximate loci of optimal pairings.

measured wall-clock times for S2D-c1 and S2D-c2 confirm these estimates. If Strategy N or U is used, ns , 0 and
f F , 0 and we can approximate TM0 ≈ (1+ns f F)Tcorr and TMnb

≈ (1 + nb)(1+ns f F)Tcorr, where we omitted Tbasis

because it is a one-time cost that becomes negligible as ns and nb grow. The difference between Strategies N and U is
that both ns and f F are larger for Strategy N with the possibility ns =∞ if source iterations diverge. The blue contours
in Fig.13 of measured wall-clock times once again confirm these estimates.

Can ns and nb be chosen optimally in PLMM to satisfy a desired error tolerance at minimal computational cost?
The answer is yes, and Fig.13 shows how. Focusing on Strategy N and crack pattern 1, as an example, assume our
tolerance for error is Eu

2 = 1.5%. The corresponding contour line in Fig.13, colored red and annotated green, is the
locus of all (ns, nb)-pairings that satisfy this tolerance. If we now consider the superposed contour lines of wall-clock
time, colored and annotated blue, we can determine the optimal pairing: the point at which the blue and red contours
become tangent, maked by a green triangle in Fig.13. Similar optimal pairings can be found for different tolerances
(e.g., second triangle in Fig.13 for Eu

2 = 1%). By connecting these optimal pairings we find that they lie roughly on
the line ns = nb, which is a key takeaway. In Strategy A, optimal pairings lie on the line ns = 0, shown by the vertical
green lines in Fig.13. In Strategy U, optimal pairings lie on ns = nb for crack pattern 1 (similar to Strategy N), but on
ns =0 for pattern 2 (similar to Strategy A), for reasons discussed in Section 6.3.
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Figure 14: Relative L2-errors (%) in displacement (Eu
2 ) plotted for different combinations of source (ns) and boundary

(nb) iterations in the P2D-c2 and S2D-c2 domains using Strategy N with relaxation parameters γ = 0.3, 0.6 and 0.9.

8. Conclusion

We presented a pore-level multiscale method (PLMM) to model elastic deformation of fractured porous materials
with arbitrary microstructure and crack patterns. A key feature of the proposed PLMM is that the domain decompo-
sition need not conform to crack positions, unlike a previous formulation that had been proposed by the authors [16].
The added flexbility leads to more accurate solutions, better error control, and the absence of a need to dynamically
update the decomposition when cracks evolve. We validated PLMM against single-scale direct numerical simulations
(DNS) and showed it produces an accurate initial approximation (e.g., Eu

s <10%) on complex 2D and 3D geometries.
We also proposed an iterative strategy to reduce the errors of this approximate solution to any desired level.

Anticipating application to evolving-crack problems in the future, three strategies for computing basis functions
within PLMM were explored: (1) Strategy A, where all cracks are included in the basis functions; (2) Strategy N,
where no cracks are included in the basis functions; and (3) Strategy U, where only those cracks are included that
intersect at least one contact interface. If cracks are fixed, Strategy A is preferred, as it converges the fastest. If cracks
evolve, Strategy U is preferred because it requires infrequent updates of the basis functions (unlike Strategy A), which
is computationally more efficient. Strategy N either diverges, if not relaxed, or converges slowly. It is therefore not
recommended. Future work will focus on applying PLMM to crack nucleation and growth problems. This work also
opens the possiblity to adapt PLMM as the linear solver for nonlinear problems involving finite strains or plasticity.
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Appendix A. Multiscale error versus fine-grid refinement

Consider a rectangular domain Ω = [0, 0.96] × [0, 0.98] with different crack patterns, as shown in Fig.A.1. The
domain is fixed at the bottom boundary and a vertical-upward displacement of uD = 0.001 mm is applied to the top
boundary. All material properties are the same as those in Section 6. For each domain, Eqs.1 and 7 are solved using
Strategy U of PLMM and the displacement error, Eu

2 , is calculated against the single-scale DNS solution. We set
the number of boundary, nb, and source, ns, iterations to be sufficiently large so that the PLMM solution no longer
improves in accuracy. This ensures Eb = Es = 0 in Eq.32. We repeat the above process for different fine grids, refined
according to h = h0/Nre f , where h0 is the initial fine-grid size and Nre f is the refinement factor. We set the phase-field
length scale parameter to l = 2h. Fig.A.2 shows that the plot of Eu

2 versus Nre f follows a first-order convergence
behavior, regardless of the crack pattern. Together with Eq.32, this implies E f ∼O(h).

Crack pattern 1 Crack pattern 2 Crack pattern 3 Crack pattern 4

Figure A.1: Crack patterns considerd in the fine-grid convergence analysis. Pattern 1: all cracks are confined to the
interior of grain grids. Pattern 2: all cracks intersect at least one contact interface. Pattern 3: a combination of crack
patterns 1 and 2. Pattern 4: a complex crack pattern with curved and branching cracks.
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