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Highlights

Pore-level multiscale method developed for deformation of fractured porous media.
The method decomposes a porous solid into subdomains to decouple computations.
The decomposition need not conform to cracks, removing a key previous barrier.
Implications for fixed-crack versus evolving-crack problems are analyzed.
Approximation errors can be estimated and controlled iteratively.



A Pore-Level Multiscale Method for the Elastic Deformation of Fractured
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Abstract

Pore-scale models are useful tools for understanding and upscaling the mechanical deformation of fj
media. The highest fidelity solutions are obtained by direct numerical simulation (DNS), in which gove’a@®s equations
are discretized and solved with a fine-grid solver (e.g., finite elements) on a 3D image (e.g., X-ray a porous
sample. However, the downside of DNS is its high computational cost. We present a pore-leve
(PLMM) that approximates DNS efficiently and with controllable accuracy in modeling the linea

which local basis and correction functions are built. These functions are then coupled
an approximate solution, whose errors can be iteratively corrected. A key feature of P,
need not conform to the cracks, unlike a previous variant developed by the authors. This

ves the way towards solving

the decomposition. We
hpturing them through either
putational cost are analyzed.

represent cracks diffusely using a phase-field variable and explore three stratC%g
the basis or correction functions. The implications of each on convergence rat

Keywords: Porous media, Pore-scale modeling, Multiscale method, e mechani®s, Phase-field method

1. Introduction

The deformation and failure of porous medga is releva a wide range of applications from geologic CO, seques-
of lightweight, high-strength biomimetic materials for
airplanes [1], armored vehicles [2]], and thegag-a tically insulated buildings [3]. In the subsurface, which moti-
vates the authors, fractures are induced b n activity (e.g., fluid injection) or tectonic stresses. In either
case, they significantly impact the hydro- ® properties of a porous rock. To quantify these alterations, pore-
¢ deformation and failure at the scale of individual grains and pores
comprising the rock. The outp cale models can be used to parameterize macroscopic models, which
would otherwise contain phe enoNuical constants [4]. Here, we focus on the elastic deformation of fractured

porous media at the pore sc ein Cracks are assumed to be static.

With recent advancgs in T imaging [5,16], combined with energy-dispersive X-ray spectroscopy [7+9],
the 3D microstructure an®@nineg®ogy of geologic porous samples can be captured in great detail. Such images serve
as inputs to pore- ¥ which divide into two categories: direct numerical simulation (DNS) and discrete-
element m n DNS, the governing equations are discretized on a Cartesian mesh that often coincides
with the imag ther the geometry nor the equations are simplified [10]. Examples include extended finite
element (XFEM )Yl 1,[12], shifted boundary method [13}[14], immersed boundary finite volume [15}[16]], phase-field

models [17-14L gd peri-dynamics [20,21]. The disadvantage of DNS is that it is computationally prohibitive for
analyzing large or many samples. To render computations tractable, in DEM, both the governing equations and
the microstructure of a porous sample are simplified [22-+24]. The solid is replaced by an assembly of “particles”
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that have elementary shapes (e.g., spheres, polyhedral, clusters of spheres) [24+26], often assumed rigid. Failure is
modeled by breaking fictitious “bonds” between particles when forces exceed the material’s strength [23}27]. Recent
extensions like FEM-DEM have removed the particle rigidity assumption of DEM [28| 29]. While useful in many
problems, DEM and its variants have two drawbacks [30.,/31]]: (1) They are ill-suited for the non-particulate and highly
heterogeneous porous rocks encountered in the deep subsurface; And (2) they lack a built-in mechanism to estimate
and control errors. The latter is because convergence to a fine-scale solution is undefined.

Recently, a pore-level multiscale method (PLMM) was proposed by the authors to approximate DNS efficiently
and with controllable accuracy [16] for the linear-elastic response of a fractured porous solid with arbitrary microstruc-
ture. The idea was to decompose the solid into subdomains, over which local fine-grid problems are solved to construct
basis and correction functions. The decomposition was done in such a way that subdomains corresponded to physical
grains in a granular medium (as in DEM), and interfaces between the subdomains to physical contacts between the
grains. The basis and correction functions were then coupled to each other with a small global problem in terms of
coarse-grid displacement unknowns defined at subdomain interfaces. PLMM was shown to yield a
approximation to DNS that could be corrected up to any desired accuracy using an iterative strategy espite these
beneﬁts the method has three major drawbacks: (1) The decomp0s1t10n must conform to cracks, wh

(3) the iterative strategy does not correct errors near cracks, only away from them.

In this work, we reformulate PLMM [16] to remove the above limitations. The resylti
DNS efficiently for arbitrary cracks patterns, which need not conform to the solid’s d
errors are controllable throughout the domain. We represent cracks diffusely ugj
but emphasize that a sharp-crack representation is equally applicable in PL
problems, a momentum equation must be coupled to a crack (or phase-field) evd

often in a staggered fashion, at each loading step. Here, we focus only on lt?’n um equation, since it is more

expensive to solve. However, anticipating the needs of solving evolvi roblenWn the future, we propose three
strategies for capturing cracks via basis and correction functions, w important implications on convergence

and computational cost: (1) All cracks are captured by the b tegl A); (2) No cracks are captured by the
bases (Strategy N); and (3) only some cracks, namely thggigh ss supdomain interfaces, are captured by the bases
(Strategy U). If cracks are static, Strategy A is the th Jto cRgerge. But if cracks are evolving, Strategy U is
are the most accurate way of capturing cracks, but their
strikes a delicate balance.

.
-

the multiscale finite element (MsFE) [12, 344 TMygqultiscale finite volume (MsFV) [42H47]journal, and multiscale
mortar finite element (MoMSsFE) [48-51] S
the pore scale, multiscale methods are m eloped and have focused primarily on fluid flow [52H61]. The
PLMM herein builds on ideas origin for single-phase flow [59], two-phase flow [60], and compressible
gas flow [61]]. A recent review of tiscale methods at the pore and Darcy scales can be found in [62].

The article is organized a the governing equations approximated by PLMM are described in Section
Section 3| briefly overvi finecale DNS solver employed. Section [4] discusses the algorithmic details of
PLMM. Specifically, local b orrection problems are defined in Section[4.3] the global problem that couples
these local problems is in Section [4.4] and the iterative strategy that corrects the PLMM errors is outlined
in Section[4.5] In g@ e validate PLMM against DNS for various 2D and 3D microstructures and a wide

Consider the porous domain Q ¢ R? with Lipschitz boundary dQ, where D is the number of spatial dimensions;
as shown in Fig[Th. The open set Q is partitioned into a solid phase Q, and a void space Q, such that Q = Q,UQ, UT"
and Q;, N Q, = O, where I'V = 5‘, n ﬁv is the interface between € and Q,. The black lines shown in Fig. |1a are
possible cracks within ;. We consider the following linear elastic momentum equations on €:

Voow) = f ey
2
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Figure 1: Schematic of a pore-scale image, its decomposition into grain grids, and contact grids. (a) The image Q
consists of a solid phase Q (white), a void space Q, (black), and cracks I'* (black lines). (b) The solid Q; is decom-
posed into grain grids Q¢ (randomly colored). (c) Contact grids Q% (cyan) cover interfaces, I/, between the grain
grids. (d) The displacement fields of two basis functions on Q8 are shown, corresponding to normal (compressive)
and tangential (shear) BCs imposed (green arrows). (e) Q¢ consists of I'S (black) and F‘Ejfg (red) boundaries. The
unit normal, n, and unit tangents, {m;, m,}, on T's; are shown. (f) The contact grids Q¢', Q%, Q%, Q% (shades of cyan)

cover ¥ ., T% T8 T¥% ., respectively. The boundary 9Q% consists of [ (black) and Fé" (red).

where f is the body force, V- the divergence operator, o the stress tensor, and & the strain tensor. The constitutive
stress-strain relation for an elastic material is:

o) =C:s@m) (2)

where s(u)=V*u=1/2(Vu + VTu) and C=[C; ] is the fourth-order stiffness tensor. Note V* denotes the symmetric
gradient operator, u the displacement field, and the superscript T transposition. For isotropic materials, C equals:

Cijrt = 001 + (00 ji + 01 jx) ©)
where A and y are called Lamé parameters. Substituting Eq/3|into Eq[2] we obtain:
o) = Atr(e(u)I + 2u e(u) @

in which tr(g) is the trace of €.
Let Q; be partitioned into a Dirichlet I'” and a Neumann I'V subset, such that Q;=I'? UT¥ and T N\TV =0. We
impose displacement boundary conditions (BCs) on I'” and traction BCs on I'V as follows:

o = up(x) (52)

o) -nrv = ty(x) (5b)

where up is the displacement on I'?, and ¢y and n are the traction and outward-pointing normal on I'V, respectively.
With reference to Fig, we assume I cI'V and set ¢y = 0 on I'V, which implies the pore pressure is zero.
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To represent cracks I'F (C Q;), we use a continuous damage (or phase-field) variable « satisfying [33]:

6
dist(x,TF) > 1/2 ©

o) = {32—0;(1 — Sy dist(r, TF) < 1/2
0,
where G, is the fracture toughness, [ is a length-scale parameter that controls the width of the diffuse crack, dist(x, ')
is the distance from an arbitrary point x to I'*, and B is a constant (= 103 here). If a(x) =0, the solid is intact at point x,
and if a(x) = 1, it is fully damaged. In phase-field models, the variable @ impacts the stress-strain Eq[2|by degrading
the stress tensor in certain directions (e.g., tension/shear but not compression) [63,|64]]. Here, we choose an isotropic
degradation model for simplicity [32], because our goal is to develop a multiscale approximation of DNS:

o) =g(@)C: eu) @)

In qu g(a) (1 —a)? is the degradation function. If the solid is fully damaged, g(er) =0 and a tractio e condition
is imposed on I'*". If the solid is intact, g(a) = 1 and Eq. reduces to Eq We note that more complcxQggradation
functions also exist and can be used in PLMM without loss of generality [65]. We also note t amgyotropic
degradation model were used, PLMM would apply to the linearized form of the governing equati

3. Single-scale modeling

The porous solid Q; is often represented by a digitized image (e.g., X-ray
Fig[Th. The pixels of this image can be used to construct a Cartesian fine grid,

e pore scale, as shown by
s[I]and[7)are discretized

S pe pixels, and is often refined

along the coordinate directions. We choose the finite element method as o [%le solver, but note that others
g W) nodeling as the act of using

the fine-scale solver over Q; without any approximation or domai osition. This yields the DNS reference
solution against which PLMM is later compared.

=

4. Multiscale modeling

We propose a pore-level multiscale methody(PLMM) proximate, and thereby accelerate, DNS. In PLMM, the
following steps are executed: (1) Q; is decomp into subd®mains, or coarse grids, in a way that is non-conforming
toI'F; (2) Bas1s and correctlon functlons are ch coarse grid by numerically solving local fine-scale problems;

e olving a global coarse-scale problem; And (4) a global fine-

scale solutlon to Eqsl and[7]on Q; i ob aiffed B assembling the coupled basis and correction functions. These
steps are detailed in Sections [4.1{4 g W d an initial approximation to DNS. In Section we present an

iterative approach to correct the 7
incorporating cracks into the by

approximation to any desired level. We explore different strategies for

the algorithm proposed by Mehmani et al.[16] slightly. The approach involves

applying watershg n, a well-known morphological operation in image analysis [67], to Q. This partitions
Q, into N¢ o subdomains, or grain grids, Q8 such that Q; =U;Q8 as shown in Fig. Because of the
unique propert [WCrshed segmentation, the subdomains correspond to local enlargements (or grains) in g, and

interfaces betwee ubdomains correspond to local constrictions (or contacts) in Q. We refer to a shared interface
between two nt grain grids as a contact interface, I'“/. Notice from Fig—c that T’ is allowed to intersect '/, In
other words, the decomposition need not conform to the cracks, which is very different from, and much more flexible
than, the conforming decomposition proposed in [16]. The interested reader is referred to [5,/59,/67] for further details
on the watershed segmentation and domain decomposition.

We define another set of coarse grids, Q%, called contact grids that overlap and cover a thin neighborhood around
each contact interface, I'. As seen from Figs and, contact grids (cyan) do not cover all of Q; (i.e., Q  # U Q%).
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We create Q% by morphologically “dilating”, an operation in image analysis [68], the image pixels overlaying I'%/.
The thickness of Q% can be adjusted by the user, although ~16 pixels has been shown to be sufficient in practice (8
per contact side) [59]. More details on how Q% are constructed can be found in [59]. We refer to Q& and Q% as
coarse grids and note that they are aggregates of many fine grids, which, in this work, conform at Q8 N Q%. Such
conformity is not required by PLMM and different fine grids (e.g., unstructured) may, in principle, be used on Q8 and
Q% as long as appropriate mappings between the two can be defined.

4.2. Mathematical notation

In the following sections, we adopt a notation similar to to formulate PLMM. Let the indices g;, c¢j, {x
enumerate entities associated with Q8/, I'%/, Q% respectively. The boundary Q¥ is partitioned as Q8 = I'Si U Fﬁj_,
where I's! = 9Q8% N T is the void-solid interface (black in Fig) and Ffj =0Q8 N T is a contact interface (red in
Fig[lk). Similarly, 8Q% consists of I =3Q% NT™ (black in Fig[1f) and I3 = 9Q% N Q¢ Vg; (red in Fig|[1f), where
the latter corresponds to the portion of dQ% that intersects the interior of grain grids (see also Fig. If 6Q8 or HQ4
intersect the bounding box of Q; (=9Q\I'", i.e., four sides of Fig), then the global BCs from Eq are inherited.

Because two grain grids may share more than one contact interface (see Fig[2), and one contact grid may cover
multiple interfaces (see Figs, we define the following mappings between g;, c; and : (1) C¥ = {c;| Ffj. # 0}
is the index set of all I'“/ that are subsets of 0Q%; (2) G% = {g;| l"f;. # 0} is the index set of all grain grids sharing
I'¢i. Since I'“/ is shared by exactly two grain grids, G/ has only two members (= {g;,,g;}); (3) Z¢ ={{ [T € Q%)
is the index set of all contact grids covering I'“/. Notice Z% has only one member, which we denote by {“; And (4)
C% ={c;|I% C Qf} is the index set of all contact interfaces covered by Q%. We use the symbol # is to denote the
number of members in a set. For example, #C% = 9 in Fig, #C% =4 in Fig, #G¢ =2, and #Z = 1. Finally, we
use N¢, N¢, N¢ to denote the total number of grain grids, contact interfaces, and contact grids in Q.

The terms fine-scale and coarse-scale refer to entities associated with the fine grid (Section[3) and coarse grid (Q*
or Q%), respectively. Fine-scale variables are specified by superscript f, while coarse-scale variable by superscript o.
An entity is local if it is defined on only one coarse grid, and global if it is defined over the whole domain Q. To
simplify the exposition, we use a 2D notation to present all PLMM equations. For example, the symbol m is used to
denote the tangent vector on a boundary or interface (Fig) . In 2D, m is a single vector, but in 3D, it consists of two
orthonormal vectors m; and m,. We use the former compact notation to express tangential BCs.

Figure 2: Schematic of a contact interface I'/ (green) between two grain grids Q%1 and Q82. Notice '/ is one of two
shared contacts. l"f;.‘ corresponds to the — side of I'“/ and l"ff to its + side. The global problem imposes continuity of
traction and displacement on I'%/. (c) The contact grid Q% (cyan) covers I'/, among other contacts (red in b).



4.3. Local problems
The goal of PLMM is to solve Eqs[I|and[7]restricted to each grain grid Q%

uly il = hye(x), Vej € CS

v.(g(a)c: vxug.) =f st ®)

ugl, -m |]"1:'l/ = hg,,cjz(x) s VC]' € Csi

where hg,..1(x) and hg,.>(x) are normal and tangential displacements on I“Cj., respectively, and x is the position vector
on Ff/ Given the BCs on I'' are stress-free (i.e., 0'§,- (u) - n =0), we omit them from all subsequent local problems
for brevity. Note that in 3D, the tangential displacement BC in Eq[8]consists of two separate equations corresponding
to two orthonormal tangents on I’ fj If Eq is solved, the global fine-scale solution can be assembled from the local
solutions uéf; on each grain grid Q%. However, because hg,;1(x) and hg,2(x) are unknown, Eq cannot be solved. To
make progress, we introduce the following localization assumption:

hg,c,a(x) = ”Z,-c,-d’ d=1,..,D ©)

in which we have replaced the functions /.1 (x) and g, 2(x) with unknown scalars u;c/_l and

referred to as coarse-scale unknowns. The localization assumption is justified by the fact fag

local constriction of Q; (i.e., l"fj has a small measure), which is a unique feature of the g

Section[4.1] It is, therefore, reasonable to neglect the dependence of the BCs in Eq/[8]orffth
Substituting Eq[9]into Eq[8] we obtain:

V-(s@C: Vuy)=f st (10)

The main advantage of Eq[I0]over Eq[8]is that the solution of the fg @ be written as the superposition of a set
of numerically-constructed basis functions, Py’ and one corre

=9, (1n

for arbitrary Ifl'g)l_(‘/_ 7 Irl Sections We ent thre® approaches, referred to as Strategies A, N, and U, for
e

3l S
computing <p£ eud and gog_ . They differ in t th ution around cracks is captured. Sectionoutlines how “Z,-c,- d
‘ bei

is computed. Given uéf; from Eq|[11} PLMM pr; global approximate fine-scale solution via:

ullo, = » ul (12)
Vgi
where each ui; is extended Qgze utside of Q8.

4.3.1. Strategy A: inclu ac all basis functions

The simplest #fprog omputing 902,‘_@ , and ;5; is to solve the following basis problem:
/ i = 8i
' Ppq Ml = 0kj61a, Yej€C

’ (g(a/)c : VJSDQde) =0 s.t. § k J . (13)

Poicia "M |r§3_ = Okjo2a, VYcj€CH

and the following correction problem:
i ‘px'"|l"ff".—0, Yc; € CE

V-(9@)C: VE)=f  si. i g "

cpgl'mlrszo, VCjECgi



on Q8. In Eq Okj» 014, and 0,4 are the Kronecker delta. If d=1, goé’:_ oud corresponds to setting the normal displace-
ment on I}/ to one, and the tangential displacement on I'}; and the normal/tangential displacements on I“fj,, Vj#tkeCs
to zero. Similarly, if d=2, only the tangential displacement on I}, is set to one, while all other displacement BCs on
all contacts are set to zero (Fig[Ild). The basis problem accounts for inhomogeneities due to the BCs of Eq[10] and the
correction problem for the inhomogeneity caused by the body force f. If parts of Q8 intersect the external boundary
of Q (=9Q,\I'"), then Eqs[13]and[14]inherit the global BCs in Eq[5] However, the right-hand side (RHS) of these
BCs is set to zero for Eq[13] (homogeneous) but not Eq[14] (inhomogeneous). Given <pf d and Z,Ef . from Eqs/[I3]and
it is easy to verify that Eq[11]satisfies Eq[I0} We call this approach for computing <pic,k g and Zﬁf’, Strategy A, a key
feature of which is that the degradation function, g(@), is included in the basis problems of all grain grids.

Remark 1. Eq[13]entails solving #C8 x D linear systems on Q, one per contact interface per normal/tangential BC,
whereas Eq[I14]entails solving only one system. If cracks evolve, so does g(«), and the basis functions must be updated
at every loading step, which can become computationally expensive. To reap maximum speedup, basiggunctions must
be updated sparingly, which makes Strategy A best suited for fixed-crack, not evolving-crack, prob . Note the
basis and correction problems are fully decoupled across all grain grids and can be solved in parallel.

4.3.2. Strategy N: exclude cracks from all basis functions

Since updating basis functions in evolving-crack problems is expensive, a naive strateg ate them at
all. In other words, we may altogether neglect the presence of cracks in formulating theba @ Pm on Q5
Pocea Mlrsi = 0kj01d s ’
vo(C:viel )=0 si gad (15)
‘ Poca " MIrsi = 0kj0

We call this Strategy N. Notice the degradation function, g(), does notaj p%n L
intact grain grid. Hence, Eq[I5|need only be solved once. To acco, cracks, a modified correction problem is
needed because if we substitute ¢, from Eqmto Eq we
intact. In other words, the following source residual:

R,u}) = ) C °u, ) (16)

will be non-zero. To drive R; to zero, we pro e scheme in which the modified correction problem:

¢, nl =0, Ve;eCé
V- (s@C: V'6p)") = IS ! (17
i @, mlp =0, Vc;eCs

is solved to obtain the incrementalg@®rre

ction, 07,5;" on Q¢ at iteration 1. Notice the RHS of Eq[17] ends
11

on the reconstructed solution uf the¥previous iteration. To compute it, we use a modified form of Eq
D
fon _ =fn on f
Ugr =Pg T Z ZugiC'kd¢gide (18a)
YereCtid=1

||5Jts(u£}")||L2 . We denote the total number of source iterations performed by n,. To start iterating, we set 6’{0’f 0
to zero, set @ he solution of Eq[14] and compute u‘glfo from Eq[IT]with Z,Bf 0 substituting the correction function.
The only remaining unknown in Eq{18/is «;" ,, whose computation we detail in Section

~f, m |, ~fa-1
o.' =759, + @, (18b)
where y is a reN@gatl arameter. We refer to iterations in 7 as source iterations, which we declare “converged” if
10

Remark 2. In Section@ we show that setting y = 1 can cause source iterations to diverge if I'" intersects any of the
contact interfaces of Q$. The remedy is to use a smaller y € (0, 1]. However, this slows convergence and the optimal
value of y is not known a priori. Therefore, Strategy N is not attractive for arbitrary crack patterns.
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4.3.3. Strategy U: adaptively include cracks in some basis functions

An ideal formulation of basis and correction problems is one where basis functions are updated infrequently and
y=1 can be set in Eq[I8| without source iterations diverging. As stated in Remark 2| Strategy N diverges if y =1 and
r‘or fj #0 for some ¢; € C%. In such cases, we empirically found that including I'" in the basis problem of Q% ensures
convergence (see Section[6). Concretely, we formulate the basis problem on Q8 as follows:
(g(a)C V’ ngd) =0, TFNI¥#0, 3JcjeCs . <P£I,de ‘n |r§if = 0;j01a, VYcj€CH (19
V.(Cc: vl )=0, IFArS =0, Vejecs @l Ml = 01j02. Yej € CH
where the degradation function, g(a), is included if I' F intersects at least one of the interfaces of Q%. The corre-
sponding correction problem then is Eq (similar to Strategy A). IfF ¥ N Ffj =0 for all c;€C¥, then Eqis used to
compute the correction function (similar to Strategy N). Note that if Q8 does not contain any cracks (i.gs Q% NI'F =0),
Eq[17]reduces to Eq[14] and converges in only one source iteration. We call this approach for compiage basis and
correction functions Strategy U. In evolving-crack problems, the basis functions of Q5 are updated on F crosses
one of its interfaces with adjacent grain grids. The rationale for the update is that the localization g y Eq[9]
thus the PLMM solution, degrades in accuracy. Having computed all basis and correction functid
Strategies A, N, and U, we proceed next to compute ug . 4 Dy solving a global problem. W
is also needed as part of internal source iterations in Strategles N and U.

4.4. Global problem

Recall the coarse-scale unknown u"g’/ ed corresponds to the normal displacem
ment if d =2 (or 3 in 3D) on I’ % respectively. For compactness, define u? e,
we formulate a global problem by imposing momentum balance and kinema, ?

W the tangential displace-
”ch-jD] To compute ug o
aints on all contact 1nterfaces

Let I'% be shared between Q%1 and Qf2 with the two correspondin j " and Ny (Flg) The coarse-scale
displacements associated with each side are ug . and ug, ., respecti lling 2xD unknowns An equal number
of equations on I/ are required to close the system The first equffti a gomentum (or force) balance:

(20)

where tg ¢, and t; ¢, are integrated tractions o

2y

across '/, justified by the diffuse-crack refge ign adopted in Sectionl

To tranform Eqs[20]and [21]into a eb stem in terms of ug ,, we must express £ . and g, . in terms of
u; . Following the approach of [l erive an expression for t5,, defined on Fg’ and drop the superscrlpts
1 and 2 momentarily for convenfhc

in by upscaling the basis functlons on Q¢ v1a

, W

s f
g(@)C: Vip Porcnd (22a)
1 f
= T o Wha ™08 @20)
.
Toea = [tg’”kcfld’ Laciep? m](#czsz (22¢)
B, = [Tgf%' 1Ty, icky D ol Ty 8iciy 1 - lTé’f%D | "'L#cw)x(#cxiD) (229)

Eq[224] yields the fine-scale stress a,bf ¢ associated with (p - Eq[22b]computes the spatial average of 1/1f ¢ along
Fg’ where |[“/| is the measure of I‘C/ Eq concatenates the 1 X D coarse-scale tractions #° e ,Vej, € Cg' into a
(#Cg‘D)xl vector T; ud - Finally, Eq{22d|assembles T, =, V¢, € C* into a matrix B" with size (#Cg'D)x(#Cg' D). In
effect, Eqn upscales the fine-scale basis functions P on Qs into the small matrlx B;..



Analogously, we upscale the correction function on Q¢ via:

~f —
¥, =g@C: Vg, (23a)
~0 1

2= 23b
8icj Ircjl F"" l/jg, ( )
Fo _ [7° ~0 T

T = [Toe, Taer Jucnmma (23¢)

Eq computes the fine-scale stress a//g associated with @ <pg Eqﬂ computes a spatial average of this stress on Fg'
to yield the 1x D traction vector 7 gic; . Finally, Eq[23c]| concatenates these tractions into the (#C% D)x 1 vector T” In
effect, Eq[23|upscales the fine-scale correction function @ gog on Q8 into the small vector T”

Remark 3. Regradless of whether Strategy A, N, or U is used to compute the basis and correctiog@functions, the
degradation function, g(a), must be included in the upscaling of gog g @nd ;5';_ via Eqs[22]and[23]

With Bg and T¢ computed for Q%, we can now express the coarse-scale traction tg. on l"fj. c of the
coarse-scale displacements uy ., Yc;, €C$ via Eq
L)

Ty =By Ug + Ty (242)
0 o o T
Ug = [ug,, ug, .| (24b)

8iCjy* " 8iCh” " #cei Dyx1

T — [to £° ]T
8i 8icjy * "8ihp " l#csiDyx1

(24¢)

Eq superposes the integrated tractions on ng computed from the basis an?)rr on functions on Q#'. Notice Uy,
is a (#C% D)x 1 vector of the coarse-scale dlsplacements ug ; V¢, ilarly, 4 is a (#C8 D)x 1 vector of the
coarse-scale tractions tgic Ycj, € C%. Intuitively, Eqmm an UpSC psentation of the mechanical response of
Q8| which relates the coarse-scale tractions on the grain grid’sgifter the displacements imposed on them. In

the literature, the matrix By, has been referred to as a fifagix R
Given Eq[24a] the momentum balance Eq[20/on @ be Wppressed as follows:
B U’ +T? ) (25)

8ip ~ 8ip 8ip

(Bj;_1 Ul + T;l)

where we have used the notation ’Z,, o, =Ty,

I'“/. Note that tg .. hot only depends on u

r M1, 2}. Specifically, (Té(’)i, )c; is the entry in Té(’)i/ that corresponds to
so®n the coarse-scale displacements on all other contacts of Q8.

Concretely, Eq depends on u¢ %y "Z, ¢, » Yem €C82. The global problem is obtained by assemling
Eqs[25]and 21} written for all '/, i ebraic system:
R(U) = R ([, Janeny) =0 (26)

The residual vector R(-) cons¥gs of2N°D) X 1 entries, which depend on the coarse-scale unknowns u? od arranged

into a (2N°D)x 1 vector N°¢ is the total number of contacts interfaces. Since Eq21]imposes contlnulty of
displacement acrogfPaT @y’ umber of coarse-scale unknowns can be halved from 2N°D to N°D.
‘We now steps in PLMM thusfar (a) Solve local fine scale ba31s and correction problems on all QS

Solve the global¥@blem, Eq[26] t0 obtaln coarse- scale dis lacements u’ od on all FCJ © Reconstruct the fine-scale
) coh QS via Eq for Strategy A, and Eq for Strategles N and U; And (d) assemble the global
fine-scale solu on u/ on Q, via Eq . In Strategies N and U, source iterations between Steps (a) and (c) are required
to compute gag , and before proceeding to Step (d). The above steps for PLMM are detailed in Algorithm[I]and yield
an initial approximation to single-scale DNS, which we denote by Ag, Ny, or Uy depending on the strategy used to
compute basis and correction functions. We next discuss how to iteratively reduce the errors of this approximation.




Algorithm 1: PLMM without boundary iterations (output: Ay, Ny, or Up)

Decompose € into non-overlapping grain grids Q%
Do g; € {1, ..., N8}

Doc; e C%
Dode{l,.. D}
If (Strategy A), Solve Eq|13|to obtain basis functions <p§ > ENd if
If (Strategy N), Solve Eq15|to obtain basis functions <p£ "_ck o> End if
If (Strategy U), Solve Eq{19|to obtain basis functions <p£ e End if
End do
End do

Solve eqo obtain correction function 'gEQ_ (= 'QEQO in source iterations)
Upscale basis and correction functions via Eqs[22}23)
End do
Solve global problem in Eq[26]to obt-ain u;c/d., Vgi.cj,d
Reconstruct the local fine-scale solution uy, via Eq[T1]
Compute initial source residual R? via Eq
While (5 < ny and R? > tol,) — source iterations
Solve eqo obtain incremental correction function 6;’02”
Update correction function ?p'g_" via Eq[I8b|(set y =1 for Strategy A or U)
Solve modified global problem in Eq[26]to obtain u‘;zj 4> V& cjd
Reconstruct local fine-scale solution /" via Eq[184]
Update the source residual R via Eq
End while
Assemble global fine-scale solution /" via Eq

2 V4
4.5. Iterative correction @

Errors in PLMM, measured against the single-scalg due to the localization assumption, Ay, 4(x) ~
ug, 4 in Eq To correct them, Eq must be modig

o €
lows:

o _ 0 s
|rff} = hgep(xX) —ug . Ve eC¥

V- (g(a/)C : VJZQ_) =f s. 27

~f —_ i
P - m |F§; = Ngep(X) — “g,-c,-z , YcjeCs

rom Eq[14] If Eq is solved instead of Eq[14] all in PLMM
8 2

| [11] would satisfy Eq|8|exactly. However, Eq cannot be solved

where the BCs include information that i
errors would be removed and ugl. ob
because hy,c;1(x) and hg 2(x) are
an iterative scheme, similar to4

differentiate them from the

as 16} 145 [59]]. We refer to such corrective iterations as boundary iterations, to
urs@itera

Remark 4. In Strategy:

Strategies N and U g4 ceglent would merely provide a more accurate initial guess to source iterations (Eq[18),
which ulti e exact correction function. In other words, Eq[I7]would remain unaltered, implying

equally to the fied form of Eq[27)presented below (i.e., Eq[29).

Let w be undary iteration index. Starting from w — 1, at which the global fine-scale solution u/“~! is
known, we proceed to compute /. The initial guess u/* is taken to be the initial appximation produced by PLMM
(Algorithm . To estimate the BCs of Eq we first solve a contact problem on each contact grid Q% (Fig):

fw
u .
s f.w e
V-(g(a)C:Vu‘Zk )=f s.t. ufk"”
Sk

n |rzk = erk [uf"”‘l] -n
m |;§k _ Rrﬁ? (w1 m (28)
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where the operator R [-] restricts u’“~! onto l"gk. The BCs on Ffj are s@ress—free (black in Fig. ), while the Dirichlet
BCs on I“gk (red in Flé ) are inherited from the fine-scale solution u/“~! at the previous iteration. If Q% intersects
the external boundary of €, that is Q% N (9Q,\I'") #0, then the global BCs from Eq/5]are inherited.
After uéw , Y{i are computed, the correction problem Eq is replaced by its approximated form:
Bl = (Rey [uf | =Ry ) o

~fw — Sfw fiw
(Pgi -m |l-§j_ = (Rl"f} ué,(j —<R1—vlej u{Fj >) -m

V. (g(a/) C: V“Zﬁg’,m) =f s.L. (29)

where Ry« [+] restricts u?;‘;’ onto I“fr Recall £¢ is the index of the contact grid covering I“‘Ej (c T'%). The operator
() spatialfy averages its argument over Ffj Notice Rpgi [uf‘j”] -n and <er"‘, [u?‘;’]) - n approximate /g, 1(x) and ”Z,cjl
in Eq[27] respectively. The same holds for the tangential BCs in Eq[29, Once @, is obtained from Eq[29] we can
compute u/* using equations similar to Eqs For brevity, we only list those that are updated b

0w 1 ~f.w

tg,-c,- = ﬁ ” g ds (303)
¢}

To,w _ ow Fow
Tov =[t9e

T 30b
8iCjy > " 8iCjy” "'](#Cs'iD)xl ( )
Ty B U T & o

R(UY) =R ([ug;ijd]<erD>x1) =0 (30d)

ulq, = Z(aﬁ;w ) Z”ZZZM’Q) (30e)

Vgi YereCsi Vd

f

Notice BZ; and P’ associated with the basis functions, remai Cd Py w. The global fine-scale solution ule
obtained from Eq converges to the single-scale solution asﬁ P28 and [29] are fully decoupled across all
contact grids and grain grids and can be easily parallelj hoo summarizes the overall workflow of PLMM,
in which n, is the total number of boundary iteratd§ JPrmed®We denote the global fine-scale solution /-

Compute initial approximatio:
Do w e {l,...,n,}
Do 4 € {1, ..., N¢}

Solve eq in conWt-grid solution ”ka (inherit BCs from u/“!)
End do
Do g € (1,4

obWin correction function Z,Zg;“’ (inhert BCs from | J, uf;”)
ource iterations for Strategies N and U; see Algorithm

al problem in Eq to obtain u?® Vg, c;,d

gicjd

fict and assemble global fine-scale solution u#/“ via Eq[30¢|

\

5. Validation set

We compare the proposed PLMM against single-scale DNS for different porous geometries shown in Fig[3] They
include a 2D disk pack (P2D) [16], a 2D sandstone (S2D) [69], and a 3D sandstone (S3D) [69]]. All have Lamé
parameters 4 = 8.3 GPa and u = 44.3 GPa corresponding to a-quartz [16}70]. In both P2D and S2D, the bottom

11



boundary of the domain (y = 0) is fixed and a vertical-upward displacement of up = 0.004 mm is applied to the top
boundary (y=L,). In S3D, the domain is clamped on the right-back surface (x=0) and a displacement of up =0.008
mm along the positive x-direction is imposed on the left-front surface (x=L,). All other boundaries are stress-free.

The fine grids in Fig[3|coincide with the image pixels, which are 716 x 576 for P2D, 541 x 546 for S2D, and 134
X 136 x 142 for S3D. The phase-field length-scale parameter is set to [ =2/ =0.02 mm, where # is the fine-grid size,
and the fracture toughness to G, = 2.7 x 1073 kN/mm. Fig also depicts the grain grids and contact grids of each
domain obtained from the decomposition algorithm of Section[4.1] The number of grain grids, N¢, and contact grids,
N¢, are 76 and 127 for P2D, 121 and 145 for S2D and 43 and 52 for S3D, respectively. Contact grids are 16 pixels
wide in P2D and S2D, and 12 pixels wide in S3D.

Figs[4| and [5] depict the crack patterns considered in each domain. For P2D and S2D, they include: Pattern 1,
in which all cracks are confined to the interior of the grain grids, i.e., none crosses a contact interface; Pattern 2, in
which all cracks cross contact interfaces, i.e., none is confined solely to the interior of a grain grid; and Pattern 3,
which is a superposition of cracks in patterns 1 and 2. We use P2D-c; and S2D-c; to refer to patterygt, P2D-c, and
S2D-c; to refer to pattern 2, and P2D-c3 and S2D-c3 to refer to pattern 3. For S3D, we only consider onf€ack pattern
which consists of 20 elliptical cracks with different sizes and orientations placed randomly in the domai
intersect contact interfaces. This pattern is denoted by S3D-c,( and is most comparable to P2D-c 4

Crack pattern 2 in Fig[4]consists of two subgroups: (1) cracks parallel to contact interfaces, clier adjacent

PLMM as the displacement along each interface is discontinous, invalidating the locgli jumption in Eq[9]
Cracks in subgroup 1 may still preserve continuity. Hence, Fig[4]considers more cra

Figure 3: Domains used to validate PLMM. From top to bottom: 2D disk pack (P2D), 2D sandstone (S2D), and 3D
sandstone (S3D). From left to right: domain image, grain grids (randomly colored), and contact grids (cyan).

12



Crack pattern 1 Crack pattern 2 Crack pattern 3

interior of grain grids, i.e., none crosses a contact interface. Pattern

solely confined to the interior of a grain grid. Pattern 3: superpos s fm patterns 1 and 2.

Figure 5: Crack g
and orienta
the cracks. Th

pnswcred for the S3D domain in Fig (Left) Twenty elliptical cracks with different sizes
domly inside the domain. (Right) A slice plot of the phase-field variable corresponding to
ale parameter is set to /=0.02 mm.
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6. Results

We solve Eqs/I]and([7)on the pore-scale domains in Fig[3]via PLMM and compare the solutions against single-scale
DNS. To quantify the PLMM errors, we define the following error metrics similar to [16,59]:

E;:Mxmo, E);:( : f(Ej{,)de)m G1)
supgq llysll Q4] Ja,

In Eq[31} y is a placeholder for either displacement u, volumetric strain V-u, or maximum shear stress oy. The
subscripts M and S refer to variables associated with PLMM and DNS, respectively. In Eq E),g measures the
relative pointwise error between PLMM and DNS, and E)2‘ the relative L,-error, both expressed as percentages. In the
following sections, PLMM solutions are computed using Strategies A, N, and U (Section [4.3) for obtaining the basis
and correction functions, and different numbers of source and boundary iterations are considered (Secjgon [4).

Before discussing the results, we note the PLMM errors (E),g and E)Z( ) herein are the result of three i

E=Eb+E5+Ef

Ep, and E, — 0, respectively. The remaining error, Ey, is due to fine-scale discretiza
and DNS near contact interfaces. This is caused by our specific implementatio

avoided [16,59]. In[Appendix A| we present a mesh convergence analysis thajg

and can, in principle, be
(h) for displacement.

6.1. Initial multiscale approximation vs. single-scale solution

Figs [6}[7]compare the initial PLMM approximation Uy to single-
and Ay are similar and thus omitted. Since crack pattern 3 is morgcRg
are omitted too. Recall that Uy implies no boundary itergg

sufficiently large to ensure source iteratio
results for Strategies A and N are sigg
correspond to the displacement, u.
that E7) <8%, EZ'" <1%, and < in thost parts of the domain except near cracks and contact interfaces. The
errors near contacts are due fo ocalWation assumption and are most obvious for V-u and o,. We note that the U,
errors correspond to the PL tion depicted in Fig[6] Focusing next on U, and Ug, we see that after 4 and 8
boundary iterations, re rrors decrease throughout the domain. The relative L,-error for displacement, E7,
is 3.28% for Uy, 2 nd 2.00% for Ug. The apparent stagnation in errors after Uy is due to the fine-grid
i which is O(h) and can be reduced only by refining the fine grid (see[Appendix A).
ations are made for S2D-c3 and S3D-c, based on pointwise errors shown in Figs[10/and
respectively! ng on S2D-c3, the Uy errors are E;‘, < 10%, EZ'” < 0.8%, and Eg’ < 10% in most parts of
ear cracks and contact interfaces. However, after 4 and 8 boundary iterations, errors decrease
throughout thi ain and EJ drops from 8.08% for Uy, to 4.87% for Uy, to 3.60% for Ug. The same trend is seen
for S3D-coy, where EF decreases from 2.80% for Uy, to 1.66% for Uy, to 1.57% for Us.
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Figure 7: Comparison between the multiscale approximation Uy and single-scale DNS for S2D-c;. From left to right,
the displacement magnitudes ||, volumetric strains |V - |, and maximum shear stresses o, are shown.
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-
Figure 8: Comparison between the multiscale approximation Uy and gale DNSWr S3D-cyg. From left to right,
the displacement magnitudes ||, volumetric strains |V - u|, and mgxil SHfar stresses o; are shown.

6.3. Multiscale errors vs. source iterations

In Section[6.2] we discussed PLMM errors for whe sufficiently large for source iterations to converge at each
boundary iteration. This is computationally wgsteful, as ler n; can still ensure convergence to the DNS solution.
Here, we analyze Strategies A, N, and U for di t combinftions of n, and n, to understand their convergence rates.
We focus only on S2D and P2D with crack g and 2 due to the large number of simulations required.

q an®n;, for Strategies A, N, and U applied to P2D-c; and P2D-
cy. The following key observations ¢ C Wadcl®]) Regardless of the crack pattern, Strategy A does not require
any source iterations to converge, Om Section (2) When all cracks are confined to the interior
of grain grids (pattern 1), Strat s to Strategy N, consistent with Eqs[19] and (3) When all cracks
intersect contact interfaces, StiQkgy duces to Strategy A, consistent with Eqs[19]and[I3} (4) In Strategies N and

’ nverge for PLMM to converge to the DNS solution; And (5) convergence to the

=

DNS solution is slower g ate®Mes when cracks intersect contact interfaces (pattern 2), because the localization
assumption (Eq[9) beco ded. Similar observations can be made for S2D-c; and S2D-c¢, from the contour
plots of E% show e note that Strategy A converges the fastest, in ~8 boundary iterations, regardless of
the crack p! comparable to the results reported in [16] for intact domains.

of y=0.3 was uscqin Eq[18Db| In fact, larger values of y caused Strategy N to diverge, as shown by Fig[14|for y=0.6

ghat relaxing source iterations was deemed necessary only in Strategy N and in the presence of
cracks intersecting contact interfaces (patterns 2 and 3). In all other cases, y = 1 was found sufficient and used. This
renders Strategies A and U, which do not require relaxation, superior to Strategy N, because not only does y <1 slow
down convergence, but the exact value of y cannot be determined a priori (at least based on this work).
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Uy Uy Us

Figure 9: Pointwise errors (%) in displacement (E}), v tric strain (EZ'“), and maximum shear stress (E;,”) for the
PLMM solutions Uy, Uy, and Ug in the domai@P2D-c3. o plots correspond to Fig@

7. Discussion

7.1. Convergence rate for different s,

Figs show that Strateg

to converge, and may even diygife 1
cracks intersect contact integfac®gthe [®alization assumption (Eq[9) becomes degraded and boundary iterations are
required to correct it. In add e cracks are excluded from the basis functions of Strategy N, source iterations
discontinuities within grain grids. Hence, the correction problem (Eq|I7) attempts
n overshoot in the correction increment 5;5?" Relaxation tempers this increment,
prgence. Strategies A and U, by contrast, include contact-intersecting cracks in their basis

has less to correct, obviating relaxation. If cracks are fully confined to the interior of grain grids
(pattern 1), thg logization assumption is not degraded, and Strategies N and U require only source iterations to yield
an accurate ap imate solution; because neither strategy includes interior-cracks in their basis problems. Strategy
A also includes interior cracks in its bases, and thus, does not even require source iterations.

correction prob

7.2. Fixed-crack vs. evolving-crack problems
Given Strategy A converges the fastest, then why bother with Strategies N and U? If cracks are fixed, the answer
is: we should not. Strategy A is the most efficient computationally. But in problems where cracks evolve over many
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Up Uy Us

Figure 10: Pointwise errors (%) in E7), volumetric strain (EZ'“), and maximum shear stress (Eg') for
the PLMM solutions Uy, Uy, an in the ain S2D-c3. The Uj plots correspond to Fig

loading steps (or staggered 1 in phase-field models), Strategy A becomes prohibitively slow. This is because
grain grids, basis functions must be recomputed, which in turn entails solving
in grids. Notice the Kronecker delta in the BCs of Eq[13] Put differently, frequent
yions in an evolving-crack problem is a bad idea. Strategy N would have been the ideal
solution, bec updates are necessary. However, as we observed in Section|[6.3] it performed poorly. This
leaves Strategy e preferred method for solving evolving-crack problems, because basis functions are updated

only when cracks Moss contact interfaces, which is a far less frequent occurance.

7.3. Computational cost

Here, we analyze the algorithmic complexity of PLMM compared to DNS, deferring a complete numerical demon-
stration to future work. Assume Qg consists of Ny fine grids (FEM nodes here), partitioned into N¢ grain grids, N°
contact interfaces, and N¢ contact grids via the decomposition algorithm in Section For simplicity, assume also
that the decomposition is balanced, meaning all grain grids, and separately all contact grids, consist of roughly the
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Uy Uy Us

Figure 11: Pointwise errors (%) 4 nt (E7), volumetric strain (EZ"‘), and maximum shear stress (E,‘,”) for
the PLMM solutions Uy, Uy, e domain S3D-cyy. The Uy plots correspond to Fig

same number of fine gr s denote the average number of contacts per grain grid, and f* be the fraction of
Q, covered by congmRg seen from Fig £¢ is generally small (= 0.28 for P2D and S2D). Assume we solve
all linear sy@tems @ same solver, whose wall-clock time .7 scales as O(#®), where n is the number of degrees
of freedom iNQRe ogand S € (1, 3) is the computational complexity of the solver [71]. The wall-clock times of

DNS (75) and ﬁMHb ), where n,, is the number of boundary iterations, can be estimated as:
s = O(N' DY (33a)
yMg = %asis + L760# + jglob + ng (2‘orrfF + fyglob) (33b)
yMnb = '7.M0 + 1y (Z'ont + <7(70}7 + zlob + N (fywrrfF + jg’lob)) (330)
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where

Thasis = ON' DINE Y X (NS#C8 D/ Pyayi) (33d)
Teorr = ON' DIN#Y x (N¥ [ Peoyr) (33e)
Teonr = ON' D fE NV X (N[ Peonr) (33f)
Ttoh = O(N°DY’ (339

The wall-clock times Fhasis, Teorrs Jeont a0d Ty correspond to solving the basis problem (Eq or[19), correc-
tion problem (Eq[I4][17] or[29), contact problem (Eq[28), and global problem (Eq[26|or[30d) in PLMM, respectively.
Phasiss Peorr and P, denote the number of processors used to solve the basis, correction, and contact problems (=1 if
serial computing). Because these local problems are decoupled, the maximum number of processors that can be used
in each case iS Ppgis = N8#Csi D, Poorr=N8, and Popp=N¢. In ch, £ is the fraction of grain gigls that contain

cracks not captured by the basis functions; thus requiring source corrections. In DNS, the total numb unknonws
is N/ D, whereas in PLMM, it is (N/ + N¢)D. The extra N°D unknowns are due to coarse-scale displac s defined
at the contact interfaces, which are continuous due to Eq (i.e., factor of 2 not required). The i \ nowns

is negligible because N° <N/ (e.g., N°/N/ =1073 in S2D).

If Strategy A is used to compute basis/correction functions, n; = 0 because no source j
£ =0 because cracks are included in all basis functions. Since Tiop and Ty, are negligi
eycarn we can apprOXimate gMo ~ L7[)(151’5 + '?mrr and fyMn[7 ~ %asis +(”b+ 1 )'ﬁcorr' The €

eeded, and
ared t0 T}, and

lines in Fig[13|of

Strategy A Strategy N Strategy U

Crack pattern 1

Crack pattern 2

Figure 12: Relative Lp-errors (%) in displacement (E%) plotted for different combinations of source () and boundary
(np) iterations in the P2D-c;| and P2D-c, domains using Strategies A, N, and U.
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Strategy A Strategy N Strategy U

Crack pattern 1

Crack pattern 2

plotted for different combinations of source (n;)
and boundary (n,) iterations in the S2D-c; and S2D@g ns usi®e Strategies A, N, and U. Blue contours corre-
spond to measured wall-clock times in seconds. Opti ng, Np)-pairings are marked by green triangles. Diagonal

and vertical green lines correspond to n; =n,, ectively; the approximate loci of optimal pairings.

measured wall-clock times for S2D-c; angfS2 cehfirm these estimates. If Strategy N or U is used, n; # 0 and
fF #0 and we can approximate Jy, % 0 and Ty, ~ (1 + np)(1+n; FN T orr, Where we omitted Tqis
because it is a one-time cost that be e le as ng and n;, grow. The difference between Strategies N and U is
that both n; and f* are larger for, ith the possibility n, = oo if source iterations diverge. The blue contours
in Fig[I3|of measured wall-cl i ce again confirm these estimates.

Can n; and n;, be chose in PLMM to satisfy a desired error tolerance at minimal computational cost?

The answer is yes, and

how. Focusing on Strategy N and crack pattern 1, as an example, assume our
tolerance for error is E

he corresponding contour line in Fig colored red and annotated green, is the
satisfy this tolerance. If we now consider the superposed contour lines of wall-clock
(@ blue, we can determine the optimal pairing: the point at which the blue and red contours
become tangem . By a green triangle in Fig[13] Similar optimal pairings can be found for different tolerances
(e.g., second trial@le in Flg. [13|for E = 1%). By connecting these optimal pairings we find that they lie roughly on
the line n; = chis a key takeaway In Strategy A, optimal pairings lie on the line n; =0, shown by the vertical
green lines in Fig In Strategy U, optimal pairings lie on n; =n,, for crack pattern 1 (similar to Strategy N), but on
=0 for pattern 2 (similar to Strategy A), for reasons discussed in Section[6.3]
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Figure 14: Relative L,-errors (%) in displacement (E% for@gfferent combinations of source (r;) and boundary
(nyp) iterations in the P2D-c, and S2D-c, domains us y N Wth relaxation parameters y = 0.3, 0.6 and 0.9.
8. Conclusion
We presented a pore-level multiscale ) to model elastic deformation of fractured porous materials
with arbitrary microstructure and crack pal y feature of the proposed PLMM is that the domain decompo-

sition need not conform to crack posg previous formulation that had been proposed by the authors [16]].
The added flexbility leads to mo lutions, better error control, and the absence of a need to dynamically
update the decomposition whe, volve. We validated PLMM against single-scale direct numerical simulations
(DNS) and showed it produggs ccurde initial approximation (e.g., E% <10%) on complex 2D and 3D geometries.
atcq to reduce the errors of this approximate solution to any desired level.

Iving-crack problems in the future, three strategies for computing basis functions
within PLMM weg ) Strategy A, where all cracks are included in the basis functions; (2) Strategy N,

is preferred because it requires infrequent updates of the basis functions (unlike Strategy A), which
is computatiogallylore efficient. Strategy N either diverges, if not relaxed, or converges slowly. It is therefore not
recommended-¥®ture work will focus on applying PLMM to crack nucleation and growth problems. This work also
opens the possiblity to adapt PLMM as the linear solver for nonlinear problems involving finite strains or plasticity.

evolve, Strategy
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Appendix A. Multiscale error versus fine-grid refinement

Consider a rectangular domain Q = [0,0.96] x [0, 0.98] with different crack patterns, as shown in Fig The
domain is fixed at the bottom boundary and a vertical-upward displacement of up = 0.001 mm is applied to the top
boundary. All material properties are the same as those in Section[6] For each domain, Eqs/1|and[7]are solved using
Strategy U of PLMM and the displacement error, E%, is calculated against the single-scale DNS solutlon We set
the number of boundary, n,, and source, ny, iterations to be sufficiently large so that the PLMM so
improves in accuracy. This ensures E, = E; =0 in Eq[32] We repeat the above process for different finggids, refined
according to h = hy/N,.r, where hy is the initial fine-grid size and N, is the refinement factor. We ase-field
length scale parameter to [ = 2h. Fig shows that the plot of EY versus N,.s follows a firsj onwergence
behavior, regardless of the crack pattern. Together with Eq this implies E ¢~ O(h).

Crack pattern 1 Crack pattern 2 Crack pattern 3

Figure A.1: Crack patterns considerd in the fine-grid cSgergence analysis. Pattern 1: all cracks are confined to the
interior of grain grids. Pattern 2: all cracks i ect at lea%Qgne contact interface. Pattern 3: a combination of crack
patterns 1 and 2. Pattern 4: a complex crack patt®g with curved and branching cracks.
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