
Journal Pre-proof

A Multiscale Preconditioner for Microscale Deformation of Fractured Porous Media

Yashar Mehmani and Kangan Li

PII: S0021-9991(23)00156-0

DOI: https://doi.org/10.1016/j.jcp.2023.112061

Reference: YJCPH 112061

To appear in: Journal of Computational Physics

Received date: 27 October 2022

Revised date: 13 February 2023

Accepted date: 6 March 2023

Please cite this article as: Y. Mehmani and K. Li, A Multiscale Preconditioner for Microscale Deformation of Fractured Porous Media,
Journal of Computational Physics, 112061, doi: https://doi.org/10.1016/j.jcp.2023.112061.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and
formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and
review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal
pertain.

© 2023 Published by Elsevier.

https://doi.org/10.1016/j.jcp.2023.112061
https://doi.org/10.1016/j.jcp.2023.112061

Highlights

• Multiscale preconditioner for deformation of fractured porous media developed.
• The preconditioner accelerates direct numerical simulations at the pore scale.
• Application of the preconditioner in existing codes in fully non-intrusive.
• Strategy for updating the preconditioner in evolving-crack problems is proposed.
• Errors and convergence rates in various microstructures and crack patterns tested.

A Multiscale Preconditioner for Microscale Deformation of

Fractured Porous Media

Yashar Mehmani1†, Kangan Li1

1 The Pennsylvania State University, Department of Energy and Mineral Engineering, USA
† Corresponding author: yzm5192@psu.edu, 110 Hosler Building, University Park, PA, 16802

Abstract. The direct numerical simulation (DNS) of elastic deformation on digitized images of porous
materials at the micron (or pore) scale requires the solution of large systems of linear(ized) equations.
Krylov solvers are instrumental but suffer from slow convergence without a preconditioner. We present a
multiscale preconditioner that significantly accelerates DNS, is scalable on parallel machines, and can be
non-intrusively applied in existing codes. The preconditioner is an algebraic reinterpretation of a recent
pore-level multiscale method (PLMM) proposed by the authors. It combines a global preconditioner with
a local smoother to simultaneously attenuate low- and high-frequency errors, respectively. Like PLMM, a
single application of the global preconditioner yields an approximate solution that is sufficiently accurate
in a wide range of applications (e.g., geologic CO2/H2 storage). The combination with a smoother enables
improving the approximation even further. While all cracks here are assumed to be static, we propose an
adaptive strategy to update the preconditioner efficiently for evolving-crack problems without affecting the
convergence rate of the Krylov solver. We validate the preconditioner against DNS and test its convergence
on various 2D/3D microstructures and crack patterns. The agreement and performance are favorable.

Keywords. Porous media, Pore-scale modeling, Preconditioning, Multiscale method, Fracture mechanics

1. Introduction

A mechanistic understanding of mechanical deformation in fractured porous materials is key
to several subsurface, manufacturing, and medical applications. They include preserving the
integrity of cap rocks in geologic CO2 sequestration and H2 storage,1 inducing hydraulic fractures
in geothermal energy and natural gas extraction,2 designing high-strength lightweight materials for
military armors and airplanes,3,4 understanding the failure of battery electrodes,5,6 and developing
medical treatments for stress fractures in trabecular bones.7,8 Pore-scale models are valuable tools
that provide such understanding by probing the link between the microstructure of a porous sample
and its macroscopic response.9 The main challenge of existing models, however, lies in that they
are either overly approximate or computationally expensive.

Approximate models such as the discrete element method (DEM)10–12 make a series of
assumptions about the geometry (e.g., grains are spherical) and material properties (e.g., grains are
rigid) of a porous sample that render them suitable for granular media (e.g., soil), but not the
amorphous and highly complex microstructures encountered in the above mentioned applications
(e.g., bones). Moreover, methods such as DEM lack the ability to estimate and control their
approximation errors.13,14 Direct numerical simulation (DNS) refers to a collection of higher-
fidelity alternatives, in which computations are performed directly on the microstructure of a
sample captured by a pore-scale image15 (e.g., X-ray µCT). Examples include the extended finite
element method (XFEM),16 shifted fracture method,17 phase-field models,18,19 immersed boundary
finite volume method,20 and peridynamics.21 In DNS, the governing equations are discretized and
solved on a fine grid that often coincides with the image pixels. This results in large linear (or
linearized) systems of equations, whose solution is computationally demanding for practical

domain sizes. Iterative, in particular Krylov, solvers are a prime choice for solving such systems,
but they require efficient preconditioning to converge at an acceptable rate.22

We present a multiscale preconditioner for solving the linear-elastic deformation of porous
domains with arbitrary microstructure and crack pattern. It combines a global preconditioner, MG,
with a local smoother, ML, to simultaneously attenuate low- and high-frequency error modes,
respectively. Our main contribution is to develop MG, as we choose a standard ILU(k) smoother
for ML. The proposed MG is an algebraic reinterpretation of a recent pore-level multiscale method
(PLMM) developed by the authors;23,24 originally for fluid mechanics.25–27 PLMM approximates
DNS efficiently and accurately by executing the following steps in order: decompose the solid into
subdomains via watershed segmentation,28 construct fine-scale local basis and correction functions
on the subdomains, and couple basis/correction functions by solving a global coarse-scale interface
problem. Here, we translate these steps into a global preconditioner, the benefits of which are
twofold: (1) unlike PLMM, the use of MG in existing codes is non-intrusive; and (2) the flexible
choice of smoothers removes a key limitation of PLMM in controlling its approximation errors.
Namely, PLMM requires solving local problems on a second set of subdomains, called contact

grids, to control errors. But in some (low porosity) microstructures, contact grids span large parts
of the domain, rendering local problems to be solved on them costly. Even though we only consider
static cracks herein, our second contribution is an efficient way of updating MG for evolving-crack
problems, in which cracks can nucleate and grow by progressive loading. We define an adaptivity
criterion that updates MG infrequently while preserving rapid convergence of Krylov solvers. All
computations associated with building and updating MG are scalable on parallel machines.

Multiscale preconditioners for elastic deformation of porous media are not new, but existing
ones target the continuum (or Darcy) scale. Most are based on the multiscale finite element method
(MsFE),29–34 but others for scalar-valued elliptic equations (describing fluid flow) also exist and
are based on, e.g., the multiscale finite volume method (MsFV)35–40 and the multiscale mortar finite
element method (MoMsFE),41–44 among others.45 In all, a prolongation matrix is built by
assembling numerically computed fine-scale basis vectors on coarse grids into its columns. A
restriction matrix is built too, often by transposing the prolongation matrix.22,36 Together, these
matrices are used to substantially reduce the size of original fine-grid linear(ized) system. Solving
the reduced system yields a coarse-scale solution that is then interpolated onto the fine grid using
the basis vectors. The result is an initial approximation, or a first-pass solution, whose errors are
reduced further using a local smoother.22,46 These steps bear a close relation to algebraic multigrid
methods (AMG),47 with the key difference being the prolongation matrices are informed by the
physics and parameter space of the problem (see e.g.,48). Our third and final contribution, therefore,
is to establish an explicit link between MG, and hence PLMM, and AMG or MsFE preconditioners
by defining appropriate prolongation and restriction matrices in Appendix B.

The paper outline is as follows: Section 2 describes the problem considered and the DNS
method used to solve it. In Section 3, we detail the multiscale preconditioner through an algebraic
translation of PLMM. Specifically, Section 3.3 briefly reviews PLMM, Section 3.4 shows how
MG is built from PLMM, and Section 3.6 details how MG is updated for evolving-crack problems.
Section 4 shows the 2D/3D microstructures and crack patterns used to validate the preconditioner
against DNS. In Section 5, we present results for the first-pass solution obtained from a single
application of MG, and the convergence rate of preconditioned GMRES. In Section 6, we discuss
implications, current gaps, and perform a complexity analysis. Section 7 concludes the paper.

2. Problem description

Consider a porous domain Ω comprised of a solid phase Ωs and a void space Ωv, as shown in
Fig.1a (i.e., Ω = Ωs ∪ Ωv). Let Ωo

s be the interior of Ωs and ∂Ωs its boundary. The void-solid
interface is Γw = ∂Ωs ∩ ∂Ωv. The open set Ωo

s may include fractures ΓF, as depicted by the black
lines in Fig.1a. In this work, we represent ΓF using a continuous damage variable defined on Ωo

s.
The solid boundary ∂Ωs consists of Γw and an external boundary (or bounding box) of the domain,
Γex (i.e., ∂Ωs = Γw ∪ Γex). Our goal is to solve the linear-elastic momentum equation:

0    f (1a)
:ℂ  (1b)

on Ωo
s, subject to the boundary conditions (BCs):

| D D
u u (2a)

| N N
  n t (2b)

| 0 | 0R R 
    u n m n (2c)

on ∂Ωs. In Eq.2, ΓD, ΓN, and ΓR are subsets of ∂Ωs where Dirichlet, Neumann, and Roller BCs are
imposed, respectively. In Eqs.1-2, σ is the stress tensor, ɛ the strain tensor, ℂ the fourth-order
stiffness tensor, u the displacement vector, and f the body force. Strain depends on displacement
via ɛ = ∇su = ½(∇u + ∇uT), where ∇s is the symmetric gradient operator and superscript T is the
transpose operator. The vector n is the unit normal, and m the unit tangent on any given boundary.
Notice, in 2D, m is a single vector, but in 3D, it consists of two orthonormal vectors m1 and m2.
The data uD and tN are known values of displacement and traction on ΓD and ΓN, respectively. In
this work, we adopt the following notation: bold symbols denote vectors/tensors, non-bold
symbols denote scalars, Latin alphabet is used for vectors, and Greek alphabet for tensors. In
discussing matrix-vector algebra later, upper-case Latin is used for matrices, and lower-case Latin
for vectors. We present all governing equations using 2D notation due to its simplicity (e.g., m
instead of m1 and m2). Extending the equations to 3D is straightforward.

To represent fractures ΓF ⸦ Ωo
s, we use a damage (or phase-field) variable ψ defined on Ωo

s.
If a point x is fully damaged (i.e., cracked), ψ(x) = 1, and if it is intact (i.e., not cracked), ψ(x) = 0.
Given ΓF, which is a lower-dimensional manifold representing sharp cracks, we use the approach
by Borden et al.49 to compute the corresponding ψ as follows:

dist(,)
1 , dist(,) / 2

2 / 2()

0, dist(,) / 2

F
Fc

F

BG
l

l l

l


  

       
  

x
x

x

x

 (3)

where Gc is the fracture toughness, l a length scale that controls the thickness of the diffuse cracks,
dist(x,ΓF) the distance of a point x from ΓF, and B a constant taken here to be 103. The impact of ψ
on the stiffness tensor ℂ is captured via:

0()g ℂ ℂ (4)

where g(ψ) = (1 - ψ)2 is the degradation function, and ℂ0 the stiffness of the intact solid. Here, we
assume ℂ0 is isotropic. Eq.4 describes the isotropic degradation of Ωs, which is valid under tensile
loading only. More sophisticated expressions for g(ψ),50 with anisotropic degradation of ℂ0 along

specific directions (i.e., “stress splits”),18,19 also exist and may be considered. The multiscale
preconditioner presented later is not affected by the particular choice of g(ψ), or the way ℂ0 is
degraded. However, if an anisotropic degradation model of ℂ0 is chosen, Eq.1 becomes
nonlinear,19 and our preconditioner must be applied to the linearized form of Eq.1.

Fig 1. Schematic of the domain decomposition and basis construction. (a) Image of a fractured porous

domain (Ωs: white, Ωv: black, ΓF: black lines). (b) Decomposition into grain grids (randomly colored). (c)
Zoom-in of a grain grid, Ωgi, sharing nine contact interfaces (red) with neighboring grain grids (Γgi

cj). The
index set of these interfaces is Cgi = {c1, c2, …, c9}. Black lines represent the void-solid interface (Γgi

w).
(d) Two basis functions associated with Γgi

c1 are shown. Some cracks in (a) intersect the contact
interfaces, while others are confined to the interior of grain grids.

The benefit of introducing the damage variable ψ to replace ΓF is that u becomes continuous.

Moreover, the propagation of cracks due to incremental loading of Ωs is easily captured by solving
an equation for the evolution of ψ. In phase-field models, this takes the form:

2 12 (1)cl lG H       (5)

where H+ is called the “history variable”18 and is equal to the maximum tensile energy experienced
at each point in the solid since the beginning of loading. Once ψ is updated via Eq.5, Eq.1 can be
solved again to obtain u at the next loading step. The result is a sequential scheme. In this work,
we develop a preconditioner for the linear(ized) system arising from discretizing Eq.1 only:

ˆˆ x̂ b  (6)

where �� is the coefficient matrix, �� is the right-hand side (RHS) vector, and �	 the unknown vector
of displacements. While we do not solve Eq.5 (i.e., cracks assumed to be static), the implications
of having to repeatedly update ψ in evolving-crack problems on the preconditioner is considered.
At the pore scale, Ωs is often represented by a segmented image acquired from an X-ray µCT
scanner (Fig.1a). We refer to the Cartesian mesh over which Eq.1 is discretized, to obtain Eq.6, as

the fine grid, whose size is an integer fraction of the image pixels. The discretization is performed
using FEM with bilinear shape functions as our DNS solver. We note, however, that the multiscale
preconditioner is neither limited to FEM nor Cartesian fine grids, as other DNS solvers (e.g., FVM)
and arbitrarily complex unstructured grids are equally applicable.

3. Multiscale preconditioner

In the following sections, we present a two-stage preconditioner for accelerating the solution
of Eq.6 in linear solvers. The preconditioner is an algebraic reinterpretation of the pore-level
multiscale method (PLMM),23 a rough outline of which was sketched in an appendix therein for
intact solids discretized via FVM. Here, we extend this to fractured solids using FEM as the DNS
solver. Section 3.1 reviews the domain decomposition that is central to the preconditioner. We
then briefly review PLMM in Section 3.3 to provide some intuition for the algebraic formulation
presented later. In Sections 3.4-6, we discuss how the global preconditioner MG is built, how MG
is coupled to the smoother ML, and how MG is updated adaptively in evolving-crack simulations.
In Appendix B, we formulate prolongation and restriction matrices associated with MG.

3.1. Domain decomposition

Fig.1b illustrates the decomposition of Ωs into randomly colored subdomains, or grain grids,
denoted by Ωgi. The decomposition algorithm was originally proposed by Mehmani et al.23 and is
based on the watershed transform, a morphological operation in image analysis,15,28 of the domain
image. The key difference between the decomposition here and that in Mehmani et al.23 is that the
interfaces between grain grids, called contact interfaces and denoted by Γcj, are not made to
conform to ΓF

 here. Concretely, the watershed transform is applied to Ωs while neglecting ΓF,
which allows contact interfaces to intersect the cracks. The result is a partitioning of fine grids into
those that belong to Ωgi versus Γcj. Each grain grid, Ωgi, and interface, Γcj, is therefore an aggregate
of many fine grids. In particular, Γcj has a finite thickness (i.e., roughly 1-2 fine grids). Since fine
grids correspond to an integer fraction of image pixels, and FEM is used as the DNS solver, each
fine grid is a rectangular element in 2D and a hexahedral element in 3D. The fine-scale
displacement unknowns on Γcj belong to nodes located at the corners of the elements comprising
Γcj. Similarly, the unknowns on Ωgi correspond to nodes in the interior of Ωgi. The unknowns
assigned to Γcj and Ωgi are therefore mutually exclusive, implying a non-overlapping partition. We
remark that watershed transform cuts Ωs across local constrictions, which depends on the porous
microstructure at hand. This property is a major reason for PLMM’s accuracy in prior work, 23 and
that of MG herein. While refining the decomposition is difficult without degrading accuracy, multi-
level coarsening and load balancing of subdomains are possible but not pursued.

3.2. Mathematical notation

To simplify the presentation, we adopt a notation similar to Mehmani et al.23 Let indices gi and
cj enumerate entities associated with Ωgi and Γcj, respectively. The boundary ∂Ωgi consists of
Γgi

w = ∂Ωgi ∩ Γw, representing the void-solid interface, and Γgi
cj = ∂Ωgi ∩ Γcj, representing contact

interfaces shared between Ωgi and its neighboring grain grids. For some Ωgi, Γgi
ex = ∂Ωgi ∩ Γex is

non-empty and ∂Ωgi also consists of a portion on Γex. We define Cgi as the index set of all interfaces
Γcj that are subsets of ∂Ωgi, and Gcj as the index set of all grain grids that share Γcj. Since each Γcj
is shared by exactly two grain grids, Gcj has only two members. We use the terms fine-scale and
coarse-scale to refer to entities associated with fine grids and coarse grids (i.e., Ωgi), respectively.

Coarse-scale variables are marked with a superscript o, and fine-scale variables with superscript f.
We use the term local to refer to entities associated with a single coarse grid, and global to refer
to entities defined on the entire domain, Ωs. The problem dimension is denoted by D (= 2 or 3).

3.3. Review of the pore-level multiscale method (PLMM)

In PLMM, Eq.1 is solved by restricting it to each grain grid Ωgi:

 
1

2

| ()
:

| ()

gii i j
c j

i

gii i j
c j

f

g g c
s f

g f

g g c

h

s.t.
h





  
   

 


ℂ

u n x

u f
u m x

 (7)

where uf
gi denotes the fine-scale displacement on Ωgi. Dirichlet BCs are imposed on Γgi

cj, ∀cj ∈ Cgi,
consisting of normal, hgi,cj,1(x), and tangential, hgi,cj,2(x), displacements at each point x on Γgi

cj. The
BCs on Γgi

w are stress-free, and the BCs on Γgi
ex (if ≠ Ø) are inherited from the global BCs in Eq.2.

If hgi,cj,1(x) and hgi,cj,2(x) were known, uf
gi could be solved for all subdomains and the global solution

assembled. But they are not known. Hence, the central idea in PLMM is to approximate hgi,cj,1(x)

and hgi,cj,2(x) as scalars uo
gi,cj,1 and uo

gi,cj,2, referred to as coarse-scale unknowns. This
approximation is called the localization assumption. We define uo

gi,ck = [uo
gi,ck,1, uo

gi,ck,2] as the
(here 2D) vector made up of these scalars. The result is an approximated form of Eq.7:

 
1

2

|
:

|

gii i j
c j

i

gii i j
c j

f o

g g c
s f

g f o

g g c

u

s.t.
u





  
   

 


ℂ

u n

u f
u m

 (8)

whose solution can be expressed as follows:

1
i i i k i k

gi
k

D
f f o f

g g g c d g c d

dc C

u
 

   ɶ u (9)

In Eq.9, φf
gi,ck,d are the basis functions and �
 ��

� the correction function on Ωgi. They satisfy:

 
1

2

|
: 0 . .

|

gii k
c j

i k

gii k
c j

f

g c d kj d
s f

g c d f

g c d kj d

s t

 

 





  
   

 


ℂ






n

m
 (10a)

 
| 0

: . .
| 0

gii
c j

i

gii
c j

f

g
s f

g f

g

s t




  
   

 


ɶ

ɶℂ
ɶ






n

f
m

 (10b)

Eq.10a is referred to as the basis problem, and Eq.10b as the correction problem on Ωgi. The
parameters δab in the RHS of Eq.10a are the Kronecker delta. If d = 1, φf

gi,ck,d corresponds to setting
the normal displacement at Γgi

ck to one, and all other displacement components at Γgi
ck and other

contacts, Γgi
cj ∀j ≠ k ∈ Cgi, to zero. If d = 2, only the tangential displacement at Γgi

ck is set to one,
while the remaining displacements at all contacts are set to zero. Fig.1d depicts two such basis
functions for the grain grid in Fig.1c. Note that Eq.10a entails solving #Cgi×D local problems on
Ωgi, one per interface per normal/tangential BC; the symbol # denotes the number of members in
a set. Eq.10b, by contrast, entails solving only one local problem on Ωgi. In both Eqs.10a and 10b,

the BCs on Γgi
w are stress-free. If Γgi

ex ≠ Ø, some of the global BCs from Eq.2 are inherited by
Eq.10a-b. However, the RHS of these BCs are set to zero (homogeneous) for Eq.10a, but not for
Eq.10b (inhomogeneous). Note the basis problem accounts for inhomogeneities due to the BCs in
Eq.8 on Γgi

cj, and the correction problem for the inhomogeneity caused by the body force f.
The final step in PLMM is to compute uo

gi,ck,d in Eq.9, for which a global problem must be
formulated. Here, the global problem consists of continuity of momentum and displacement:

1 2j j

o o

g c g ct t (11a)

1 2j j

o o

g c g cu u (11b)

imposed on all Γcj. Subscripts g1 and g2 denote the two grain grids that share Γcj. Eq.11a equates
the integrated tractions computed on either side of Γcj. Given the diffuse representation of cracks
in Section 2, the continuity of displacements in Eq.11b is consistent. However, even if a sharp-
crack representation were adopted, Eq.11b would still result in a convergent (but not consistent)
global preconditioner. Substituting Eq.9 into Eq.11a-b, and following steps similar to Mehmani et
al.23 (not repeated), we obtain a small, (No

cD)×(No
cD) system in terms of uo

gi,ck,d; where No
c denotes

the number of contact interfaces. This concludes our review of PLMM.

Remark 1. To correct errors caused by the localization assumption, Mehmani et al.23 introduced
a second set of coarse grids, called contact grids. These did not cover all of Ωs, only a small region
around Γcj, and enabled very fast convergence to the DNS solution. However, in low-porosity
media, contact grids tend to overlap and must be merged. This causes some contact grids to span
large regions in Ωs, rendering local problems defined on them costly. The preconditioner of Section
3.5 addresses this drawback by obviating the need for contact grids altogether.

Remark 2. If Ωgi is intact, the stiffness tensor ℂ in Eq.10a corresponds to ℂ0, and PLMM reduces
to the formulation of Mehmani et al.23 But if Ωgi is cracked, two choices exist for ℂ in Eq.10a: (1)
the damaged stiffness in Eq.4 (= g(ψ)ℂ0); or (2) the intact stiffness ℂ0. The former is consistent
and more accurate, but computationally costly for evolving-crack problems. This is because if ΓF
evolves during loading, so does g(ψ) and the basis functions must be updated. Since Eq.10a entails
multiple solves on Ωgi per update, the cost can be prohibitive. The second choice of ℂ0 does not
require updating the basis functions but is inconsistent unless correction functions are computed
iteratively. We explore this approach in a separate paper,24 where we show convergence is slower.
For the preconditioner discussed next, we outline an optimal way of updating the bases.

3.4. Building the global preconditioner

Building the global preconditioner, MG, is equivalent to solving the global fine-scale system
in Eq.6 approximately. We proceed as follows: Given the decomposition of Section 3.1, the fine-
scale displacement unknowns are partitioned into those that belong to Ωgi versus Γcj. We then
construct a permutation matrix, W, such that when applied to Eq.6, yields the equivalent system:

� �
ˆ ˆˆ ˆˆ ˆW WW WT T T

x b

x b x b x b


       ����� (12)

with the following block structure:

g g

g c

c c

g c

  
     

g

c

b
b

b

 
  
 

g

c

x
x

x

 
  
 

 (13)

where

1

1

() ()

O

O gN

g f fN
g g

g

g

g

g

g

g
N D N D

 
 
  
 
 
 

⋯

⋮ ⋱ ⋮

⋯

() ()

() ()

() ()

[]

[]

[]

i
f f

j c g

i
f f

j g c

i
f f

j c c

cc

g g N D N D

gg

c c N D N D

cc

c c N D N D







  

  

  

 (14)

The matrix W is unitary (WWT = I) and has 0 or 1 entries. In Eqs.12-14, Nf
gi and Nf

cj are the number
of unknowns associated with Ωgi and Γcj, respectively, and Nf

g = Σi Nf
gi and Nf

c = Σj Nf
cj. The

symbol Ng denotes the total number of grain grids. The permuted matrix A consists of blocks with
super/subscripts gi and cj that correspond to Ωgi and Γcj, respectively. Ag

g is square and block-
diagonal, with Agi

gi representing the stiffness matrix on Ωgi. In contrast, Ag
c and Ac

g are thin and
rectangular. Because A is symmetric, a result of our FEM discretization of Eq.1 with bilinear
test/trial functions, Ag

c = (Ac
g)T and Agi

cj = (Acj
gi)T.

We next transform Ax = b using a reduction matrix1 Q that embeds the localization assumption
in Eq.8. The transformation is as follows:

T T
M, Q Q Q QM M M Mx b x x x b x b       ≃ (15)

where

() ()

o

I O
Q

O Q

f f
g gN D N D 

  
  

1

o

() ()

O

Q

O N

f o
c c

c

c

N D N D

 
   
 
 

1

1

⋱

()

I

I

i

f
ci

D D

c

D D N D D



 

 
   
  

1 ⋮ (16)

Notice Q is block-diagonal and has 0 or 1 entries. The off-diagonal blocks are zero and the (1,1)-
block is an identity matrix of size (Nf

gD)×(Nf
gD). The (2,2)-block, Qo, is itself block diagonal and

consists of sub-matrices 1ci on its (i,i)-blocks. The matrix 1ci consist of Nf
ci identity matrices of size

D×D (i.e., ID×D) concatenated vertically.2 Notice Qo is (Nf
cD)×(No

cD), where No
c is the total number

of contact interfaces. It is clear that constructing Q is trivial. The reduced system AM xM = bM, with
AM = QTAQ and bM = QTb, has now the following block structure:

g g

g c

M c c

g c

  
      

g

M c

b
b

b

 
  
 

g

M o

x
x

x

 
  
 

 (17)

where xo corresponds to the coarse-scale unknowns in PLMM (i.e., uo
gi,ck,d in Eq.9).

To intuit Eqs.15-16, note that left-multiplying a (Nf
g + Nf

c)D×Χ matrix by QT, where Χ is an
arbitrary integer, sums all rows associated with the fine-scale unknowns defined on Γcj along each
coordinate direction separately. The result is a (Nf

g + No
c)D×Χ matrix. In particular, QTA yields

the “integrated” momentum balance equations on Γcj; same as Eq.11a. Similarly, right-multiplying
a Χ×(Nf

g + Nf
c)D matrix by Q, sums all columns associated with Γcj, resulting in a Χ×(Nf

g + No
c)D

matrix. In particular, QTAQ entails that the fine-scale displacement unknowns defined on each Γcj
are equal; same as the localization assumption in Eq.8. Lastly, left-multiplying a (Nf

g + Nf
c)D×X

1 This was called the “prolongation matrix” in Mehmani et al.23 (Appendix C therein), which is a misnomer.
2 The matrix 1ci was specified incorrectly in Mehmani et al.23 as an all-one matrix (Appendix C therein).

matrix by Q, duplicates the reduced rows associated with Γcj over all fine grids comprising Γcj; on
a per-coordinate-direction basis. In summary, the reduced system in Eq.15 consists of fine-scale
unknowns in the interior of grain grids, xg, and coarse-scale unknowns on contact interfaces, xo.
The reduced blocks of AM and bM are specified by overbars in Eq.17. While AM is only slightly
smaller than A, the reduction decouples the sub-systems associated with each Ωgi. Our remaining
task is to compute the approximate solution xM. But first, we need a definition:

Definition. Let Egi
g and Rgi

g be the grain-grid extension and restrictions matrices of Ωgi, and Eci
c

and Rci
c the contact extension and restrictions matrices of Γci, respectively, defined as:

1 2 () ()
E [, , ,]i i i i

ff
g gN gi

g g g g

g g g g N D N D




   …  R = Ei ig g

g g


 (18a)

1 2 ()
E [, , ,]i i i i

o
o cNc

c c c c

c c c c N D D




   …  R = Ei ic c

c c


 (18b)

where

() ()

() ()

I

O

f f
g gi i

i

j
f f

g gi j

N D N D
g

g

N D N D

if j i

if j i






   

I

O
i

j

D Dc

c

D D

if j i

if j i






   

 (18c)

Multiplying a (Nf
giD)×1 vector on Ωgi by Egi

g extends it to a (Nf
gD)×1 vector on all grain grids (i.e.,

∪j Ωgj). Similarly, multiplying a D×1 vector defined on Γci by Ec
ci extends it to a (No

cD)×1 vector
on all interfaces (i.e., ∪j Γcj). Multiplication by Rgi

g or Rci
c maps in the opposite direction.

Now, to solve AM xM = bM, we form the following Schur complement system:22

MS o

Mx s (19)

where

  1

MS c c g g

c g g c


       1

c c g g

M g gs b b


   (20)

by performing block-Gaussian elimination on Eq.17. Solving Eq.19 for xo allows xg, and thereby
xM, to be computed via:

   1
g g g g o

g cx b x


   (21)

In classical domain decomposition, it is ill-advised to construct the Schur complement matrix, SM,
explicitly as it requires inverting Ag

g. Instead, only the action of SM on a vector is desired. The
case here is different because SM is very small, i.e., (No

cD)×(No
cD). We can therefore adopt the

atypical strategy of actually forming, SM, column-by-column as follows:

MS Bc c

c g    (22)

where

  1
col (B) g g

k g c ke


   

1, , 1

() 1
[0, , 0,1,0 , ,0] o

c

k k k

k N D
e

 




 … … (23)

We refer to B as the basis matrix, whose kth column is obtained by multiplying -(Ag
g)-1A��

� by the
unit vector ek in Eq.23. Because Ag

g, and thus its inverse, are block-diagonal, colk(B) requires

solving a local sub-problem on only two grid grids. To determine which grain grids, notice the kth
entry in ek (i.e., the only non-zero entry) corresponds to the interface Γci, where:

i

k
c

D

    
 (24)

If Γci is shared between grain grids Ω��� and Ω���, then:

   1 1 2 2

1 2

1 2

1 2
1 1

col (B) ER RE k k k ki i

k i k i

g gk k
k

k k

k

g g g gc c

g c c k g c c k

p p

g g

k g ge e
 

 

    
������� ���������

 (25)

where the red highlighted terms require, from left to right, solving local problems on Ω��� and
Ω���, respectively. Notice we have used here the contact restriction and grain-grid extension
operators defined above. We denote the highlighted terms by ��

��� and ��

��� and refer to them as
basis vectors. These are precisely the basis functions obtained from solving Eq.10a in PLMM. All
basis vectors, and SM assembled therefrom, are computed once and stored to computer memory.

We next proceed to compute the RHS vector sM in Eq.19. This is done by writing Eq.20 as:

c c g

M gs b c     1
g g g

gc b


  (26)

where cg is called the correction vector. Once again, because Ag
g is block-diagonal, cg can be

obtained by concatenating smaller correction vectors cgi = (Agi
gi)-1bgi defined on each Ωgi. We note

that cgi corresponds precisely to the correction function obtained from solving Eq.10b in PLMM.
If bgi = 0, then cgi = 0 and no computations are required to obtain the correction vector on Ωgi.

Given SM and sM, we can now solve Eq.19 to obtain xo. Next, we can compute xg by substituting
xo into Eq.21. However, a careful inspection of Eq.21 reveals:

+ Bg g ox c x (27)

which means calculating xg does not incur any extra costs because B and cg have already been
computed. Eq.27 is the algebraic equivalent of the reconstruction step in Eq.9. Given xg and xo, we
get xM from Eq.17. Lastly, xM is transformed into an approximate solution of the original system,
Eq.6, by undoing the initial permutation and reduction steps via x̂aprx = WQxM.

The above approximate way of solving A��	 = �� can be cast as a global preconditioner, MG. In
iterative solvers, preconditioning means repeatedly solving systems like A�� = � approximately
for w, given an arbitrary v. Building MG, therefore, consists of constructing the permutation matrix
W, reduction matrix Q, basis vectors pgi

k, and basis matrix B once, and storing them all to computer
memory. We note the computations of pgi

k and B can be fully parallelized across Ωgi. In applying
MG for each new vector v, we only need to compute cgi, which is also parallelizable across Ωgi.

Remark 3. In Appendix B, we show that Eq.26 is equivalent to sM = ��c + BTbg, which seems to
obviate computing cg. However, cg is still needed in Eq.27 to reconstruct xg. If our goal is to merely
obtain an approximate solution, then cg must be computed once and used in Eq.27. But if our goal
is to precondition A��	 = �� in an iterative solver, where A�� = � is repeatedly solved for different
v, recomputing cg can become cumbersome. In Appendix B, we show how this cost can be
eliminated by reinterpreting cgi as yet another basis vector that is computed once.
Remark 4. The above global preconditioner can be expressed as MG = R�A�P�, where P� =WQP is a
prolongation matrix and R� = P�" a restriction matrix. Note P is the prolongation matrix associated

with the reduced system AM xM = bM in Eq.15, which we formulate in Appendix B. Using this
multigrid notation, the approximate solution can be expressed as �	#$%& = M(

)*�� = P�(R�A�P�))*R���.
In Appendix B and Section 6.4, we discuss the relation of MG to algebraic multigrid methods.

3.5. Combining the global preconditioner with a smoother

To apply MG in iterative solvers, we must pair it with a local preconditioner, or smoother,
denoted by ML. The pairing is done as follows:22

 1 1 1 1
G L G

        (28)

yielding the multiscale preconditioner M. The rationale for Eq.28 is that MG, by itself, attenuates
only long-range, or low-frequency, errors. By contrast, ML can efficiently remove high-frequency
errors, but is slow to correct long-range errors on its own. The pairing targets both error frequencies
thereby accelerating convergence. We consider smoothers that are constructed as follows:

 
1

1 1 1
L

1 1

stn i

l l

i j


  

 

      (29)

where Ml is an incomplete LU-factorization of A�, i.e., ILU(k) with k denoting the fill level. Eq.29
entails a multi-stage application of Ml, where nst is the number of smoothing stages. More details
on Eqs.28-29 can be found elsewhere.22,51 In Section 5, we test M within a GMRES solver.

3.6. Updating the global preconditioner

Suppose a global preconditioner MG has been built for Ωs. Now let Ωs be subject to progressive
loading, during which cracks nucleate and evolve, altering the stiffness matrix A� via g(ψ) in Eq.4.
How should MG be updated? And how often? If MG is not updated at all, the Krylov solver will
require more and more iterations to converge as cracks grow with loading steps, thus increasing
cost. If MG is updated at each loading step, the cost of updates may override the time spent by the
solver itself. Here, we present an efficient way of updating MG that preserves rapid convergence.

Updating MG means updating the basis matrix B and the Schur matrix SM with respect to those
grain grids Ωgi in which new cracks have nucleated and/or old ones have grown. This entails
recomputing the basis vectors pgi

k on the impacted Ωgi. However, just because cracks have evolved
in Ωgi does not mean its basis functions need updating. A more efficient strategy is to adopt the
adaptivity criterion below, which is supported by numerical observations discussed later:

Criterion. If cracks, ΓF, intersect a contact interface Γci between two adjacent grain grids Ωg1 and
Ωg2, then update MG by recomputing all the basis vectors defined on Ωg1 and Ωg2.

This criterion ensures that basis vectors, hence MG, are updated infrequently and only if necessary.
In other words, cracks confined to the interior of grain grids are ignored. To determine whether a
crack intersects Γci, we check if g(ψ) < 10-2 at any point on Γci. After identifying the grain grids
satisfying the criterion, denoted by the index set G

ɶ
, we update MG by executing Algorithm 1. The

terms with an under-tilde denote vectors/sub-matrices altered by the evolved cracks. The red
highlighted terms correspond to precomputed and stored variables of the old MG, which need not
be recomputed. The outputs of Algorithm 1 consist of updated matrices B and SM.

To apply the updated MG to the evolved system, we proceed similar to Section 3.4 but with a

key modification: we account for all cracks in calculating the correction vectors cgi, not just those
intersecting a contact interface. Let us adopt the following notation: variables with under-tilde (e.g.
x
ɶ

) correspond to grain grids with cracks intersecting at least one contact interface; variables with
underline (e.g., x) correspond to grain grids with (interior) cracks that do not intersect any contacts;
and variables with no under-tilde or underline correspond to intact grain grids. For example, the
sets G, G, and G

ɶ
contain the indices of grain grids satisfying the above definitions. Similarly,

cgi = (Agi
gi)-1bgi, cgi = (Agi

gi)-1bgi, and c
ɶ

gi = (A
ɶ

gi
gi)-1bgi. We now assemble sM via:

i i i

i i i

i i i

g g gc c c c

M g g g

g G g G g G

s b c c c
  

        
ɶ
ɶ ɶ

 (30)

Given sM, we solve Eq.19 to obtain xo. To compute xg, we have two options: (1) Ignore interior
cracks in G and use Eq.27, which requires no extra computations. This means xg is reconstructed
using basis vectors that assume the grain grids in G are intact; (2) Include cracks in G in exchange
for solving one extra sub-system per grain grid in G; outlined in Appendix A. This compensates
for the fact that basis vectors defined on the grain grids in G assume the solid is locally intact.

Remark 5. Numerical experiments revealed that both options for computing xg lead to identical
convergence rates in Krylov solvers. This is because fine-scale details of the solution around cracks
associated with G, even if missed during the reconstruction of xg via Eq.27, are captured by the
smoother, ML in Section 3.5. On the other hand, including such details is equivalent to having a
block-Jacobi smoother built into MG, lessening the burden on ML chosen in Section 3.5. In Section
5, we adopt the latter option of using Eq.A.2 to reconstruct xg, because it is also useful for obtaining
accurate first-pass solutions for comparison against DNS.

Remark 6. A single application of the global preconditioner, MG, to Eq.6 yields an approximate,
or first-pass, solution, i.e., x̂aprx. = MG

-1b̂. The quality of this solution is a direct reflection of the
ability of MG to attenuate low-frequency errors. If MG is built from scratch for a fractured domain,

following the procedure outlined in Section 3.4, we refer to the first-pass solution as A0. The letter
“A” indicates all cracks are included in building the basis vectors (hence B and SM) of MG. But if
MG is obtained by updating a previously built global preconditioner via Algorithm 1, we refer to
the first-pass solution as U0. The letter “U” indicates that MG has been updated.

4. Problem set

We test the multiscale preconditioner for the domains in Fig.2. They include a 2D disk pack
(P2D),23 a 2D sandstone (S2D),52 and a 3D sandstone (S3D).52 The stiffness tensor ℂ0 is isotropic
with Lamé parameters λ = 8.3 GPa and µ = 44.3 GPa corresponding to α-quartz.53 In all domains,
the boundary corresponding to x = Lx is fixed and a constant displacement of uD = 1 is imposed on
x = 0 along the negative x-direction (i.e., tensile); where Lx is the domain size in the x-direction.
All lateral boundaries satisfy roller BCs. The void-solid interface Γw is stress-free, implying zero
pore pressure. The fine grids correspond to the image pixels in Fig.2, which have dimensions 716
× 576 in P2D, 541 × 546 in S2D, and 67 × 68 ×71 in S3D. Fig.2 also shows the decomposition of
each domain into grain grids. Their number, Ng, is 76 in P2D, 120 in S2D, and 47 in S3D.

For each domain, we consider different crack patterns shown in Fig.3. For P2D and S2D, we
consider three patterns: (1) c1: all cracks are confined to the interior of grain grids (i.e., none
intersects a contact interface); (2) c2: all cracks intersect at least one contact interface; and (3) c3:
cracks are obtained by superposing the cracks from patterns c1 and c2. For S3D, we consider two
crack patterns c50 and c100, which correspond respectively to placing 50 and 100 elliptical cracks
with different sizes and orientations randomly inside the domain. For brevity, we use P2D-c1, P2D-
c2, P2D-c3, S2D-c1, S2D-c2, S2D-c3, S3D-c50, and S3D-c100 to refer to each domain-pattern pair.
In some cases, where we consider domains to be intact (i.e., containing no cracks), we use P2D-
c0, S2D-c0, and S3D-c0. The phase-field length-scale parameter l and fracture toughness Gc in Eq.3
are set to l = 2h = 0.02 mm and Gc = 2.7×10-3 GPa-mm, respectively, in all cases.

5. Results

In the following sections, we first compare the first-pass solutions A0 and U0 obtained from a
single application of MG against the exact DNS solution from a direct solver. Section 5.1.1 presents
results for intact domains, and Section 5.1.2 for fractured domains. The intact-domain results are
discussed in relation to the PLMM results of Mehmani et al.23 We measure the errors of A0 and U0
via:

100
sup

s

M S

p

S

E



 u
u u

u

1/2

2
2

1
() d

| | s
p

s

E E


 
   


u u (31)

where Eup and Eu2 quantify the pointwise and L2 errors of the displacement field, respectively, both
expressed in percentages.23 In Section 5.2, we analyze the convergence rate of GMRES when right
preconditioned by the multiscale preconditioner M in Eq.28, made up of MG and ML. For ML, we
consider ILU(k) with k = 0, 1, 2 as Ml, and nst = 1, 6, 12 in Eq.29. For MG, we consider two options:
(1) MG is built from scratch, including all cracks in the basis vectors, using the procedure outlined
in Section 3.4; and (2) MG is updated from a previously built MG for the intact domain. We use the
simple, but abusive, notation of A0 to refer to the former MG, and U0 to refer to the latter MG.

Fig 2. (Top row) Pore-scale domains used to test the multiscale preconditioner. (Bottom row) The

decomposition of these domains into grain grids (randomly colored).

Fig 3. Crack patterns used to test the multiscale preconditioner. In P2D and S2D, c1 denotes cracks

confined solely to the interior of grain grids, c2 denotes cracks intersecting at least one contact interface,
and c3 is a superposition of cracks in patterns c1 and c2. In S3D, c50 and c100 correspond to 50 and 100

elliptical cracks, respectively, with different sizes and orientations placed randomly in the domain.

5.1. Single application of the global preconditioner

5.1.1. Intact domains

Figs.4-5 compare the first-pass solutions obtained from a single application of MG against DNS
for P2D-c0, S2D-c0, and S3D-c0. Because these domains are intact, the first-pass solutions A0 and
U0 are equal, and only A0 is plotted. Figs.4-5 show that the displacement magnitude |u|, maximum
shear stress, σm, and volumetric strain, ∇·u of A0 are in excellent agreement with DNS. Table 1

summarizes the relative L2-errors (%) of the displacement field for A0 (see the “c0” columns). In
all domains, Eu2 < 5% which is comparable to the PLMM errors reported in Mehmani et al.23 for
the same intact domains. The small numerical discrepancy between the two is likely due to the
fine-grid discretization method, i.e., FEM here but FVM there. The high accuracy of A0 implies
that it can serve as an attractive global preconditioner for intact domains.

Fig 4. Single application of the global preconditioner A0 against DNS for P2D-c0 and S2D-c0.

Fig 5. Single application of the global preconditioner A0 against DNS for S3D-c0.

Table 1. Relative L2-errors (%) of displacement (Eu2) between the first-pass solutions A0 and U0 obtained
from a single application of the global preconditioner versus the exact DNS solution.

5.1.2. Fractured domains

Similar to Section 5.1.1, Figs.6-8 compare the first-pass solutions obtained from a single
application of MG against DNS for P2D-c3, S2D-c3, and S3D-c3. The results for crack patterns c1
and c2 are not shown as they are less challenging than c3. Here, the approximate solutions A0 and
U0 differ, hence, both are shown. As in Figs.6-8, we see that A0 and U0 are in excellent agreement
with DNS. Unsurprisingly, A0 is slightly more accurate than U0 because it accounts for all cracks
in the building of MG, not just those that intersect contact interfaces. Table 1 summarizes the L2-
errors associated with A0 and U0, which are Eu2 < 6% and Eu2 < 8.5%, respectively, for all domain-
crack pattern pairs. Notice Eu2 for A0 is roughly equal to Eu2 for U0 in crack pattern c2. This is
expected because all cracks are included in computing U0 through the adaptivity criterion defined
in Section 3.6. By the same token, the errors of U0 are larger than those of A0 for pattern c1 because
no cracks are included in the construction of MG for U0. Despite this apparent superiority of A0
over U0, the next section shows they perform comparably as MG within a GMRES solver. Figs.9-
11 depict pointwise errors of A0 and U0, which tend to concentrate near the cracks and contact
interfaces. The latter is due to the localization assumption in Eq.8. Removing these errors is the
main function of the smoother ML discussed in Section 3.5.

Fig 6. Single application of the global preconditioners A0 and U0 against DNS for P2D-c3.

Fig 7. Single application of the global preconditioners A0 and U0 against DNS for S2D-c3.

Fig 8. Single application of the global preconditioners A0 and U0 against DNS for S2D-c3.

Fig 9. Pointwise displacement errors, Eup (%), of A0 and U0 for P2D-c1, P2D-c2, and P2D-c3.

Fig 10. Pointwise displacement errors, Eup (%), of A0 and U0 for S2D-c1, S2D-c2, and S2D-c3.

Fig 11. Pointwise displacement errors, Eup (%), of A0 and U0 for S3D-c50 and S2D-c100.

We conclude this section by noting the first-pass solutions A0 and U0 have one fundamental

difference from early iterates produced by a generic AMG solver: the former conserve momentum
whereas the latter do not. This property also applies to all later iterates Am and Um obtained from
our global preconditioner. The implication is that A0 and U0, and all subsequent iterates of MG,
can be used readily in engineering applications without having to converge all the way to the exact
DNS solution. The same cannot be said about AMG solvers. As an example, using an aggregation-
based algebraic multigrid (AGMG) solver54 on the S2D-c3 domain, we obtained Eu2 = 48%, 41%,
and 39% errors, respectively, for the 1st , 2nd, and 4th iterates. Not only do these not conserve
momentum, they are 6-8 times less accurate than A0 and U0 in Table 1.

5.2. Preconditioning a Krylov solver (GMRES)

We next test the performance of the multiscale preconditioner M in Eq.28, which combines
MG and ML in a right preconditioned GMRES solver. We probe different combinations of MG,
based on A0 or U0, with ML, based on Eq.29 with Ml = ILU(k), k = 0, 1, 2, and nst = 1, 6, 12. We
chose ILU(k) for Ml over other popular smoothers, such as Gauss-Seidel, because ILU(k) is more
flexible in the way its accuracy is hierarchically controlled by the fill-in parameter k, and because
preliminary tests revealed it to be more efficient; often by ×2 in CPU-time. We consider all pairings
of the domains and crack patterns shown in Figs.2-3, as well as intact domains, i.e., P2D-c0,1,2,3,
S2D-c0,1,2,3, and S3D-c0,50,100. We declare GMRES to have converged if the normalized residual
satisfies ||Âx̂- b̂||/||b̂|| < 10-8 in less than 150 iterations. Otherwise, the solver is said to have
“diverged.” We set the restart value of GMRES equal to 20. Table 2 summarizes the number of
iterations required to converge in all cases. Under S3D, “div” means “diverged”. Table 3 also lists
the total wall-clock time (WCT) associated with each case. This includes times spent on building
MG and ML plus solving the linear system with GMRES. For comparison, Tables 2-3 also include
the number of iterations and WCTs of an aggregation-based algebraic multigrid (AGMG) solver54
that is known to outperform classical AMG solvers.47 For AGMG, iterations are performed until
||Âx̂- b̂||/||b̂|| < 10-8 without capping their number at 150. The AGMG source code was obtained

from agmg.eu. All cases were run in series and on an Intel Core(TM) i9-10980XE CPU @
3.00GHz, 128 GB RAM machine. Each run was repeated three times to measure WCT.

Table 2. Number of GMRES iterations to converge (||Âx̂- b̂||/||b̂|| < 10-8) for different combinations of the

global preconditioner MG built from A0 and U0, smoothers with Ml = ILU(k) where k = 0, 1, 2, and
number of smoothing stages is nst = 1, 6, 12. All domains, cracked (c1, c2, c3) and intact (c0), are listed.
Results of an aggregation-based algebraic multigrid (AGMG) solver are also included for comparison.
GMRES runs marked “div” indicate iterations exceeded 150. No such limit was imposed on AGMG.

The following key observations are made: (1) Whether MG is built from A0 or U0 makes little
difference in the number of GMRES iterations. This is noteworthy because it means updating MG
via Algorithm 1 is as good as building it from scratch following the steps in Section 3.4. Note the
WCTs associated with U0 are slightly higher than A0 due to implementational differences in the
way MG is constructed. For U0, MG is first built for the intact domain, then updated to account for
cracks, resulting in redundant subdomain solves that artificially inflate WCT. In practice, the WCT
would only include that of updating an existing MG; (2) The larger the fill-in value k is in ILU(k),
and the more smoothing stages nst are performed in Eq.29, the fewer iterations are required by
GMRES to converge. However, there are diminishing returns in terms of WCT. For example,
performance worsens in nearly all cases as nst grows larger than one. The only exception is ILU(0),
for which nst = 6 is optimal. Another example is if we fix nst and go from ILU(1) to ILU(2), WCT
either stays constant or worsens (e.g., S3D). In contrast, we always see improvement when going
from ILU(0) to ILU(1). We thus recommend ILU(0) with nst = 6 or ILU(1) with nst = 1 as the best
smoothers; (3) In S3D-c50 and S3D-c100, large values of k and nst can lead to divergence, the
patterns of which are illustrated in Fig.12f. It is interesting to note that the intact domain S3D-c0
does not diverge, which may indicate that generic smoothers such as ILU(k) are not optimal for
fractured porous materials. In Section 6.1, we discuss how specialized smoothers may be designed
in the future that are more robust; Finally (4) if cracks are confined solely to the interior of the
grain grids (pattern c1), convergence rate is comparable to intact domains (pattern c0). But if cracks

intersect contact interfaces (patterns c2 and c3), convergence is slower (by ×2) because the quality
of the localization assumption in Eq.8, and thus MG, is degraded by such cracks.

Table 3. Total wall-clock times (WCT) in seconds corresponding to the cases in Table 2. WCTs include
the times spent on building MG and ML plus solving the linear system. All cases are run in series. AGMG
results are obtained from a compiled FORTRAN code, whereas preconditioned GMRES results from an
uncompiled MATLAB code. Despite the disadvantage, GMRES is on par with AGMG, and outperforms

AGMG for large domain sizes such as P2D-H, depicted by Fig.13.

The solid lines in Fig.12 illustrate the convergence pattern of GMRES for a subset of the entries
in Table 2. They correspond to P2D-c3, S2D-c3, and S3D-c50 with MG built for U0. In Figs.12a-c,
we set Ml to ILU(0) and vary nst, while in Figs.12d-f, we fix nst = 12 and vary Ml between ILU(0),
ILU(1), and ILU(2). These plots echo the same observations made above from Table 2. Namely,
there are almost no improvements in the number of iterations from nst = 6 to 12 in Figs.12a-c, or
from ILU(1) to ILU(2) in Figs.12d-f, only diminishing returns in terms of WCTs (see Table 3).
Fig.12f also shows that if k in ILU(k) and nst in Eq.29 are set too large, convergence for S3D-c50
deteriorates or diverges. We now answer two important questions: (1) Is MG necessary to achieve
fast convergence? The black dashed lines in Figs.12a-c show the convergence patterns of GMRES
if preconditioned by only M = ML (excluding MG). Here, ML is built from Eq.29 using Ml = ILU(0)
and nst = 6. In all cases, GMRES converges very slowly (or “diverges” by our standard) if M = ML
compared to the solid black lines. The corresponding WCTs for P2D-c3 and S2D-c3 at the 150th
iteration, when neither has converged, are 137s and 96s, respectively. These WCTs are 3-4 times
larger than those in Table 3 where ML is paired with MG. The WCT for S3D-c50 with M = ML is
205s and GMRES converges in 116 iterations. While this is on par with Table 3, we note this is
because S3D is a rather small domain (i.e., 67×68×71; still memory demanding because the matrix
is denser than 2D). Hence, a few smoothing steps can quickly propagate error corrections spatially.
For the much larger domain P2D-H, described later, GMRES does not converge with M = ML even
after 500 iterations and ~3 hours. With MG, on the other hand, GMRES converges in ~30 minutes

and ~50 iterations (Table 2-3). These observations demonstrate a need for MG to accelerate Krylov
solvers; (2) Is it necessary to update MG as cracks evolve? The red dashed lines in Figs.12d-f show
the convergence of GMRES if preconditioned by M in Eq.28, where MG is built for intact domains,
i.e., basis vectors of MG are not updated via Algorithm 1. Here too, we see GMRES converges
very slowly compared to the solid red lines in Figs.12d-f, highlighting the need for updating MG
in evolving-crack problems. In Section 6.4, we discuss this point further and hypothesize a
potentially better way of updating MG.

Fig 12. Normalized residual versus number of GMRES iterations for different number of smoothing
stages (nst = 1, 6, 12) and smoother types (Ml = ILU(0), ILU(1), ILU(2)). Plots correspond to P2D-c3,

S2D-c3, and S3D-c50 using MG based on U0 as the global preconditioner. In (a-c), we fix Ml = ILU(0) and
vary nst. In (d-f), we fix nst = 12 and vary Ml. The black dashed lines in (a-c) correspond to using ML in

Eq.29, with Ml = ILU(0) and nst = 6, as the sole preconditioner of GMRES (i.e., MG is excluded). The red
dashed lines in (d-f) correspond to using the preconditioner M in Eq.28 with MG built for intact domains

(i.e., no cracks included in the construction of MG).

Finally, Tables 2-3 include results for AGMG. Compared to GMRES preconditioned by MG,
we see AGMG requires substantially more iterations to converge, often by a factor of 10-30. Its
WCTs, however, are generally on par with GMRES, except S2D-c0-3 where GMRES is twice as
fast, and S3D-c0,100 where AGMG outperforms GMRES. A very important caveat, however, is that
the AGMG solver corresponds to a compiled FORTRAN code, while the preconditioned GMRES

solver corresponds to an uncompiled MATLAB code. Through this lens, we see that despite being
significantly disadvantaged, GMRES manages to perform as well or even better than AGMG. The
difference amplifies dramatically as we increase the domain size, which is relatively small for the
geometries in Fig.2. We thus consider a much larger version of P2D, called P2D-H. Fig.13a depicts
its geometry, which contains 100 randomly placed fractures. The associated image has 2400×2400
pixels with 5,357,211 elements and 5,425,144 nodes. This amounts to ~11 million displacement

unknowns. The domain is pulled from the left side, while fixing the right boundary and leaving
the top and bottom boundaries traction-free. The displacement field is solved on an Intel® Xeon®
CPU E5-2690 v2 @ 3.00GHz, 126 GB RAM machine; shown by Fig.13b. Tables 2-3 summarize
the number of iterations and WCTs of GMRES and AGMG for P2D-H. Not only does the
preconditioned GMRES converge in significantly fewer iterations, by almost a factor of 26, its
WCT is also smaller by over 2.5 times. If compiled, we expect GMRES to accelerate by another
integer factor. Notice all calculations are in series. Added benefits can be reaped by exploiting the
fact that the building and applying of MG are amenable to parallelism. We conclude by noting that
roughly 30-50% of the GMRES WCTs for P2D-c0-3, S2D-c0-3, and P2D-H, and ~70% for S3D-
c0,50,100, are spent on constructing MG. Specifically, this cost is ~13s for P2D-c0-3, ~7s for S2D-c0-

3, ~156s for S3D-c0,50,100, and 310s for P2D-H, when MG is based on A0. The cost is slightly higher
for U0 due to implementational differences already discussed. Building ML, by contrast, is cheap
and costs ~1s for P2D-c0-3 and S2D-c0-3, ~19s for S3D-c0,50,100, and 25-35s for P2D-H. Unlike
AGMG, which must be executed from scratch at each loading step in an evolving-crack problem,
MG is reusable across loading steps and incurs a small cost in updating via Algorithm 1.

Fig 13. (a) Geometry and crack pattern of the P2D-H domain used to test the scalability of the
multiscale preconditioner versus AGMG. (b) Displacement field associated with the simulation.

6. Discussion

6.1. Fine-scale smoothers

The smoothers used in this work, ILU(k) with k = 0, 1, and 2, are rather generic, or black-box,
uninformed by the specific microstructure of the domains being targeted. We believe one could do
much better by designing more specialized smoothers. In the geometric interpretation of PLMM,23
the authors had introduced a second set of coarse grids, called contact grids. These straddled and
covered a narrow region around each contact interface, where errors were known to be large due
to the localization assumption in Eq.8 (see Figs.9-11). Contact grids are attractive because they do
not cover all of Ωs, and the cost of solving local problems on them is low. We hypothesize that a
successful algebraic reinterpretation of these local problems as a smoother would result in even
faster convergence rates than those listed in Table 2; after pairing with the MG developed herein.
The challenge is to develop this preconditioner without having to merge overlapping contact grids,

as was done previously;23 a key drawback of PLMM in low-porosity domains. The formulation
and testing of such a smoother is subject to ongoing research.

6.2. Frequency of preconditioner updates

Recall that crack patterns considered in Section 4 were fixed. If the cracks are evolving, due
incremental loading of Ωs, then the MG constructed at one loading step can become ineffective in
later loading steps. Specifically, the convergence rate of the linear solver would likely deteriorate
progressively. The remedy this, MG must be periodically updated. The adaptivity criterion in
Section 3.6 ensures such updates are sufficiently infrequent and local to keep computational costs
low. Each time cracks, ΓF, intersect a contact interface between two grain grids, the basis functions
of those grain grids only are recomputed. This implies that cracks nucleating and propagating
within the sole confinement of a grain grid are ignored. In Section 5.2, we tested this criterion by
updating MG initially built for intact domains to fractured domains via Algorithm 1. The results in
Table 2 confirmed that the criterion would preserve the convergence rate of iterative solvers across
loading steps. In other words, the updated MG is as good as an MG built from scratch for the cracked
domain. Future work will focus on applying the adaptivity criterion and Algorithm 1 in evolving-
crack problems and quantify the computational gains obtained therefrom.

6.3. Computational complexity

The initial construction of MG and its subsequent updates via Algorithm 1 are parallelizable.
This is because computations associated with the basis vectors, pgi

k, and correction vectors, cgi, are
fully decoupled across all grain grids. While a rigorous quantification of computational cost and
parallel scalability is, as of now, outside our scope due to limitations in implementation, we provide
a brief analysis of the computational complexity of MG. Let Ωs consists of Nf fine grids, Ng grain
grids, and Nc contact interfaces. Also let pgi

k and cgi be computed using a linear solver on Ωgi that
scales as O(nβ), where n is the number of displacement unknowns and β ∈ (1,3). Hence, the wall-
clock time (WCT) associated with building MG is:

= (/) (# 1) /igf g g

build prcO N D N C D N P  T (32)

and the WCT associated with updating MG is:

= (/) (2#) /igf g c c

updat prcO N D N C D N f P T (33)

where #.�/������ denotes the average number contact interfaces per grain grid, Pprc is the number of
parallel processors employed, and fc is the fraction of contact interfaces newly intersected by cracks
(and not yet accounted for in MG). Eq.32 multiplies the cost of a single fine-scale problem on Ωgi,
O(NfD/Ng)β, by the number of basis vectors, #.�/������D, and correction vectors, 1, to be built on Ωgi.
Multiplying the result by the number of grain grids yields the total cost of building MG in series.
Because all basis and correction vectors are decoupled, a maximum number of Pprc = (#.�/������D+1)Ng
processors may be used, which would reduce Tbuild to O(NfD/Ng)β. With reference to Eq.33, since
Ncfc contact interfaces are intersected by ΓF, and all basis vectors of the grain grids straddling such
contacts must be updated, a total of (2#.�/������D)Ncfc local problems must be solved. For a maximum
number of processors, the costs of updating MG reduces, again, to O(NfD/Ng)β.

The WCT associated with applying MG to precondition A�� = � once is at most:

= (/) (/)f g g

apply prcO N D N N P T (34)

which corresponds to computing a correction vector cgi per grain grid Ωgi. Eq.34 is an upper bound
because if v is zero on some Ωgi, so is cgi and no correction vector must be computed. In the next
section, we discuss how the cost of Tapply may be eliminated. Lastly, MG was developed here using
the isotropic degradation model in Eq.4, which yields the linear system in Eq.6. If an anisotropic
degradation model were adopted, MG would be applied to the linearized system at each Newton
iteration. Since MG is held fixed between such iterations, computational gains can be significant.

6.4. Relation to algebraic multigrid (AMG)

The global preconditioner MG is related to recent multiscale finite element, and more generally
algebraic multigrid, preconditioners developed for Darcy-scale linear elastic deformation in porous
media. The link is made explicit in Appendix B by formulating appropriate prolongation, P, and
restriction, R = PT, matrices that allow the derivation of the following coarse-scale system:

�
o

T T o
M M

A

A A A
o

o o o

M M M

b

x b x b x b       
�����

 (35)

from the reduced system AM xM = bM in Eq.15. In Appendix B, we prove that Ao = SM and bo = sM
only if G = Ø, which makes the coarse-scale system in Eq.35 equivalent to the Schur system in
Eq.19. However, if G ≠ Ø, the two formulations differ by a residual derived in Appendix B. The
above use of prolongation/restriction matrices is attractive for a number of reasons: (1) updating
MG can be accomplished by recomputing a select few columns of P; (2) the cost associated with
recomputing the correction vectors cgi per Krylov iteration, as noted in Remark 3, can be eliminated
by augmenting the columns of P through the inclusion of cgi as extra “basis vectors” (see Appendix
B); (3) preliminary tests seem to suggest even less stringent adaptivity criteria than the one in
Section 3.6 may be applied to preserve rapid convergence in Krylov solvers. For example: “update
basis vectors on grain grids that straddle a sample-spanning fracture.” Notice the cracks in Fig.3
were relatively short; and (4) the cost of applying MG (Tapply in Eq.34) may be removed because
solving the coarse-scale problem in Eq.35 is as expensive as solving the Schur system in Eq.19,
which is negligible. Future work will systematically test these hypotheses.

7. Conclusion

We developed a multiscale preconditioner for solving the linear-elastic deformation of porous
domains with arbitrary microstructures and crack patterns. It combines a global preconditioner,
MG, with a local smoother, ML, to simultaneously attenuate low- and high-frequency error modes,
respectively. Our main contribution was in the construction of MG, which we based on an algebraic
reinterpretation of a recent pore-level multiscale method (PLMM) developed by the authors.23,24
The preconditioner interpretation has two advantages: (1) its application within existing codes is
fully non-intrusive, and (2) key limitations associated with PLMM in reducing approximation
errors via contact grids are removed through the flexible use of smoothers.23 We verified and tested
the convergence of the preconditioner in a Krylov solver for a range of 2D/3D microstructures and
crack patterns and found favorable performance. Even so, the use of generic ILU(k) smoothers
was found to be sub-optimal. If the fill-in level, k, or number of smoothing stages, nst, are too large,
the solver either converges slowly or diverges in our 3D domain. This calls for more specialized
smoothers, which we think can be based on an algebraic reinterpretation of so-called “contact

problems” in PLMM.23 Our second contribution was to propose an economic and adaptive way of
updating MG for evolving-crack problems that preserves rapid convergence of Krylov solvers. We
also established a direct link between MG (thus PLMM) and AMG (or MsFE) preconditioners by
defining appropriate prolongation and restriction matrices in Appendix B. While a rigorous
demonstration of parallel scalability was outside of the scope of our paper, a complexity analysis
was provided that shows the construction and updating of MG are fully parallelizable.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No.
CMMI-2145222. The Department of Energy and Mineral Engineering (EME), the College of Earth
and Mineral Sciences (EMS), and the Institutes of Energy and the Environment (IEE) are
acknowleged for providing partial support. The Institute for Computational and Data Sciences at
The Pennsylvania State University is also thanked for providing access to computational resources.

Appendix A. Accounting for interior cracks during reconstruction

To account for interior cracks in G while reconstructing xg, Eq.27 must be modified to:

 

 

 

1

1

1

E R

E R

E R

ji i i

i j

i j gi

ji i i

i j

i j gi

ji i i

i j

i j gi

cg g gg g o

g g c c

g G c C

cg g g o

g g c c

g G c C

cg g g o

g g c c

g G c C

x c x

x

x



 



 



 

   

  

  

 

 

 
ɶ

ɶ ɶ
 (A.1)

where summations are over the grain grids in G, G, and G
ɶ

. We note that basis vectors associated
with grain grids in G

ɶ
already capture local cracks, because they are updated via Algorithm 1. Using

the definitions of basis vectors pgi
k in Eq.25, we rewrite Eq.A.1 as follows:

 

(1)

(1) 1

(1)

(1) 1

1
R

[] E

[] E

E j

i

i

ii

j gi

i

i j gi

i

j

i

i

i g

j

i

i

j D D
g

c

g g o

k g

g G c C k j D

j D D
go

k

c

g

g G c C k j

C

g g o

g c

D

k

g

g

g

g

k

g G c

x

p

x

c x

x

p
 

    

 

   





 

 





 

  

  

 
ɶ

ɶ
 (A.2)

The red highlighted terms have been stored in computer memroy, and need not be recomputed.
The green highlighted terms, however, require solving a local problem per grain grid in G. This
added computation, as remarked in Section 3.6, is optional when using MG as a preconditioner to
accelerate the convergence of Krylov solvers; as opposed to computing a first-pass solution.

Appendix B. Formulating prolongation and restriction matrices

Starting from AM xM = bM in Eq.15, global preconditioning in AMG or MsFE follows:

�
o

T T o
M M

A

A A A
o

o o o

M M M

b

x b x b x b       
�����

 (B.1)

where P is a prolongation matrix, and its transpose PT a restriction matrix. Solving Eq.B.1, yields
the corase-scale solution xo. An approximate solution for xM is obtained via xM = Pxo, which
interpolates xo onto the fine grid. Here, we formulate an expression for P that corresponds to the
MG in Section 3.4. Recalling the following definitions for basis and correction vectors:

   
1

R (1) . . , 1 , ,ji i i i

i j

cg g g g

k g c c kp e k j D d s t j C d D


          … (B.2a)

  1
i i i

i

g g g

gc b


  (B.2b)

the prolongation matrix below can be formulated:

1 1 1

2 2 2

1

2

1 2

1 2

1 2
B

1 0 0 0

0 1 0 0

0 0 0

0 0 0 1

m m m

m

g g g

n

g g g

n g

g

g g g

n

g

p p p

p p p
p

p
p p p

p

 
 
   
   
                     
     
 
  

…

…

⋮ ⋮ ⋱ ⋮

…
⋮

⋱

 (B.3)

where n = No
cD is the number of coarse-scale unknowns, and m = Nf

gD the number of fine-scale
unknowns associated with Ωgi (not Γcj). The identity matrix I is No

cD×No
cD. In Eq.B.3, we have

used the abbrieviated notation pgi = [pgi
1, pgi

2, …, pgi
n], which equals pgi = –(Agi

gi)-1Āgi
c. Note that

B = [(pg1)T, (pg2)T, …, (pgm)T]T is identical to the basis matrix in Section 3.4. Substituting Eq.B.3
into Eq.B.1, we obtain the following expressions for Ao and bo:

o T TA B B B Bg c g c

g g c c        (B.4a)
TBo g cb b b  (B.4b)

where we have used the block-structures of AM and bM in Eq.17. We claim:

Proposition 1. If G = Ø, then Ao = SM and bo = sM.

Proof. Since G = Ø, none of the basis vectors pgi neglect the presence of cracks in the grain grids.
We therefore drop the underline/under-tilde notation of Section 3.6 for simplicity. By substituting
Eq.B.3 into Eq.B.4b, we obtain:

    1TTB

E R

i i i i

i i

i i

i i i

i

i i

g g g go g c c c c

g g

g G G g G G

g g gc c c c g c c g

g g g g g M

g G G g G G

b b b b p b b b

b c b c b c s



   

   

       

        

 

 
ɶ ɶ

ɶ ɶ

 (B.5)

which proves bo = sM. Note that in Eq.B.5, we have used the fact that AM is symmetric and have
substituted the definitions of pgi and cgi. Focusing next on Ao, we write the first term in the RHS
of Eq.B.4a as follows:

 

     

TT

1 1 1

B B i i i

i

i

i i i i i i

i i i i i i

i i

g g gg

g g

g G G

g g g g g gc c

g g g g c g g c

g G G g G G

p p
 

  

   

  

         



 
ɶ

ɶ ɶ

 (B.6)

Similarly, the second term in the RHS of Eq.B.4a can be written as follows:

  1
B i i i

i i i

i i

g g gc c c

g g g g c

g G G g G G

p


   

        
ɶ ɶ

 (B.7)

Note that Eqs.B.6 and B.7 sum to zero. Hence, Eq.B.4a reduces to:

 To T
MA B B Sg c g c

c c c c         (B.8)

where we have used Eq.22 and the fact that Ao is symmetric. This completes the proof. ∎

In Proposition 1, Ao = SM holds only if G = Ø. If G ≠ Ø, then Ao ≠ SM because the summation
of the first two terms in the RHS of Eq.B.4a would no longer be zero. It is straightforward to show
that the difference between Ao and SM would then satisfy the following expression:

 

     

    

To T
M

1 1 1

1 1

0

S B B + B

0

 i i i i

i i

i i

i i i i i i

i i i i i i

i i

i i i i i

i i i i i

i

g g g gg c c

g g g g

g G g G

g g g g g gc c

g g g g c g g c

g G g G

g g g g gc

g g g g g c

g G

p p p
 

  

 

 




       

         

      





 

 


�����

 (B.9)

Once xo is computed by solving Eq.B.1, xg can be reconstructed via Eq.27. As noted in Remark
3 of Section 3.4, if our goal is to precondition a Krylov solver, as opposed to computing a first-
pass solution to A�� = ��, then the correction vector cg must be computed repeatedly. This can
become computationally cumbersome. The next proposition shows how this cost can be eliminated
by interpreting the cgi from Eq.B.2b as yet another basis vector that is computed once:

Proposition 2. Suppose the prolongation matrix is augmented as follows:

aug
aug

B 
    

,  augB B C ,

1

2

()

O

C

O m
f g

g

g

g

g

N D N

c

c

c


 
 
 
 
 
 

⋱
 (B.10)

Then, the coarse-scale system Aoxo = bo in Eq.B.1 remains unaltered, but Eq.27 is replaced by:

C Bg o ox y x  (B.11)

where yo is a vector of additional coarse-scale unknonws associated with the correction vectors cgi.
To compute yo, the following coarse-scale system must be solved (after Aoxo = bo):

T T TC AC C C APo oy b x  (B.12)

Alternatively, xo and yo can be computed by substituting Paug for P and xo
aug = [(xo)T, (yo)T]T for xo

in Eq.B.1, where xo
aug is the augmented vector of coarse-scale unknowns.

Proof. The proof requires merely substituting Paug for P and xo
aug for xo in Eq.B.1 and using the

fact that PTAC = O. The latter is straightforward to verify. ∎

References

1. Shukla, R., Ranjith, P., Haque, A. & Choi, X. A review of studies on CO2 sequestration
and caprock integrity. Fuel 89, 2651–2664 (2010).

2. Osborn, S. G., Vengosh, A., Warner, N. R. & Jackson, R. B. Methane contamination of
drinking water accompanying gas-well drilling and hydraulic fracturing. Proc. Natl. Acad.

Sci. U. S. A. 108, 8172–8176 (2011).

3. Marx, J. C., Robbins, S. J., Grady, Z. A., Palmieri, F. L., Wohl, C. J. & Rabiei, A.
Polymer infused composite metal foam as a potential aircraft leading edge material. Appl.

Surf. Sci. 505, 144114 (2020).

4. Marx, J., Portanova, M. & Rabiei, A. Performance of composite metal foam armors
against various threat sizes. J. Compos. Sci. 4, 176 (2020).

5. Shi, F., Song, Z., Ross, P. N., Somorjai, G. A., Ritchie, R. O. & Komvopoulos, K. Failure
mechanisms of single-crystal silicon electrodes in lithium-ion batteries. Nat. Commun. 7,
1–8 (2016).

6. Cheng, X., Wang, C., Sastry, A. M. & Choi, S. B. Investigation of failure processes in
porous battery substrates: part II—simulation results and comparisons. J. Eng. Mater.

Technol. 121, 514–523 (1999).

7. Barak, M. M. & Black, M. A. A novel use of 3D printing model demonstrates the effects
of deteriorated trabecular bone structure on bone stiffness and strength. J. Mech. Behav.

Biomed. Mater. 78, 455–464 (2018).

8. Wirth, A. j., Müller, R. & van Lenthe, G. H. Computational analyses of small endosseous
implants in osteoporotic bone. Eur. Cells Mater. 20, 58–71 (2010).

9. Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A.
& Pentland, C. Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216
(2013).

10. O’Sullivan, C. Particulate Discrete Element Modelling: A geomechanics perspective.
Applied Geotechnics vol. 4 (CRC Press, 2011).

11. Cundall, P. A. & Strack, O. D. L. A discrete numerical model for granular assemblies.
Geeotechnique 29, 47–65 (1979).

12. Potyondy, D. O. & Cundall, P. A. A bonded-particle model for rock. Int. J. Rock Mech.

Min. Sci. 41, 1329–1364 (2004).

13. Liu, C. & Sun, W. ILS-MPM: An implicit level-set-based material point method for
frictional particulate contact mechanics of deformable particles. Comput. Methods Appl.

Mech. Eng. 369, (2020).

14. Hu, M. & Rutqvist, J. Microscale mechanical modeling of deformable geomaterials with
dynamic contacts based on the numerical manifold method. Comput. Geosci. 24, 1783–
1797 (2020).

15. Wildenschild, D. & Sheppard, A. P. X-ray imaging and analysis techniques for
quantifying pore-scale structure and processes in subsurface porous medium systems. Adv.

Water Resour. 51, 217–246 (2013).

16. Moës, N., Dolbow, J. & Belytschko, T. A finite element method for crack growth without
remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999).

17. Li, K., Atallah, N. M., Rodríguez-Ferran, A., Valiveti, D. M. & Scovazzi, G. The shifted
fracture method. Int. J. Numer. Methods Eng. 122, 6641–6679 (2021).

18. Miehe, C., Hofacker, M. & Welschinger, F. A phase field model for rate-independent
crack propagation: Robust algorithmic implementation based on operator splits. Comput.

Methods Appl. Mech. Eng. 199, 2765–2778 (2010).

19. Ambati, M., Gerasimov, T. & De Lorenzis, L. A review on phase-field models of brittle
fracture and a new fast hybrid formulation. Comput. Mech. 55, 383–405 (2015).

20. Mehmani, Y., Castelletto, N. & Tchelepi, H. A. Nonlinear convergence in contact
mechanics: Immersed boundary finite volume. Comput. Methods Appl. Mech. Eng. 383,
113929 (2021).

21. Javili, A., Morasata, R., Oterkus, E. & Oterkus, S. Peridynamics review. Math. Mech.

Solids 24, 3714–3739 (2019).

22. Saad, Y. Iterative methods for sparse linear systems. (SIAM, 2003).
doi:doi:10.1137/1.9780898718003.

23. Mehmani, Y., Castelletto, N. & Tchelepi, H. A. Multiscale formulation of frictional
contact mechanics at the pore scale. J. Comput. Phys. 430, 110092 (2021).

24. Li, K. & Mehmani, Y. A pore-level multiscale method for the elastic deformation of
fractured porous media (in revision). J. Comput. Phys. (2023).

25. Mehmani, Y. & Tchelepi, H. A. Multiscale computation of pore-scale fluid dynamics:
single-phase flow. J. Comput. Phys. 375, 1469–1487 (2018).

26. Mehmani, Y. & Tchelepi, H. A. Multiscale formulation of two-phase flow at the pore
scale. J. Comput. Phys. 389, 164–188 (2019).

27. Guo, B., Mehmani, Y. & Tchelepi, H. A. Multiscale formulation of pore-scale
compressible Darcy-Stokes flow. J. Comput. Phys. 397, 108849 (2019).

28. Beucher, S. & Lantuejoul, C. Use of watersheds in contour detection. International

Workshop on Image Processing: Real-time Edge and Motion Detection/Estimation (1979)
doi:citeulike-article-id:4083187.

29. Efendiev, Y. & Hou, T. Y. Multiscale finite element methods, theory and applications.
(Springer Science & Business Media, 2008). doi:10.1007/978-0-387-09496-0.

30. Hou, T. Y. & Wu, X. H. A multiscale finite element method for elliptic problems in
composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997).

31. Castelletto, N., Hajibeygi, H. & Tchelepi, H. A. Multiscale finite-element method for
linear elastic geomechanics. J. Comput. Phys. 331, 337–356 (2017).

32. Xu, F., Hajibeygi, H. & Sluys, L. J. Multiscale extended finite element method for
deformable fractured porous media. J. Comput. Phys. 436, 110287 (2021).

33. Buck, M., Iliev, O. & Andrä, H. Multiscale finite element coarse spaces for the application
to linear elasticity. Cent. Eur. J. Math. 11, 680–701 (2013).

34. Babuška, I. & Osborn, J. E. Generalized finite element methods: their performance and
their relation to mixed methods. SIAM J. Numer. Anal. 20, 510–536 (1983).

35. Jenny, P., Lee, S. H. & Tchelepi, H. A. Multi-scale finite-volume method for elliptic
problems in subsurface flow simulation. J. Comput. Phys. 187, 47–67 (2003).

36. Zhou, H. & Tchelepi, H. A. Two-stage algebraic multiscale linear solver for highly
heterogeneous reservoir models. SPE J. 17, 523–539 (2012).

37. Møyner, O. & Lie, K. A. A multiscale restriction-smoothed basis method for high contrast
porous media represented on unstructured grids. J. Comput. Phys. 304, 46–71 (2016).

38. Ţene, M., Wang, Y. & Hajibeygi, H. Adaptive algebraic multiscale solver for
compressible flow in heterogeneous porous media. J. Comput. Phys. 300, 679–694 (2015).

39. Bosma, S., Hajibeygi, H., Tene, M. & Tchelepi, H. A. Multiscale finite volume method
for discrete fracture modeling on unstructured grids (MS-DFM). J. Comput. Phys. 351,
145–164 (2017).

40. Nordbotten, J. M. & Bjørstad, P. E. On the relationship between the multiscale finite-
volume method and domain decomposition preconditioners. Comput. Geosci. 12, 367–376
(2008).

41. Arbogast, T., Pencheva, G., Wheeler, M. F. & Yotov, I. A multiscale mortar mixed finite
element method. SIAM Multiscale Model. Simul. 6, 319–346 (2007).

42. Wheeler, M. F., Wildey, T. & Xue, G. Efficient algorithms for multiscale modeling in
porous media. Numer. Linear Algebr. with Appl. 17, 771–785 (2010).

43. Ganis, B., Pencheva, G., Wheeler, M. F., Wildey, T. & Yotov, I. A Frozen Jacobian
Multiscale Mortar Preconditioner for Nonlinear Interface Operators. Multiscale Model.

Simul. 10, 853–873 (2012).

44. Arbogast, T. & Xiao, H. Two-level mortar domain decomposition preconditioners for
heterogeneous elliptic problems. Comput. Methods Appl. Mech. Eng. 292, 221–242
(2015).

45. Mehmani, Y., Anderson, T., Wang, Y., Aryana, S. A., Battiato, I., Tchelepi, H. A. &
Kovscek, A. R. Striving to translate shale physics across ten orders of magnitude: What
have we learned? Earth-Science Rev. 223, 103848 (2021).

46. Hajibeygi, H. Iterative multiscale finite volume method for multiphase flow in porous
media with complex physics. M, 182 (2011).

47. Ruge, J. W. & Stüben, K. Algebraic Multigrid. in Multigrid Methods vol. 3 73–130
(Frontiers in Applied Mathematics, SIAM, 1987).

48. Wang, Y., Hajibeygi, H. & Tchelepi, H. A. Algebraic multiscale solver for flow in
heterogeneous porous media. J. Comput. Phys. 259, 284–303 (2014).

49. Borden, M. J., Verhoosel, C. V., Scott, M. A., Hughes, T. J. R. & Landis, C. M. A phase-
field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217–220,
77–95 (2012).

50. Sargado, J. M., Keilegavlen, E., Berre, I. & Nordbotten, J. M. High-accuracy phase-field
models for brittle fracture based on a new family of degradation functions. J. Mech. Phys.

Solids 111, 458–489 (2018).

51. Cao, H., Tchelepi, H. A., Wallis, J. & Yardumian, H. Parallel scalable unstructured CPR-
type linear solver for reservoir simulation. in SPE Annual Technical Conference and

Exhibition 9–12 (OnePetro, 2005). doi:10.2118/96809-MS.

52. Berg, S., Armstrong, R. & Wiegmann, A. Gildehauser sandstone.
http//www.digitalrocksportal .org /projects /134 (2018) doi:https://doi .org /10 .17612
/P7WW95.

53. Bass, J. D. Elasticity of minerals, glasses, and melts. Miner. Phys. Crystallogr. A Handb.

Phys. constants 2, 45–63 (1995).

54. Yvan Notay. An aggregation-based algebraic multigrid method. Electron. Trans. Numer.

Anal. 37, 123–146 (2010).

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships

that could have appeared to influence the work reported in this paper.

☐ The authors declare the following financial interests/personal relationships which may be considered

as potential competing interests:

Yashar Mehmani: Conceptualization, Methodology, Formal analysis, Writing ­ Original Draft, Funding
acquisition

Kangan Li: Formal analysis, Validation, Writing ­ Review & Editing

