Journal Pre-proof
Journal of
Computational

A Multiscale Preconditioner for Microscale Deformation of Fractured Porous Media thsics

Yashar Mehmani and Kangan Li

PII: S50021-9991(23)00156-0

DOI: https://doi.org/10.1016/j.jcp.2023.112061
Reference: YJCPH 112061

To appear in: Journal of Computational Physics

Received date: 27 October 2022
Revised date: 13 February 2023
Accepted date: 6 March 2023

Please cite this article as: Y. Mehmani and K. Li, A Multiscale Preconditioner for Microscale Deformation of Fractured Porous Media,
Journal of Computational Physics, 112061, doi: https://doi.org/10.1016/j.jcp.2023.112061.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and
formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and
review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal
pertain.

© 2023 Published by Elsevier.


https://doi.org/10.1016/j.jcp.2023.112061
https://doi.org/10.1016/j.jcp.2023.112061

Highlights

Multiscale preconditioner for deformation of fractured porous media developed.
The preconditioner accelerates direct numerical simulations at the pore scale.
Application of the preconditioner in existing codes in fully non-intrusive.
Strategy for updating the preconditioner in evolving-crack problems is proposed.
Errors and convergence rates in various microstructures and crack patterns tested.
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Abstract. The direct numerical simulation (DNS) of elastic deformation on digitized images of porous
materials at the micron (or pore) scale requires the solution of large systems of linear(ized) equations.
Krylov solvers are instrumental but suffer from slow convergence without a precondition@. We present a
multiscale preconditioner that significantly accelerates DNS, is scalable on parallel machi and can be
non-intrusively applied in existing codes. The preconditioner is an algebraic reinterpgimgi a recent
pore-level multiscale method (PLMM) proposed by the authors. It combines a global Jitibner with
a local smoother to simultaneously attenuate low- and high-frequency errors, respggti e PLMM, a
single application of the global preconditioner yields an approximate solution tjia iciently accurate
in a wide range of applications (e.g., geologic CO,/H; storage). The combindto smoother enables
improving the approximation even further. While all cracks here are assun¥g to bC static, we propose an
adaptive strategy to update the preconditioner efficiently for evolving- ° ms without affecting the
convergence rate of the Krylov solver. We validate the preconditione PNS and test its convergence
on various 2D/3D microstructures and crack patterns. The agreement, ormance are favorable.

Keywords. Porous media, Pore-scale modeling, Preconditi ultiscale®method, Fracture mechanics

1. Introduction

forrWtion in fractured porous materials is key
ical applications. They include preserving the
integrity of cap rocks in geologic C questrgpn and Ha storage,' inducing hydraulic fractures
in geothermal energy and natural gas eXgction,” designing high-strength lightweight materials for
military armors and airplanes,** yng the failure of battery electrodes,>® and developing
medical treatments for stress frac abecular bones.”® Pore-scale models are valuable tools
that provide such understandj ng the link between the microstructure of a porous sample
and its macroscopic resp ’ Th@main challenge of existing models, however, lies in that they
te

are either overly approx®Wga omputationally expensive.

s®h as the discrete element method (DEM)!®!?> make a series of
] etry (e.g., grains are spherical) and material properties (e.g., grains are
rigid) of a pg e that render them suitable for granular media (e.g., soil), but not the
y complex microstructures encountered in the above mentioned applications

Approximate

fidelity alt®Tnatives, in which computations are performed directly on the microstructure of a
sample captured by a pore-scale image'’ (e.g., X-ray nCT). Examples include the extended finite
element method (XFEM), ' shifted fracture method,!” phase-field models,'®!° immersed boundary
finite volume method,?® and peridynamics.?' In DNS, the governing equations are discretized and
solved on a fine grid that often coincides with the image pixels. This results in large linear (or
linearized) systems of equations, whose solution is computationally demanding for practical



domain sizes. Iterative, in particular Krylov, solvers are a prime choice for solving such systems,
but they require efficient preconditioning to converge at an acceptable rate.??

We present a multiscale preconditioner for solving the linear-elastic deformation of porous
domains with arbitrary microstructure and crack pattern. It combines a global preconditioner, Mg,
with a local smoother, ML, to simultaneously attenuate low- and high-frequency error modes,
respectively. Our main contribution is to develop Mg, as we choose a standard ILU(k) smoother
for ML. The proposed Mg is an algebraic reinterpretation of a recent pore-level multiscale method
(PLMM) developed by the authors;?*-** originally for fluid mechanics.?>>” PLMM approximates
DNS efficiently and accurately by executing the following steps in order: decompose the solid into
subdomains via watershed segmentation,?® construct fine-scale local basis and corregtion functions
on the subdomains, and couple basis/correction functions by solving a global coarse-
problem. Here, we translate these steps into a global preconditioner, the beng
twofold: (1) unlike PLMM, the use of Mg in existing codes is non-intrusive; g the” flexible
choice of smoothers removes a key limitation of PLMM in controlling itgei@an i
Namely, PLMM requires solving local problems on a second set of sub @ s, called contact
grids, to control errors. But in some (low porosity) microstructures, cQita¥garigh span large parts
of the domain, rendering local problems to be solved on them costl though we only consider
static cracks herein, our second contribution is an efficient way g in®Mg for evolving-crack
problems, in which cracks can nucleate and grow by progressive . We define an adaptivity
criterion that updates Mg infrequently while preserving rapid g#hv&gence of Krylov solvers. All

computations associated with building and updating M alable oh parallel machines.
Multiscale preconditioners for elastic deformatg us media are not new, but existing

ones target the continuum (or Darcy) scale. ¢ Mysed on the multiscale finite element method

(MSFE),?*-34 but others for scalar-valued quat®ns (describing fluid flow) also exist and

are based on, e.g., the multiscale finite volum®gethod (MsFV)*>° and the multiscale mortar finite
element method (MoMsFE),** afygng oth®y.* In all, a prolongation matrix is built by
assembling numerically computed fincgale basis vectors on coarse grids into its columns. A
restriction matrix is built too, off irWsposing the prolongation matrix.?>*® Together, these
matrices are used to substantia e size of original fine-grid linear(ized) system. Solving
solution that is then interpolated onto the fine grid using
itial approximation, or a first-pass solution, whose errors are
other.??>*® These steps bear a close relation to algebraic multigrid
th&ey difference being the prolongation matrices are informed by the
of the problem (see e.g.,*®). Our third and final contribution, therefore,
ink between Mg, and hence PLMM, and AMG or MsFE preconditioners
ate prolongation and restriction matrices in Appendix B.

the basis vectors. The re
reduced further using

physics and param

is to establis S
by defi @u
The pap®g outline is as follows: Section 2 describes the problem considered and the DNS
method uggdgp solve it. In Section 3, we detail the multiscale preconditioner through an algebraic
translation of PLMM. Specifically, Section 3.3 briefly reviews PLMM, Section 3.4 shows how
Mg is built from PLMM, and Section 3.6 details how Mg is updated for evolving-crack problems.
Section 4 shows the 2D/3D microstructures and crack patterns used to validate the preconditioner
against DNS. In Section 5, we present results for the first-pass solution obtained from a single
application of Mg, and the convergence rate of preconditioned GMRES. In Section 6, we discuss
implications, current gaps, and perform a complexity analysis. Section 7 concludes the paper.
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2. Problem description

Consider a porous domain Q comprised of a solid phase Qs and a void space Qv, as shown in
Fig.1a (i.e.,, Q=Qs U Qy). Let Q% be the interior of Qs and 0Qs its boundary. The void-solid
interface is ' = 6Qs N 0Qy. The open set Q% may include fractures I'", as depicted by the black
lines in Fig.1a. In this work, we represent I'" using a continuous damage variable defined on Q.
The solid boundary 0€s consists of [V and an external boundary (or bounding box) of the domain,
' (i.e., 0Qs =TV U I'™). Our goal is to solve the linear-elastic momentum equation:

Vio+f=0 (la)
oc=C:¢ (1b)

on Q°%, subject to the boundary conditions (BCs):

o
oonl =t (2b)
rRzO m-O'-n|rR=0 (2¢)

n, and Roller BCs are
imposed, respectively. In Eqs.1-2, ¢ is the stress tensor, & thd ensor, C the fourth-order
stiffness tensor, u the displacement vector, and f'the body forc depends on displacement
via & = V'u = Y»(Vu + Vu"), where V¢ is the symmetric j opei®yor and superscript T is the
transpose operator. The vector # is the unit normal, a nit tangent on any given boundary.
Notice, in 2D, m is a single vector, but in 3D, it cq#Sis o orthonormal vectors m; and m..
The data up and #v are known values of dis @ neMyand traction on I'° and I'N, respectively. In
\

this work, we adopt the following noté bld s¥mbols denote vectors/tensors, non-bold
symbols denote scalars, Latin alphabet is [l for vectors, and Greek alphabet for tensors. In
discussing matrix-vector algebra late per-calpLatin is used for matrices, and lower-case Latin
for vectors. We present all governi ations using 2D notation due to its simplicity (e.g., m
instead of m, and m2). Extending awns to 3D is straightforward.

To represent fractures I
If a point x is fully dama i.c. cked), y(x) =1, and if it is intact (i.e., not cracked), w(x) = 0.
Given I'F, which is a lo

by Borden et al.* to e the corresponding y as follows:

)

, dist(x,T")<1/2
1/2

3)
dist(x,[")>1/2
fracture toughness, / a length scale that controls the thickness of the diffuse cracks,

dist(x,I'") the distance of a point x from I'", and B a constant taken here to be 10°. The impact of y
on the stiffness tensor C is captured via:

C=ew)C, 4

where g(w) = (1 - w)? is the degradation function, and Co the stiffness of the intact solid. Here, we
assume Co is isotropic. Eq.4 describes the isotropic degradation of Qs, which is valid under tensile
loading only. More sophisticated expressions for g(y),”® with anisotropic degradation of Co along



specific directions (i.e., “stress splits”),'®!? also exist and may be considered. The multiscale

preconditioner presented later is not affected by the particular choice of g(y), or the way Co is
degraded. However, if an anisotropic degradation model of Co is chosen, Eq.1 becomes
nonlinear,'” and our preconditioner must be applied to the linearized form of Eq.1.

g
lf‘/‘\& h)-‘(i B
’ Y b4 .« ‘\
E \w%- Yid g
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Fig 1. Schematic of the domain decompositi onstruction. (a) Image of a fractured porous
domain (€2 white, Q.: black, I'": black lines)$ omposition into grain grids (randomly colored). (¢)

¢, are shown. Some cracks in (a) intersect the contact
onfined to the interior of grain grids.

(d) Two basis functions associated w
interfaces, while, a

The benefit of introduci o variable i to replace I'" is that u becomes continuous.
Moreover, the propagatio racldue to incremental loading of Qs is easily captured by solving
an equation for the evolf§gon . In phase-field models, this takes the form:

PAy+y =2Ig'( * (5)
where H" is story variable” ® and is equal to the maximum tensile energy experienced
at each yint % olid since the beginning of loading. Once y is updated via Eq.5, Eq.1 can be
solved agaMyto Wain u at the next loading step. The result is a sequential scheme. In this work,
we develop aRreconditioner for the linear(ized) system arising from discretizing Eq.1 only:

Az =b (6)

where A is the coefficient matrix, b is the right-hand side (RHS) vector, and £ the unknown vector
of displacements. While we do not solve Eq.5 (i.e., cracks assumed to be static), the implications
of having to repeatedly update y in evolving-crack problems on the preconditioner is considered.
At the pore scale, Qs is often represented by a segmented image acquired from an X-ray pCT
scanner (Fig.1a). We refer to the Cartesian mesh over which Eq.1 is discretized, to obtain Eq.6, as
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the fine grid, whose size is an integer fraction of the image pixels. The discretization is performed
using FEM with bilinear shape functions as our DNS solver. We note, however, that the multiscale
preconditioner is neither limited to FEM nor Cartesian fine grids, as other DNS solvers (e.g., FVM)
and arbitrarily complex unstructured grids are equally applicable.

3. Multiscale preconditioner

In the following sections, we present a two-stage preconditioner for accelerating the solution
of Eq.6 in linear solvers. The preconditioner is an algebraic reinterpretation of the pore-level
multiscale method (PLMM),?* a rough outline of which was sketched in an appendix therein for
intact solids discretized via FVM. Here, we extend this to fractured solids using F
solver. Section 3.1 reviews the domain decomposition that is central to the prec
then briefly review PLMM in Section 3.3 to provide some intuition for the algel
presented later. In Sections 3.4-6, we discuss how the global preconditioner
is coupled to the smoother ML, and how Mg is updated adaptively in evoly
In Appendix B, we formulate prolongation and restriction matrices assocf

3.1. Domain decomposition

Fig.1b illustrates the decomposition of Qs into randomly cd
denoted by Q8. The decomposition algorithm was originally prgp¥ by Mehmani et al.?? and is
based on the watershed transform, a morphological opergi imadganalysis,'>?® of the domain
image. The key difference between the decomposition that in Mehmani et al.?? is that the
interfaces between grain grids, called contact iniglffa denoted by I'¥, are not made to
conform to I'" here. Concretely, the water Q argorm 1s applied to Qs while neglecting T,

he cgicks.

which allows contact interfaces to interse M result is a partitioning of fine grids into
those that belong to Q#' versus ['“. Each graiiN@id, ¢, and interface, 'Y, is therefore an aggregate

of many fine grids. In particular, I'9 a finitcQpickness (i.e., roughly 1-2 fine grids). Since fine
grids correspond to an integer fraction &image pixels, and FEM is used as the DNS solver, each
fine grid is a rectangular elem and a hexahedral element in 3D. The fine-scale
displacement unknowns on I'% be odes located at the corners of the elements comprising
I'9. Similarly, the unknowpgfo rrespond to nodes in the interior of Q& The unknowns
assigned to I'Y and Q¢' ar forMmutually exclusive, implying a non-overlapping partition. We

remark that watershed tf%gsfor® cuts Qs across local constrictions, which depends on the porous
microstructure at handNghiNgroperty is a major reason for PLMM’s accuracy in prior work, >* and
that of Mg herein. ining the decomposition is difficult without degrading accuracy, multi-
level coarsenj balancing of subdomains are possible but not pursued.

3.2. Math notation

To singpligl the presentation, we adopt a notation similar to Mehmani et al.>* Let indices gi and

¢; enumerate entities associated with Q& and I'Y, respectively. The boundary 6Q# consists of
e, = 0Q8 N I', representing the void-solid interface, and '8 = 6QE' N I'Y, representing contact
interfaces shared between Q& and its neighboring grain grids. For some Q& I'%lex = Q8 N "™ is
non-empty and 0Q#' also consists of a portion on I'™*. We define C¢ as the index set of all interfaces
"% that are subsets of 0Q¢!, and G¥ as the index set of all grain grids that share I'Y. Since each I'¥
is shared by exactly two grain grids, G¥ has only two members. We use the terms fine-scale and
coarse-scale to refer to entities associated with fine grids and coarse grids (i.e., Q#'), respectively.



Coarse-scale variables are marked with a superscript o, and fine-scale variables with superscript f.
We use the term /ocal to refer to entities associated with a single coarse grid, and global to refer
to entities defined on the entire domain, Qs. The problem dimension is denoted by D (=2 or 3).

3.3. Review of the pore-level multiscale method (PLMM)
In PLMM, Eq.1 is solved by restricting it to each grain grid Q&'

) ué{i n |l"f" = hgicjl (x)
V-(C:V’uéi)=f s.t. ,

uf om | =y (%)
J

assembled. But théy are not known. Hence, the central idea in PLM
and /igici2(x) as scalars u%ic.1 and u°gic2, referred to as ¢

u -n|, =u’
. g gi 8gic;
vi(C:vul)=f st , ©)
u, -m|
whose solution can be expressed as follo
D
u; :(5; + z Zu;ﬁ/:dgoéckd (9)

Ve, eC8i d=1

In Eq.9, ¢/gi.cka are the basis func gi the correction function on Q2. They satisfy:

'S

é‘k/ é‘ld

gced |1-g,
_ (10a)
g, L |Fg 5 5

@, -n |r§f, =
'V @ s.t. L (10b)
¢gi .m |l—~£’z. = 0

Eq.10a is Peferred to as the basis problem, and Eq.10b as the correction problem on Q. The
» in the RHS of Eq.10a are the Kronecker delta. If d = 1, ¢/gict.a corresponds to setting
the normal displacement at I'#ck to one, and all other displacement components at I'%cx and other
contacts, ¥ Vj # k € C<, to zero. If d = 2, only the tangential displacement at ¥ is set to one,
while the remaining displacements at all contacts are set to zero. Fig.1d depicts two such basis
functions for the grain grid in Fig.1c. Note that Eq.10a entails solving #C¢xD local problems on
Q¢! one per interface per normal/tangential BC; the symbol # denotes the number of members in
a set. Eq.10b, by contrast, entails solving only one local problem on Q8. In both Eqs.10a and 10b,




the BCs on I'¥ly are stress-free. If I'%ex # @, some of the global BCs from Eq.2 are inherited by
Eq.10a-b. However, the RHS of these BCs are set to zero (homogeneous) for Eq.10a, but not for
Eq.10b (inhomogeneous). Note the basis problem accounts for inhomogeneities due to the BCs in
Eq.8 on I'#j, and the correction problem for the inhomogeneity caused by the body force f.

The final step in PLMM is to compute u’icka in EQ.9, for which a global problem must be
formulated. Here, the global problem consists of continuity of momentum and displacement:

foe, =Toe (11a)

u;:lc/ - uz’zc‘/ (1 lb)
imposed on all I'Y. Subscripts g; and g2 denote the two grain grids that share I, la equates
the integrated tractions computed on either side of I'?. Given the diffuse represent of cracks
in Section 2, the continuity of displacements in Eq.11b is consistent. Howeve sharp-
crack representation were adopted, Eq.11b would still result in a convergent (g consistent)

global preconditioner. Substituting Eq.9 into Eq.11a-b, and following stepsmgs ehmani et
al.?3 (not repeated), we obtain a small, (N°cD)*(N°:D) system in terms o @ here N°: denotes
the number of contact interfaces. This concludes our review of PLM

1.23

Remark 1. To correct errors caused by the localization assump cMani et al.” introduced
a second set of coarse grids, called contact grids. These did not of Qs, only a small region
around I'Y, and enabled very fast convergence to the DNS ?.l " However, in low-porosity
media, contact grids tend to overlap and must be merg causesome contact grids to span

large regions in Qs, rendering local problems defined stly. The preconditioner of Section
co
$

3.5 addresses this drawback by obviating the peed grids altogether.

Remark 2. If Q¢ is intact, the stiffness tew @ ;
to the formulation of Mehmani et al.*> But 1§ is cracked, two choices exist for C in Eq.10a: (1)
the damaged stiffness in Eq.4 (= g(#§0); or (Muthe intact stiffness Co. The former is consistent
and more accurate, but computational[gostly for evolving-crack problems. This is because if I'"
evolves during loading, so does g basis functions must be updated. Since Eq.10a entails
multiple solves on Q& per update®t can be prohibitive. The second choice of Co does not
require updating the basis fi is inconsistent unless correction functions are computed
iteratively. We explore thy roaW in a separate paper,”* where we show convergence is slower.
For the preconditioner uss®next, we outline an optimal way of updating the bases.

3.4. Building the §pbalfy-econditioner
Building % ba®preconditioner, Mg, is equivalent to solving the global fine-scale system

in Eq.6 70 Iy. We proceed as follows: Given the decomposition of Section 3.1, the fine-
scale disp ot unknowns are partitioned into those that belong to Q# versus ['Y. We then
construct 2 pdmutation matrix, W, such that when applied to Eq.6, yields the equivalent system:

a corresponds to Co, and PLMM reduces

At=b = WAWW$=W'h = Ax=b (12)
7

with the following block structure:

As  AS g g
i X ] L ®
g 4 b X



where

c __ C;
Aii -0 Ag B [Ag‘f ](N[D)x(Nng)
e : g€ A
Ag - . . . Ac - [ch ](N}{,D)X(N[D) (14)
O con AgNg

Eve J(v/ D! D) A=l 2 ](NfD)X(N{D)

The matrix W is unitary (WWT = I) and has 0 or 1 entries. In Eqs.12-14, Mg and N are the number
of unknowns associated with Q& and I'Y, respectively, and Ny =X Mg and N.=3X;N. The
symbol N8 denotes the total number of grain grids. The permuted matrix A consistsgf blocks with
super/subscripts gi and ¢; that correspond to Q& and I'Y, respectively. A%, is squ¥a®and block-
diagonal, with A%y representing the stiffness matrix on Q&' In contrast, A% and A thin and
rectangular. Because A is symmetric, a result of our FEM discretization of Q iti®bilinear
test/trial functions, A% = (A%)" and A% = (A9g)".

We next transform Ax = b using a reduction matrix* Q that embeds tion assumption

in Eq.8. The transformation is as follows:

Ax=b, x=Qx, = Q'AQx,=Q'b = A,x,=b (15)

where ,

1° I
I O DxD
Q :{ (N D)<(N/D) } 0= @ =| (16)
I

@) Q°

The (2,2)-block, Q°, is itself block diagonal and
s. The matrix 1¢ consist of M.; identity matrices of size
ice Q° is (MeD)x(N°:D), where N°. is the total number

O

block is an identity matrix of size (
consists of sub-matrices 1° on its (i ;f
DxD (i.e., Ipxp) concatenated vert
of contact interfaces. It is cle
Am=QTAQ and b =Q"b ¢ following block structure:

} Xy =[ﬂ (17)
X

e coarse-scale unknowns in PLMM (i.e., u%i k4 in EQ.9).

where x° co % S

To inWyt N L16, note that left-multiplying a (M + N.)DxX matrix by QT, where X is an
arbitrary int&ger, sums all rows associated with the fine-scale unknowns defined on I'Y along each
gction separately. The result is a (Mg + N°:)DxX matrix. In particular, QTA yields
the “integrated” momentum balance equations on I'Y; same as Eq.11a. Similarly, right-multiplying
a Xx(Ng + N\o)D matrix by Q, sums all columns associated with I', resulting in a Xx(Ng + N°:)D
matrix. In particular, QTAQ entails that the fine-scale displacement unknowns defined on each I'”
are equal; same as the localization assumption in Eq.8. Lastly, left-multiplying a (N + N)DxX

! This was called the “prolongation matrix” in Mehmani et al.* (Appendix C therein), which is a misnomer.
2 The matrix 1 was specified incorrectly in Mehmani et al.>® as an all-one matrix (Appendix C therein).



matrix by Q, duplicates the reduced rows associated with I'9 over all fine grids comprising I'; on
a per-coordinate-direction basis. In summary, the reduced system in Eq.15 consists of fine-scale
unknowns in the interior of grain grids, x, and coarse-scale unknowns on contact interfaces, x°.
The reduced blocks of Am and bu are specified by overbars in Eq.17. While Awm is only slightly
smaller than A, the reduction decouples the sub-systems associated with each Q& Our remaining
task is to compute the approximate solution xu. But first, we need a definition:

Definition. Let E&; and R&; be the grain-grid extension and restrictions matrices of Q& and E°.
and R the contact extension and restrictions matrices of I'“, respectively, defined as:

i = i &i i T i = i T
B¢ =[A% A% ..., A% ] RE =(E¥) (18a)

8o (N;D)x(N;D)

EY =[A7 AL ..o AY ]T

(N°D)xD

RS =(E2) (18b)

where

I, if j=i P

(NJ.DY(N]D) , I, =
Ay =1 . I O (18¢)
“ 0 if j#i 0y, i

(N/ D)x(N! D) DxD
g g

Multiplying a (WgiD)x1 vector on Q' by E#'g extends it to a (M tor on all grain grids (i.e.,
U;j Q¥). Similarly, multiplying a Dx1 vector defined on I'*' by, nds it to a (N°.D) %1 vector
on all interfaces (i.e., Uj I'Y). Multiplication by R& or @s in thMpposite direction.

Now, to solve Amxu = bur, we form the followi r ghmplement system:>?
Sux’=s, (19)
where
S, =A°—A° (Af) Af AT(AZ) bt 20
M T e T g ( ) SM g) ( )
by performing block-Gaussian el on Eq.17. Solving Eq.19 for x° allows x¢, and thereby

xu, to be computed via:

xt=(Af) (b*-A 1)

1t10n it is ill-advised to construct the Schur complement matrix, Swm,
erting A%g. Instead, only the action of Sm on a vector is desired. The
cause Swm is very small, i.e., (N°D)x(N°:D). We can therefore adopt the
ctually forming, Sm, column-by-column as follows:

In classwal domal de

(22)
k—=1,k,k+1
g\ Ag T
col, (B)=—(A%) Afe, ¢ =[0,..., 0,1,0,...0]0,. (23)

We refer to B as the basis matrix, whose k™ column is obtained by multiplying -(A%;)'AY by the
unit vector ex in Eq.23. Because A%, and thus its inverse, are block-diagonal, coli(B) requires



solving a local sub-problem on only two grid grids. To determine which grain grids, notice the K
entry in ex (i.e., the only non-zero entry) corresponds to the interface I, where:

k
qﬁgw (24)

If ' is shared between grain grids Q91 and Q9%2, then:

-1 _ -1 _
col, (B) = —E* (Agj ) AfRie —EL (L) AR, (25)
,pfkl 7pfk2
where the red highlighted terms require, from left to right, solving local proble Q9k1 and
Q9kz respectively. Notice we have used here the contact restriction and grain- extension
operators defined above. We denote the highlighted terms by pf k1 and p,f k2 and® hem as
basis vectors. These are precisely the basis functions obtained from solving Eq. LMM. All
basis vectors, and Sm assembled therefrom, are computed once and stored %v I memory
We next proceed to compute the RHS vector sy in Eq.19. This is g#ne giting Eq.20 as:
sy =~ At ¢t =(A%) b* (26)

where ¢ is called the correction vector. Once again, becaus block-diagonal, c¢ can be
obtained by concatenating smaller correction vectors ¢ %) 'b¢ ®fined on each Q8. We note
that ¢& corresponds precisely to the correction funct iffied from solving Eq.10b in PLMM.
If b8 = 0, then ¢¢ = 0 and no computations arezequ in the correction vector on Q&

d

Given Swm and su, we can now solve Eg

x? into Eq.21. However, a careful inspectio
x¢ =c*+Bx’°

27)

any extra costs because B and ¢# have already been
t of the reconstruction step in Eq.9. Given x¢ and x°, we

which means calculating x¢ does
computed. Eq.27 is the algebraic

The above approxg
iterative solvers, ing means repeatedly solving systems like Aw = v approximately
for w, given an grbi uilding Mg, therefore, consists of constructing the permutation matrix
W, redugtionf@ asis vectors p¢’, and basis matrix B once, and storing them all to computer
memory QK¢ % e computations of p¢ and B can be fully parallelized across Q&' In applying

Mg for eac ector v, we only need to compute c¢, which is also parallelizable across Q¥

Remark Appendix B, we show that Eq.26 is equivalent to s» = b + BTh¢, which seems to
obviate computing c8. However, ¢£ is still needed in Eq.27 to reconstruct x8. If our goal is to merely
obtain an approximate solution, then ¢ must be computed once and used in Eq.27. But if our goal
is to precondition AX = b in an iterative solver, where Aw = v is repeatedly solved for different
v, recomputing ¢ can become cumbersome. In Appendix B, we show how this cost can be
eliminated by reinterpreting &' as yet another basis vector that is computed once.

Remark 4. The above global preconditioner can be expressed as Mg = RAP, where P =WQP is a
prolongation matrix and R = PT a restriction matrix. Note P is the prolongation matrix associated



with the reduced system Amxum = by in Eq.15, which we formulate in Appendix B. Using this
multigrid notation, the approximate solution can be expressed as Xg,rx = Mg 1p = P(RAP)1Rb.
In Appendix B and Section 6.4, we discuss the relation of Mg to algebraic multigrid methods.

3.5. Combining the global preconditioner with a smoother

To apply Mg in iterative solvers, we must pair it with a local preconditioner, or smoother,
denoted by ML. The pairing is done as follows:*?

M7 =M+ M/ (I-AM() (28)
yielding the multiscale preconditioner M. The rationale for Eq.28 is that Mg, by it@lf, attenuates
only long-range, or low-frequency, errors. By contrast, ML can efficiently remove -frequency

errors, but is slow to correct long-range errors on its own. The pairing targets bot . uencies
thereby accelerating convergence. We consider smoothers that are constructed @ s:

M = iM;lﬁ(I—AM;I) O (29)
i=1 j=1

where M; is an incomplete LU-factorization of A, i.e., ILU(k) wi ing the fill level. Eq.29
entails a multi-stage application of My, where ns is the number thing stages. More details
on Eqs.28-29 can be found elsewhere.?>*! In Section 5, we test n a GMRES solver.

3.6. Updating the global preconditioner Q‘
Suppose a global preconditioner Mg has bage b8gt for M Now let Qs be subject to progressive

loading, during which cracks nucleate andgffolvdl altgpg the stiffness matrix A via g(y) in Eq.4.
How should Mg be updated? And how oftt Mg is not updated at all, the Krylov solver will
require more and more iterations to gonverge Qg cracks grow with loading steps, thus increasing
cost. If Mg is updated at each loading , the cJst of updates may override the time spent by the
solver itself. Here, we present an ienqway of updating Mg that preserves rapid convergence.

Updating Mg means updati
grain grids Q#f in which n

matrix B and the Schur matrix Sm with respect to those
ave nucleated and/or old ones have grown. This entails
'x O®the impacted Q¢'. However, just because cracks have evolved

recomputing the basis ve

in Qf' does not mean itSNQasis Wenctions need updating. A more efficient strategy is to adopt the
adaptivity criterion beNgy, Wpich is supported by numerical observations discussed later:

ersect a contact interface I'®! between two adjacent grain grids Q&' and
by recomputing all the basis vectors defined on Q2! and Q.

This crite cs that basis vectors, hence Mg, are updated infrequently and only if necessary.
In other word cracks confined to the interior of grain grids are ignored. To determine whether a
crack int s I, we check if g(y) < 10 at any point on I'“l. After identifying the grain grids
satisfying the criterion, denoted by the index set G , we update Mg by executing Algorithm 1. The
terms with an under-tilde denote vectors/sub-matrices altered by the evolved cracks. The red
highlighted terms correspond to precomputed and stored variables of the old Mg, which need not
be recomputed. The outputs of Algorithm 1 consist of updated matrices B and Swm.



Algorithm 1. Updating Mg

Inputs: Coefficient matrix A altered by evolved cracks

Outputs: Updated Schur matrix Sy; and basis matrix B
Note 1. S),and B, along with W and Q, comprise Ms
Note 2. Matrices W and Q remain unaltered by cracks

Do g €G
Do jeC,
Do de{l,..,D}
k=(-)D+d

P
pf’ = —(éi ) éiR{zek

col, (B) = col, (B)+ E{ (13:3 _pt )

col, (Sy,) = col, (8,,) + EY (K pf ~AY pf')

End do
S, =S, + E? R?’ (& - Rj )Ei‘ Ri’
End do
End do

To apply the updated Mg to the evolved system, we @ simWyr to Section 3.4 but with a
key modification: we account for a// cracks in calculati egorrection vectors ¢, not just those
intersecting a contact interface. Let us adopt the follglvi ion: variables with under-tilde (e.g.
x ) correspond to grain grids with cracks in indQ least one contact interface; variables with

nteriofl) cracks that do not intersect any contacts;
orrespond to intact grain grids. For example, the
ids satisfying the above definitions. Similarly,

underline (e.g., x) correspond to grain grid
and variables with no under-tilde or underli
sets G, G, and G contain the indice grain

o8 = (A¥g) b8, c#' = (A%4)'bE, a

Sy =b— Z K;cg" —

8 <G 8,

Given su, we solve Eq. x°. To compute x2, we have two options: (1) Ignore interior

cracks in G and use requires no extra computations. This means x is reconstructed

using basis vectorg thatQgste the grain grids in G are intact; (2) Include cracks in G in exchange

for solving one exWysul®ystem per grain grid in G; outlined in Appendix A. This compensates
) tors defined on the grain grids in G assume the solid is locally intact.

A £,))1p% We now assemble su via:

cc® (30)

—g—

al experiments revealed that both options for computing x¢ lead to identical

tes in Krylov solvers. This is because fine-scale details of the solution around cracks
gh G, even if missed during the reconstruction of x¢ via Eq.27, are captured by the
smoother, ML in Section 3.5. On the other hand, including such details is equivalent to having a
block-Jacobi smoother built into Mg, lessening the burden on ML chosen in Section 3.5. In Section
5, we adopt the latter option of using Eq.A.2 to reconstruct x&, because it is also useful for obtaining
accurate first-pass solutions for comparison against DNS.

Remark 6. A single application of the global preconditioner, Mg, to Eq.6 yields an approximate,
or first-pass, solution, i.e., Xaprx. = Mg ™'b. The quality of this solution is a direct reflection of the
ability of Mg to attenuate low-frequency errors. If Mg is built from scratch for a fractured domain,



following the procedure outlined in Section 3.4, we refer to the first-pass solution as Ao. The letter
“A” indicates all cracks are included in building the basis vectors (hence B and Sm) of Ma. But if
Mg is obtained by updating a previously built global preconditioner via Algorithm 1, we refer to
the first-pass solution as Uo. The letter “U” indicates that Mg has been updated.

4. Problem set

We test the multiscale preconditioner for the domains in Fig.2. They include a 2D disk pack
(P2D),? a 2D sandstone (S2D),* and a 3D sandstone (S3D).%? The stiffness tensor Co is isotropic
with Lamé parameters A = 8.3 GPa and p = 44.3 GPa corresponding to a-quartz.>® In all domains,
the boundary corresponding to x = Lx is fixed and a constant displacement of up = 1 is imposed on
x = 0 along the negative x-direction (i.e., tensile); where Lx is the domain size in f§eggx-direction.
All lateral boundaries satisfy roller BCs. The void-solid interface I'™ is stress-free, lying zero
pore pressure. The fine grids correspond to the image pixels in Fig.2, which hay# :
x 576 in P2D, 541 x 546 in S2D, and 67 x 68 x71 in S3D. Fig.2 also shows thd
each domain into grain grids. Their number, N8, is 76 in P2D, 120 in S2D, $

For each domain, we consider different crack patterns shown in &
f

consider three patterns: (1) ci: all cracks are confined to the interi grain grids (i.e., none

y n¥et interface; and (3) cs:
cracks are obtained by superposing the cracks from patterns ci 3 % or S3D, we consider two
crack patterns cso and ci00, which correspond respectively to 1190 and 100 elliptical cracks
with different sizes and orientations randomly inside th@ For b®vity, we use P2D-ci1, P2D-

intersects a contact interface); (2) cz2: all cracks intersect at leas

c2, P2D-c3, S2D-c1, S2D-c2, S2D-c3, S3D-cs0, and refer to each domain-pattern pair.
In some cases, where we consider domains t 1 containing no cracks), we use P2D-
co, S2D-co, and S3D-co. The phase-field le le meter / and fracture toughness G¢ in Eq.3
are setto / =24 =0.02 mm and G, = 2.7x a-mm, respectively, in all cases.

5. Results

In the following sections, we re the first-pass solutions Ao and Uo obtained from a
single application of Mg against t NS solution from a direct solver. Section 5.1.1 presents
results for intact domains, a 1 .2 for fractured domains. The intact-domain results are
discussed in relation to t sults of Mehmani et al.”> We measure the errors of Ao and Uo
via:

||uM 1/2
Sup Ey |Q|j< ")’ dQ (31)

where E' antlfy the pointwise and L2 errors of the displacement field, respectively, both
expressed ingrcentages.” In Section 5.2, we analyze the convergence rate of GMRES when right
preconditd by the multiscale preconditioner M in Eq.28, made up of Mg and ML. For ML, we
consider ILU(k) with k=0, 1,2 as My, and nss = 1, 6, 12 in Eq.29. For Mg, we consider two options:
(1) Mg is built from scratch, including all cracks in the basis vectors, using the procedure outlined
in Section 3.4; and (2) Mg is updated from a previously built Mg for the intact domain. We use the
simple, but abusive, notation of Ao to refer to the former Mg, and Up to refer to the latter Ma.
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®ed to test the multiscale preconditioner. In P2D and S2D, c; denotes cracks
confiné e interior of grain grids, ¢, denotes cracks intersecting at least one contact interface,

elliptical C¥Acks, respectively, with different sizes and orientations placed randomly in the domain.

5.1. Single application of the global preconditioner
5.1.1. Intact domains

Figs.4-5 compare the first-pass solutions obtained from a single application of Mg against DNS
for P2D-co, S2D-co, and S3D-co. Because these domains are intact, the first-pass solutions Ao and
Uop are equal, and only Ao is plotted. Figs.4-5 show that the displacement magnitude |u|, maximum
shear stress, am, and volumetric strain, V-u of Ao are in excellent agreement with DNS. Table 1



summarizes the relative L-errors (%) of the displacement field for Ao (see the “co” columns). In
all domains, E*2 < 5% which is comparable to the PLMM errors reported in Mehmani et al.?* for
the same intact domains. The small numerical discrepancy between the two is likely due to the
fine-grid discretization method, i.e., FEM here but FVM there. The high accuracy of Ao implies
that it can serve as an attractive global preconditioner for intact domains.

Fig 4. Single application of the glo

Om

N

o

V.u
150 3
100
' 1
’ 50
0 -1

Fig 5. Single application of the global preconditioner Ao against DNS for S3D-cy.




Table 1. Relative Lr-errors (%) of displacement (£*,) between the first-pass solutions Ay and U, obtained
from a single application of the global preconditioner versus the exact DNS solution.

Lo lalolalolalal ol ol
“ 0.46 2.34 5.42 6.54

0.64 3.07 3.58 1.8 6.04 4.57 6.05

m 0.46 5.88 3.18 Srakil 1.8 8.61 4.99 8.49 4.57 6.54 6.05

5.1.2. Fractured domains

Similar to Section 5.1.1, Figs.6-8 compare the first-pass solutions obtained J@®m a single

application of Mg against DNS for P2D-c3, S2D-c3, and S3D-c3. The results for, tterns c1
and c2 are not shown as they are less challenging than c3. Here, the approximat % honS Ao and
Up differ, hence, both are shown. As in Figs.6-8, we see that Ao and Uo are jpexQgllegl agreement

OQnts for all cracks
marizes the Lo-
ectively, for all domain-

ack pattern c2. This is

with DNS. Unsurprisingly, Ao is slightly more accurate than Uo because {
in the building of Mg, not just those that intersect contact interfaces.

errors associated with Ao and Uo, which are £%2 < 6% and E*2 < 8.5%. 1
crack pattern pairs. Notice £ for Ao is roughly equal to E*> '
expected because all cracks are included in computing Uo throug

in Section 3.6. By the same token, the errors of Uo are larger th,th 2 of Ao for pattern c1 because
no cracks are included in the construction of Mg for @ite thisTapparent superiority of Ao
S

over Uo, the next section shows they perform comp G within a GMRES solver. Figs.9-
11 depict pointwise errors of Ao and Uo, whisiatcWg to C®ficentrate near the cracks and contact
interfaces. The latter is due to the localizg @ umgon in Eq.8. Removing these errors is the
main function of the smoother ML discussc¥gagBection 3.5.

{08
06
04

0.2

Fig 6. Single application of the global preconditioners Ao and Uy against DNS for P2D-cs.
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Fig 8. Single application of the global preconditioners Ay and U against DNS for S2D-cs.
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Fig 11. Pointwise displacement errors, £*, (%), of Ag and Uy, and S2D-cjoo.
We conclude this section by noting the first-pass solutlon Uo have one fundamental
difference from early iterates produced by a generic A the rmer conserve momentum
whereas the latter do not. This property also applies o iterates Am and Um obtained from

and all subsequent iterates of Mg,

avmg to converge all the way to the exact

sol ers. As an example, using an aggregation-

based algebraic multigrid (AGMG) splver** he S2D-c3 domain, we obtained E*> = 48%, 41%,

and 39% errors, respectively, for thag® , 2" Wnd 4™ iterates. Not only do these not conserve
momentum, they are 6-8 times less geculyge than Ao and Up in Table 1.

our global preconditioner. The implication is
can be used readily in engineering applicati
DNS solution. The same cannot be said ab

5.2. Preconditioning a Kryl RES)

the multiscale preconditioner M in Eq.28, which combines
Mg and ML in a right Nioned GMRES solver. We probe different combinations of Mg,
based on Ao or U, based on Eq.29 with M;=1LU(k), k=0, 1,2, and nsr= 1, 6, 12. We
chose ILU(k) for Mg ovegther popular smoothers, such as Gauss- Seldel because ILU(k) is more
flexible in the ) racy is hierarchically controlled by the fill-in parameter &, and because
prelimi tg paled it to be more efficient; often by x2 in CPU-time. We consider all pairings
of the doRgiMggglcrack patterns shown in Figs.2-3, as well as intact domains, i.e., P2D-co,1.23,
S2D-co,1,2,3, S3D-co,50,100. We declare GMRES to have converged if the normalized residual
satisfies W& D|l/||b]| < 10" in less than 150 iterations. Otherwise, the solver is said to have
“diverged.” We set the restart value of GMRES equal to 20. Table 2 summarizes the number of
iterations required to converge in all cases. Under S3D, “div”’ means “diverged”. Table 3 also lists
the total wall-clock time (WCT) associated with each case. This includes times spent on building
Mg and ML plus solving the linear system with GMRES. For comparison, Tables 2-3 also include
the number of iterations and WCTs of an aggregation-based algebraic multigrid (AGMG) solver™*
that is known to outperform classical AMG solvers.*” For AGMG, iterations are performed until
|A%- b||/||b|| < 10® without capping their number at 150. The AGMG source code was obtained




from agmg.eu. All cases were run in series and on an Intel Core(TM) 19-10980XE CPU @
3.00GHz, 128 GB RAM machine. Each run was repeated three times to measure WCT.

Table 2. Number of GMRES iterations to converge (||Ax- 5|/||b|| < 10°*) for different combinations of the
global preconditioner Mg built from Ao and Uy, smoothers with M; = ILU(k) where k=0, 1, 2, and
number of smoothing stages is n;; = 1, 6, 12. All domains, cracked (ci, ¢z, ¢3) and intact (co), are listed.
Results of an aggregation-based algebralc multigrid (AGMG) solver are also included for comparison.
GMRES runs marked “div” indicate iterations exceeded 150. No such limit was imposed on AGMG.

[ 2 [e [z =] e =] 2] [=]a e e o e =] - IR
n 21 10 8 15 8 7 12 7 6 21 10 8 15 8 7 23

12

: (1) Whether Mg is built from Ao or Uo makes little
difference in the number of GMR ®ions. This is noteworthy because it means updating Mg
via Algorithm 1 is as good from scratch following the steps in Section 3.4. Note the
WCTs associated with Ugra¥gslig y higher than Ao due to implementational differences in the
UoWG is first built for the intact domain, then updated to account for
cracks, resulting in re ubdomain solves that artificially inflate WCT. In practice, the WCT
pdating an existing Mg; (2) The larger the fill-in value £ is in ILU(%),
stages ns are performed in Eq.29, the fewer iterations are required by
GMRE . However, there are diminishing returns in terms of WCT. For example,
performan s in nearly all cases as ns: grows larger than one. The only exception is ILU(0),
for which ns: 36 is optimal. Another example is if we fix nsr and go from ILU(1) to ILU(2), WCT
either sta nstant or worsens (e.g., S3D). In contrast, we always see improvement when going
from ILU(0) to ILU(1). We thus recommend ILU(0) with nss = 6 or ILU(1) with nss =1 as the best
smoothers; (3) In S3D-cso and S3D-cio0, large values of £ and ns can lead to divergence, the
patterns of which are illustrated in Fig.12f. It is interesting to note that the intact domain S3D-co
does not diverge, which may indicate that generic smoothers such as ILU(k) are not optimal for
fractured porous materials. In Section 6.1, we discuss how specialized smoothers may be designed
in the future that are more robust; Finally (4) if cracks are confined solely to the interior of the
grain grids (pattern c1), convergence rate is comparable to intact domains (pattern co). But if cracks




intersect contact interfaces (patterns c2 and c¢3), convergence is slower (by x2) because the quality
of the localization assumption in Eq.8, and thus Mg, is degraded by such cracks.

Table 3. Total wall-clock times (WCT) in seconds corresponding to the cases in Table 2. WCTs include

the times spent on building Mg and My, plus solving the linear system. All cases are run in series. AGMG

results are obtained from a compiled FORTRAN code, whereas preconditioned GMRES results from an

uncompiled MATLAB code. Despite the disadvantage, GMRES is on par with AGMG, and outperforms
AGMG for large domain sizes such as P2D-H, depicted by Fig.13.
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The solid lines in Fig.12 illustr \Vergence pattern of GMRES for a subset of the entries
in Table 2. They correspond to P D-c3, and S3D-cso with Mg built for Uo. In Figs.12a-c,

we set M; to ILU(0) and varyffis8 Figs.12d-f, we fix ny = 12 and vary M; between ILU(0),
ILU(1), and ILU(2). The ts c®o the same observations made above from Table 2. Namely,
there are almost no impNgyem®Ys in the number of iterations from ny = 6 to 12 in Figs.12a-c, or
from ILU(1) to ILU(2n W§gs.12d-f, only diminishing returns in terms of WCTs (see Table 3).
Fig.12f also sh at in ILU(k) and ns in Eq.29 are set too large, convergence for S3D-cso

e now answer two important questions: (1) Is Mg necessary to achieve

fast co @ he black dashed lines in Figs.12a-c show the convergence patterns of GMRES
if precon Qe only M = ML (excluding Mg). Here, ML is built from Eq.29 using M; = ILU(0)
and nse = 6. ['Ql1 cases, GMRES converges very slowly (or “diverges” by our standard) if M = ML

e solid black lines. The corresponding WCTs for P2D-c3 and S2D-c3 at the 150™
iteration, when neither has converged, are 137s and 96s, respectively. These WCTs are 3-4 times
larger than those in Table 3 where ML is paired with Mg. The WCT for S3D-cso with M = ML is
205s and GMRES converges in 116 iterations. While this is on par with Table 3, we note this is
because S3D is a rather small domain (i.e., 67x68%71; still memory demanding because the matrix
is denser than 2D). Hence, a few smoothing steps can quickly propagate error corrections spatially.
For the much larger domain P2D-H, described later, GMRES does not converge with M = ML even
after 500 iterations and ~3 hours. With Mg, on the other hand, GMRES converges in ~30 minutes



and ~50 iterations (Table 2-3). These observations demonstrate a need for Mg to accelerate Krylov
solvers; (2) Is it necessary to update Mg as cracks evolve? The red dashed lines in Figs.12d-f show
the convergence of GMRES if preconditioned by M in Eq.28, where Mg is built for intact domains,
i.e., basis vectors of Mg are not updated via Algorithm 1. Here too, we see GMRES converges
very slowly compared to the solid red lines in Figs.12d-f, highlighting the need for updating Mg
in evolving-crack problems. In Section 6.4, we discuss this point further and hypothesize a
potentially better way of updating Ma.

P2D [—n, =1 S2D [—n, =1 S3D
10° —n =6 —n =6 10°
| n, =12 n, =12
- ..ML only
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GMRES iterations for different number of smoothing
pi; = ILU(0), ILU(1), ILU(2)). Plots correspond to P2D-cs,

Fig 12. Normalized residual versuyg
stages (ns: =1, 6, 12) and smoothe

Eq.29, with M; = ILU(0)
dashed lines in (d-f) ¢

Finally, TibIleY clude results for AGMG. Compared to GMRES preconditioned by Mg,
res substantially more iterations to converge, often by a factor of 10-30. Its

olver corresponds to a compiled FORTRAN code, while the preconditioned GMRES
solver corresponds to an uncompiled MATLAB code. Through this lens, we see that despite being
significantly disadvantaged, GMRES manages to perform as well or even better than AGMG. The
difference amplifies dramatically as we increase the domain size, which is relatively small for the
geometries in Fig.2. We thus consider a much larger version of P2D, called P2D-H. Fig.13a depicts
its geometry, which contains 100 randomly placed fractures. The associated image has 2400x2400
pixels with 5,357,211 elements and 5,425,144 nodes. This amounts to ~11 million displacement



unknowns. The domain is pulled from the left side, while fixing the right boundary and leaving
the top and bottom boundaries traction-free. The displacement field is solved on an Intel® Xeon®
CPU E5-2690 v2 @ 3.00GHz, 126 GB RAM machine; shown by Fig.13b. Tables 2-3 summarize
the number of iterations and WCTs of GMRES and AGMG for P2D-H. Not only does the
preconditioned GMRES converge in significantly fewer iterations, by almost a factor of 26, its
WCT is also smaller by over 2.5 times. If compiled, we expect GMRES to accelerate by another
integer factor. Notice all calculations are in series. Added benefits can be reaped by exploiting the
fact that the building and applying of Mg are amenable to parallelism. We conclude by noting that
roughly 30-50% of the GMRES WCTs for P2D-co-3, S2D-co-3, and P2D-H, and ~70% for S3D-
C0,50,100, are spent on constructing Ma. Specifically, this cost is ~13s for P2D-co-3, ~7s for S2D-co-
3, ~156s for S3D-co,50,100, and 310s for P2D-H, when Mg is based on Ao. The cost isQightly higher
for Uo due to implementational differences already discussed. Building ML, by co , is cheap

and costs ~1s for P2D-co-3 and S2D-co-3, ~19s for S3D-co,50,100, and 25-35s - Unlike
AGMG, which must be executed from scratch at each loading step in an evolvi k problem,
Mg is reusable across loading steps and incurs a small cost in updating vi 1.

P2D-H

Fig 13. (a) Geometry glid c attern of the P2D-H domain used to test the scalability of the
multiscale precondj@n®ayersu$ AGMG. (b) Displacement field associated with the simulation.

6. Discussion

bed in this work, ILU(k) with £ =0, 1, and 2, are rather generic, or black-box,
uninformc®§ pecific microstructure of the domains being targeted. We believe one could do
much better b designing more specialized smoothers. In the geometric interpretation of PLMM,?
the authoS#d introduced a second set of coarse grids, called contact grids. These straddled and
covered a narrow region around each contact interface, where errors were known to be large due
to the localization assumption in Eq.8 (see Figs.9-11). Contact grids are attractive because they do
not cover all of Qs, and the cost of solving local problems on them is low. We hypothesize that a
successful algebraic reinterpretation of these local problems as a smoother would result in even
faster convergence rates than those listed in Table 2; after pairing with the Mg developed herein.
The challenge is to develop this preconditioner without having to merge overlapping contact grids,



as was done previously;*® a key drawback of PLMM in low-porosity domains. The formulation
and testing of such a smoother is subject to ongoing research.

6.2. Frequency of preconditioner updates

Recall that crack patterns considered in Section 4 were fixed. If the cracks are evolving, due
incremental loading of Qs, then the Mg constructed at one loading step can become ineffective in
later loading steps. Specifically, the convergence rate of the linear solver would likely deteriorate
progressively. The remedy this, Mg must be periodically updated. The adaptivity criterion in
Section 3.6 ensures such updates are sufficiently infrequent and local to keep computational costs
low. Each time cracks, I'", intersect a contact interface between two grain grids, the
of those grain grids only are recomputed. This implies that cracks nucleating angbropagating
within the sole confinement of a grain grid are ignored. In Section 5.2, we teste pferi
updating Mg initially built for intact domains to fractured domains via Algorit
Table 2 confirmed that the criterion would preserve the convergence rate of gk
loading steps. In other words, the updated Mg is as good as an Mg built fro %
domain. Future work will focus on applying the adaptivity criterion AQL
crack problems and quantify the computational gains obtained the

VETS across
h tor the cracked
m 1 in evolving-

6.3. Computational complexity

The initial construction of Mg and its subsequent u 1a AMygrithm 1 are parallelizable.
This is because computations associated with the basis P4, and correction vectors, ¢¢, are
fully decoupled across all grain grids. While a riggu fication of computational cost and
parallel scalability is, as of now, outside our uMg limitations in implementation, we provide
a brief analysis of the computational com# bf MC®Let Qs consists of MV fine grids, V¢ grain
grids, and N¢ contact interfaces. Also let p< fd c¢' be computed using a linear solver on Q¢ that
scales as O(n”), where n is the numb®of displMpment unknowns and S € (1,3). Hence, the wall-
clock time (WCT) associated with buil Mg is:

T,iu =ON'D/ N x(#C /P (32)

prc

and the WCT associated wil updRgng Mg is:
T,

updat

=O(N'D/ (2®CSD)N f° /P

pre

(33)

where #C9' denoi®ythe Werage number contact interfaces per grain grid, Ppre 1s the number of
parallel proce ”! - ed, and f* is the fraction of contact interfaces newly intersected by cracks

bd for in Ma). Eq.32 multiplies the cost of a single fine-scale problem on Q¢

number of basis vectors, #C9'D, and correction vectors, 1, to be built on Q¢'.
p result by the number of grain grids yields the total cost of building Mg in series.
Because aWWsis and correction vectors are decoupled, a maximum number of Ppr. = (#CI-D+1)N8
processors may be used, which would reduce Touie to O(N'D/N2)P. With reference to Eq.33, since
N contact interfaces are intersected by I'', and all basis vectors of the grain grids straddling such
contacts must be updated, a total of (2#C9'D)Nf* local problems must be solved. For a maximum
number of processors, the costs of updating Mg reduces, again, to O(ND/Ng)’.

The WCT associated with applying Mg to precondition Aw = v once is at most:



T =O(N'D/N*)’ x(N*/P,) (34)

apply pre

which corresponds to computing a correction vector £ per grain grid Q& Eq.34 is an upper bound
because if v is zero on some Q¥ so is ¢&' and no correction vector must be computed. In the next

section, we discuss how the cost of Tuypiy may be eliminated. Lastly, Mg was developed here using

the isotropic degradation model in Eq.4, which yields the linear system in Eq.6. If an anisotropic
degradation model were adopted, Mg would be applied to the /inearized system at each Newton
iteration. Since Mg is held fixed between such iterations, computational gains can be significant.

6.4. Relation to algebraic multigrid (AMG)

The global preconditioner Mg is related to recent multiscale finite element, and e generally
algebraic multigrid, preconditioners developed for Darcy-scale linear elastic defogaagli oWy
media. The link is made explicit in Appendix B by formulating appropriate p csion, P, and
restriction, R = PT, matrices that allow the derivation of the following co -

Ayx, =b, = P'APx"=P'h, = A°X"=b° \n
— —
A° b’
from the reduced system Awm xm = by in Eq.15. In Appendix B, W pr&ge Wat A° = Sm and 5° = su

only if G = @, which makes the coarse-scale system in Eq.35 nt to the Schur system in

Eq.19. However, if G # @, the two formulations differ by a regludgderived in Appendix B. The

above use of prolongation/restriction matrices is attrac@ a num®r of reasons: (1) updating
0

Mg can be accomplished by recomputing a select fi s of P; (2) the cost associated with
recomputing the correction vectors c& per Krykagit®@tiorr®whoted in Remark 3, can be eliminated
by augmenting the columns of P through t ionQE e as extra “basis vectors” (see Appendix
B); (3) preliminary tests seem to suggest ess stringent adaptivity criteria than the one in
Section 3.6 may be applied to preseryg rapid c8yergence in Krylov solvers. For example: “update

basis vectors on grain grids that stra a sampYe-spanning fracture.” Notice the cracks in Fig.3
were relatively short; and (4) the lying Ma (Tappiy in Eq.34) may be removed because
solving the coarse-scale problem 1s as expensive as solving the Schur system in Eq.19,
which is negligible. Future 1 tematically test these hypotheses.

7. Conclusion

We developed a m & preconditioner for solving the linear-elastic deformation of porous
domains with arb1 rostructures and crack patterns. It combines a global preconditioner,
Mg, with a lo, 1, ML, to simultaneously attenuate low- and high-frequency error modes,
respecti in contribution was in the construction of Mg, which we based on an algebraic
reinterpretMggN recent pore-level multiscale method (PLMM) developed by the authors.?*-*
The precondifoner interpretation has two advantages: (1) its application within existing codes is
fully non- sive, and (2) key limitations associated with PLMM in reducing approximation
errors via contact grids are removed through the flexible use of smoothers.?*> We verified and tested
the convergence of the preconditioner in a Krylov solver for a range of 2D/3D microstructures and
crack patterns and found favorable performance. Even so, the use of generic ILU(k) smoothers
was found to be sub-optimal. If the fill-in level, £, or number of smoothing stages, s, are too large,
the solver either converges slowly or diverges in our 3D domain. This calls for more specialized
smoothers, which we think can be based on an algebraic reinterpretation of so-called “contact



problems” in PLMM.?® Our second contribution was to propose an economic and adaptive way of
updating Mg for evolving-crack problems that preserves rapid convergence of Krylov solvers. We
also established a direct link between Mg (thus PLMM) and AMG (or MsFE) preconditioners by
defining appropriate prolongation and restriction matrices in Appendix B. While a rigorous
demonstration of parallel scalability was outside of the scope of our paper, a complexity analysis
was provided that shows the construction and updating of Mg are fully parallelizable.
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Appendix A. Accounting for interior cracks during reconstruction Q
To account for interior cracks in G while reconstructing x¢, Eq. 27& odified to:

=Y YR (A7) ADRIY Q
gi€G c;eCy,
-3 X Er(AY) AIRYN ’ (A1

gi€G ¢ eC

33 e () B ‘&
2,66 ¢;<C,, !

where summations are over the grain grids ingg G, and G . We note that basis vectors associated

with grain grids in G already capture | cracksybecause they are updated via Algorithm 1. Using
the definitions of basis vectors p3/ . Mg we rewrite Eq.A.1 as follows:

(j-1)D+D

xg:cg+z Z

g,€G (’JECH[ k=(j-

+2 Z N [ LES D (A.2)

The red hig ed terms have been stored in computer memroy, and need not be recomputed.
The greenghighlighted terms, however, require solving a local problem per grain grid in G. This
added computation, as remarked in Section 3.6, is optional when using Mg as a preconditioner to
accelerate the convergence of Krylov solvers; as opposed to computing a first-pass solution.

Appendix B. Formulating prolongation and restriction matrices

Starting from Am xm = bum in Eq.15, global preconditioning in AMG or MsFE follows:



Ayx, =b, = PTAPx"=P'h, = A’ =0} (B.1)

— —_—
A° b°

where P is a prolongation matrix, and its transpose P a restriction matrix. Solving Eq.B.1, yields
the corase-scale solution x°. An approximate solution for xu is obtained via xu = Px°, which
interpolates x° onto the fine grid. Here, we formulate an expression for P that corresponds to the
Mg in Section 3.4. Recalling the following definitions for basis and correction vectors:

pi=—(A%) AfRVe,  Vk=(j-DD+d st jeC* dell,..,D) (B.2a)
oS :(Ai )_1 b (B.2b)

the prolongation matrix below can be formulated:

piop Py O
plgz ngz pfz _ _

. . . : pg2
Em Em Em B
pP= Py A A D= & (B.3)

1 0O 0 0 I
pgm

0 1 0

. I Y 4
0 0O . 0 -
| 0 0 0 1 |
where n = N°cD is the number of coarse-sg nowys, and m = NgD the number of fine-scale

unknowns associated with Q¢' (not I'Y). Thigntity matrix I is N°:DxN°.D. In Eq.B.3, we have
used the abbrieviated notation p&’ = |8, p%2, Qg |, which equals p¢’ = —(A#;) ' Ag.. Note that
B =[(pH)", @A)7, ..., (p*)"]" is iden®gl to the basis matrix in Section 3.4. Substituting Eq.B.3

into Eq.B.1, we obtain the followi ions for A° and b°:

A’ =BTA‘B+AB+B'Agyr (B.4a)
b =B'h* +b° (B.4b)
where we have used t e&- uctures of Am and b in Eq.17. We claim:
Proposition 1. If g O,J®en A° = Sm and b° = su.

Proof. one of the basis vectors p¢ neglect the presence of cracks in the grain grids.
We there e underline/under-tilde notation of Section 3.6 for simplicity. By substituting
Eq.B.3 into M. B.4b, we obtain:

b=BW b = Y (pt) b=b - A (AY) b
g,€GUG GGoG (B.5)
=b - Y Ajet=b- Y ACESRUct=b - Alcf =5,
8;€GUG g;eGUG

which proves b° = su. Note that in Eq.B.5, we have used the fact that Am is symmetric and have
substituted the definitions of p¢ and c¢#. Focusing next on A°, we write the first term in the RHS
of Eq.B.4a as follows:



BTAiB = Z (pg" )T Aipg"

§eoVa (B.6)
= 3 A (ar) ar(az)Ar= Y A (Ar) A |
geGuUG geGuG

Similarly, the second term in the RHS of Eq.B.4a can be written as follows:

AB= Y Apt=- Y A (Ar) A (B.7)

8eGUG 8€GUG

Note that Eqs.B.6 and B.7 sum to zero. Hence, Eq.B.4a reduces to:

o TA AcC A AC T
A°=B'A!+A{ =(A*B+A!) =8,
where we have used Eq.22 and the fact that A° is symmetric. This complete th [

In Proposition 1, A° = Swm holds only if G=0. If G # O, then A° £ Q e the summation
€

(B.8)

of the first two terms in the RHS of Eq.B.4a would no longer be zero. stratghtforward to show
that the difference between A° and Sm would then satisfy the fol ression:

AO_SM :BTAiBJ{_A;B: Z(pgi)T Ag;pgi + Z A;ipgi

8i€G gi€G
=2 A (Ar) Az (an) Ar -2 A @ (B.9)

g;i€G

-3 (v) 2z - QA

#0
Once x° is computed by solving EQRg. 1, x¢ calf be reconstructed via Eq.27. As noted in Remark

3 of Section 3.4, if our goal is to on®ytion a Krylov solver, as opposed to computing a first-
pass solution to Ax = b, then th ion vector ¢¢ must be computed repeatedly. This can
become computationally cu 0 e next proposition shows how this cost can be eliminated
by interpreting the ¢ fro .B. Xy as yet another basis vector that is computed once:

Proposition 2. Suppdg tilgprolongation matrix is augmented as follows:
c® O

P B,.=[B C], C= . (B.10)

aug aug

O Cgm

(N]D)xN®
Then, the coarse-scale system A°x° = b° in Eq.B.1 remains unaltered, but Eq.27 is replaced by:
x¥ =Cy’ +Bx’ (B.11)

where )? is a vector of additional coarse-scale unknonws associated with the correction vectors c#..
To compute )?, the following coarse-scale system must be solved (after A°x° = b°):



C'ACy’ =C"b—C"APx’ (B.12)
Alternatively, x° and y° can be computed by substituting Paug for P and x%ag = [(x°)", (°)"]" for x°
in Eq.B.1, where x%ug 1s the augmented vector of coarse-scale unknowns.

Proof. The proof requires merely substituting Paug for P and x°ug for x° in Eq.B.1 and using the
fact that PTAC = O. The latter is straightforward to verify. m
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