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Highlights

• Multiscale preconditioner for deformation of fractured porous media developed.
• The preconditioner accelerates direct numerical simulations at the pore scale.
• Application of the preconditioner in existing codes in fully non-intrusive.
• Strategy for updating the preconditioner in evolving-crack problems is proposed.
• Errors and convergence rates in various microstructures and crack patterns tested.
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Abstract. The direct numerical simulation (DNS) of elastic deformation on digitized images of porous 
materials at the micron (or pore) scale requires the solution of large systems of linear(ized) equations. 
Krylov solvers are instrumental but suffer from slow convergence without a preconditioner. We present a 
multiscale preconditioner that significantly accelerates DNS, is scalable on parallel machines, and can be 
non-intrusively applied in existing codes. The preconditioner is an algebraic reinterpretation of a recent 
pore-level multiscale method (PLMM) proposed by the authors. It combines a global preconditioner with 
a local smoother to simultaneously attenuate low- and high-frequency errors, respectively. Like PLMM, a 
single application of the global preconditioner yields an approximate solution that is sufficiently accurate 
in a wide range of applications (e.g., geologic CO2/H2 storage). The combination with a smoother enables 
improving the approximation even further. While all cracks here are assumed to be static, we propose an 
adaptive strategy to update the preconditioner efficiently for evolving-crack problems without affecting the 
convergence rate of the Krylov solver. We validate the preconditioner against DNS and test its convergence 
on various 2D/3D microstructures and crack patterns. The agreement and performance are favorable. 
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1. Introduction 

A mechanistic understanding of mechanical deformation in fractured porous materials is key 
to several subsurface, manufacturing, and medical applications. They include preserving the 
integrity of cap rocks in geologic CO2 sequestration and H2 storage,1 inducing hydraulic fractures 
in geothermal energy and natural gas extraction,2 designing high-strength lightweight materials for 
military armors and airplanes,3,4 understanding the failure of battery electrodes,5,6 and developing 
medical treatments for stress fractures in trabecular bones.7,8 Pore-scale models are valuable tools 
that provide such understanding by probing the link between the microstructure of a porous sample 
and its macroscopic response.9 The main challenge of existing models, however, lies in that they 
are either overly approximate or computationally expensive. 

Approximate models such as the discrete element method (DEM)10–12 make a series of 
assumptions about the geometry (e.g., grains are spherical) and material properties (e.g., grains are 
rigid) of a porous sample that render them suitable for granular media (e.g., soil), but not the 
amorphous and highly complex microstructures encountered in the above mentioned applications 
(e.g., bones). Moreover, methods such as DEM lack the ability to estimate and control their 
approximation errors.13,14 Direct numerical simulation (DNS) refers to a collection of higher-
fidelity alternatives, in which computations are performed directly on the microstructure of a 
sample captured by a pore-scale image15 (e.g., X-ray µCT). Examples include the extended finite 
element method (XFEM),16 shifted fracture method,17 phase-field models,18,19 immersed boundary 
finite volume method,20 and peridynamics.21 In DNS, the governing equations are discretized and 
solved on a fine grid that often coincides with the image pixels. This results in large linear (or 
linearized) systems of equations, whose solution is computationally demanding for practical 



domain sizes. Iterative, in particular Krylov, solvers are a prime choice for solving such systems, 
but they require efficient preconditioning to converge at an acceptable rate.22 

We present a multiscale preconditioner for solving the linear-elastic deformation of porous 
domains with arbitrary microstructure and crack pattern. It combines a global preconditioner, MG, 
with a local smoother, ML, to simultaneously attenuate low- and high-frequency error modes, 
respectively. Our main contribution is to develop MG, as we choose a standard ILU(k) smoother 
for ML. The proposed MG is an algebraic reinterpretation of a recent pore-level multiscale method 
(PLMM) developed by the authors;23,24 originally for fluid mechanics.25–27 PLMM approximates 
DNS efficiently and accurately by executing the following steps in order: decompose the solid into 
subdomains via watershed segmentation,28 construct fine-scale local basis and correction functions 
on the subdomains, and couple basis/correction functions by solving a global coarse-scale interface 
problem. Here, we translate these steps into a global preconditioner, the benefits of which are 
twofold: (1) unlike PLMM, the use of MG in existing codes is non-intrusive; and (2) the flexible 
choice of smoothers removes a key limitation of PLMM in controlling its approximation errors. 
Namely, PLMM requires solving local problems on a second set of subdomains, called contact 

grids, to control errors. But in some (low porosity) microstructures, contact grids span large parts 
of the domain, rendering local problems to be solved on them costly. Even though we only consider 
static cracks herein, our second contribution is an efficient way of updating MG for evolving-crack 
problems, in which cracks can nucleate and grow by progressive loading. We define an adaptivity 
criterion that updates MG infrequently while preserving rapid convergence of Krylov solvers. All 
computations associated with building and updating MG are scalable on parallel machines. 

Multiscale preconditioners for elastic deformation of porous media are not new, but existing 
ones target the continuum (or Darcy) scale. Most are based on the multiscale finite element method 
(MsFE),29–34 but others for scalar-valued elliptic equations (describing fluid flow) also exist and 
are based on, e.g., the multiscale finite volume method (MsFV)35–40 and the multiscale mortar finite 
element method (MoMsFE),41–44 among others.45 In all, a prolongation matrix is built by 
assembling numerically computed fine-scale basis vectors on coarse grids into its columns. A 
restriction matrix is built too, often by transposing the prolongation matrix.22,36 Together, these 
matrices are used to substantially reduce the size of original fine-grid linear(ized) system. Solving 
the reduced system yields a coarse-scale solution that is then interpolated onto the fine grid using 
the basis vectors. The result is an initial approximation, or a first-pass solution, whose errors are 
reduced further using a local smoother.22,46 These steps bear a close relation to algebraic multigrid 
methods (AMG),47 with the key difference being the prolongation matrices are informed by the 
physics and parameter space of the problem (see e.g.,48). Our third and final contribution, therefore, 
is to establish an explicit link between MG, and hence PLMM, and AMG or MsFE preconditioners 
by defining appropriate prolongation and restriction matrices in Appendix B. 

The paper outline is as follows: Section 2 describes the problem considered and the DNS 
method used to solve it. In Section 3, we detail the multiscale preconditioner through an algebraic 
translation of PLMM. Specifically, Section 3.3 briefly reviews PLMM, Section 3.4 shows how 
MG is built from PLMM, and Section 3.6 details how MG is updated for evolving-crack problems. 
Section 4 shows the 2D/3D microstructures and crack patterns used to validate the preconditioner 
against DNS. In Section 5, we present results for the first-pass solution obtained from a single 
application of MG, and the convergence rate of preconditioned GMRES. In Section 6, we discuss 
implications, current gaps, and perform a complexity analysis. Section 7 concludes the paper. 
 



2. Problem description 

Consider a porous domain Ω comprised of a solid phase Ωs and a void space Ωv, as shown in 
Fig.1a (i.e., Ω = Ωs ∪ Ωv). Let Ωo

s be the interior of Ωs and ∂Ωs its boundary. The void-solid 
interface is Γw = ∂Ωs ∩ ∂Ωv. The open set Ωo

s may include fractures ΓF, as depicted by the black 
lines in Fig.1a. In this work, we represent ΓF using a continuous damage variable defined on Ωo

s. 
The solid boundary ∂Ωs consists of Γw and an external boundary (or bounding box) of the domain, 
Γex (i.e., ∂Ωs = Γw ∪ Γex). Our goal is to solve the linear-elastic momentum equation: 

0    f           (1a) 
:ℂ             (1b) 

on Ωo
s, subject to the boundary conditions (BCs): 
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on ∂Ωs. In Eq.2, ΓD, ΓN, and ΓR are subsets of ∂Ωs where Dirichlet, Neumann, and Roller BCs are 
imposed, respectively. In Eqs.1-2, σ is the stress tensor, ɛ the strain tensor, ℂ the fourth-order 
stiffness tensor, u the displacement vector, and f the body force. Strain depends on displacement 
via ɛ = ∇su = ½(∇u + ∇uT), where ∇s is the symmetric gradient operator and superscript T is the 
transpose operator. The vector n is the unit normal, and m the unit tangent on any given boundary. 
Notice, in 2D, m is a single vector, but in 3D, it consists of two orthonormal vectors m1 and m2. 
The data uD and tN are known values of displacement and traction on ΓD and ΓN, respectively. In 
this work, we adopt the following notation: bold symbols denote vectors/tensors, non-bold 
symbols denote scalars, Latin alphabet is used for vectors, and Greek alphabet for tensors. In 
discussing matrix-vector algebra later, upper-case Latin is used for matrices, and lower-case Latin 
for vectors. We present all governing equations using 2D notation due to its simplicity (e.g., m 
instead of m1 and m2). Extending the equations to 3D is straightforward. 

To represent fractures ΓF ⸦ Ωo
s, we use a damage (or phase-field) variable ψ defined on Ωo

s. 
If a point x is fully damaged (i.e., cracked), ψ(x) = 1, and if it is intact (i.e., not cracked), ψ(x) = 0. 
Given ΓF, which is a lower-dimensional manifold representing sharp cracks, we use the approach 
by Borden et al.49 to compute the corresponding ψ as follows: 
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where Gc is the fracture toughness, l a length scale that controls the thickness of the diffuse cracks, 
dist(x,ΓF) the distance of a point x from ΓF, and B a constant taken here to be 103. The impact of ψ 
on the stiffness tensor ℂ is captured via: 

0( )g ℂ ℂ           (4) 

where g(ψ) = (1 - ψ)2 is the degradation function, and ℂ0 the stiffness of the intact solid. Here, we 
assume ℂ0 is isotropic. Eq.4 describes the isotropic degradation of Ωs, which is valid under tensile 
loading only. More sophisticated expressions for g(ψ),50 with anisotropic degradation of ℂ0 along 



specific directions (i.e., “stress splits”),18,19 also exist and may be considered. The multiscale 
preconditioner presented later is not affected by the particular choice of g(ψ), or the way ℂ0 is 
degraded. However, if an anisotropic degradation model of ℂ0 is chosen, Eq.1 becomes 
nonlinear,19 and our preconditioner must be applied to the linearized form of Eq.1. 

 
Fig 1. Schematic of the domain decomposition and basis construction. (a) Image of a fractured porous 

domain (Ωs: white, Ωv: black, ΓF: black lines). (b) Decomposition into grain grids (randomly colored). (c) 
Zoom-in of a grain grid, Ωgi, sharing nine contact interfaces (red) with neighboring grain grids (Γgi

cj). The 
index set of these interfaces is Cgi = {c1, c2, …, c9}. Black lines represent the void-solid interface (Γgi

w). 
(d) Two basis functions associated with Γgi

c1 are shown. Some cracks in (a) intersect the contact 
interfaces, while others are confined to the interior of grain grids. 

 
The benefit of introducing the damage variable ψ to replace ΓF is that u becomes continuous. 

Moreover, the propagation of cracks due to incremental loading of Ωs is easily captured by solving 
an equation for the evolution of ψ. In phase-field models, this takes the form: 

2 12 (1 )cl lG H               (5) 

where H+ is called the “history variable”18 and is equal to the maximum tensile energy experienced 
at each point in the solid since the beginning of loading. Once ψ is updated via Eq.5, Eq.1 can be 
solved again to obtain u at the next loading step. The result is a sequential scheme. In this work, 
we develop a preconditioner for the linear(ized) system arising from discretizing Eq.1 only: 

ˆˆ x̂ b             (6) 

where �� is the coefficient matrix, �� is the right-hand side (RHS) vector, and �	 the unknown vector 
of displacements. While we do not solve Eq.5 (i.e., cracks assumed to be static), the implications 
of having to repeatedly update ψ in evolving-crack problems on the preconditioner is considered. 
At the pore scale, Ωs is often represented by a segmented image acquired from an X-ray µCT 
scanner (Fig.1a). We refer to the Cartesian mesh over which Eq.1 is discretized, to obtain Eq.6, as 



the fine grid, whose size is an integer fraction of the image pixels. The discretization is performed 
using FEM with bilinear shape functions as our DNS solver. We note, however, that the multiscale 
preconditioner is neither limited to FEM nor Cartesian fine grids, as other DNS solvers (e.g., FVM) 
and arbitrarily complex unstructured grids are equally applicable. 
 
3. Multiscale preconditioner 

In the following sections, we present a two-stage preconditioner for accelerating the solution 
of Eq.6 in linear solvers. The preconditioner is an algebraic reinterpretation of the pore-level 
multiscale method (PLMM),23 a rough outline of which was sketched in an appendix therein for 
intact solids discretized via FVM. Here, we extend this to fractured solids using FEM as the DNS 
solver. Section 3.1 reviews the domain decomposition that is central to the preconditioner. We 
then briefly review PLMM in Section 3.3 to provide some intuition for the algebraic formulation 
presented later. In Sections 3.4-6, we discuss how the global preconditioner MG is built, how MG 
is coupled to the smoother ML, and how MG is updated adaptively in evolving-crack simulations. 
In Appendix B, we formulate prolongation and restriction matrices associated with MG. 

 
3.1. Domain decomposition 

Fig.1b illustrates the decomposition of Ωs into randomly colored subdomains, or grain grids, 
denoted by Ωgi. The decomposition algorithm was originally proposed by Mehmani et al.23 and is 
based on the watershed transform, a morphological operation in image analysis,15,28 of the domain 
image. The key difference between the decomposition here and that in Mehmani et al.23 is that the 
interfaces between grain grids, called contact interfaces and denoted by Γcj, are not made to 
conform to ΓF

 here. Concretely, the watershed transform is applied to Ωs while neglecting ΓF, 
which allows contact interfaces to intersect the cracks. The result is a partitioning of fine grids into 
those that belong to Ωgi versus Γcj. Each grain grid, Ωgi, and interface, Γcj, is therefore an aggregate 
of many fine grids. In particular, Γcj has a finite thickness (i.e., roughly 1-2 fine grids). Since fine 
grids correspond to an integer fraction of image pixels, and FEM is used as the DNS solver, each 
fine grid is a rectangular element in 2D and a hexahedral element in 3D. The fine-scale 
displacement unknowns on Γcj belong to nodes located at the corners of the elements comprising 
Γcj. Similarly, the unknowns on Ωgi correspond to nodes in the interior of Ωgi. The unknowns 
assigned to Γcj and Ωgi are therefore mutually exclusive, implying a non-overlapping partition. We 
remark that watershed transform cuts Ωs across local constrictions, which depends on the porous 
microstructure at hand. This property is a major reason for PLMM’s accuracy in prior work, 23 and 
that of MG herein. While refining the decomposition is difficult without degrading accuracy, multi-
level coarsening and load balancing of subdomains are possible but not pursued. 

 
3.2. Mathematical notation 

To simplify the presentation, we adopt a notation similar to Mehmani et al.23 Let indices gi and 
cj enumerate entities associated with Ωgi and Γcj, respectively. The boundary ∂Ωgi consists of 
Γgi

w = ∂Ωgi ∩ Γw, representing the void-solid interface, and Γgi
cj = ∂Ωgi ∩ Γcj, representing contact 

interfaces shared between Ωgi and its neighboring grain grids. For some Ωgi, Γgi
ex = ∂Ωgi ∩ Γex is 

non-empty and ∂Ωgi also consists of a portion on Γex. We define Cgi as the index set of all interfaces 
Γcj that are subsets of ∂Ωgi, and Gcj as the index set of all grain grids that share Γcj. Since each Γcj 
is shared by exactly two grain grids, Gcj has only two members. We use the terms fine-scale and 
coarse-scale to refer to entities associated with fine grids and coarse grids (i.e., Ωgi), respectively. 



Coarse-scale variables are marked with a superscript o, and fine-scale variables with superscript f. 
We use the term local to refer to entities associated with a single coarse grid, and global to refer 
to entities defined on the entire domain, Ωs. The problem dimension is denoted by D (= 2 or 3). 

 

3.3. Review of the pore-level multiscale method (PLMM) 

In PLMM, Eq.1 is solved by restricting it to each grain grid Ωgi: 
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where uf
gi denotes the fine-scale displacement on Ωgi. Dirichlet BCs are imposed on Γgi

cj, ∀cj ∈ Cgi, 
consisting of normal, hgi,cj,1(x), and tangential, hgi,cj,2(x), displacements at each point x on Γgi

cj. The 
BCs on Γgi

w are stress-free, and the BCs on Γgi
ex (if ≠ Ø) are inherited from the global BCs in Eq.2. 

If hgi,cj,1(x) and hgi,cj,2(x) were known, uf
gi could be solved for all subdomains and the global solution 

assembled. But they are not known. Hence, the central idea in PLMM is to approximate hgi,cj,1(x) 

and hgi,cj,2(x) as scalars uo
gi,cj,1 and uo

gi,cj,2, referred to as coarse-scale unknowns. This 
approximation is called the localization assumption. We define uo

gi,ck = [uo
gi,ck,1, uo

gi,ck,2] as the 
(here 2D) vector made up of these scalars. The result is an approximated form of Eq.7: 
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whose solution can be expressed as follows: 
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In Eq.9, φf
gi,ck,d are the basis functions and �
 ��

�  the correction function on Ωgi. They satisfy: 
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Eq.10a is referred to as the basis problem, and Eq.10b as the correction problem on Ωgi. The 
parameters δab in the RHS of Eq.10a are the Kronecker delta. If d = 1, φf

gi,ck,d corresponds to setting 
the normal displacement at Γgi

ck to one, and all other displacement components at Γgi
ck and other 

contacts, Γgi
cj ∀j ≠ k ∈ Cgi, to zero. If d = 2, only the tangential displacement at Γgi

ck is set to one, 
while the remaining displacements at all contacts are set to zero. Fig.1d depicts two such basis 
functions for the grain grid in Fig.1c. Note that Eq.10a entails solving #Cgi×D local problems on 
Ωgi, one per interface per normal/tangential BC; the symbol # denotes the number of members in 
a set. Eq.10b, by contrast, entails solving only one local problem on Ωgi. In both Eqs.10a and 10b, 



the BCs on Γgi
w are stress-free. If Γgi

ex ≠ Ø, some of the global BCs from Eq.2 are inherited by 
Eq.10a-b. However, the RHS of these BCs are set to zero (homogeneous) for Eq.10a, but not for 
Eq.10b (inhomogeneous). Note the basis problem accounts for inhomogeneities due to the BCs in 
Eq.8 on Γgi

cj, and the correction problem for the inhomogeneity caused by the body force f. 
The final step in PLMM is to compute uo

gi,ck,d in Eq.9, for which a global problem must be 
formulated. Here, the global problem consists of continuity of momentum and displacement: 

1 2j j

o o

g c g ct t            (11a) 

1 2j j

o o

g c g cu u           (11b) 

imposed on all Γcj. Subscripts g1 and g2 denote the two grain grids that share Γcj. Eq.11a equates 
the integrated tractions computed on either side of Γcj. Given the diffuse representation of cracks 
in Section 2, the continuity of displacements in Eq.11b is consistent. However, even if a sharp-
crack representation were adopted, Eq.11b would still result in a convergent (but not consistent) 
global preconditioner. Substituting Eq.9 into Eq.11a-b, and following steps similar to Mehmani et 
al.23 (not repeated), we obtain a small, (No

cD)×(No
cD) system in terms of uo

gi,ck,d; where No
c denotes 

the number of contact interfaces. This concludes our review of PLMM. 

Remark 1. To correct errors caused by the localization assumption, Mehmani et al.23 introduced 
a second set of coarse grids, called contact grids. These did not cover all of Ωs, only a small region 
around Γcj, and enabled very fast convergence to the DNS solution. However, in low-porosity 
media, contact grids tend to overlap and must be merged. This causes some contact grids to span 
large regions in Ωs, rendering local problems defined on them costly. The preconditioner of Section 
3.5 addresses this drawback by obviating the need for contact grids altogether. 

Remark 2. If Ωgi is intact, the stiffness tensor ℂ in Eq.10a corresponds to ℂ0, and PLMM reduces 
to the formulation of Mehmani et al.23 But if Ωgi is cracked, two choices exist for ℂ in Eq.10a: (1) 
the damaged stiffness in Eq.4 (= g(ψ)ℂ0); or (2) the intact stiffness ℂ0. The former is consistent 
and more accurate, but computationally costly for evolving-crack problems. This is because if ΓF 
evolves during loading, so does g(ψ) and the basis functions must be updated. Since Eq.10a entails 
multiple solves on Ωgi per update, the cost can be prohibitive. The second choice of ℂ0 does not 
require updating the basis functions but is inconsistent unless correction functions are computed 
iteratively. We explore this approach in a separate paper,24 where we show convergence is slower. 
For the preconditioner discussed next, we outline an optimal way of updating the bases. 
 
3.4. Building the global preconditioner 

Building the global preconditioner, MG, is equivalent to solving the global fine-scale system 
in Eq.6 approximately. We proceed as follows: Given the decomposition of Section 3.1, the fine-
scale displacement unknowns are partitioned into those that belong to Ωgi versus Γcj. We then 
construct a permutation matrix, W, such that when applied to Eq.6, yields the equivalent system: 
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The matrix W is unitary (WWT = I) and has 0 or 1 entries. In Eqs.12-14, Nf
gi and Nf

cj are the number 
of unknowns associated with Ωgi and Γcj, respectively, and Nf

g = Σi Nf
gi and Nf

c = Σj Nf
cj. The 

symbol Ng denotes the total number of grain grids. The permuted matrix A consists of blocks with 
super/subscripts gi and cj that correspond to Ωgi and Γcj, respectively. Ag

g is square and block-
diagonal, with Agi

gi representing the stiffness matrix on Ωgi. In contrast, Ag
c and Ac

g are thin and 
rectangular. Because A is symmetric, a result of our FEM discretization of Eq.1 with bilinear 
test/trial functions, Ag

c = (Ac
g)T and Agi

cj = (Acj
gi)T. 

We next transform Ax = b using a reduction matrix1 Q that embeds the localization assumption 
in Eq.8. The transformation is as follows: 

T T
M, Q Q Q QM M M Mx b x x x b x b       ≃     (15) 
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Notice Q is block-diagonal and has 0 or 1 entries. The off-diagonal blocks are zero and the (1,1)-
block is an identity matrix of size (Nf

gD)×(Nf
gD). The (2,2)-block, Qo, is itself block diagonal and 

consists of sub-matrices 1ci on its (i,i)-blocks. The matrix 1ci consist of Nf
ci identity matrices of size 

D×D (i.e., ID×D) concatenated vertically.2 Notice Qo is (Nf
cD)×(No

cD), where No
c is the total number 

of contact interfaces. It is clear that constructing Q is trivial. The reduced system AM xM = bM, with 
AM = QTAQ and bM = QTb, has now the following block structure: 

g g
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      (17) 

where xo corresponds to the coarse-scale unknowns in PLMM (i.e., uo
gi,ck,d in Eq.9). 

To intuit Eqs.15-16, note that left-multiplying a (Nf
g + Nf

c)D×Χ matrix by QT, where Χ is an 
arbitrary integer, sums all rows associated with the fine-scale unknowns defined on Γcj along each 
coordinate direction separately. The result is a (Nf

g + No
c)D×Χ matrix. In particular, QTA yields 

the “integrated” momentum balance equations on Γcj; same as Eq.11a. Similarly, right-multiplying 
a Χ×(Nf

g + Nf
c)D matrix by Q, sums all columns associated with Γcj, resulting in a Χ×(Nf

g + No
c)D 

matrix. In particular, QTAQ entails that the fine-scale displacement unknowns defined on each Γcj 
are equal; same as the localization assumption in Eq.8. Lastly, left-multiplying a (Nf

g + Nf
c)D×X 

 
1 This was called the “prolongation matrix” in Mehmani et al.23 (Appendix C therein), which is a misnomer. 
2 The matrix 1ci was specified incorrectly in Mehmani et al.23 as an all-one matrix (Appendix C therein). 



matrix by Q, duplicates the reduced rows associated with Γcj over all fine grids comprising Γcj; on 
a per-coordinate-direction basis. In summary, the reduced system in Eq.15 consists of fine-scale 
unknowns in the interior of grain grids, xg, and coarse-scale unknowns on contact interfaces, xo. 
The reduced blocks of AM and bM are specified by overbars in Eq.17. While AM is only slightly 
smaller than A, the reduction decouples the sub-systems associated with each Ωgi. Our remaining 
task is to compute the approximate solution xM. But first, we need a definition: 

Definition. Let Egi
g and Rgi

g be the grain-grid extension and restrictions matrices of Ωgi, and Eci
c 

and Rci
c the contact extension and restrictions matrices of Γci, respectively, defined as: 

1 2 ( ) ( )
E [ , , , ]i i i i
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Multiplying a (Nf
giD)×1 vector on Ωgi by Egi

g extends it to a (Nf
gD)×1 vector on all grain grids (i.e., 

∪j Ωgj). Similarly, multiplying a D×1 vector defined on Γci by Ec
ci extends it to a (No

cD)×1 vector 
on all interfaces (i.e., ∪j Γcj). Multiplication by Rgi

g or Rci
c maps in the opposite direction. 

Now, to solve AM xM = bM, we form the following Schur complement system:22 

MS o

Mx s            (19) 

where 

  1

MS c c g g

c g g c


                   1

c c g g

M g gs b b


        (20) 

by performing block-Gaussian elimination on Eq.17. Solving Eq.19 for xo allows xg, and thereby 
xM, to be computed via: 

   1
g g g g o

g cx b x


            (21) 

In classical domain decomposition, it is ill-advised to construct the Schur complement matrix, SM, 
explicitly as it requires inverting Ag

g. Instead, only the action of SM on a vector is desired. The 
case here is different because SM is very small, i.e., (No

cD)×(No
cD). We can therefore adopt the 

atypical strategy of actually forming, SM, column-by-column as follows: 

MS Bc c

c g              (22) 

where 
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We refer to B as the basis matrix, whose kth column is obtained by multiplying -(Ag
g)-1A��

� by the 
unit vector ek in Eq.23. Because Ag

g, and thus its inverse, are block-diagonal, colk(B) requires 



solving a local sub-problem on only two grid grids. To determine which grain grids, notice the kth 
entry in ek (i.e., the only non-zero entry) corresponds to the interface Γci, where: 

i

k
c

D

    
           (24) 

If Γci is shared between grain grids Ω��� and Ω���, then: 
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    (25) 

where the red highlighted terms require, from left to right, solving local problems on Ω��� and 
Ω���, respectively. Notice we have used here the contact restriction and grain-grid extension 
operators defined above. We denote the highlighted terms by ��

��� and ��

��� and refer to them as 
basis vectors. These are precisely the basis functions obtained from solving Eq.10a in PLMM. All 
basis vectors, and SM assembled therefrom, are computed once and stored to computer memory.  

We next proceed to compute the RHS vector sM in Eq.19. This is done by writing Eq.20 as: 

c c g

M gs b c                 1
g g g

gc b


         (26) 

where cg is called the correction vector. Once again, because Ag
g is block-diagonal, cg can be 

obtained by concatenating smaller correction vectors cgi = (Agi
gi)-1bgi defined on each Ωgi. We note 

that cgi corresponds precisely to the correction function obtained from solving Eq.10b in PLMM. 
If bgi = 0, then cgi = 0 and no computations are required to obtain the correction vector on Ωgi. 

Given SM and sM, we can now solve Eq.19 to obtain xo. Next, we can compute xg by substituting 
xo into Eq.21. However, a careful inspection of Eq.21 reveals: 

+ Bg g ox c x           (27) 

which means calculating xg does not incur any extra costs because B and cg have already been 
computed. Eq.27 is the algebraic equivalent of the reconstruction step in Eq.9. Given xg and xo, we 
get xM from Eq.17. Lastly, xM is transformed into an approximate solution of the original system, 
Eq.6, by undoing the initial permutation and reduction steps via x̂aprx = WQxM. 

The above approximate way of solving A��	 = �� can be cast as a global preconditioner, MG. In 
iterative solvers, preconditioning means repeatedly solving systems like A�� = � approximately 
for w, given an arbitrary v. Building MG, therefore, consists of constructing the permutation matrix 
W, reduction matrix Q, basis vectors pgi

k, and basis matrix B once, and storing them all to computer 
memory. We note the computations of pgi

k and B can be fully parallelized across Ωgi. In applying 
MG for each new vector v, we only need to compute cgi, which is also parallelizable across Ωgi. 

Remark 3. In Appendix B, we show that Eq.26 is equivalent to sM = ��c + BTbg, which seems to 
obviate computing cg. However, cg is still needed in Eq.27 to reconstruct xg. If our goal is to merely 
obtain an approximate solution, then cg must be computed once and used in Eq.27. But if our goal 
is to precondition A��	 = �� in an iterative solver, where A�� = � is repeatedly solved for different 
v, recomputing cg can become cumbersome. In Appendix B, we show how this cost can be 
eliminated by reinterpreting cgi as yet another basis vector that is computed once. 
Remark 4. The above global preconditioner can be expressed as MG = R�A�P�, where P� =WQP is a 
prolongation matrix and R� = P�" a restriction matrix. Note P is the prolongation matrix associated 



with the reduced system AM xM = bM in Eq.15, which we formulate in Appendix B. Using this 
multigrid notation, the approximate solution can be expressed as �	#$%& = M(

)*�� = P�(R�A�P�))*R���. 
In Appendix B and Section 6.4, we discuss the relation of MG to algebraic multigrid methods. 
 

3.5. Combining the global preconditioner with a smoother 

To apply MG in iterative solvers, we must pair it with a local preconditioner, or smoother, 
denoted by ML. The pairing is done as follows:22  

 1 1 1 1
G L G

                (28) 

yielding the multiscale preconditioner M. The rationale for Eq.28 is that MG, by itself, attenuates 
only long-range, or low-frequency, errors. By contrast, ML can efficiently remove high-frequency 
errors, but is slow to correct long-range errors on its own. The pairing targets both error frequencies 
thereby accelerating convergence. We consider smoothers that are constructed as follows: 

 
1

1 1 1
L

1 1

stn i

l l

i j


  

 

              (29) 

where Ml is an incomplete LU-factorization of A�, i.e., ILU(k) with k denoting the fill level. Eq.29 
entails a multi-stage application of Ml, where nst is the number of smoothing stages. More details 
on Eqs.28-29 can be found elsewhere.22,51 In Section 5, we test M within a GMRES solver. 
 
3.6. Updating the global preconditioner 

Suppose a global preconditioner MG has been built for Ωs. Now let Ωs be subject to progressive 
loading, during which cracks nucleate and evolve, altering the stiffness matrix A� via g(ψ) in Eq.4. 
How should MG be updated? And how often? If MG is not updated at all, the Krylov solver will 
require more and more iterations to converge as cracks grow with loading steps, thus increasing 
cost. If MG is updated at each loading step, the cost of updates may override the time spent by the 
solver itself. Here, we present an efficient way of updating MG that preserves rapid convergence. 

Updating MG means updating the basis matrix B and the Schur matrix SM with respect to those 
grain grids Ωgi in which new cracks have nucleated and/or old ones have grown. This entails 
recomputing the basis vectors pgi

k on the impacted Ωgi. However, just because cracks have evolved 
in Ωgi does not mean its basis functions need updating. A more efficient strategy is to adopt the 
adaptivity criterion below, which is supported by numerical observations discussed later: 

Criterion. If cracks, ΓF, intersect a contact interface Γci between two adjacent grain grids Ωg1 and 
Ωg2, then update MG by recomputing all the basis vectors defined on Ωg1 and Ωg2.  

This criterion ensures that basis vectors, hence MG, are updated infrequently and only if necessary. 
In other words, cracks confined to the interior of grain grids are ignored. To determine whether a 
crack intersects Γci, we check if g(ψ) < 10-2 at any point on Γci. After identifying the grain grids 
satisfying the criterion, denoted by the index set G

ɶ
, we update MG by executing Algorithm 1. The 

terms with an under-tilde denote vectors/sub-matrices altered by the evolved cracks. The red 
highlighted terms correspond to precomputed and stored variables of the old MG, which need not 
be recomputed. The outputs of Algorithm 1 consist of updated matrices B and SM. 



 
 
To apply the updated MG to the evolved system, we proceed similar to Section 3.4 but with a 

key modification: we account for all cracks in calculating the correction vectors cgi, not just those 
intersecting a contact interface. Let us adopt the following notation: variables with under-tilde (e.g. 
x
ɶ

) correspond to grain grids with cracks intersecting at least one contact interface; variables with 
underline (e.g., x) correspond to grain grids with (interior) cracks that do not intersect any contacts; 
and variables with no under-tilde or underline correspond to intact grain grids. For example, the 
sets G, G, and G

ɶ
contain the indices of grain grids satisfying the above definitions. Similarly, 

cgi = (Agi
gi)-1bgi, cgi = (Agi

gi)-1bgi, and c
ɶ

gi = ( A
ɶ

gi
gi)-1bgi. We now assemble sM via: 

i i i

i i i
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s b c c c
  
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ɶ
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      (30) 

Given sM, we solve Eq.19 to obtain xo. To compute xg, we have two options: (1) Ignore interior 
cracks in G and use Eq.27, which requires no extra computations. This means xg is reconstructed 
using basis vectors that assume the grain grids in G are intact; (2) Include cracks in G in exchange 
for solving one extra sub-system per grain grid in G; outlined in Appendix A. This compensates 
for the fact that basis vectors defined on the grain grids in G assume the solid is locally intact. 

Remark 5. Numerical experiments revealed that both options for computing xg lead to identical 
convergence rates in Krylov solvers. This is because fine-scale details of the solution around cracks 
associated with G, even if missed during the reconstruction of xg via Eq.27, are captured by the 
smoother, ML in Section 3.5. On the other hand, including such details is equivalent to having a 
block-Jacobi smoother built into MG, lessening the burden on ML chosen in Section 3.5. In Section 
5, we adopt the latter option of using Eq.A.2 to reconstruct xg, because it is also useful for obtaining 
accurate first-pass solutions for comparison against DNS. 

Remark 6. A single application of the global preconditioner, MG, to Eq.6 yields an approximate, 
or first-pass, solution, i.e., x̂aprx. = MG

-1b̂. The quality of this solution is a direct reflection of the 
ability of MG to attenuate low-frequency errors. If MG is built from scratch for a fractured domain, 



following the procedure outlined in Section 3.4, we refer to the first-pass solution as A0. The letter 
“A” indicates all cracks are included in building the basis vectors (hence B and SM) of MG. But if 
MG is obtained by updating a previously built global preconditioner via Algorithm 1, we refer to 
the first-pass solution as U0. The letter “U” indicates that MG has been updated. 

4. Problem set 

We test the multiscale preconditioner for the domains in Fig.2. They include a 2D disk pack 
(P2D),23 a 2D sandstone (S2D),52 and a 3D sandstone (S3D).52 The stiffness tensor ℂ0 is isotropic 
with Lamé parameters λ = 8.3 GPa and µ = 44.3 GPa corresponding to α-quartz.53 In all domains, 
the boundary corresponding to x = Lx is fixed and a constant displacement of uD = 1 is imposed on 
x = 0 along the negative x-direction (i.e., tensile); where Lx is the domain size in the x-direction. 
All lateral boundaries satisfy roller BCs. The void-solid interface Γw is stress-free, implying zero 
pore pressure. The fine grids correspond to the image pixels in Fig.2, which have dimensions 716 
× 576 in P2D, 541 × 546 in S2D, and 67 × 68 ×71 in S3D. Fig.2 also shows the decomposition of 
each domain into grain grids. Their number, Ng, is 76 in P2D, 120 in S2D, and 47 in S3D. 

For each domain, we consider different crack patterns shown in Fig.3. For P2D and S2D, we 
consider three patterns: (1) c1: all cracks are confined to the interior of grain grids (i.e., none 
intersects a contact interface); (2) c2: all cracks intersect at least one contact interface; and (3) c3: 
cracks are obtained by superposing the cracks from patterns c1 and c2. For S3D, we consider two 
crack patterns c50 and c100, which correspond respectively to placing 50 and 100 elliptical cracks 
with different sizes and orientations randomly inside the domain. For brevity, we use P2D-c1, P2D-
c2, P2D-c3, S2D-c1, S2D-c2, S2D-c3, S3D-c50, and S3D-c100 to refer to each domain-pattern pair. 
In some cases, where we consider domains to be intact (i.e., containing no cracks), we use P2D-
c0, S2D-c0, and S3D-c0. The phase-field length-scale parameter l and fracture toughness Gc in Eq.3 
are set to l = 2h = 0.02 mm and Gc = 2.7×10-3 GPa-mm, respectively, in all cases. 

 
5. Results 

In the following sections, we first compare the first-pass solutions A0 and U0 obtained from a 
single application of MG against the exact DNS solution from a direct solver. Section 5.1.1 presents 
results for intact domains, and Section 5.1.2 for fractured domains. The intact-domain results are 
discussed in relation to the PLMM results of Mehmani et al.23 We measure the errors of A0 and U0 
via: 
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where Eup and Eu2 quantify the pointwise and L2 errors of the displacement field, respectively, both 
expressed in percentages.23 In Section 5.2, we analyze the convergence rate of GMRES when right 
preconditioned by the multiscale preconditioner M in Eq.28, made up of MG and ML. For ML, we 
consider ILU(k) with k = 0, 1, 2 as Ml, and nst = 1, 6, 12 in Eq.29. For MG, we consider two options: 
(1) MG is built from scratch, including all cracks in the basis vectors, using the procedure outlined 
in Section 3.4; and (2) MG is updated from a previously built MG for the intact domain. We use the 
simple, but abusive, notation of A0 to refer to the former MG, and U0 to refer to the latter MG. 

 
 



 
Fig 2. (Top row) Pore-scale domains used to test the multiscale preconditioner. (Bottom row) The 

decomposition of these domains into grain grids (randomly colored). 
 

 
Fig 3. Crack patterns used to test the multiscale preconditioner. In P2D and S2D, c1 denotes cracks 

confined solely to the interior of grain grids, c2 denotes cracks intersecting at least one contact interface, 
and c3 is a superposition of cracks in patterns c1 and c2. In S3D, c50 and c100 correspond to 50 and 100 

elliptical cracks, respectively, with different sizes and orientations placed randomly in the domain. 
 

5.1. Single application of the global preconditioner 

5.1.1. Intact domains 

Figs.4-5 compare the first-pass solutions obtained from a single application of MG against DNS 
for P2D-c0, S2D-c0, and S3D-c0. Because these domains are intact, the first-pass solutions A0 and 
U0 are equal, and only A0 is plotted. Figs.4-5 show that the displacement magnitude |u|, maximum 
shear stress, σm, and volumetric strain, ∇·u of A0 are in excellent agreement with DNS. Table 1 



summarizes the relative L2-errors (%) of the displacement field for A0 (see the “c0” columns). In 
all domains, Eu2 < 5% which is comparable to the PLMM errors reported in Mehmani et al.23 for 
the same intact domains. The small numerical discrepancy between the two is likely due to the 
fine-grid discretization method, i.e., FEM here but FVM there. The high accuracy of A0 implies 
that it can serve as an attractive global preconditioner for intact domains. 

 

 
Fig 4. Single application of the global preconditioner A0 against DNS for P2D-c0 and S2D-c0. 

 

 
Fig 5. Single application of the global preconditioner A0 against DNS for S3D-c0. 

 
 



Table 1. Relative L2-errors (%) of displacement (Eu2) between the first-pass solutions A0 and U0 obtained 
from a single application of the global preconditioner versus the exact DNS solution. 

 
 

5.1.2. Fractured domains 

Similar to Section 5.1.1, Figs.6-8 compare the first-pass solutions obtained from a single 
application of MG against DNS for P2D-c3, S2D-c3, and S3D-c3. The results for crack patterns c1 
and c2 are not shown as they are less challenging than c3. Here, the approximate solutions A0 and 
U0 differ, hence, both are shown. As in Figs.6-8, we see that A0 and U0 are in excellent agreement 
with DNS. Unsurprisingly, A0 is slightly more accurate than U0 because it accounts for all cracks 
in the building of MG, not just those that intersect contact interfaces. Table 1 summarizes the L2-
errors associated with A0 and U0, which are Eu2 < 6% and Eu2 < 8.5%, respectively, for all domain-
crack pattern pairs. Notice Eu2 for A0 is roughly equal to Eu2 for U0 in crack pattern c2. This is 
expected because all cracks are included in computing U0 through the adaptivity criterion defined 
in Section 3.6. By the same token, the errors of U0 are larger than those of A0 for pattern c1 because 
no cracks are included in the construction of MG for U0. Despite this apparent superiority of A0 
over U0, the next section shows they perform comparably as MG within a GMRES solver. Figs.9-
11 depict pointwise errors of A0 and U0, which tend to concentrate near the cracks and contact 
interfaces. The latter is due to the localization assumption in Eq.8. Removing these errors is the 
main function of the smoother ML discussed in Section 3.5. 

 

Fig 6. Single application of the global preconditioners A0 and U0 against DNS for P2D-c3. 



 

Fig 7. Single application of the global preconditioners A0 and U0 against DNS for S2D-c3. 
 

 
Fig 8. Single application of the global preconditioners A0 and U0 against DNS for S2D-c3.  



 

 
Fig 9. Pointwise displacement errors, Eup (%), of A0 and U0 for P2D-c1, P2D-c2, and P2D-c3. 

 
 

 
Fig 10. Pointwise displacement errors, Eup (%), of A0 and U0 for S2D-c1, S2D-c2, and S2D-c3. 

 



 
Fig 11. Pointwise displacement errors, Eup (%), of A0 and U0 for S3D-c50 and S2D-c100. 

 
We conclude this section by noting the first-pass solutions A0 and U0 have one fundamental 

difference from early iterates produced by a generic AMG solver: the former conserve momentum 
whereas the latter do not. This property also applies to all later iterates Am and Um obtained from 
our global preconditioner. The implication is that A0 and U0, and all subsequent iterates of MG, 
can be used readily in engineering applications without having to converge all the way to the exact 
DNS solution. The same cannot be said about AMG solvers. As an example, using an aggregation-
based algebraic multigrid (AGMG) solver54 on the S2D-c3 domain, we obtained Eu2 = 48%, 41%, 
and 39% errors, respectively, for the 1st , 2nd, and 4th iterates. Not only do these not conserve 
momentum, they are 6-8 times less accurate than A0 and U0 in Table 1.  

 
5.2. Preconditioning a Krylov solver (GMRES) 

We next test the performance of the multiscale preconditioner M in Eq.28, which combines 
MG and ML in a right preconditioned GMRES solver. We probe different combinations of MG, 
based on A0 or U0, with ML, based on Eq.29 with Ml = ILU(k), k = 0, 1, 2, and nst = 1, 6, 12. We 
chose ILU(k) for Ml over other popular smoothers, such as Gauss-Seidel, because ILU(k) is more 
flexible in the way its accuracy is hierarchically controlled by the fill-in parameter k, and because 
preliminary tests revealed it to be more efficient; often by ×2 in CPU-time. We consider all pairings 
of the domains and crack patterns shown in Figs.2-3, as well as intact domains, i.e., P2D-c0,1,2,3, 
S2D-c0,1,2,3, and S3D-c0,50,100. We declare GMRES to have converged if the normalized residual 
satisfies ||Âx̂- b̂||/||b̂|| < 10-8 in less than 150 iterations. Otherwise, the solver is said to have 
“diverged.” We set the restart value of GMRES equal to 20. Table 2 summarizes the number of 
iterations required to converge in all cases. Under S3D, “div” means “diverged”. Table 3 also lists 
the total wall-clock time (WCT) associated with each case. This includes times spent on building 
MG and ML plus solving the linear system with GMRES. For comparison, Tables 2-3 also include 
the number of iterations and WCTs of an aggregation-based algebraic multigrid (AGMG) solver54 
that is known to outperform classical AMG solvers.47 For AGMG, iterations are performed until 
||Âx̂- b̂||/||b̂|| < 10-8 without capping their number at 150. The AGMG source code was obtained 



from agmg.eu. All cases were run in series and on an Intel Core(TM) i9-10980XE CPU @ 
3.00GHz, 128 GB RAM machine. Each run was repeated three times to measure WCT. 

 
Table 2. Number of GMRES iterations to converge (||Âx̂- b̂||/||b̂|| < 10-8) for different combinations of the 

global preconditioner MG built from A0 and U0, smoothers with Ml = ILU(k) where k = 0, 1, 2, and 
number of smoothing stages is nst = 1, 6, 12.  All domains, cracked (c1, c2, c3) and intact (c0), are listed. 
Results of an aggregation-based algebraic multigrid (AGMG) solver are also included for comparison. 
GMRES runs marked “div” indicate iterations exceeded 150. No such limit was imposed on AGMG. 

 
 

The following key observations are made: (1) Whether MG is built from A0 or U0 makes little 
difference in the number of GMRES iterations. This is noteworthy because it means updating MG 
via Algorithm 1 is as good as building it from scratch following the steps in Section 3.4. Note the 
WCTs associated with U0 are slightly higher than A0 due to implementational differences in the 
way MG is constructed. For U0, MG is first built for the intact domain, then updated to account for 
cracks, resulting in redundant subdomain solves that artificially inflate WCT. In practice, the WCT 
would only include that of updating an existing MG; (2) The larger the fill-in value k is in ILU(k), 
and the more smoothing stages nst are performed in Eq.29, the fewer iterations are required by 
GMRES to converge. However, there are diminishing returns in terms of WCT. For example, 
performance worsens in nearly all cases as nst grows larger than one. The only exception is ILU(0), 
for which nst = 6 is optimal. Another example is if we fix nst and go from ILU(1) to ILU(2), WCT 
either stays constant or worsens (e.g., S3D). In contrast, we always see improvement when going 
from ILU(0) to ILU(1). We thus recommend ILU(0) with nst = 6 or ILU(1) with nst = 1 as the best 
smoothers; (3) In S3D-c50 and S3D-c100, large values of k and nst can lead to divergence, the 
patterns of which are illustrated in Fig.12f. It is interesting to note that the intact domain S3D-c0 
does not diverge, which may indicate that generic smoothers such as ILU(k) are not optimal for 
fractured porous materials. In Section 6.1, we discuss how specialized smoothers may be designed 
in the future that are more robust; Finally (4) if cracks are confined solely to the interior of the 
grain grids (pattern c1), convergence rate is comparable to intact domains (pattern c0). But if cracks 



intersect contact interfaces (patterns c2 and c3), convergence is slower (by ×2) because the quality 
of the localization assumption in Eq.8, and thus MG, is degraded by such cracks. 

 
Table 3. Total wall-clock times (WCT) in seconds corresponding to the cases in Table 2. WCTs include 
the times spent on building MG and ML plus solving the linear system. All cases are run in series. AGMG 
results are obtained from a compiled FORTRAN code, whereas preconditioned GMRES results from an 
uncompiled MATLAB code. Despite the disadvantage, GMRES is on par with AGMG, and outperforms 

AGMG for large domain sizes such as P2D-H, depicted by Fig.13. 

 
 

The solid lines in Fig.12 illustrate the convergence pattern of GMRES for a subset of the entries 
in Table 2. They correspond to P2D-c3, S2D-c3, and S3D-c50 with MG built for U0. In Figs.12a-c, 
we set Ml to ILU(0) and vary nst, while in Figs.12d-f, we fix nst = 12 and vary Ml between ILU(0), 
ILU(1), and ILU(2). These plots echo the same observations made above from Table 2. Namely, 
there are almost no improvements in the number of iterations from nst = 6 to 12 in Figs.12a-c, or 
from ILU(1) to ILU(2) in Figs.12d-f, only diminishing returns in terms of WCTs (see Table 3). 
Fig.12f also shows that if k in ILU(k) and nst in Eq.29 are set too large, convergence for S3D-c50 
deteriorates or diverges. We now answer two important questions: (1) Is MG necessary to achieve 
fast convergence? The black dashed lines in Figs.12a-c show the convergence patterns of GMRES 
if preconditioned by only M = ML (excluding MG). Here, ML is built from Eq.29 using Ml = ILU(0) 
and nst = 6. In all cases, GMRES converges very slowly (or “diverges” by our standard) if M = ML 
compared to the solid black lines. The corresponding WCTs for P2D-c3 and S2D-c3 at the 150th 
iteration, when neither has converged, are 137s and 96s, respectively. These WCTs are 3-4 times 
larger than those in Table 3 where ML is paired with MG. The WCT for S3D-c50 with M = ML is 
205s and GMRES converges in 116 iterations. While this is on par with Table 3, we note this is 
because S3D is a rather small domain (i.e., 67×68×71; still memory demanding because the matrix 
is denser than 2D). Hence, a few smoothing steps can quickly propagate error corrections spatially. 
For the much larger domain P2D-H, described later, GMRES does not converge with M = ML even 
after 500 iterations and ~3 hours. With MG, on the other hand, GMRES converges in ~30 minutes 



and ~50 iterations (Table 2-3). These observations demonstrate a need for MG to accelerate Krylov 
solvers; (2) Is it necessary to update MG as cracks evolve? The red dashed lines in Figs.12d-f show 
the convergence of GMRES if preconditioned by M in Eq.28, where MG is built for intact domains, 
i.e., basis vectors of MG are not updated via Algorithm 1. Here too, we see GMRES converges 
very slowly compared to the solid red lines in Figs.12d-f, highlighting the need for updating MG 
in evolving-crack problems. In Section 6.4, we discuss this point further and hypothesize a 
potentially better way of updating MG. 

 

 
Fig 12. Normalized residual versus number of GMRES iterations for different number of smoothing 
stages (nst = 1, 6, 12) and smoother types (Ml = ILU(0), ILU(1), ILU(2)). Plots correspond to P2D-c3, 

S2D-c3, and S3D-c50 using MG based on U0 as the global preconditioner. In (a-c), we fix Ml = ILU(0) and 
vary nst. In (d-f), we fix nst = 12 and vary Ml. The black dashed lines in (a-c) correspond to using ML in 

Eq.29, with Ml = ILU(0) and nst = 6, as the sole preconditioner of GMRES (i.e., MG is excluded). The red 
dashed lines in (d-f) correspond to using the preconditioner M in Eq.28 with MG built for intact domains 

(i.e., no cracks included in the construction of MG). 
 

Finally, Tables 2-3 include results for AGMG. Compared to GMRES preconditioned by MG, 
we see AGMG requires substantially more iterations to converge, often by a factor of 10-30. Its 
WCTs, however, are generally on par with GMRES, except S2D-c0-3 where GMRES is twice as 
fast, and S3D-c0,100 where AGMG outperforms GMRES. A very important caveat, however, is that 
the AGMG solver corresponds to a compiled FORTRAN code, while the preconditioned GMRES 

solver corresponds to an uncompiled MATLAB code. Through this lens, we see that despite being 
significantly disadvantaged, GMRES manages to perform as well or even better than AGMG. The 
difference amplifies dramatically as we increase the domain size, which is relatively small for the 
geometries in Fig.2. We thus consider a much larger version of P2D, called P2D-H. Fig.13a depicts 
its geometry, which contains 100 randomly placed fractures. The associated image has 2400×2400 
pixels with 5,357,211 elements and 5,425,144 nodes. This amounts to ~11 million displacement 



unknowns. The domain is pulled from the left side, while fixing the right boundary and leaving 
the top and bottom boundaries traction-free. The displacement field is solved on an Intel® Xeon® 
CPU E5-2690 v2 @ 3.00GHz, 126 GB RAM machine; shown by Fig.13b. Tables 2-3 summarize 
the number of iterations and WCTs of GMRES and AGMG for P2D-H. Not only does the 
preconditioned GMRES converge in significantly fewer iterations, by almost a factor of 26, its 
WCT is also smaller by over 2.5 times. If compiled, we expect GMRES to accelerate by another 
integer factor. Notice all calculations are in series. Added benefits can be reaped by exploiting the 
fact that the building and applying of MG are amenable to parallelism. We conclude by noting that 
roughly 30-50% of the GMRES WCTs for P2D-c0-3, S2D-c0-3, and P2D-H, and ~70% for S3D-
c0,50,100, are spent on constructing MG. Specifically, this cost is ~13s for P2D-c0-3, ~7s for S2D-c0-

3, ~156s for S3D-c0,50,100, and 310s for P2D-H, when MG is based on A0. The cost is slightly higher 
for U0 due to implementational differences already discussed. Building ML, by contrast, is cheap 
and costs ~1s for P2D-c0-3 and S2D-c0-3, ~19s for S3D-c0,50,100, and 25-35s for P2D-H. Unlike 
AGMG, which must be executed from scratch at each loading step in an evolving-crack problem, 
MG is reusable across loading steps and incurs a small cost in updating via Algorithm 1. 

 

 

Fig 13. (a) Geometry and crack pattern of the P2D-H domain used to test the scalability of the 
multiscale preconditioner versus AGMG. (b) Displacement field associated with the simulation. 

 

6. Discussion 

6.1.  Fine-scale smoothers 

The smoothers used in this work, ILU(k) with k = 0, 1, and 2, are rather generic, or black-box, 
uninformed by the specific microstructure of the domains being targeted. We believe one could do 
much better by designing more specialized smoothers. In the geometric interpretation of PLMM,23 
the authors had introduced a second set of coarse grids, called contact grids. These straddled and 
covered a narrow region around each contact interface, where errors were known to be large due 
to the localization assumption in Eq.8 (see Figs.9-11). Contact grids are attractive because they do 
not cover all of Ωs, and the cost of solving local problems on them is low. We hypothesize that a 
successful algebraic reinterpretation of these local problems as a smoother would result in even 
faster convergence rates than those listed in Table 2; after pairing with the MG developed herein. 
The challenge is to develop this preconditioner without having to merge overlapping contact grids, 



as was done previously;23 a key drawback of PLMM in low-porosity domains. The formulation 
and testing of such a smoother is subject to ongoing research. 

 

6.2. Frequency of preconditioner updates 

Recall that crack patterns considered in Section 4 were fixed. If the cracks are evolving, due 
incremental loading of Ωs, then the MG constructed at one loading step can become ineffective in 
later loading steps. Specifically, the convergence rate of the linear solver would likely deteriorate 
progressively. The remedy this, MG must be periodically updated. The adaptivity criterion in 
Section 3.6 ensures such updates are sufficiently infrequent and local to keep computational costs 
low. Each time cracks, ΓF, intersect a contact interface between two grain grids, the basis functions 
of those grain grids only are recomputed. This implies that cracks nucleating and propagating 
within the sole confinement of a grain grid are ignored. In Section 5.2, we tested this criterion by 
updating MG initially built for intact domains to fractured domains via Algorithm 1. The results in 
Table 2 confirmed that the criterion would preserve the convergence rate of iterative solvers across 
loading steps. In other words, the updated MG is as good as an MG built from scratch for the cracked 
domain. Future work will focus on applying the adaptivity criterion and Algorithm 1 in evolving-
crack problems and quantify the computational gains obtained therefrom. 

 

6.3. Computational complexity 

The initial construction of MG and its subsequent updates via Algorithm 1 are parallelizable. 
This is because computations associated with the basis vectors, pgi

k, and correction vectors, cgi, are 
fully decoupled across all grain grids. While a rigorous quantification of computational cost and 
parallel scalability is, as of now, outside our scope due to limitations in implementation, we provide 
a brief analysis of the computational complexity of MG. Let Ωs consists of Nf fine grids, Ng grain 
grids, and Nc contact interfaces. Also let pgi

k and cgi be computed using a linear solver on Ωgi that 
scales as O(nβ), where n is the number of displacement unknowns and β ∈ (1,3). Hence, the wall-
clock time (WCT) associated with building MG is: 

= ( / ) (# 1) /igf g g

build prcO N D N C D N P  T       (32) 

and the WCT associated with updating MG is: 

= ( / ) (2# ) /igf g c c

updat prcO N D N C D N f P T       (33) 

where #.�/������ denotes the average number contact interfaces per grain grid, Pprc is the number of 
parallel processors employed, and fc is the fraction of contact interfaces newly intersected by cracks 
(and not yet accounted for in MG). Eq.32 multiplies the cost of a single fine-scale problem on Ωgi, 
O(NfD/Ng)β, by the number of basis vectors, #.�/������D, and correction vectors, 1, to be built on Ωgi. 
Multiplying the result by the number of grain grids yields the total cost of building MG in series. 
Because all basis and correction vectors are decoupled, a maximum number of Pprc = (#.�/������D+1)Ng 
processors may be used, which would reduce Tbuild to O(NfD/Ng)β. With reference to Eq.33, since 
Ncfc contact interfaces are intersected by ΓF, and all basis vectors of the grain grids straddling such 
contacts must be updated, a total of (2#.�/������D)Ncfc local problems must be solved. For a maximum 
number of processors, the costs of updating MG reduces, again, to O(NfD/Ng)β. 

The WCT associated with applying MG to precondition A�� = � once is at most: 



= ( / ) ( / )f g g

apply prcO N D N N P T        (34) 

which corresponds to computing a correction vector cgi per grain grid Ωgi. Eq.34 is an upper bound 
because if v is zero on some Ωgi, so is cgi and no correction vector must be computed. In the next 
section, we discuss how the cost of Tapply may be eliminated. Lastly, MG was developed here using 
the isotropic degradation model in Eq.4, which yields the linear system in Eq.6. If an anisotropic 
degradation model were adopted, MG would be applied to the linearized system at each Newton 
iteration. Since MG is held fixed between such iterations, computational gains can be significant. 
 
6.4. Relation to algebraic multigrid (AMG) 

The global preconditioner MG is related to recent multiscale finite element, and more generally 
algebraic multigrid, preconditioners developed for Darcy-scale linear elastic deformation in porous 
media. The link is made explicit in Appendix B by formulating appropriate prolongation, P, and 
restriction, R = PT, matrices that allow the derivation of the following coarse-scale system: 
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from the reduced system AM xM = bM in Eq.15. In Appendix B, we prove that Ao = SM and bo = sM 
only if G = Ø, which makes the coarse-scale system in Eq.35 equivalent to the Schur system in 
Eq.19. However, if G ≠ Ø, the two formulations differ by a residual derived in Appendix B. The 
above use of prolongation/restriction matrices is attractive for a number of reasons: (1) updating 
MG can be accomplished by recomputing a select few columns of P; (2) the cost associated with 
recomputing the correction vectors cgi per Krylov iteration, as noted in Remark 3, can be eliminated 
by augmenting the columns of P through the inclusion of cgi as extra “basis vectors” (see Appendix 
B); (3) preliminary tests seem to suggest even less stringent adaptivity criteria than the one in 
Section 3.6 may be applied to preserve rapid convergence in Krylov solvers. For example: “update 
basis vectors on grain grids that straddle a sample-spanning fracture.” Notice the cracks in Fig.3 
were relatively short; and (4) the cost of applying MG (Tapply in Eq.34) may be removed because 
solving the coarse-scale problem in Eq.35 is as expensive as solving the Schur system in Eq.19, 
which is negligible. Future work will systematically test these hypotheses. 
 
7. Conclusion 

We developed a multiscale preconditioner for solving the linear-elastic deformation of porous 
domains with arbitrary microstructures and crack patterns. It combines a global preconditioner, 
MG, with a local smoother, ML, to simultaneously attenuate low- and high-frequency error modes, 
respectively. Our main contribution was in the construction of MG, which we based on an algebraic 
reinterpretation of a recent pore-level multiscale method (PLMM) developed by the authors.23,24 
The preconditioner interpretation has two advantages: (1) its application within existing codes is 
fully non-intrusive, and (2) key limitations associated with PLMM in reducing approximation 
errors via contact grids are removed through the flexible use of smoothers.23 We verified and tested 
the convergence of the preconditioner in a Krylov solver for a range of 2D/3D microstructures and 
crack patterns and found favorable performance. Even so, the use of generic ILU(k) smoothers 
was found to be sub-optimal. If the fill-in level, k, or number of smoothing stages, nst, are too large, 
the solver either converges slowly or diverges in our 3D domain. This calls for more specialized 
smoothers, which we think can be based on an algebraic reinterpretation of so-called “contact 



problems” in PLMM.23 Our second contribution was to propose an economic and adaptive way of 
updating MG for evolving-crack problems that preserves rapid convergence of Krylov solvers. We 
also established a direct link between MG (thus PLMM) and AMG (or MsFE) preconditioners by 
defining appropriate prolongation and restriction matrices in Appendix B. While a rigorous 
demonstration of parallel scalability was outside of the scope of our paper, a complexity analysis 
was provided that shows the construction and updating of MG are fully parallelizable. 
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Appendix A. Accounting for interior cracks during reconstruction 

To account for interior cracks in G while reconstructing xg, Eq.27 must be modified to: 
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where summations are over the grain grids in G, G, and G
ɶ

. We note that basis vectors associated 
with grain grids in G

ɶ
already capture local cracks, because they are updated via Algorithm 1. Using 

the definitions of basis vectors pgi
k in Eq.25, we rewrite Eq.A.1 as follows: 
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The red highlighted terms have been stored in computer memroy, and need not be recomputed. 
The green highlighted terms, however, require solving a local problem per grain grid in G. This 
added computation, as remarked in Section 3.6, is optional when using MG as a preconditioner to 
accelerate the convergence of Krylov solvers; as opposed to computing a first-pass solution. 
 
Appendix B. Formulating prolongation and restriction matrices 

Starting from AM xM = bM in Eq.15, global preconditioning in AMG or MsFE follows: 
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where P is a prolongation matrix, and its transpose PT a restriction matrix. Solving Eq.B.1, yields 
the corase-scale solution xo. An approximate solution for xM is obtained via xM = Pxo, which 
interpolates xo onto the fine grid. Here, we formulate an expression for P that corresponds to the 
MG in Section 3.4. Recalling the following definitions for basis and correction vectors: 
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the prolongation matrix below can be formulated: 
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where n = No
cD is the number of coarse-scale unknowns, and m = Nf

gD the number of fine-scale 
unknowns associated with Ωgi (not Γcj). The identity matrix I is No

cD×No
cD. In Eq.B.3, we have 

used the abbrieviated notation pgi = [pgi
1, pgi

2, …, pgi
n  ], which equals pgi = –(Agi

gi)-1Āgi
c. Note that 

B = [(pg1)T, (pg2)T, …, (pgm)T]T is identical to the basis matrix in Section 3.4. Substituting Eq.B.3 
into Eq.B.1, we obtain the following expressions for Ao and bo: 

o T TA B B B Bg c g c

g g c c                (B.4a) 
TBo g cb b b            (B.4b) 

where we have used the block-structures of AM and bM in Eq.17. We claim:  
 
Proposition 1. If G = Ø, then Ao = SM and bo = sM.  

Proof. Since G = Ø, none of the basis vectors pgi neglect the presence of cracks in the grain grids. 
We therefore drop the underline/under-tilde notation of Section 3.6 for simplicity. By substituting 
Eq.B.3 into Eq.B.4b, we obtain: 
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which proves bo = sM. Note that in Eq.B.5, we have used the fact that AM is symmetric and have 
substituted the definitions of pgi and cgi. Focusing next on Ao, we write the first term in the RHS 
of Eq.B.4a as follows: 
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Similarly, the second term in the RHS of Eq.B.4a can be written as follows: 
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Note that Eqs.B.6 and B.7 sum to zero. Hence, Eq.B.4a reduces to: 
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where we have used Eq.22 and the fact that Ao is symmetric. This completes the proof. ∎ 
 

In Proposition 1, Ao = SM holds only if G = Ø. If G ≠ Ø, then Ao ≠ SM because the summation 
of the first two terms in the RHS of Eq.B.4a would no longer be zero. It is straightforward to show 
that the difference between Ao and SM would then satisfy the following expression: 
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    (B.9) 

Once xo is computed by solving Eq.B.1, xg can be reconstructed via Eq.27. As noted in Remark 
3 of Section 3.4, if our goal is to precondition a Krylov solver, as opposed to computing a first-
pass solution to A�� = ��, then the correction vector cg must be computed repeatedly. This can 
become computationally cumbersome. The next proposition shows how this cost can be eliminated 
by interpreting the cgi from Eq.B.2b as yet another basis vector that is computed once: 

 
Proposition 2. Suppose the prolongation matrix is augmented as follows: 

aug
aug

B 
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⋱
   (B.10) 

Then, the coarse-scale system Aoxo = bo in Eq.B.1 remains unaltered, but Eq.27 is replaced by: 

C Bg o ox y x             (B.11) 

where yo is a vector of additional coarse-scale unknonws associated with the correction vectors cgi. 
To compute yo, the following coarse-scale system must be solved (after Aoxo = bo): 



T T TC AC C C APo oy b x            (B.12) 

Alternatively, xo and yo can be computed by substituting Paug for P and xo
aug = [(xo)T, (yo)T]T for xo 

in Eq.B.1, where xo
aug  is the augmented vector of coarse-scale unknowns. 

Proof. The proof requires merely substituting Paug for P and xo
aug for xo in Eq.B.1 and using the 

fact that PTAC = O. The latter is straightforward to verify. ∎ 
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