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ABSTRACT
Label noise in data has long been an important problem in supervised learning applications as it affects
the effectiveness of many widely used classification methods. Recently, important real-world applications,
such as medical diagnosis and cybersecurity, have generated renewed interest in the Neyman–Pearson
(NP) classification paradigm, which constrains the more severe type of error (e.g., the Type I error) under
a preferred level while minimizing the other (e.g., the Type II error). However, there has been little research
on the NP paradigm under label noise. It is somewhat surprising that even when common NP classifiers
ignore the label noise in the training stage, they are still able to control the Type I errorwith high probability.
However, the price they pay is excessive conservativeness of the Type I error and hence a significant drop
in power (i.e., 1− Type II error). Assuming that domain experts provide lower bounds on the corruption
severity, we propose the first theory-backed algorithm that adapts most state-of-the-art classification
methods to the training label noise under the NP paradigm. The resulting classifiers not only control the
Type I error with high probability under the desired level but also improve power.
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1. Introduction

Most classification methods assume a perfectly labeled train-
ing dataset. Yet, it is estimated that in real-world databases
around five percent of labels are incorrect (Orr 1998; Red-
man 1998). Labeling errors might come from insufficient guid-
ance to human coders, poor data quality, or human mis-
takes in decisions, among others (Brazdil and Konolige 1990;
Hickey 1996; Brodley and Friedl 1999b). Specifically, in the
medical field, a 2011 survey of more than 6000 physicians
found that half said they encountered diagnostic errors at
least once a month (MacDonald 2011). The existence of label-
ing errors in training data is often referred to as label noise,
imperfect labels, or imperfect supervision. It belongs to a more
general data corruption problem, which refers to “anything
which obscures the relationship between description and class”
(Hickey 1996).

The study of label noise in supervised learning has been a
vibrant field in academia. On the empirical front, researchers
have found that some statistical learning methods such as
quadratic discriminant analysis (Lachenbruch 1979) and k-
NN (Okamoto and Yugami 1997), can be greatly affected by
label noise and have accuracy seriously reduced, while other
methods, such as linear discriminant analysis (Lachenbruch
1966), are more label noise tolerant. Moreover, one can mod-
ify AdaBoost (Cao, Kwong, and Wang 2012), perceptron algo-
rithm (Khardon and Wachman 2007), and neural networks
(Sukhbaatar and Fergus 2014), so that they are more tolerant
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to label noise. Data cleansing techniques were also developed,
such as in Guyon et al. (1996) and Brodley and Friedl (1999a).
On the theoretical front, Natarajan et al. (2013) provided a guar-
antee for risk minimization in the setting of convex surrogates.
Manwani and Sastry (2013) proved label noise tolerance of risk
minimization for certain types of loss functions, and Ghosh,
Manwani, and Sastry (2015) extended the result by considering
more loss types. Liu and Tao (2016) proposed learning meth-
ods with importance-reweighting which can minimize the risk.
Blanchard et al. (2016) studied intensely the class-conditional
corruption model, a model that many works on label noise
are based on. In particular, theoretical results about parameter
estimation and consistency of classifiers under this model were
presented in their work. Most recently, Cannings, Fan, and
Samworth (2020) derived innovative theory of excess risk for
general classifiers.

Inmany classification settings, one type of errormay have far
worse consequences than the other. For example, a biomedical
diagnosis/prognosis that misidentifies a benign tumor as malig-
nant will cause distress and potentially unnecessary medical
procedures, but the alternative, where amalignant tumor is clas-
sified as benign, will have far worse outcomes. Other related pre-
dictive applications include cybersecurity and finance. Despite
great advances in the label-noise classification literature, to our
knowledge, no classifier has been constructed to deal with this
asymmetry in error importance under label noise so as to con-
trol the level of the more severe error type.

© 2022 American Statistical Association
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In this article, we concentrate on the classification set-
ting involving both mislabeled outcomes and error importance
asymmetry. The Neyman–Pearson (NP) paradigm (Cannon
et al. 2002; Scott and Nowak 2005), which controls the false-
negative rate (FNR, a.k.a., Type I error1) under some desired
level while minimizing the false-positive rate (FPR, a.k.a., Type
II error), provides a natural approach to this problem. However,
to the best of our knowledge, there has been nowork that studies
how label noise issues affect the control of the more severe FNR.
We show that if one trains a standard NP classifier on corrupted
labels (e.g., the NP umbrella algorithm in Tong, Feng, and Li
2018), then the actual achieved FNR is far below the control
target, resulting in a very high, and undesirable, FPR.

This problem motivates us to devise a new label-noise-
adjusted umbrella algorithm that corrects for the labeling errors
to produce a lower FPRwhile still controlling the FNR. The con-
struction of such an algorithm is challenging because we must
identify the optimal correction level without any training data
from the uncorrupted distribution. To address this challenge,
we employ a common class-conditional noise model and derive
the population-level difference between the Type I errors of the
true and corrupted labels. Based on this difference, we propose
a sample-based correction term that, even without observing
any uncorrupted labels, can correctly adjust the NP umbrella
algorithm to significantly reduce the FPR while still controlling
the FNR.

Our approach has several advantages. First, it is the first
theory-backed methodology in the label noise setting to con-
trol population-level Type I error (i.e., FNR) regarding the
true labels. Concretely, we can show analytically that the new
algorithm produces classifiers that have a high probability of
controlling the FNR below the desired threshold with a FPR
lower than that provided by the original NP umbrella algorithm.
Second, when there are no labeling errors, our new algorithm
reduces to the originalNP algorithm. Finally, we demonstrate on
both simulated and real-world data, that under theNPparadigm
the new algorithm dominates the original unadjusted one and
competes favorably against existingmethods which handle label
noise in classification.

The rest of the article is organized as follows. In Section 2,
we introduce some notation and a corruption model to study
the label noise. In Section 3, we demonstrate the ineffectiveness
of the original NP umbrella algorithm under label noise and
propose a new label-noise-adjusted version. The validity and
the high-probability Type I error control property of the new
algorithm are established in Section 4. Simulation and real data
analysis are conducted in Section 5, followed by a Discussion
section. All proofs, additional numerical results, and technical
results are relegated to the supplementary materials.

2. Notation and CorruptionModel

Let (X,Y , Ỹ) be a random triplet, where X ∈ X ⊂ IRd

represents features, Y ∈ {0, 1} encodes the true class labels and

1Note that Type I error in ourwork is defined to be the conditional probability
ofmisclassifying a 0 instance as class 1. Moreover, we code themore severe
class as class 0. In the disease diagnosis example, the disease class would
be class 0.

Ỹ ∈ {0, 1} the corrupted ones. Note that in our setting, we
cannot observe Y ; the observations come from (X, Ỹ). Denote
X0 � X|(Y = 0) and X1 � X|(Y = 1). Similarly, denote
X̃0 � X|(Ỹ = 0) and X̃1 � X|(Ỹ = 1). Denote by IP and IE
generic probability measure and expectation whose meanings
depend on the context. For any Borel set A ⊂ X , we denote

P0(A) = IP(X ∈ A|Y = 0) , P1(A) = IP(X ∈ A|Y = 1) ,
P̃0(A) = IP(X ∈ A|Ỹ = 0) , P̃1(A) = IP(X ∈ A|Ỹ = 1) .

Then, we denote by F0 , F1 , F̃0 and F̃1 their respective distri-
bution functions and by f0 , f1 , f̃0 and f̃1 the density functions,
assuming they exist. Moreover, for a measurable function T :
X → IR, we denote, for any z ∈ IR,

FT0 (z) = P0(T(X) ≤ z) , FT1 (z) = P1(T(X) ≤ z) ,
F̃T0 (z) = P̃0(T(X) ≤ z) , F̃T1 (z) = P̃1(T(X) ≤ z) .

Since the effect of, and adjustment to, the label noise depend
on the type and severity of corruption, we need to specify a
corruption model to work with. Our choice for this work is the
class-conditional noise (contamination) model, which is specified
in the next assumption.

Assumption 1. There exist constants m0,m1 ∈ [0, 1] such that
for any Borel set A ⊂ X ,

P̃0(A) = m0P0(A) + (1 − m0)P1(A) and
P̃1(A) = m1P0(A) + (1 − m1)P1(A) . (1)

Furthermore, assume m0 > m1 but both quantities can be
unknown. Moreover, let m#

0,m#
1 ∈ [0, 1] be known constants

such thatm#
0 ≥ m0 andm#

1 ≤ m1.

Example 1 (An example of Assumption 1). Let X0 ∼ N (μ0, σ 2)
and X1 ∼ N (μ1, σ 2), where μ0,μ1 ∈ IR and σ > 0.
Then F̃0(z) = m0�(

z−μ0
σ

) + (1 − m0)�(
z−μ1

σ
) and F̃1(z) =

m1�(
z−μ0

σ
)+ (1−m1)�(

z−μ1
σ

), where�(·) is the distribution
function ofN (0, 1). With the choice of μ0 = 0, μ1 = 1, σ = 1,
m0 = 0.9, and m1 = 0.05, the density functions f0, f̃0, f1 and f̃1
are plotted in Figure 1.

Note that Equation (1) specifies perhaps the simplest model
for label noise in supervised learning.Here,m0 andm1 represent
the severity of corruption levels. Concretely, m0 can be inter-
preted as the proportion of true 0 observations among corrupted
0 observations, and m1 the proportion of true 0 observations
among corrupted 1 observations. The assumption m0 > m1
means that corrupted class 0 resembles true class 0 more than
corrupted class 1 does, and that corrupted class 1 resembles
true class 1 more than corrupted class 0 does. However, this
assumption does not mean that corrupted class 0 resembles true
class 0more than it resembles true class 1 (i.e.,m0 > 1/2) or that
corrupted class 1 resembles true class 1 more than it resembles
true class 0 (i.e., m1 < 1/2). Note that by the way our model is
written, m0 = 1 and m1 = 0 correspond to the no label noise
situation; as such, the roles of m0 and m1 are not symmetric.
Hence, the assumptions m#

0 ≥ m0 and m#
1 ≤ m1 mean that we

know some lower bounds of the corruption levels.
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Figure 1. Density plots in Example 1. True (lighter and solid) and corrupted (darker and dashed).

The class-conditional label noise model has been widely
adopted in the literature (Natarajan et al. 2013; Liu and Tao
2016; Blanchard et al. 2016). We note here that the assumption
m0 > m1 aligns with the total noise assumption π0 + π1 < 1
in Blanchard et al. (2016) as π0 and π1 in their work corre-
spond to 1 − m0 and m1 in Assumption 1, respectively. In
Natarajan et al. (2013) and Liu and Tao (2016), the label noise
was modeled through the label flipping probabilities: μi =
IP(Ỹ = 1 − i|Y = i), i = 0, 1. This alternative formulation is
related to our formulation via Bayes’ rule. An in-depth study of
the class-conditional label noise model, including mutual irre-
ducibility and identifiability, was presented in Blanchard et al.
(2016).Moreover, Blanchard et al. (2016) developed a noisy label
trained classifier based on weighted cost-sensitive surrogate
loss and established its consistency. Similarly, Natarajan et al.
(2013) provided two methods to train classifiers, both relying
on classification-calibrated surrogate loss; bounds for respec-
tive excess risks of these two methods were also given. More-
over, Liu and Tao (2016) proposed an importance reweighting
method and extended the result in Natarajan et al. (2013) to
all surrogate losses. Other than Blanchard et al. (2016), which
briefly discussed the NP paradigm at the population level, in all
aforementioned articles, though loss functions vary, the goal of
classification is to minimize the overall risk. Our work focuses
on the NP paradigm. Moreover, we focus on high probability
control on the Type I error based on finite samples, in contrast
to asymptotic results in the literature.

In this work, we take the perspective that the domain experts
can provide under-estimates of corruption levels. In the liter-
ature, there are existing methods to estimate these levels. For
example, Liu and Tao (2016) and Blanchard et al. (2016) devel-
oped methods to estimate πi’s and μi’s, and showed consistency
of their estimators. In numerical studies, we apply the method
in Liu and Tao (2016) to estimate m0 and m1

2. Numerical
evidence shows that using these estimators in our proposed
algorithm fails to establish a high probability control of the
true Type I error. In fact, even using consistent and unbiased
estimators of m0 and m1 as inputs of our proposed algorithm
would not be able to control the true Type I error with high
probability. One such case is demonstrated in Simulation 8 of
the supplementary materials, where estimators for m0 and m1

2Note that though their method targets at μi ’s, estimates ofmi ’s in equation
(1) can be constructed from those of μi ’s by the Bayes’ theorem.

are normally distributed and centered at the true values. To have
high probability control on the true Type I error, we do need the
“under-estimates” of corruption levels as in Assumption 1.

3. Methodology

In this section, we first formally introduce theNeyman–Pearson
(NP) classification paradigm and review the NP umbrella algo-
rithm (Tong, Feng, and Li 2018) for the uncorrupted label sce-
nario (Section 3.1). Then we provide an example demonstrating
that in the presence of label noise, naively implementing the
NP umbrella algorithm leads to excessively conservative Type
I error. That is, Type I error much smaller than the control
target α. We analyze and capitalize on this phenomenon, and
present new noise-adjusted versions of the NP umbrella algo-
rithm, Algorithm 1 for known corruption levels (Section 3.2)
and Algorithm 1# for unknown corruption levels (Section 3.3).
Algorithm 1 can be considered as a special case of Algorithm 1#:
m#

0 = m0 andm#
1 = m1.

A few additional notations are introduced to facilitate our
discussion. A classifier φ : X → {0, 1} maps from the feature
space to the label space. The (population-level) Type I and II
errors of φ(·) regarding the true labels (a.k.a., true Type I and II
errors) are respectively R0(φ) = P0(φ(X) �= Y) and R1(φ) =
P1(φ(X) �= Y). The (population-level) Type I and II errors
of φ(·) regarding the corrupted labels (a.k.a., corrupted Type I
and II errors) are, respectively, R̃0(φ) = P̃0(φ(X) �= Ỹ) and
R̃1(φ) = P̃1(φ(X) �= Ỹ). In verbal discussion in this article,
Type I error without any suffix refers to Type I error regarding
the true labels.

3.1. The NP Umbrella AlgorithmWithout Label Noise

The NP paradigm (Cannon et al. 2002; Scott and Nowak 2005)
aims to mimic the NP oracle

φ∗
α ∈ argmin

φ: R0(φ)≤α

R1(φ) ,

where α ∈ (0, 1) is a user-specified level that reflects the priority
toward the Type I error. In practice, with or without label
noise, based on training data of finite sample size, it is usually
impossible to ensure R0(·) ≤ α almost surely. Instead, we aim
to control the Type I error with high probability. Recently, the
NP umbrella algorithm (Tong, Feng, and Li 2018) has attracted
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significant attention.3 This algorithmworks in conjunctionwith
any score based classification method (e.g., logistic regression,
support vector machines, or random forest) to compress a d-
dimensional feature measurement to a one-dimensional score,
and then threshold the score to classify. Specifically, given a
(score based) classification method, the NP umbrella algorithm
uses a model-free order statistics approach to decide the thresh-
old, attaining a high probability control on Type I error with
minimum Type II error for that method. Moreover, when cou-
pling with a classification method that matches the underlying
data distribution, the NP umbrella algorithm also achieves a
diminishing excess Type II error, that is, R1(φ̂α) − R1(φ∗

α) →
0. For example, Tong et al. (2020) showed that under a linear
discriminant analysis (LDA) model, an LDA classifier with the
score threshold determined by the NP umbrella algorithm sat-
isfies both the control on Type I error and a diminishing excess
Type II error.4 Next we will review the implementation of the
NP umbrella algorithm.

Let S0 = {X0
j }M0

j=1 and S1 = {X1
j }M1

j=1, respectively be the
uncorrupted observations in classes 0 and 1, where M0 and M1
are the number of observations from each class.5 Then, given a
classification method (i.e., base algorithm, e.g., logistic regres-
sion), the NP umbrella algorithm is implemented by randomly
splitting the class 0 data S0 into two parts: S0

b and S0
t . The first

part, S0
b , together with S1, is used to train the base algorithm,

while the second part S0
t determines the threshold candidates.

Specifically, we train a base algorithm with scoring function
T̂(·) (e.g., the sigmoid function in logistic regression) using
S0
b ∪ S1, apply T̂(·) onS0

t (|S0
t | = n) to get threshold candidates

{t1, . . . , tn}, and sort them in an increasing order {t(1), . . . , t(n)}.
Then the NP umbrella algorithm proposes classifier φ̂k∗(·) =
1I{T̂(·) > t(k∗)}, where

k∗ = min

⎧⎨
⎩k ∈ {1, . . . , n} :

n∑
j=k

(
n
j

)
(1 − α)jα(n−j) ≤ δ

⎫⎬
⎭ ,

(2)
in which δ is a user-specified tolerance probability of the Type I
error exceeding α. The key to this approach is that Tong, Feng,
and Li (2018) established, for all φ̂k(·) = 1I{T̂(·) > t(k)} where
k ∈ {1, . . . , n}, it holds IP(R0(φ̂k) > α) ≤ ∑n

j=k
(n
j
)
(1 −

α)jα(n−j), where IP corresponds to random draws of S0 and
S1, as well as potential randomness in the classification method
(e.g., random forest), and the inequality becomes an equality
when T̂ is continuous almost surely. In view of this inequality
and the definition for k∗, we have IP(R0(φ̂k∗) > α) ≤ δ, and φ̂k∗
achieves the smallest type II error among the φ̂k’s that respect
the (1 − δ) probability control of the Type I error. We call this
algorithm the original NP umbrella algorithm to contrast with
the newly developed versions.

3At the time of writing, the NP umbrella package has been downloaded over
35,000 times.

4These two properties together were coined as the NP oracle inequalities by
Rigollet and Tong (2011). Classifierswith these propertieswere constructed
with nonparametric assumptions in Tong (2013) and Zhao et al. (2016).

5Note that the uncorrupted data S0 and S1 are not available in our present
label noise setting and we only use them here for review purposes.

3.2. Algorithm 1: Label-Noise-Adjusted NP Umbrella
AlgorithmWith Known Corruption Levels

Returning to our errors in labels problem leads one to ask what
would happen if we were to directly apply the original NP
umbrella algorithm to the label noise setting? The results are
mixed. While this algorithm successfully controls Type I error,
it tends to be massively conservative, leading to very low Type I
errors, but high Type II errors. The next example illustrates this
phenomenon.

Example 2. Let X0 ∼ N (0, 1) and X1 ∼ N (2, 1), m0 =
0.85, m1 = 0.15, α = 0.05 and δ = 0.05. For simplicity,
we use the identity scoring function: T̂(X) = X. We generate
N ∈ {200, 500, 1000, 2000} corrupted class 0 observations and
train a classifier φ̂k∗(·) based on them. Due to normality, we can
analytically calculate the Type I and II errors regarding the true
labels. The above steps are repeated 1,000 times for every value
of N to graph the violin plots of both errors as shown in the left
panel of Figure 2. Clearly, all the achieved true Type I errors are
much lower than the control target α and true Type II errors are
very high6.

The phenomenon illustrated in the left panel of Figure 2 is
not a contrived one. Indeed, under the class-conditional noise
model (i.e., Assumption 1), at the same threshold level, the tail
probability of corrupted class 0 is greater than that of true class
0 since the corrupted 0 distribution is a mixture of true 0 and
1 distributions. Figure 3 provides further illustration. In this
figure, the black vertical line (x = 2.52) marks the threshold
of the classifier 1I{X > 2.52} whose corrupted Type I error (i.e.,
the right tail probability under the orange dashed curve) is 0.05.
In contrast, its true Type I error (i.e., the right-tail probability
under the blue solid curve) is much smaller.

The above observation motivates us to create new label-
noise-adjusted NP umbrella algorithms by carefully studying
the discrepancy between true and corrupted Type I errors,
whose population-level relation is channeled by the class-
conditional noise model and can be estimated based on data
with corrupted labels alone. We will first develop a version for
known corruption levels (i.e., Algorithm 1) and then a variant
for unknown corruption levels (i.e., Algorithm 1#). Although
the latter variant is suitable formost applications, we believe that
presenting first the known corruption level version streamlines
the reasoning and presentation.

For methodology and theory development, we assume the
following sampling scheme. Let S̃0 = {X̃0

j }N0
j=1 be corrupted

class 0 observations and S̃1 = {X̃1
j }N1

j=1 corrupted class 1 ones.
The sample sizes N0 and N1 are considered to be nonrandom
numbers, and we assume that all observations in S̃0 and S̃1

are independent. Then, we divide S̃0 into three random dis-
joint non-empty subsets. The first two parts S̃0

b and S̃0
t are

used to train the base algorithm and determine the threshold

6Tomake a contrast, we also plot in the right panel of Figure 2, the true Type I
and II errors of φ̂k∗ (·), the classifier constructed by the label-noise-adjusted
NP umbrella algorithm with known corruption levels to be introduced in
the next section. The details to generate φ̂k∗ (·)’s are skipped here, except
we reveal that corrupted class 1 observations, in addition to the corrupted
class 0 observations, are also needed to construct the thresholds.
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Figure 2. The original NPumbrella algorithmvs. a label-noise-adjusted version for Example 2. The plots in the left panel (blue) are the true Type I and II errors for the original
NP umbrella algorithm. The plots in the right panel (orange) are the true Type I and II errors for the label-noise-adjusted NP umbrella algorithm with known corruption
levels. The black dot and vertical bar in every violin represent mean and standard deviation, respectively. In the top row, the horizontal black line is α = 0.05 and the
boundaries between lighter and darker color in each violin plot mark the 1 − δ = 95% quantiles.

Figure 3. The blue solid curve is the density of true class 0 (i.e.,N (0, 1)) and the orange dashed curve is the density of corrupted class 0 (i.e., a mixture ofN (0, 1) and
N (2, 1)withm0 = 0.85). The black vertical line marks the threshold of the classifier 1I{X > 2.52}whose corrupted Type I error is 0.05.

candidates, respectively. The third part S̃0
e is used to estimate

a correction term to account for the label noise. Similarly, we
randomly divide S̃1 into two disjoint nonempty subsets: S̃1

b
and S̃1

e .
Let T̂(·) be a scoring function trained on S̃b = S̃0

b ∪ S̃1
b .

We apply T̂(·) to elements in S̃0
t and sort them in an increasing

order: {t(1), . . . , t(n)}, where n = |S̃0
t |.7 These will serve as

the threshold candidates, just as in the original NP umbrella
algorithm. However, instead of k∗, the label-noise-adjusted NP
umbrella algorithm with known corruption levels will take the
order k∗ defined by

k∗ = min{k ∈ {1, . . . , n} : αk,δ − D̂+(t(k)) ≤ α} ,
where αk,δ

8 satisfies
n∑
j=k

(
n
j

)
α
n−j
k,δ (1 − αk,δ)

j = δ , (3)

D̂+(·) = D̂(·) ∨ 0 := max(D̂(·), 0) and D̂(·) =
1−m0
m0−m1

( ˆ̃FT̂0 (·) − ˆ̃FT̂1 (·)
)
, in which ˆ̃FT̂0 (·) and ˆ̃FT̂1 (·) are

7In supplementary materials A, we summarize the notations related to the
sampling scheme for the readers’ convenience.

8The existence and uniqueness of αk,δ are ensured by Lemma 5 in the
supplementary materials.

empirical estimates of F̃T̂0 (·) and F̃T̂1 (·) based on S̃0
e and S̃1

e ,
respectively.

The entire construction process of φ̂k∗(·) = 1I{T̂(·) > t(k∗)}
is summarized and detailed in Algorithm 1. In this algorithm,
to solve αk,δ , we use a binary search subroutine (in the supple-
mentary materials B) on the function x �→ ∑n

j=k
(n
k
)
xn−j(1 −

x)j, leveraging its strict monotone decreasing property in x.
Interested readers are referred to the proof of Lemma 5 in the
supplementary materials for further reasoning. Currently, we
randomly split S̃0 and S̃1 respectively into three and two equal
sized subgroups. An optimal splitting strategy could be a subject
for future research.

The key to the new algorithm is D̂+(·), which adjusts for the
label corruption. Indeed, the original NP umbrella algorithm
can be seen as a special case of our approach where D̂+(·) = 0.
The numerical advantage of the new algorithm is demonstrated
in the right panel of Figure 2 and in Section 5. We will prove
in the next section that the label-noise-adjusted NP classifier
φ̂k∗(·) = 1I{T̂(·) > t(k∗)} controls true Type I error with high
probability while avoiding the excessive conservativeness of the
original NP umbrella algorithm. Note that in contrast to the
deterministic order k∗ in the original NP umbrella algorithm,
the new order k∗ is random, calling for much more involved
technicalities to establish the theoretical properties of φ̂k∗(·).
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Algorithm 1: Label-noise-adjusted NP Umbrella Algo-
rithm with known corruption levels
Input : S̃0: sample of corrupted 0 observations

S̃1: sample of corrupted 1 observations
α: Type I error upper bound, 0 < α < 1
δ: Type I error violation rate target, 0 < δ < 1
m0: probability of a corrupted class 0 sample being

of true class 0
m1: probability of a corrupted class 1 sample being

of true class 0
1 S̃0

b , S̃0
t ,S̃0

e ← random split on S̃0

2 S̃1
b , S̃1

e ← random split on S̃1

3 S̃b ← S̃1
b ∪ S̃0

b ; // combine S̃0
b and S̃1

b as S̃b

4 T̂(·) ← base classification algorithm(S̃b) ; // train

a scoring function on S̃b

5 Tt = {t1, t2, . . . , tn} ← T̂(S̃0
t ) ; // apply T̂ to

every entry in S̃t

6 {t(1), t(2), . . . , t(n)} ← sort(Tt)
7 T 0

e ← T̂(S̃0
e )

8 T 1
e ← T̂(S̃1

e ) ; // apply T̂ to all elements

in S̃0
e and S̃1

e
9 for k in {1, . . . , n} do

10 αk,δ ← BinarySearch(δ, k, n) ; // compute αk,δ
through binary search

11 ˆ̃FT̂0 (t(k)) ← ∣∣T 0
e

∣∣−1 · ∑
t∈T 0

e
1I{t ≤ t(k)}

12 ˆ̃FT̂1 (t(k)) ← ∣∣T 1
e

∣∣−1 · ∑
t∈T 1

e
1I{t ≤ t(k)} ;

// compute the empirical
distributions

13 D̂(t(k)) ← 1−m0
m0−m1

( ˆ̃FT̂0 (t(k)) − ˆ̃FT̂1 (t(k))
)
;

// compute an estimate of R̃0 − R0
14 D̂+(t(k)) ← D̂(t(k)) ∨ 0 ; // if D̂(t(k)) is

negative, then set it to 0
15 end
16 k∗ ← min{k ∈ {1, . . . , n} : αk,δ − D̂+(t(k)) ≤ α} ;

// select the order

17 φ̂k∗(·) ← 1I{T̂(·) > t(k∗)} ; // construct an NP
classifier

Output: φ̂k∗(·)

3.3. Algorithm 1#: Label-Noise-Adjusted NPUmbrella
AlgorithmWith Unknown Corruption Levels

For most applications in practice, accurate corruption levelsm0
andm1 are inaccessible. To address this, we propose Algorithm
1#, a simple variant of Algorithm 1 that replacesm0 andm1 with
estimates m#

0 and m#
1. In all other respects, the two algorithms

are identical. Specifically, when estimating R̃0 − R0, Algorithm
1# uses D̂#(t(k)) = 1−m#

0
m#
0−m#

1

( ˆ̃FT̂0 (t(k)) − ˆ̃FT̂1 (t(k))
)
and D̂+

# (t(k)) =
D̂#(t(k)) ∨ 0. Then, Algorithm 1# delivers the NP classifier
φ̂k∗

#
(·) = 1I{T̂(·) > t(k∗

#)
}, where k∗

# = min{k ∈ {1, . . . , n} :
αk,δ − D̂+

# (t(k)) ≤ α}. Due to the similarity with Algorithm 1,

we do not re-produce the other steps of Algorithm 1# to write it
out in a full algorithm format.

Rather than supplying unbiased estimates form0 andm1, we
will demonstrate that it is important thatm#

0 andm#
1 are under-

estimates of the corruption levels (i.e.,m#
0 ≥ m0 andm#

1 ≤ m1 as
in Assumption 1). In this work, we assume that domain experts
supply these under-estimates. While it would be unrealistic to
assume that these experts know m0 and m1 exactly, in many
scenarios one can provide accurate bounds on these quantities.
It would be interesting to investigate data-driven estimators that
have such a property for future work.

4. Theory

In this section, we first elaborate the rationale behind Algo-
rithm 1 (Section 4.1), and then show that under a few technical
conditions, this new algorithm induces well-defined classifiers
whose Type I errors are bounded from above by the desired level
with high probability (Section 4.2). Then we establish a similar
result for its unknown-corruption-level variant, Algorithm 1#
(Section 4.3).

4.1. Rationale Behind Algorithm 1

Proposition 1. Let T̂(·) be a scoring function (e.g., sigmoid
function in logistic regression) trained on S̃b. Applying T̂(·) to
every element in S̃0

t , we get a set of scores. Order these scores
and denote them by {t(1), t(2), . . . , t(n)}, in which t(1) ≤ t(2) ≤
. . . ≤ t(n). Then, for any α ∈ (0, 1) and k ∈ {1, 2, . . . , n}, the
classifier φ̂k(·) = 1I{T̂(·) > t(k)} satisfies

IP
(
R̃0(φ̂k) > α

)
≤

n∑
j=k

(
n
j

)
(1 − α)jα(n−j) ,

in which IP is regarding the randomness in all training obser-
vations, as well as additional randomness if we adopt certain
random classification methods (e.g., random forest). Moreover,
when T̂(·) is continuous almost surely, the above inequality
obtains the equal sign.

Recall that R̃0(·) denotes Type I error regarding the corrupted
labels. We omit a proof for Proposition 1 as it follows the same
proof as its counterpart in Tong, Feng, and Li (2018). For α, δ ∈
(0, 1), recall that the original NP umbrella algorithm selects
k∗ = min{k ∈ {1, . . . , n} :

∑n
j=k

(n
j
)
(1 − α)jα(n−j) ≤ δ}.

The smallest k among all that satisfy
∑n

j=k
(n
j
)
(1 − α)jα(n−j) ≤

δ is desirable because we also wish to minimize the Type II
error. There is a sample size requirement for this order statistics
approach to work because a finite order k∗ should exist. Pre-
cisely, an order statistics approach works if the last order does;
that is (1 − α)n ≤ δ. This translates to Assumption 2 on n, the
sample size of S̃0

t . This is amild requirement. For instance, when
α = δ = 0.05, n should be at least 59.

Assumption 2. n ≥ �log δ/ log(1−α)�, in which �·� denotes the
ceiling function.
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In view of Proposition 1, the choice of k∗ guarantees
IP

(
R̃0(φ̂k∗) ≤ α

)
≥ 1 − δ. In other words, if we were to ignore

the label noise presence and apply the original NP umbrella
algorithm, the Type I error regarding the corrupted labels, R̃0,
is controlled under level α with probability at least 1 − δ.
Moreover, the achieved R̃0 is usually not far from α when the
sample size n is much larger than the lower bound requirement.
However, this is not our main target; what we really want is to
control R0. Example 2 in Section 3.1 convincingly demonstrates
that in the presence of label noise, the achieved R0 after naive
implementation of the original NP umbrella algorithm can be
much lower than the control target α. This is no exception.
To aid in analyzing the gap between R0 and R̃0, we make the
following assumption.

Assumption 3. The scoring function T̂ is trained such that
F̃T̂0 (z) > F̃T̂1 (z) for all z ∈ IR with probability at least 1− δ1(nb),
where nb = |S̃b| and δ1(nb) converges to 0 as nb goes to infinity.

Loosely, Assumption 3 means that the scoring function
trained on corrupted data still has the “correct direction.” For
any classifier of the form φ̂c(·) = 1I{T̂(·) > c}, Assumption 3
implies that with probability at least 1 − δ1(nb), P̃0(φ̂c(X) =
0) > P̃1(φ̂c(X) = 0), which means that a corrupted class 0
observation is more likely to be classified as 0 than a corrupted
class 1 observation is. Interested readers can find a concrete
example that illustrates this mild assumption in the supplemen-
tary material C. Now we are ready to describe the discrepancy
between R0 and R̃0.

Lemma 1. Let T̂ be a scoring function trained on S̃b and φ̂c(·) =
1I{T̂(·) > c} be a classifier that thresholds the scoring function
at c ∈ IR. Denote D(c) = R̃0(φ̂c) − R0(φ̂c). Then, under
Assumptions 1–3, for given α and δ, it holds that

IP
(
inf
c∈IRD(c) ≥ 0

)
≥ 1 − δ1(nb) and

IP
(
R0(φ̂k∗) > α − D(t(k∗))

)
≤ δ + δ1(nb) ,

where k∗ and δ are related via Equation (2). Moreover, we have

D(c) = M
(
F̃T̂0 (c) − F̃T̂1 (c)

)
, (4)

whereM = (1 − m0)(m0 − m1)
−1.

Note that D(c) measures the discrepancy between the cor-
rupted Type I error and the true Type I error of the classifier
φ̂c(·). Lemma 1 implies that with high probability, φ̂k∗(·) has
R0, the Type I error regarding true labels, under a level that is
smaller than the target value α, and that the gap is measured by
D(t(k∗)). It is important to note that D(c) is solely a function of
the distributions of the corrupted data, and does not require any
knowledge of the uncorrupted scores, so we are able to estimate
this quantity from our observed data.

As argued previously, excessive conservativeness in Type I
error is not desirable because it is usually associated with a
high Type II error. Therefore, a new NP umbrella algorithm
should adjust to the label noise, so that the resulting classifier

respects the trueType I error control target, but is not excessively
conservative. Motivated by Lemma 1, our central plan is to
choose some less conservative (i.e., smaller) order than that in
the original NP umbrella algorithm, in view of the difference
between R0 and R̃0. Recall that δ ∈ (0, 1) is the target Type I
error violation rate. In the presence of label noise, we do not
expect to control at this precise violation rate, but just some
number around it.

For any φ̂k(·), under Assumptions 1–3, Lemma 1 implies
R̃0(φ̂k) ≥ R0(φ̂k) with probability at least 1 − δ1(nb). Note
that the δ1(nb) term is small and asymptotically 0; we will
ignore it in this section when motivating our new strategy.
With this simplification, R̃0(φ̂k) is always greater than R0(φ̂k),
as illustrated in Figure 4. The definition of αk,δ in equation (3)
and Proposition 1 imply with probability at least 1 − δ, αk,δ ≥
R̃0(φ̂k), which corresponds to the green region (the region on
the right) in Figure 4. Since we only need 1 − δ probability
control on R0, it suffices to control R0 corresponding to this
region. Combining the results αk,δ ≥ R̃0(φ̂k) and R̃0(φ̂k) ≥
R0(φ̂k), we have the inequalities αk,δ ≥ αk,δ − D(t(k)) ≥
R0(φ̂k) on our interested region (Recall D(t(k)) = R̃0(φ̂k) −
R0(φ̂k)). By the previous argument, αk,δ can be used as an
upper bound for R0, but to have a good Type II error, a better
choice is clearly the smaller αk,δ − D(t(k)). So if D(t(k)) were
a known quantity, we can set the order to be k̃∗ = min{k ∈
{1 . . . , n} : αk,δ −D(t(k)) ≤ α} and propose a classifier φ̂k̃∗(·) =
1I{T̂(·) > t

(k̃∗)}. This is to be compared with the order k∗
chosen by the original NP umbrella algorithm, which can be
equivalently expressed as k∗ = min{k ∈ {1 . . . , n} : αk,δ ≤
α} (Lemma 5 in the supplementary materials). Then we have
k̃∗ ≤ k∗, and so φ̂k̃∗(·) is less conservative than φ̂k∗(·) in terms
of Type I error.

However, φ̂k̃∗(·) is not accessible because D is unknown.
Instead, we estimate D by replacing F̃T̂0 and F̃T̂1 in (4) with their
empirical distributions ˆ̃FT̂0 and ˆ̃FT̂1 , which are calculated using
S̃0
e and S̃1

e , iid samples from the corrupted 0 and 1 observations.
Note that these estimates are independent of S̃b and S̃0

t . For a
given T̂, we define for every c ∈ IR,

D̂(c) = 1 − m0
m0 − m1

( ˆ̃FT̂0 (c) − ˆ̃FT̂1 (c)
)

and

k∗∗ = min{k ∈ {1, . . . , n} : αk,δ − D̂(t(k)) ≤ α − ε} ,
in which a small ε > 0 is introduced to compensate for the
randomness of D̂ in the theory proofs. For simulation and real
data, we actually just use ε = 0. Finally, the proposed new
label-noise-adjusted NP classifier with known corruption levels is
φ̂k∗(·) = 1I{T̂(·) > t(k∗)}, in which k∗ is a small twist from k∗∗
by replacing D̂ with its positive part. The construction of φ̂k∗(·)
was detailed in Algorithm 1.

We have two comments on the implementation of Algo-
rithm 1. First, though the ε compensation for the randomness
is necessary for the theory proof, our empirical results suggest
almost identical performance between ε = 0 relative to any
small ε, so we recommend setting ε to 0 for simplicity, and
we do not use the ε compensation in Algorithm 1. Second,
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Figure 4. A cartoon illustration of 1 − δ probability upper bound of Type I error.

in the order selection criterion of k∗ in Algorithm 1, we use
D̂+ = D̂ ∨ 0 := max(D̂, 0) instead of D̂, because empirically,
although highly unlikely, D̂ can be negative, which results in
min{k ∈ {1, . . . , n} : αk,δ −D̂(t(k)) ≤ α} ≥ min{k ∈ {1, . . . , n} :
αk,δ ≤ α}. In this case, the new order could be greater than k∗.
Since we aim to reduce the conservativeness of the original NP
umbrella algorithm, the possibility of k∗ ≥ k∗ will reverse this
effort and worsen the conservativeness. To solve this issue, we
force the empirical version of D to be nonnegative by replacing
D̂ with D̂+ in Algorithm 1.

4.2. Theoretical Properties of Algorithm 1

In this subsection, we first formally establish that Algorithm 1
gives rise to valid classifiers (Lemma 2) and then show that these
classifiers have the true Type I errors controlled under α with
high probability (Theorem 1).

Lemma 2. Under Assumption 2, k∗ = min{k ∈ {1, . . . , n} :
αk,δ −D̂+(t(k)) ≤ α} in Algorithm 1 exists. Moreover, this label-
noise-adjusted order is no larger than that chosen by the original
NP umbrella algorithm; that is k∗ ≤ k∗.

Lemma 2 implies that Algorithm 1 reduces the excessive con-
servativeness of the original NP umbrella algorithm on the Type
I error by choosing a smaller order statistic as the threshold.
Moreover, if there is no label noise, that is, when m0 = 1 and
m1 = 0, we have k∗ = min{k ∈ {1, . . . , n} : αk,δ ≤ α} =
k∗. That is, Algorithm 1 reduces to the original NP umbrella
algorithm.

Another important question is whether Algorithm 1 can
control the trueType I errorwith high probability. The following
condition is assumed for the rest of this section.

Assumption 4. The scoring function T̂ is trained from a class
of functions T such that the density functions for both T̂(X̃0)

and T̂(X̃1) exist for every T̂ ∈ T . Then, we denote these two
densities by f̃ T̂0 and f̃ T̂1 , respectively. Furthermore, supT̂∈T ‖f̃ T̂0 ∨
f̃ T̂1 ‖∞ ≤ C and inf T̂∈T infz∈DT̂

f̃ T̂0 (z) > c for some positive c

and C with probability 1 − δ2(nb), where DT̂ is the support of
f̃ T̂0 and is a closed interval, and δ2(nb) converges to 0 as nb goes
to infinity.

Note that Assumption 4 summarizes assumptions that we
make for technical convenience in establishing the next the-
orem. In particular, we assume the existence of densities f̃ T̂0
and f̃ T̂1 , which holds if X̃0 and X̃1 have densities and T̂(·) is
smooth. Moreover, we assume that with high probability, both
the densities are uniformly bounded from above and f̃ T̂0 (·) is
bounded uniformly from below.

Recall that in Algorithm 1, we set k∗ = min{k ∈ {1, . . . , n} :
αk,δ − D̂+(t(k∗)) ≤ α} without an ε term. Setting ε = 0
intuitively seems reasonable since, when the sample size is small,
the sets {k ∈ {1, . . . , n} : αk,δ − D̂+(t(k∗)) ≤ α − ε} and {k ∈
{1, . . . , n} : αk,δ − D̂+(t(k∗)) ≤ α} agree with high probability,
and, when the sample size is large, concentration of random
variables takes effect so there is little need for compensation
for randomness. Our simulation results further reinforce this
intuition. However, we include an ε term in the next theorem
as this is required in our proof for the theory to hold.

Theorem 1. Under Assumptions 1–4, the classifier φ̂k∗(·), given
by Algorithm 1 with k∗ = min{k ∈ {1, . . . , n} : αk,δ −
D̂+(t(k)) ≤ α − ε}, satisfies
IP

(
R0(φ̂k∗) > α

)
≤ δ + δ1(nb) + δ2(nb) + 2e−8−1nM−2C−2c2ε2

+ 2e−8−1n0eM−2ε2 + 2e−8−1n1eM−2ε2 ,

in which nb = |S̃b|, n = |S̃0
t |, n0e = |S̃0

e |, and n1e = |S̃1
e |.

Note that the upper bound of IP
(
R0(φ̂k∗) > α

)
is δ, our

violation rate control target, plus a few terms which converge
to zero as the sample sizes increase. To establish this inequality,
we first exclude the complement of the events described in
Assumption 3 and 4. Then, we further restrict ourselves on
the event constructed by a Glivenko–Cantelli-type inequality
where D̂ and D only differ by 2−1ε. There, the order selection
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criterion can be written as k∗ = min{k ∈ {1, . . . , n} : αk,δ −
D(t(k)) ≤ α−2−1ε}. Themain difficulty of the proof is to handle
the randomness of the threshold t(k∗). Unlike the deterministic
order k∗ in the original NP umbrella algorithm, the new order
k∗ is stochastic. As such, even when conditioning on T̂, t(k∗) is
sill random and cannot be handled as a normal order statistic.
Our solution is to find a high probability deterministic lower
bound for t(k∗). To do this, we introduce ck, the k/n quantile
of F̃T̂0 , which is a deterministic value if we consider T̂ to be
fixed. Then, we show that D(t(k)) only differs from D(ck) by
4−1ε for all k and that αk∗,δ − D(ck∗) ≤ α − 4−1ε. Then,
we define k0 = min{k ∈ {1, . . . , n} : αk,δ − D(ck) ≤
α − 4−1ε}, which is another deterministic value, given that
T̂ is considered to be fixed. Then, we find that k0 ≤ k∗ and
αk0,δ − D(t(k0)) ≤ α with high probability. Therefore, t(k0) is
a high probability lower bound for t(k∗). Moreover, t(k0) is an
order statistic with deterministic order (for fixed T̂) and thus its
distribution can be written as a binomial probability. The fact
αk0,δ −D(t(k0)) ≤ α combined with Proposition 1 yields that the
violation rate of φ̂k0(·) is smaller than δ. The readers are referred
to supplementary materials F for a complete proof.

4.3. Theoretical Properties of Algorithm 1#

In this subsection, we discuss the properties of Algorithm 1#.
Recall that m#

0 ≥ m0 and m#
1 ≤ m1 in Assumption 1 mean that

the corruption levels are “underestimated.” As such, Algorithm
1# produces a more conservative result than Algorithm 1. To
see this, note that the only difference between two algorithms
is that (1 − m0)(m0 − m1)

−1 in Algorithm 1 is replaced with
(1 − m#

0)(m#
0 − m#

1)
−1 in Algorithm 1#. The latter is no larger

than the former, so we have a threshold in Algorithm 1# larger
than or equal to that in Algorithm 1.

On the other hand, under Assumption 1, Algorithm 1# is
still less conservative than the original NP umbrella algorithm.
To digest this, we first consider the case where the label noise
is totally “ignored,” that is, m#

0 = 1 and m#
1 = 0. In this

case, Algorithm 1# is equivalent to the original NP umbrella
algorithm. Then, since usually m#

0 < 1 and m#
1 > 0, Algo-

rithm 1# produces a smaller threshold than the NP original
umbrella algorithm. Therefore, Algorithm1# overcomes, at least
partially, the conservativeness issue of the original NP umbrella
algorithm.

These insights are formalized in the following lemma.

Lemma 3. Under Assumptions 1 - 2, k∗
# = min{k ∈ {1, . . . , n} :

αk,δ −D̂+
# (t(k)) ≤ α} in Algorithm 1# exists.Moreover, the order

k∗
# is between k∗ and k∗, that is, k∗ ≤ k∗

# ≤ k∗.

Next we establish a high probability control on Type I error
for Algorithm 1#. Recall that a high probability control on
Type I error for Algorithm 1 was established in Theorem 1.
In view of Lemma 3, φ̂k∗

#
(·) produced in Algorithm 1# has a

larger threshold, and thus smaller true Type I error, than that
of φ̂k∗(·) produced by Algorithm 1. Then, a high probability
control on true Type I error of φ̂k∗

#
(·) naturally follows. This

result is summarized in the following corollary.

Corollary 1. Under Assumptions 1–4, the classifier φ̂k∗
#
(·) given

by Algorithm 1# with k∗
# = min{k ∈ {1, . . . , n} : αk,δ −

D̂+
# (t(k)) ≤ α − ε}, satisfies

IP
(
R0(φ̂k∗

#
) > α

)
≤ δ + δ1(nb) + δ2(nb) + 2e−8−1nM−2C−2c2ε2

+ 2e−8−1n0eM−2ε2 + 2e−8−1n1eM−2ε2 .

in which nb = |S̃b|, n = |S̃0
t |, n0e = |S̃0

e |, and n1e = |S̃1
e |.

5. Numerical Analysis

In this section, we applyAlgorithms 1 (known corruption levels)
and 1# (unknown corruption levels) on simulated and real
datasets, and compare with other methods in the literature.
We present the (approximate) Type I error violation rates9
and the averages of (approximate) true type II errors. Besides
the simulations in this section, we have additional simulations
in Supplementary materials D.1. Furthermore, the violin plots
associatedwith selected simulation are presented in Supplemen-
tary materials D.3.

As a justification of the minor discrepancy between our
theory and implementation, readers can find in Supplementary
materials D.5 the results for a slightly different implementation
of Algorithm 1, in which k∗ = min{k ∈ {1, . . . , n} : αk,δ −
D̂+(t(k)) ≤ α − ε} and ε = 0.0001. In principle, it is possible
that setting ε > 0 will make k∗ larger than when ε = 0 as
{k ∈ {1, 2, . . . , n},αk,δ − D̂+(t(k)) ≤ αk,δ − ε} is a subset
of {k ∈ {1, 2, . . . , n},αk,δ − D̂+(t(k)) ≤ αk,δ}. This will make
the threshold larger and the Type I error and the violation rate
smaller. However, since ε = 0.0001 is a very small value, its
effect on k∗ is very minor. In numerical studies, two implemen-
tations (ε = 0.0001 in the supplementary materials vs. ε = 0 in
this section) give nearly identical results for all examples. Both
implementations generate the same Type I errors and Type II
errors for most (at least 95%) cases. Moreover, the difference in
violation rates of the two implementations is no larger than a
very small number 0.1δ.

5.1. Simulation

5.1.1. Algorithm 1
Wepresent three distributional settings for Algorithm 1 (known
m0 and m1). In each setting, 2N observations are generated as
a training sample, of which half are from the corrupted class
0 and half from the corrupted class 1. The number N varies
from 200 to 2000. To approximate the true Type I and II errors,
we generate 20,000 true class 0 observations and 20,000 true
class 1 observations as the evaluation set. For each distribution
and sample size combination, we repeat the procedure 1,000
times. Algorithm 1 (“adjusted”) and the original NP umbrella

9Strictly speaking, the observed Type I error violation rate is only an approxi-
mation to the real violation rate. The approximation is two-fold: (i). in each
repetition of an experiment, the population Type I error is approximated
by empirical Type I error on a large test set; (ii). the violation rate should
be calculated based on infinite repetitions of the experiment, but we
only calculate it based on a finite number of repetitions. However, such
approximation is unavoidable in numerical studies.



10 SHUNAN YAO ET AL.

Table 1. (Approximate) Type I error violation rates over 1000 repetitions for Simulation 1.

N m0 = 0.95,m1 = 0.05 m0 = 0.9,m1 = 0.1 m0 = 0.95,m1 = 0.05 m0 = 0.9,m1 = 0.1
α = 0.05, δ = 0.05 α = 0.05, δ = 0.05 α = 0.1, δ = 0.1 α = 0.1, δ = 0.1

Adjusted Original Adjusted Original Adjusted Original Adjusted Original

200 0.026 (5.03) 0.001 (1.00) 0.033 (5.65) 0 (0) 0.078 (8.84) 0.003 (1.73) 0.073 (8.23) 0 (0)
500 0.031 (5.40) 0 (0) 0.046 (6.63) 0 (0) 0.090 (9.05) 0.001 (1.00) 0.085 (8.82) 0 (0)
1000 0.038 (5.97) 0 (0) 0.049 (6.83) 0 (0) 0.105 (9.70) 0 (0) 0.081 (8.63) 0 (0)
2000 0.053 (6.96) 0 (0) 0.046 (6.63) 0 (0) 0.087 (8.92) 0 (0) 0.099 (9.45) 0 (0)

NOTE: Standard errors (×10−3) in parentheses.

Table 2. Averages of (approximate) true Type II errors over 1000 repetitions for Simulation 1.

N m0 = 0.95,m1 = 0.05 m0 = 0.9,m1 = 0.1 m0 = 0.95,m1 = 0.05 m0 = 0.9,m1 = 0.1
α = 0.05, δ = 0.05 α = 0.05, δ = 0.05 α = 0.1, δ = 0.1 α = 0.1, δ = 0.1

Adjusted Original Adjusted Original Adjusted Original Adjusted Original

200 0.685 (7.16) 0.706 (4.65) 0.697 (7.06) 0.826 (3.54) 0.333 (3.93) 0.403 (3.56) 0.369 (4.93) 0.537 (4.03)
500 0.481 (4.08) 0.590 (2.99) 0.512 (4.92) 0.743 (2.79) 0.249 (1.94) 0.307 (1.83) 0.257 (2.21) 0.436 (2.48)
1000 0.396 (2.53) 0.534 (2.19) 0.387 (2.37) 0.663 (1.68) 0.218 (1.18) 0.287 (1.22) 0.213 (1.01) 0.381 (1.28)
2000 0.350 (1.51) 0.491 (1.45) 0.371 (1.99) 0.651 (1.45) 0.201 (0.76) 0.268 (0.77) 0.205 (0.87) 0.375 (1.01)

NOTE: Standard errors (×10−3) in parentheses.

Table 3. (Approximate) Type I error violation rates, and averages of (approximate)
true Type II errors over 1000 repetitions for Simulation 2 (m0 = 0.95, m1 = 0.05,
α = 0.1 and δ = 0.1).

N (Approximate) Averages of
violation rate (approximate) true

Type II errors

Adjusted Original Adjusted Original

200 0.079 (8.53) 0.006 (2.44) 0.164 (2.77) 0.226 (3.35)
500 0.086 (8.87) 0.001 (1.00) 0.123 (0.92) 0.161 (0.80)
1000 0.085 (8.82) 0 (0) 0.109 (0.61) 0.151 (0.58)
2000 0.085 (8.82) 0 (0) 0.101 (0.44) 0.142 (0.39)

NOTE: Standard errors (×10−3) in parentheses.

algorithm (“original”) are both applied, paired with different
base algorithms.

Simulation 1 (Gaussian Distribution). Let X0 ∼ N (μ0,	) and
X1 ∼ N (μ1,	), where μ0 = (0, 0, 0)�,μ1 = (1, 1, 1)� and

	 =
⎛
⎝ 2 −1 0

−1 2 −1
0 −1 2

⎞
⎠ ,

and the base algorithm is LDA. For different (m0,m1,α, δ)
combinations, the (approximate) Type I error violation rates and
the averages of (approximate) true Type II errors generated by
Algorithm 1 are reported in Tables 1 and 2, respectively.

Simulation 2 (Uniform Distribution within Circles). Let X0 and
X1 be uniformly distributed within unit circles respectively
centered at (0, 0)� and (1, 1)�. The base algorithm is logistic
regression. We only report (approximate) Type I error violation
rates and the averages of (approximate) true Type II errors
generated by Algorithm 1 for one combination (m0 = 0.95,
m1 = 0.05, α = 0.1 and δ = 0.1) in Table 3.

Simulation 3 (T Distribution). Let X0 and X1 be t-distributed
with shape matrix 	, which was specified in Simulation 1, 4

Table 4. (Approximate) Type I error violation rates, and averages of (approximate)
true Type II errors over 1000 repetitions for Simulation 3 (m0 = 0.95, m1 = 0.05,
α = 0.1 and δ = 0.1).

N (Approximate) Averages of
violation rate (approximate) true

Type II errors

Adjusted Original Adjusted Original

200 0.068 (7.96) 0.008 (2.82) 0.526 (5.67) 0.575 (4.32)
500 0.085 (8.82) 0.002 (1.41) 0.398 (3.32) 0.472 (2.59)
1000 0.090 (9.05) 0 (0) 0.345 (2.07) 0.432 (1.78)
2000 0.093 (9.19) 0 (0) 0.314 (1.24) 0.401 (1.18)

NOTE: Standard errors (×10−3) in parentheses.

degrees of freedom, and centered at (0, 0, 0)� and (1, 1, 1)�
respectively. The base algorithm is LDA. Similar to the previous
simulation, we only report (approximate) Type I error violation
rates and the averages of (approximate) true Type II errors
generated by Algorithm 1 for one combination (m0 = 0.95,
m1 = 0.05, α = 0.1, and δ = 0.1) in Table 4.

The results from Simulations 1–3 confirm that the original
NP umbrella algorithm is overly conservative on Type I error
when there is label noise in the training data, resulting in Type
I error violation rates (close to) 0 in all settings. In contrast, the
label-noise-adjusted Algorithm 1 has Type I errors controlled
at the specified level with high probability and achieves much
better Type II errors.

5.1.2. Algorithm 1#.
In this section, we show numerically that under the NP
paradigm, the “under-estimates” of corruption levels serve
Algorithm 1# well, while “over-estimates” do not.

Simulation 4. The distributional setting is the same as in Sim-
ulation 1. Different combinations of m#

0 and m#
1 are used. the

(approximate) Type I error violation rates and the averages of
(approximate) true Type II errors generated by Algorithm 1# for
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Table 5. (Approximate) Type I error violation rates over 1000 repetitions for Simu-
lation 4.

N m#
0 = 0.93, m#

0 = 0.95, m#
0 = 0.97, original

m#
1 = 0.07 m#

1 = 0.05 m#
1 = 0.03

200 0.136(10.85) 0.078(8.48) 0.055(7.21) 0.003(1.73)
500 0.218(13.06) 0.090(9.05) 0.038(6.05) 0.001(1.00)
1000 0.324(14.81) 0.105(9.70) 0.012(3.44) 0(0)
2000 0.462(15.77) 0.087(8.92) 0.005(2.23) 0(0)

NOTE: Standard errors (×10−3) in parentheses.

Table 6. (Approximate) Type II error violation rates over 1000 repetitions for Simu-
lation 4.

N m#
0 = 0.93, m#

0 = 0.95, m#
0 = 0.97, original

m#
1 = 0.07 m#

1 = 0.05 m#
1 = 0.03

200 0.287(3.43) 0.333(3.92) 0.373(4.62) 0.403(3.56)
500 0.215(1.61) 0.249(1.94) 0.285(2.22) 0.307(1.83)
1000 0.189(1.02) 0.218(1.18) 0.250(1.37) 0.287(1.22)
2000 0.174(0.65) 0.201(0.76) 0.230(0.86) 0.268(0.77)

NOTE: Standard errors (×10−3) in parentheses.

one combination (m0 = 0.95,m1 = 0.05, α = 0.1 and δ = 0.1)
are reported in Tables 5 and 6.

The second to the last column in Table 5 confirms that, using
strict under-estimates of corruption levels (i.e., m#

0 > m0 and
m#

1 < m1), the Type I error control objective is satisfied. Note
that we also include the strict over-estimate scenarios in the
second column (i.e., m#

0 < m0 and m#
1 > m1), where we see

that the Type I violation rates exceed the target δ. Hence, the
under-estimate requirement in the theory part is not merely
for technical convenience. Table 6 confirms that the using strict
under-estimates would lead to higher Type II errors than using
the true corruption levels. This is a necessary price to pay for not
knowing the exact levels, but still it is better than totally ignoring
the label corruption and applying the original NP umbrella
algorithm.

We state again that in this work, we rely on domain experts
to supply under-estimates of corruption levels. In the litera-
ture, there are existing estimators. For example, we implement
estimators proposed by Liu and Tao (2016) in Simulations 6
and 7 in Supplementary material D.1. There, we would see that
those estimators do not help Algorithm 1# achieve the Type
I error control objective. But this is not a problem with these
estimators themselves. Even “oracle” consistent and unbiased
estimators that center at m0 and m1 do not serve the purpose
either, as revealed in Simulation 8 in supplementary material
D.1. As expected, given our discussion about the need for under-
estimates of the corruption levels (i.e.,m#

0 ≥ m0 andm#
1 ≤ m1),

Algorithm 1# performs poorly using these unbiased estimates.
It could be an interesting topic for future research to identify

an efficient method for producing biased estimates which will
satisfy (with high probability) the bounds necessary to ensure
correct Type I error control.

5.1.3. Benchmark Algorithms
In the next simulation, we apply existing state-of-the-art algo-
rithms that perform classification on data with label noise. In
particular, we apply the backward loss correction algorithm in
Patrini et al. (2017) and the T-revision method in Xia et al.
(2019). Since we focus on the NP paradigm, we will report the
same (approximate) Type I error violation rates and averages of
(approximate) true Type II errors as for our own methods.

Simulation 5. The distributional setting is the same as in Sim-
ulation 1. The (approximate) Type I error violation rates and
averages of (approximate) true Type II errors generated by
benchmark algorithms for one combination (m0 = 0.95, m1 =
0.05, α = 0.1 and δ = 0.1) are reported in Table 7 in the main
and Table 16 in Supplementary materials D.4, respectively.

In Simulation 5, the benchmark algorithms fail to control the
true Type I error with the prespecified high probability. This is
understandable, as none of the benchmark algorithms have α or
δ as inputs. As such, these algorithms, unlike Algorithms 1 or
1#, are not designed for the NP paradigm.

5.2. Real Data Analysis

Weanalyze a canonical email spamdataset (Hopkins et al. 1999),
which consists of 4601 observations including 57 attributes
describing characteristics of emails and a 0− 1 class label. Here,
1 represents spam email while 0 represents non-spam, and the
Type I/II error is defined accordingly. The labels in the dataset
are all assumed to be correct.

We create corrupted labels according to the class-conditional
noise model. Concretely, we flip the labels of true class 0 obser-
vations with probability r0 and flip the labels of true class

Table 8. (Approximate) Type I error violation rates, and averages of (approximate)
true Type II errors by Algorithm 1 and original NP umbrella algorithm over 1000
repetitions for the email spam data.

(approximate) average of
violation rate (approximate) true

type II errors

adjusted original adjusted original

Penalized logistic regression 0.082(8.68) 0(0) 0.205(2.65) 0.272(2.71)
LDA 0.096(9.32) 0(0) 0.226(3.05) 0.314(2.77)
Support vector machine 0.093(9.19) 0.004(2.00) 0.183(3.15) 0.218(1.93)
Random forests 0.080(8.58) 0(0) 0.120(1.13) 0.152(1.54)

NOTE: Standard errors (×10−3) in parentheses.

Table 7. (Approximate) Type I error violation rates over 1000 repetitions for Simulation 5 (m0 = 0.95,m1 = 0.05, α = 0.1 and δ = 0.1).

algorithms N

200 500 1000 2000

T-revision 0.713(14.31) 0.675(14.82) 0.651(15.08) 0.621(15.35)
Backward loss correction (known corruption levels) 0.994(2.44) 0.977(4.74) 0.770(13.31) 0.127(10.53)
Backward loss correction (unknown corruption levels) 0.984(3.97) 0.793(5.20) 0.320(6.89) 0.131(3.60)

NOTE: Standard errors (×10−3) in parentheses
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Table 9. (Approximate) Type I error violation rates by Algorithm 1# over 1000 repetitions for the email spam data.

m#
0 = 0.93, m#

0 = 0.95, m#
0 = 0.97, original

m#
1 = 0.07 m#

1 = 0.05 m#
1 = 0.03

Penalized logistic regression 0.231(13.33) 0.082(8.68) 0.028(5.22) 0(0)
LDA 0.223(13.17) 0.096(9.32) 0.023(4.74) 0(0)
Support vector machine 0.220(13.11) 0.093(9.19) 0.026(5.03) 0.004(2.00)
Random forest 0.238(13.47) 0.080(8.58) 0.019(4.32) 0(0)

NOTE: Standard errors (×10−3) in parentheses.

Table 10. Averages of (approximate) true Type II errors by Algorithm 1# over 1000 repetitions for the email spam data.

m#
0 = 0.93, m#

0 = 0.95, m#
0 = 0.97, original

m#
1 = 0.07 m#

1 = 0.05 m#
1 = 0.03

Penalized logistic regression 0.165(2.04) 0.205(2.65) 0.254(3.10) 0.272(2.71)
LDA 0.213(2.54) 0.226(3.05) 0.314(3.37) 0.314(2.77)
Support vector machine 0.138(1.20) 0.183(3.15) 0.199(2.11) 0.218(1.93)
Random forest 0.102(0.78) 0.120(1.13) 0.143(1.41) 0.152(1.54)

NOTE: Standard errors (×10−3) in parentheses.

1 observations with probability r1. Note that m0 and m1 are
IP(Y = 0|Ỹ = 0) and IP(Y = 0|Ỹ = 1), respectively, while
r0 = IP(Ỹ = 1|Y = 0) and r1 = IP(Ỹ = 0|Y = 1).

In our analysis, we choose m0 = 0.95 and m1 = 0.05,
which implies setting r0 = 0.032 and r1 = 0.07810. For each
training and evaluation procedure, we split the data by stratified
sampling into training and evaluation sets. Specifically, 20%
of the true class 0 observations and 20% of the true class 1
observations are randomly selected to form the training dataset,
and the rest of the observations form the evaluation dataset.
In total, the training set contains 921 observations and the
evaluation set contains 3680 observations. The larger evaluation
set is reserved to better approximate (population-level) true
Type I/II error. We leave the evaluation data untouched, but
randomly flip the training data label according to the calculated
r0 and r1. Four base algorithms are coupledwith the original and
new NP umbrella algorithms, with α = δ = 0.1. We repeat the
procedure 1000 times.

The (approximate) Type I error violation rates and averages
of (approximate) true Type II errors generated by Algorithm 1
and the original NP umbrella algorithm are summarized in
Table 8. Similar to the simulation studies, we observe that Algo-
rithm1 correctly controls Type I error at the right level, while the
original NP umbrella algorithm is significantly overly conserva-
tive on Type I error, and consequently has much higher Type
II error. We also summarize the results generated by Algorithm
1# in Tables 9 and 10. Clearly, while strict under-estimates lead
to higher Type II errors than using exact corruption levels, the
Type I error control objective is achieved, and the Type II error
is better than just ignoring label corruption and applying the
original NP umbrella algorithm.

To make a comparison, we also apply the loss correction
algorithm in Patrini et al. (2017) and the T-revision method in
Xia et al. (2019) to the email spam data, with results summa-
rized in Table 17 in supplementary material D.4. Since these
benchmark algorithms are not designed for the NP paradigm,
as discussed in Section 5.1, none of the (approximate) true Type

10This is an application of the Bayes theorem with IP(Y = 0) estimated to be
0.610, which is the proportion of class 0 observations in the whole dataset.

I error violation rates are controlled as we desire. In addition to
the email spam data, we also apply Algorithm 1 to the CIFAR10
dataset (Krizhevsky et al. 2009) and successfully have the Type I
error controlled (Supplementary material D.2).

6. Discussion

Under the NP paradigm, we developed the first label-noise-
adjusted umbrella algorithms. There are several interesting
directions for future research. First, we can consider a more
complex noise model in which the corruption levels depend
on both the class and features. Another direction is to con-
sider data-driven “under-estimates” of the corruption levels in
the class-conditional noise model and develop (distributional)
model-specific adjustment algorithms. For instance, we can
adopt the LDA model, that is, X0 ∼ N (μ0,	) and X1 ∼
N (μ1,	).

Supplementary Material

The supplementary material contains technical and additional numerical
results.
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