
DAGGER: Exploiting Language Semantics for
Program Security in Embedded Systems

Garret Cunningham, Harsha Chenji, David Juedes, Gordon Stewart and Avinash Karanth
School of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701

Email: {gc974517, chenji, juedes, gstewart, karanth}@ohio.edu

Abstract—Without the isolation abstractions of operating sys-
tems, low-level embedded systems are especially vulnerable to
attacks that exploit flaws in either software or hardware to
gain control of program behavior. Runtime monitors at the
hardware level have shown promise towards by identifying
malicious instructions and enforcing programmer-defined policy
at runtime. However, the efficiency of monitors comes at the
cost of ease of implementation, as policies for ensuring the safe
execution of software must be defined at the hardware level. To
bridge the abstraction gap, high-level security policy languages
have been defined with the ability to be synthesized into hardware
monitors, but are limited by semantics that only define policies
whose behavior remains static throughout a program’s execution,
which limits the practical use case.

In this paper, we enable dynamically reconfigurable secu-
rity policies through a high-level language named DAGGER.
Alongside static policies, DAGGER’s semantics support policies
that dynamically change behavior in response to expert-defined
conditions at runtime. Additionally, we introduce a Verilog
compiler to support realizing policies as hardware monitors.
DAGGERis developed using the Coq proof assistant, enabling
the formal verification of policy correctness and other properties.
This approach takes advantage of the abstractions and expres-
siveness of a higher-level language while minimizing the overhead
that comes with other general-purpose approaches implemented
purely in hardware, as well as offering the groundwork for a
formally verified tool chain.

I. INTRODUCTION

The ubiquitous connectivity of embedded devices has led to

a rapid increase in their usage across a wide range of applica-

tions, from Internet of Things (IoT) to System-on-Chips (SoC)

platforms. Embedded system security is compromised when

malicious code exploits pre-existing software flaws to subvert

execution in order to gain control of program behavior. Low-

power embedded systems without the isolation abstractions

supported by operating systems are especially vulnerable to

software which may exploit low-level access to the hardware

in order to violate correctness or security guarantees.

Even when the software is trusted, an attacker can insert

malicious code at runtime to compromise system security. This

can include code injection attacks, return-oriented program-

ming, buffer overflows, and control-flow hijacking, among

others [9, etc.]. Since enforcing security policies entirely in

software can be expensive, several recent systems implemented

aspects of policies in hardware [2]–[6], [8], [12], [14]. PUMP

[6], for example, cached policies in hardware while defining

the tag-checking and propagation rules in software to min-

imize impact on performance and power. Runtime program

monitors provide fine-grained control over security policies

enforcing control-flow integrity (CFI) and information-flow

control (IFC) by granting experts the flexibility to create robust

solutions against expected attacks, usually on a per-instruction

basis.

Interest in creating hardware-level solutions for ensuring

runtime security has been on the rise, seeing the creation of

several methods for preventing memory-based and control-

flow hijacking attacks [4]. Hardware monitors represent a

subset of these designs that enforce security policies by

monitoring events in the pipeline during program execution.

Such approaches typically introduce significant overhead ei-

ther by inserting additional pipeline stages, as in the case of

PUMP [6], or by taking a hybrid approach that uses software

solutions, such as the reliance on the operating system in

PHMon [4].

While hardware monitors are effective in the variety of

attacks they can prevent, they are not ideal for systems that

run with limited hardware resources or otherwise lack the ab-

stractions of an operating system, such as low-level embedded

systems. GARUDA [10] attempted to resolve this through a

language for defining policies that are synthesizable to hard-

ware and can be inserted into any pipeline stage. This offered a

middle ground between the flexibility of programmer-specified

policies and the efficiency of monitors that minimize area

and power overhead. GARUDA, however, is limited by se-

mantics that cannot support dynamically reconfigurable policy

in response to the data being monitored. This implies that

GARUDA is unable to prevent attacks like Spectre variants

through techniques like Speculative Taint Tracking [18], which

require tracking information about speculative execution and

tainted instructions to decide the appropriate policy.

In this paper, we propose a high-level policy language

called DAGGER for defining runtime security policies that

can be synthesized as hardware monitors. The advantage of

this new language is the ability to dynamically change policies

based on program’s runtime behavior. To translate high-level

policies into low-level hardware monitors, we introduce a com-

piler from DAGGER to synthesizable Verilog modules. The

primary abstraction of DAGGER’s semantics is to consider

hardware monitors as streams that transform data, where we

adopt ideas from the bitstream processing language Ziria [11]

to define the semantics. We introduce the semantics of of

DAGGER’s data streams, expanding on what streams mean

in the context of enforcing security policies through hardware

monitors and adapting theory from Ziria. We elaborate on our

compiler from DAGGER to Verilog, including a custom HDL-

like intermediate representation (IR). Using OptimSoC [17],

an open-source implementation of OpenRISC1000 architec-

ture, we implement four policies (data leak, secure jump and

software fault isolation, shadow stack, and taint tracking) on a

five-stage MIPS pipeline. We observed marginal overhead (<
1% overhead) in power and area when implemented in 14nm

and 45nm technologies and no performance overhead when

implemented on BEEBS benchmark suite.

II. DYNAMIC POLICIES IN DAGGER

In this section we discuss the threat model, followed by an

exposition on the design and implementation of DAGGER.

A. Threat Model and Practical Concerns

Our threat model assumes the presence of a passive ad-

versary who can load and run malicious software on a system

(e.g., remotely). They can provide malicious input (e.g., a file)

to trusted and/or open source software (e.g., a web server) in

order to exploit a known vulnerability. Most importantly, they

do not have physical access to the target system - they can only

exfiltrate the results of the computation using the network, but

not through any physical side channels. A practical example

of such an adversary is a Heartbleed attack [1], [7], where

cryptographic keys can be exfiltrated through the network after

an out-of-bounds memory read, following a malicious input

provided to an open source web server.

The dynamics of policy design and an active adversary are

outside the scope of this paper. It is possible for an adversary

to infer or probe the current set of policies by providing certain

inputs, which can then be refined to “defeat” the incumbent

policy set. We assume in this paper that the system designer is

responsible for correctly specifying the policies. DAGGER is

only concerned with the translation of specified policies into

a synthesizable hardware description language.

B. The Design of DAGGER

To support dynamically reconfigurable policies in DAG-

GER, we extend ideas from the bitstream processing language

Ziria [11]. Hardware monitors can be thought of as bitstream

processors in the execution pipeline, taking in input data (such

as instructions or tags) and producing corresponding output

on a per-cycle or per-instruction basis. DAGGER Streams act

as bitstream processors that continuously map inputs of type

i to outputs of type o. The language distinguishes between

two types of streams: transformers and computers. Stream

transformers behave as the archetypal streams, mapping inputs

to outputs with no halting conditions. Therefore, transformers

are static in their behavior. They cannot be reconfigured to

adapt to a running program’s behavior: once the behavior

of a transformer is defined, it cannot be changed without

resynthesizing.

We incorporate the notion of stream computers for this

purpose. Stream computers act as transformers until a halting

condition is met, at which point a return value is given.

Fig. 1: Full DAGGER toolchain, from high-level policies to

HDL compilation and insertion into a pipeline.

Streams s � upd(λx. e) (*Update stream.*)
done(λx. e) (*Send result to next stage . *)
ite e then s1 else s2 (*Branching.*)
x ← s1; s2 (*Stream staging . *)
s1 >> s2 (*Stream composition. *)
loop(λx.s) (*Iterated streams. *)

Listing 1: Selected DAGGER syntax.

The central abstraction for DAGGER is the staged stream
x ← s1; s2, which dynamically reconfigures control by exe-

cuting a computer s1 until a return value r is given, at which

point the entire stream reconfigures to s2[x := r], which

may be itself a computer or a transformer. The streams s1
and s2 run as mutually exclusive stages, only handing over

control once a programmer-specified condition is met. In the

resulting Verilog, each stage corresponds to a module that

can be dynamically activated during execution of the security

policy.

DAGGER follows the system outlined in Figure 1. It

defines a high-level language for security policies named

Streams, whose syntax is shown in Listing 1. This is used

to write software implementations of security policies such

as enforcing software fault isolation (SFI) or speculative taint

tracking. DAGGER’s Streams can be compiled to a flexible

intermediate representation that models hardware descriptor

language (HDL) such as Verilog. This allows DAGGER to

be extracted to Verilog modules which can be inserted into

processor pipeline. In this section, we focus on the high-level

language of DAGGER, with discussion of the IR and extracted

Verilog modules following in Section III.

Figure 2 visually demonstrates the semantics of DAG-

GER via diagrams of streams. The archetypal stream trans-

former is upd(λx. e). This stream maps inputs v to outputs

o = e[x := v] for arbitrary expressions e. In comparison,

the archetypal stream computer is done(λx. e), which acts as

a “return” statement for the language. Similar to upd, it maps

input values v to outputs. However, the main output of done is

2

Fig. 2: Dataflow and type inference rules for DAGGER streams.

of a distinct return type r and bound to a variable rather than

the stream’s output channel. As a stream, done does an identity

mapping of inputs to the stream output i.e. o = v. Variables

are bound using the staged stream x ← s1; s2, where the

return value of s1 is bound to x and control is given to s2,

which may depend on x. We also introduce the loop(λx. s)
construct to lift computers to transformers. This is done by

running iterations of the stream computer s and reassigning

values returned by s to x. Loops can also be considered as an

abstraction of recursion, being equivalently stated using staged

streams as x ← s; s.

DAGGER also includes semantics for control flow options,

including conditional branching and sequential execution of

streams. The ite e then s1 else s2 command functions as a

conditional branch, where e is an expression that evaluates to a

boolean predicate and determines whether s1 or s2 is executed.

Both s1 and s2 can be transformers or computers, wherein the

ite stream inherits its type as the product of s1 and s2’s. Stream

composition s1 >> s2 denotes sequential execution of streams.

This is different from staged streams in that the output of s1
is directly fed as input to s2 for immediate execution, rather

than the philosophy of mutually exclusive execution used in

staging. Similar to conditional branches, s1 and s2 can be

transformers or computers, with the composition inheriting its

type as their product.

We implement the semantics of DAGGER’s Streams and IR

languages in the Coq proof assistant. This has the advantage

of both allowing computations to be handled by the carrier

language (Coq) and allowing for the toolchain to be formally

verifiable. Thus, policies written in DAGGER can be certified

for correctness, assuring trust that policies meet desired secu-

rity specifications. DAGGER can express a broad variety of

security policies for memory safety and control-flow integrity.

As an example, consider the following implementation of

speculative taint tracking (STT) [19] in DAGGER:

Definition stt : stream T tvec64 tvec64 �

3

loop (λ vp : exp tvec64 ⇒
taint track vp >>
ite (zero)

then (done (λ ⇒ vp))
else (upd (λ e ⇒ e))).

Stmt c � SAssign x e (*Assignment.*)
SModule m (*Module creation. *)
SSeq s1 s2 (*Sequential execution . *)
SITE e s1 s2 (*Branching.*)

Listing 2: Selected IR syntax.

C(i,o,r)[upd(λx. f)] � SAssign o (f i)

C(i,o,r)[done(λx. f)] � SSeq
(SAssign o i)
(SAssign r (f i))

C(i,o,r)[ite e then s1 else s2] �
let c1 � C(i,o,r)[s1] in
let c2 � C(i,o,r)[s2] in
SITE e c1 c2

C(i,o,r)[x ← s1; s2] �
let c1 � C(i,o,x)[s1] in
let c2 � λx.C(i,o,r)[s2] in
SSeq (SModule c1) (SModule c2)

C(i,o,r)[s1 >> s2] �
let m � fresh channel() in
SSeq C(i,m,r)[s1] C(m,o,r)[s2]

C(i,o,r)[loop(λx. s)] � λx.C(i,o,x)[s]

Listing 3: DAGGER to IR compiler rules.

Adapting a conservative version of the original method

[19], the stream stt takes as instructions from the reorder

buffer (ROB) as input and produces instructions that are

either unchanged or zeroed away for speculative execution.

In the former case, the visibility point is manually updated

to maintain the same value to prevent speculative execution

from advancing beyond the current unsafe instruction. The

taint track stream judges the safety of speculative instructions

and masks unsafe instructions to prevent execution. This is

done by checking if the instruction is an access instruction and

is behind a tainted instruction in the ROB, thus propagating

taint information. If deemed unsafe, the instruction is masked

to all zeroes. The ite branch checks if this has occurred. If not,

then the instruction given as output is identical to the original

and executed. If so, then the visibility point is manually kept

constant to stall speculative execution until the instruction

in question becomes safe. This example shows the ability

of DAGGER to dynamically reconfigure policies to prevent

unsafe instructions from execution.

III. COMPILATION TO HARDWARE MONITORS

To address the security concerns of technologies like low-

power embedded systems that lack software-level security

methods, we designed a compiler from the high-level DAG-

GER language to synthesizable Verilog modules that can be

placed directly into a pipeline. Our compiler first compiles

DAGGER streams into an intermediate representation (IR),

which is extracted to Verilog code. We discuss the semantics

of the IR and the compilation tool chain in this section.

Our IR is a simple imperative language that supports

variable assignment (SAssign) and modularization of code

(SModule) for the purpose of staging. Listing 2 shows the full

suite of commands, including sequential execution (SSeq) and

conditional branching (SITE). The DAGGER to IR compiler

rules are given in Listing 3. While most statements in DAG-

GER have direct analogues in the IR, the cases for stream

staging (x ← s1; s2) and loops (loop(λx. s)) are less trivial.

For stream staging, we treat s1 and s2 as separate modules.

This extracts in a straightforward way to Verilog modules

containing the code for s1 and s2 respectively, helping to

reduce area overhead and allowing the policy designer to

optimize the placement of streams within the pipeline. For

loops, we compile the code of the loop body s and create a

local variable to save the return value from each iteration of

the loop. The usage of the term “loop” begins to lose meaning

from here on, since it refers to the action of looping a stream

computer indefinitely. As hardware, the loop command acts as

a standard monitor that implements the loop’s body, with the

addition of an internal register to save some value for future

runs.

We use the IR as a guide for building Verilog modules. This

is done using Coq’s support for extraction to Haskell. The

extracted program prints Verilog code matching the behavior

of the original DAGGER stream. Since the IR is designed as

an imperative, HDL-like language, marginal effort is needed

to convert it into Verilog with the exception of supporting

modules. An example of a simple SFI policy at each step of

compilation is given in Figure 3. This policy enforces that

store instructions write to a sandbox in memory by masking

the highest order byte and manually setting it to be 0xA2.

To support the modularization of stream staging, we deter-

mine if a module is the active policy, and therefore if it should

execute its logic. Two flags are needed to determine if a policy

is active; one to see if it has control and one to see if it has

been terminated. The module is allowed to run if and only

if the control flag is on and the termination flag is off. The

termination flag for one stream is used as the control flag for

the stream that follows. That is, for the command x ← s1; s2,

the termination flag in s1 is used as the control flag for s2.

This propagates control flow information between modules.

Likewise, data lines for return values are connected between

modules. This allows s2 to use the value saved into x by s1.

IV. IMPLEMENTATION AND PERFORMANCE EVALUATION

In this section, we describe the implementation & integra-

tion of the DAGGER policies in an OpenRISC1000 processor.

We then synthesize this processor using Electronic Design

Automation (EDA) tools at different technology nodes and

measure the power and area of the design.

OptimSoC [17] is an open source implementation of a

tiled, manycore system-on-chip based on the OpenRISC1000

architecture. The processor itself is based on the mor1kx

4

Definition mask e � (val 32’h00FFFFFF) && e.

Definition force range e � (val 32’hA2000000) || e.

Definition sfi : stream T tvec32 tvec32 �
ite store

then ((upd mask) >> (upd force range))
else (upd (λ e ⇒ e)).

(a) sfi in DAGGER. store checks the instruction for store opcodes.

SITE store
(SSeq

(SAssign internal0 (32’ h00FFFFFF & i))
(SAssign o (32’hA2000000 | internal0)))

(SAssign o i)

(b) sfi compiled to our IR.

module sfi(
input clk,
input [31:0] i,
output [31:0] o,

);
reg [31:0] internal0;
wire [31:0] internal0 w;
assign internal0 w = internal0;

always @(posedge clk) begin
if (store) begin

internal0 = (32’h00FFFFFF & i);
o = (32’hA2000000 | internal0);

end else begin
o = i;

end
end

endmodule

(c) sfi extracted to Verilog.

Fig. 3: SFI policy (sfi) in DAGGER, compiled IR, and extracted Verilog.

implementation, with code to interface with Network-on-Chip

(NoC) routers, memory and other peripherals. The code base is

mainly written in SystemVerilog, allowing users to simulate its

behavior using tools such as Verilator, or synthesize the design

using EDA tools. An accompanying compiler and test/debug

infrastructure enable bare metal applications to ”run” on this

processor during simulation.
Due to the complexity of the code base, it becomes hard

to directly integrate the Verilog code extracted from Coq into

the OptimSoC code base. We have therefore used the extracted

code as a starting point for integration, and implemented the

following policies - data leak, secure jump and software fault

isolation (SJSFI), shadow stack, and taint tracking. In all

cases, if the policy is violated, an exception is raised and the

processor stops execution of code.

1) Data Leak: The memory location 0x60000 can only be

written to but any read will trigger a violation.

2) SJSFI: All writes to the memory address

range 0x80000-0x8FFF will be redirected to

0x70000-0x7FFF.

3) Shadow: A 32-deep stack is maintained in the hardware,

onto which return addresses are pushed whenever a

function is called. When it returns, the return address

is checked against the value stored on the stack. A

mismatch will trigger a violation.

4) Taint Tracking: Memory addresses

0x61230-0x61238 are tainted as write-only.

These addresses are stored in a 32-deep associative

array implemented in hardware. Any attempt to read

from any memory location will cause the address to be

looked up in this table. If the address matches and is

marked as tainted, a policy violation is triggered.

For performance evaluation, we synthesized an OptimSoC-

based design after integrating these four policies. To isolate the

overhead of the four policies, we also synthesized OptimSoC

in the same configuration but without the policies. More

specifically, the baseline design (Vanilla in Fig. 4) consists

of a single core of the mor1kx CPU which implements the

32-bit OpenRISC 1000 ISA. This CPU is instantiated on a

single tile with 32 MB of RAM, resulting in a single core

system that can run code compiled by a gcc-based toolchain.

The policies are implemented at various places in the pipeline

and then synthesized (Policies in Fig. 4). The mflowgen
framework is used to compile these Verilog designs through a

Synopsys Design Compiler R-2020.09-SP5-5 EDA workflow.

For the standard cell library, we use both the Synopsys 14nm

educational library as well as the FreePDK-based Nangate

45nm library.

The results are shown in Fig. 4. They demonstrate an

almost consistent 1% overhead for the policies across both

cell libraries, for both area and power measurements. The

clock period (speed) was varied over a range from 1ns (1GHz)

to 10ns (100 MHz). In both 14nm and 45nm nodes, the

total area remains almost constant for 400 MHz to 100 MHz

speeds, but we see a slight increase for 500 MHz on the

45nm node. This suggests that more probing is required at

speeds between 400 MHz and 1 GHz, but we’ve chosen

to keep the speeds constant across different nodes for easy

comparison. Power consumption (note the different Y axes

ranges) again shows expected behavior, with higher speeds

consuming exponentially more power. Still, the larger trend

holds: the combined Policies implementation still sees a low

overhead of about 1%.

Two contrasting factors are responsible for this low over-

head. Currently, the policies are implemented as being static

in nature, requiring memory addresses and ranges to be hard-

coded into the Verilog implementation. There are no special

instructions to configure these policies at run time. As a

result, very few registers and combinational logic circuitry are

needed to implement mechanisms such as detecting whether

5

0.0
4.0
8.0
1.2
1.6
2.0
2.4
2.8

1.0 2.0 2.5 5.0 10.0

To
ta

l A
re

a
(x

10
5

Li
br

ar
y

U
ni

ts
)

Clock period (ns)

Policies Vanilla

(a) Synopsys 14nm

0
2
4
6
8

1.0 2.0 2.5 5.0 10.0To
ta

l P
ow

er
 (m

W
)

Clock period (ns)

Policies Vanilla

(b) Synopsys 14nm

0.0
2.0
4.0
6.0
8.0
1.0
1.2

2.0 2.5 5.0 10.0

To
ta

l A
re

a
(x

10
6

Li
br

ar
y

U
ni

ts
)

Clock period (ns)

Policies Vanilla

(c) Nangate 45nm

0
1
2
3
4
5

2.0 2.5 5.0 10.0To
ta

l P
ow

er
 (m

W
)

Clock period (ns)

Policies Vanilla

(d) Nangate 45nm

Fig. 4: Comparison of total area and total power consumption of a single core single tiled OptimSoC-based design with (Policies)

and without (Vanilla) the policies, at different clock periods at different technology nodes: (a) total area for Synopsys 14nm,

(b) total power for Synopsys 14nm, (c) total area for Nangate 45nm, (d) total power for Nangate 45nm.

0
20
40
60
80

100
120

bsort qsort crc32 recursion cover

To
ta

l N
o.

 o
f C

yc
le

s
(%

)
(N

or
m

al
iz

ed
)

Benchmark Name (BEEBS)

Policies Vanilla

Fig. 5: Measuring the total number of CPU cycles required

to fully execute a benchmark program: bubblesort (bsort),

quick sort (qsort), 32-bit cyclic redundancy check (crc32),

a program with self- and mutual recursion (recursion) and a

loop containing many switch cases (cover). In each case, the

number of cycles incurred by the Policies implementation was

normalized to the one incurred by Vanilla.

a given memory address falls within a certain range (i.e.,

matches certain bits). Exception raising and handling circuitry

is already part of the Vanilla implementation since it’s required

to support operating systems; policy errors only raise a new

type of exception with a new error code, which is again

cheaper to implement. Second, there are several other parts of

the CPU such as the memory (cache) and clock gating circuitry

that dwarf the policy-related circuitry. Therefore, due to the

comprehensive nature of the Vanilla implementation, the Poli-
cies implementation is able to leverage existing mechanisms;

minimal circuitry is needed to hook into certain parts of the

pipeline, perform simple computations, and raise exceptions if

necessary.

The OptimSoC platform allows benchmarking of the de-

signed CPU by running compiled bare metal applications

without any application/binary interfaces needed for operating

systems. The verilator framework is used to translate the

HDL source code into C++, which is then compiled on the host

to yield a design simulator. Then, the bare metal application

is given as input to this, allowing us to measure the number

of cycles required to execute as well as any input/output

of the program (through terminal emulation). We’ve ported

the BEEBS benchmark suite for embedded systems to the

OptimSoC platform, and chose five different benchmarks at

random. The source code for the programs were compiled

and identical binaries were fed to the verilated versions of

the Policies and Vanilla implementations.

The number of CPU cycles were measured in each case

(Fig. 5). To easily compare across benchmarks, the values for

each benchmark were normalized to the Vanilla implemen-

tation. As we can see in the figure, the number of cycles

incurred are identical for both implementations, for each of

the five benchmarks. This can be easily explained, as the

policies are embedded into the processing pipeline and do not

incur an additional cycle. For example, memory addresses are

computed by adding an immediate (base) to the contents of a

register (offset). This computed address is intercepted at the

output of the ALU just before it is sent to the memory unit.

The policy implementation checks whether the access is legal

and raises an exception accordingly. This incurs power/area

costs but not timing costs as it leverages the existing memory

access infrastructure.

V. RELATED WORK

Designs for hardware monitors that prioritize efficiency and

limited overhead come the cost of being domain specific. DIFT

[13], FlexiTaint [15], MemTracker [16], and Speculative Taint

Tracking (STT) [18] all achieve low performance overhead

with their proposed architectures. However, each is constricted

to a certain domain of security policies that it can enforce,

such as IFC in the case of DIFT, CFI in the case of STT, or

memory safety in the case of MemTracker. In order to protect

against a broader domain of attacks, multiple solutions have

to be implemented simultaneously, potentially compounding

overhead costs.

In contrast, designs that prioritize flexibility, like PUMP

[6], PHMon [4], and Nile [5] can represent a rich class

of policies. PHMon, for example, demonstrated capability

to prevent a range of attacks on memory and control-flow

vulnerabilities, as well as demonstrated ability to conduct

hardware-accelerated fuzzing and debugging. The flexibility of

PHMon stems from its general design and programmability.

This is accomplished with support from a custom OS kernel

to interface with the architecture, making a hybrid solution.

Likewise, PUMP demonstrated ability to enforce memory and

control-flow safety policies through a general, reprogrammable

design without the need for an operating system. Instead,

the PUMP monitor is added as a new stage in the pipeline.

6

However, embedded systems may be designed without an

operating system to interface with or otherwise lack the

additional computing capacity to accommodate an extra stage

in the processor’s pipeline or an entire co-processor for tag

checking.

The GARUDA [10] project attempted to consolidate these

two issues by allowing the flexibility of a high-level language

for designing policies and the efficiency of hardware monitors

by compiling to synthesizable Verilog modules that contain

only the logic necessary to execute policies within a pipeline.

This reduces the overhead of more general designs like PUMP

or Nile, which introduced entire stages or additional processors

for the sake of flexibile policy support. However, GARUDA’s

synthesized monitors are static in design. That is, monitors

have to be resynthesized and replaced in the pipeline to change

behavior. Thus, policies that require adjusting behavior in

reaction to events during program execution are not supported.

DAGGER addresses this by introducing a modular design to

the high-level policy language and a compiler that generates

hardware monitors with the ability to reconfigure in response

to programmer-defined conditions at runtime. The result is a

flexible, highly expressive language to representing security

specifications while limiting the overhead of introducing gen-

eral architectures that incur unnecessary overhead.

VI. FUTURE WORK & CONCLUSION

Enforcing safety guarantees on modern computing plat-

forms comes with a non-trivial performance cost. Software-

level solutions offer immense flexibility by allowing security

experts to explicitly counter anticipated attacks. Hardware

monitors attempt to strike a middle-ground between the flex-

ibility of software and the efficiency of hardware. DAG-

GER offers the flexibility of implementing dynamic policies

that can be compiled to verilog. Further, policies implemented

in DAGGER can be verified in CoQ assistant proof, further

validating the design and implementation of the policies. Over-

all, DAGGER expands on prior work of designing language

semantics by designing low-overhead dynamically reconfig-

urable policies.

VII. ACKNOWLEDGMENT

This research was partially supported by NSF grants CCF-

1936794, CCF-1703013, and CCF-1901192. We sincerely

thank the anonymous reviewers for their excellent feedback.

REFERENCES

[1] “CVE-2014-0160.” Available from MITRE, CVE-ID CVE-2014-
0160., Dec. 3 2013. [Online]. Available: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-0160

[2] J. Coburn, S. Ravi, A. Raghunathan, and S. Chakradhar, “Seca:
Security-enhanced communication architecture,” in Proceedings of
the 2005 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, ser. CASES ’05. New York, NY,
USA: Association for Computing Machinery, 2005, p. 78–89. [Online].
Available: https://doi.org/10.1145/1086297.1086308

[3] A. P. Deb Nath, S. Ray, A. Basak, and S. Bhunia, “System-on-chip
security architecture and cad framework for hardware patch,” in 2018
23rd Asia and South Pacific Design Automation Conference (ASP-DAC),
2018, pp. 733–738.

[4] L. Delshadtehrani, S. Canakci, B. Zhou, S. Eldridge, A. Joshi, and
M. Egele, “{PHMon}: A programmable hardware monitor and its
security use cases,” in 29th USENIX Security Symposium (USENIX
Security 20), 2020, pp. 807–824.

[5] L. Delshadtehrani, S. Eldridge, S. Canakci, M. Egele, and A. Joshi,
“Nile: A programmable monitoring coprocessor,” IEEE Computer Ar-
chitecture Letters, vol. 17, no. 1, pp. 92–95, 2017.

[6] U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M.
Smith, T. F. Knight Jr, B. C. Pierce, and A. DeHon, “Architectural
support for software-defined metadata processing,” in Proceedings of
the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2015, pp. 487–502.

[7] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer,
N. Weaver, D. Adrian, V. Paxson, M. Bailey, and J. A. Halderman,
“The matter of heartbleed,” in Proceedings of the 2014 Conference
on Internet Measurement Conference, ser. IMC ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 475–488.
[Online]. Available: https://doi.org/10.1145/2663716.2663755

[8] F. Restuccia, A. Meza, and R. Kastner, “Aker: A design and
verification framework for safe and secure soc access control,”
in 2021 IEEE/ACM International Conference On Computer Aided
Design (ICCAD). IEEE Press, 2021, p. 1–9. [Online]. Available:
https://doi.org/10.1109/ICCAD51958.2021.9643538

[9] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Trans.
Inf. Syst. Secur., vol. 15, no. 1, mar 2012. [Online]. Available:
https://doi.org/10.1145/2133375.2133377

[10] S. Sefton, T. Siddiqui, N. S. Amour, G. Stewart, and A. K. Kodi,
“Garuda: Designing energy-efficient hardware monitors from high-level
policies for secure information flow,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37, no. 11, pp.
2509–2518, 2018.

[11] G. Stewart, M. Gowda, G. Mainland, B. Radunovic, D. Vytiniotis, and
C. L. Agullo, “Ziria: A dsl for wireless systems programming,” in
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS ’15. New York, NY, USA: Association for Computing
Machinery, 2015, p. 415–428. [Online]. Available: https://doi.org/10.
1145/2694344.2694368

[12] C. Sturton, M. Hicks, S. T. King, and J. M. Smith, “Finalfilter: Asserting
security properties of a processor at runtime,” IEEE Micro, vol. 39, no. 4,
pp. 35–42, 2019.

[13] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” ACM Sigplan Notices,
vol. 39, no. 11, pp. 85–96, 2004.

[14] B. Tan, R. Elnaggar, J. M. Fung, R. Karri, and K. Chakrabarty, “Toward
hardware-based ip vulnerability detection and post-deployment patching
in systems-on-chip,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 40, no. 6, pp. 1158–1171, 2021.

[15] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic, “Flexitaint:
A programmable accelerator for dynamic taint propagation,” in 2008
IEEE 14th International Symposium on High Performance Computer
Architecture. IEEE, 2008, pp. 173–184.

[16] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic, “Mem-
tracker: Efficient and programmable support for memory access moni-
toring and debugging,” in 2007 IEEE 13th International Symposium on
High Performance Computer Architecture. IEEE, 2007, pp. 273–284.

[17] S. Wallentowitz, A. Lankes, A. Zaib, T. Wild, and A. Herkersdorf,
“A framework for open tiled manycore system-on-chip,” in 22nd In-
ternational Conference on Field Programmable Logic and Applications
(FPL), 2012, pp. 535–538.

[18] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative taint tracking (stt) a comprehensive protection
for speculatively accessed data,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
954–968.

[19] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative taint tracking (stt): A comprehensive protection
for speculatively accessed data,” in MICRO-52, ser. MICRO ’52. New
York, NY, USA: Association for Computing Machinery, 2019, p.
954–968. [Online]. Available: https://doi.org/10.1145/3352460.3358274

7

