DAGGER: Exploiting Language Semantics for
Program Security in Embedded Systems

Garret Cunningham, Harsha Chenji, David Juedes, Gordon Stewart and Avinash Karanth
School of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701
Email: {gc974517, chenji, juedes, gstewart, karanth} @ohio.edu

Abstract—Without the isolation abstractions of operating sys-
tems, low-level embedded systems are especially vulnerable to
attacks that exploit flaws in either software or hardware to
gain control of program behavior. Runtime monitors at the
hardware level have shown promise towards by identifying
malicious instructions and enforcing programmer-defined policy
at runtime. However, the efficiency of monitors comes at the
cost of ease of implementation, as policies for ensuring the safe
execution of software must be defined at the hardware level. To
bridge the abstraction gap, high-level security policy languages
have been defined with the ability to be synthesized into hardware
monitors, but are limited by semantics that only define policies
whose behavior remains static throughout a program’s execution,
which limits the practical use case.

In this paper, we enable dynamically reconfigurable secu-
rity policies through a high-level language named DAGGER.
Alongside static policies, DAGGER’s semantics support policies
that dynamically change behavior in response to expert-defined
conditions at runtime. Additionally, we introduce a Verilog
compiler to support realizing policies as hardware monitors.
DAGGER:Iis developed using the Coq proof assistant, enabling
the formal verification of policy correctness and other properties.
This approach takes advantage of the abstractions and expres-
siveness of a higher-level language while minimizing the overhead
that comes with other general-purpose approaches implemented
purely in hardware, as well as offering the groundwork for a
formally verified tool chain.

I. INTRODUCTION

The ubiquitous connectivity of embedded devices has led to
a rapid increase in their usage across a wide range of applica-
tions, from Internet of Things (IoT) to System-on-Chips (SoC)
platforms. Embedded system security is compromised when
malicious code exploits pre-existing software flaws to subvert
execution in order to gain control of program behavior. Low-
power embedded systems without the isolation abstractions
supported by operating systems are especially vulnerable to
software which may exploit low-level access to the hardware
in order to violate correctness or security guarantees.

Even when the software is trusted, an attacker can insert
malicious code at runtime to compromise system security. This
can include code injection attacks, return-oriented program-
ming, buffer overflows, and control-flow hijacking, among
others [9, etc.]. Since enforcing security policies entirely in
software can be expensive, several recent systems implemented
aspects of policies in hardware [2]-[6], [8], [12], [14]. PUMP
[6], for example, cached policies in hardware while defining
the tag-checking and propagation rules in software to min-
imize impact on performance and power. Runtime program

monitors provide fine-grained control over security policies
enforcing control-flow integrity (CFI) and information-flow
control (IFC) by granting experts the flexibility to create robust
solutions against expected attacks, usually on a per-instruction
basis.

Interest in creating hardware-level solutions for ensuring
runtime security has been on the rise, seeing the creation of
several methods for preventing memory-based and control-
flow hijacking attacks [4]. Hardware monitors represent a
subset of these designs that enforce security policies by
monitoring events in the pipeline during program execution.
Such approaches typically introduce significant overhead ei-
ther by inserting additional pipeline stages, as in the case of
PUMP [6], or by taking a hybrid approach that uses software
solutions, such as the reliance on the operating system in
PHMon [4].

While hardware monitors are effective in the variety of
attacks they can prevent, they are not ideal for systems that
run with limited hardware resources or otherwise lack the ab-
stractions of an operating system, such as low-level embedded
systems. GARUDA [10] attempted to resolve this through a
language for defining policies that are synthesizable to hard-
ware and can be inserted into any pipeline stage. This offered a
middle ground between the flexibility of programmer-specified
policies and the efficiency of monitors that minimize area
and power overhead. GARUDA, however, is limited by se-
mantics that cannot support dynamically reconfigurable policy
in response to the data being monitored. This implies that
GARUDA is unable to prevent attacks like Spectre variants
through techniques like Speculative Taint Tracking [18], which
require tracking information about speculative execution and
tainted instructions to decide the appropriate policy.

In this paper, we propose a high-level policy language
called DAGGER for defining runtime security policies that
can be synthesized as hardware monitors. The advantage of
this new language is the ability to dynamically change policies
based on program’s runtime behavior. To translate high-level
policies into low-level hardware monitors, we introduce a com-
piler from DAGGER to synthesizable Verilog modules. The
primary abstraction of DAGGER’s semantics is to consider
hardware monitors as streams that transform data, where we
adopt ideas from the bitstream processing language Ziria [11]
to define the semantics. We introduce the semantics of of
DAGGER’s data streams, expanding on what streams mean
in the context of enforcing security policies through hardware

monitors and adapting theory from Ziria. We elaborate on our
compiler from DAGGER to Verilog, including a custom HDL-
like intermediate representation (IR). Using OptimSoC [17],
an open-source implementation of OpenRISC1000 architec-
ture, we implement four policies (data leak, secure jump and
software fault isolation, shadow stack, and taint tracking) on a
five-stage MIPS pipeline. We observed marginal overhead (<
1% overhead) in power and area when implemented in 14nm
and 45nm technologies and no performance overhead when
implemented on BEEBS benchmark suite.

II. DYNAMIC POLICIES IN DAGGER

In this section we discuss the threat model, followed by an
exposition on the design and implementation of DAGGER.

A. Threat Model and Practical Concerns

Our threat model assumes the presence of a passive ad-
versary who can load and run malicious software on a system
(e.g., remotely). They can provide malicious input (e.g., a file)
to trusted and/or open source software (e.g., a web server) in
order to exploit a known vulnerability. Most importantly, they
do not have physical access to the target system - they can only
exfiltrate the results of the computation using the network, but
not through any physical side channels. A practical example
of such an adversary is a Heartbleed attack [1], [7], where
cryptographic keys can be exfiltrated through the network after
an out-of-bounds memory read, following a malicious input
provided to an open source web server.

The dynamics of policy design and an active adversary are
outside the scope of this paper. It is possible for an adversary
to infer or probe the current set of policies by providing certain
inputs, which can then be refined to “defeat” the incumbent
policy set. We assume in this paper that the system designer is
responsible for correctly specifying the policies. DAGGER is
only concerned with the translation of specified policies into
a synthesizable hardware description language.

B. The Design of DAGGER

To support dynamically reconfigurable policies in DAG-
GER, we extend ideas from the bitstream processing language
Ziria [11]. Hardware monitors can be thought of as bitstream
processors in the execution pipeline, taking in input data (such
as instructions or tags) and producing corresponding output
on a per-cycle or per-instruction basis. DAGGER Streams act
as bitstream processors that continuously map inputs of type
1 to outputs of type o. The language distinguishes between
two types of streams: transformers and computers. Stream
transformers behave as the archetypal streams, mapping inputs
to outputs with no halting conditions. Therefore, transformers
are static in their behavior. They cannot be reconfigured to
adapt to a running program’s behavior: once the behavior
of a transformer is defined, it cannot be changed without
resynthesizing.

We incorporate the notion of stream computers for this
purpose. Stream computers act as transformers until a halting
condition is met, at which point a return value is given.

DAGGER: High-level

high
(high) Security Policy Language

Cao
IR: Policy Intermediate
Representation
l Extract
hdl: Verilog Hardware
Monitor

t

(low)

(pipeline)

Fig. 1: Full DAGGER toolchain, from high-level policies to
HDL compilation and insertion into a pipeline.

Streams s £ upd(Az.e) (xUpdate stream.s)
done(Ax.e) (xSend result to next stage.)
ite e then s; else sz (xBranching.)
T < s1;82 (xStream staging .)
§1 >> s (xStream composition.)
loop(Az.s) (xIterated streams. x)

Listing 1: Selected DAGGER syntax.

The central abstraction for DAGGER is the staged stream
T 4 s1;S2, which dynamically reconfigures control by exe-
cuting a computer s; until a return value r is given, at which
point the entire stream reconfigures to sa[x := 7], which
may be itself a computer or a transformer. The streams s;
and so run as mutually exclusive stages, only handing over
control once a programmer-specified condition is met. In the
resulting Verilog, each stage corresponds to a module that
can be dynamically activated during execution of the security
policy.

DAGGER follows the system outlined in Figure 1. It
defines a high-level language for security policies named
Streams, whose syntax is shown in Listing 1. This is used
to write software implementations of security policies such
as enforcing software fault isolation (SFI) or speculative taint
tracking. DAGGER’s Streams can be compiled to a flexible
intermediate representation that models hardware descriptor
language (HDL) such as Verilog. This allows DAGGER to
be extracted to Verilog modules which can be inserted into
processor pipeline. In this section, we focus on the high-level
language of DAGGER, with discussion of the IR and extracted
Verilog modules following in Section III.

Figure 2 visually demonstrates the semantics of DAG-
GER via diagrams of streams. The archetypal stream trans-
former is upd(Azx.e). This stream maps inputs v to outputs
o = e[z := v] for arbitrary expressions e. In comparison,
the archetypal stream computer is done(Ax. e), which acts as
a “return” statement for the language. Similar to upd, it maps
input values v to outputs. However, the main output of done is

Parameters

Stream . . As i
- 1] .
Transformers ! upd (Ax.e) e . loop (Ax.s) |— - upd (}“T E’.) : stream Tio,
if (x:i)F.e:0
— il - loop (Az.s) : Stream T i o,
Stream | done e if (z:r)Fs:Stream (Cr)io
Computers —lr
] ~ done e : Stream (C r) i 1,
il if Fee:r
Stream A & Sehen Selse-
Computer, - ite € Sypon Saise —1?, - test ¢ : Stream (C flag) i 4,
Transformers : . .
o1 if & : pred i
Fite € Sihen Selse - Stream t i o,
F Sihen - Stream t; i 0
StreamTio if F S.pee - Stream ty i 0
Transformer i _ 0 t=11 Fta
Composition StreamTim | >> [StreemTmo
(Data) 81 => 89 : Stream t i o,
F 8, : Stream t; i m
- ; if F 85 : Stream t; m o
Stream (Cr)io t=t @1y
Computer Stream (Cr)io —lr F x4+ 813 83 :Stream t i o, ‘
Composition — I 81 : Stream {C ﬂ o
(Control) Stream (T|C7) im if { (z:r)k sy:Streamtyio
I t=(Cr) @ty
|

o

Fig. 2: Dataflow and type inference rules for DAGGER streams.

of a distinct return type r and bound to a variable rather than
the stream’s output channel. As a stream, done does an identity
mapping of inputs to the stream output i.e. 0 = v. Variables
are bound using the staged stream x < sp;s3, where the
return value of s; is bound to z and control is given to so,
which may depend on x. We also introduce the loop(Az. s)
construct to lift computers to transformers. This is done by
running iterations of the stream computer s and reassigning
values returned by s to x. Loops can also be considered as an
abstraction of recursion, being equivalently stated using staged
streams as x < S; S.

DAGGER also includes semantics for control flow options,
including conditional branching and sequential execution of
streams. The ite e then s; else s command functions as a
conditional branch, where e is an expression that evaluates to a
boolean predicate and determines whether s; or s, is executed.
Both s; and s5 can be transformers or computers, wherein the
ite stream inherits its type as the product of s1 and s5’s. Stream

composition s; >> s5 denotes sequential execution of streams.
This is different from staged streams in that the output of s;
is directly fed as input to s, for immediate execution, rather
than the philosophy of mutually exclusive execution used in
staging. Similar to conditional branches, s; and so can be
transformers or computers, with the composition inheriting its
type as their product.

We implement the semantics of DAGGER’s Streams and IR
languages in the Coq proof assistant. This has the advantage
of both allowing computations to be handled by the carrier
language (Coq) and allowing for the toolchain to be formally
verifiable. Thus, policies written in DAGGER can be certified
for correctness, assuring trust that policies meet desired secu-
rity specifications. DAGGER can express a broad variety of
security policies for memory safety and control-flow integrity.
As an example, consider the following implementation of
speculative taint tracking (STT) [19] in DAGGER:

Definition stt : stream T tvec64 tvec6d £

loop (X vp : exp tvec64 =
taint_track vp >>
ite (zero)
then (done (\ _ = vp))
else (upd (A e = e))).

Stmt ¢ & SAssign x e (xAssignment.s)

SModule m (xModule creation.)
SSeq s1 s2 (xSequential execution .)
SITE e s1 s2 (xBranching.)

Listing 2: Selected IR syntax.

Cli,omlupdAz. f)] £ SAssign o (f i)
Ci,0,m[done(Az. f)] = SSeq
(SAssign o 7)
(SAssign r (f 1))
Cliomlite e then s1 else s3] £
let ¢1 £ Cpionmlsi]in
let ¢ £ O(Lo’»,«)[SQ] in
SITE e ¢1 ¢
CliomlT < 815821 £
let c; C(i,o,z)[sl] in
let c2 . C(i}o’,,»)[SQ] in
SSeq (SModule ¢1) (SModule c2)
C(i,o,M[Sl >> 59| =
let m £ fresh_channel() in
SSeq C(i,m,r)[51]1 Cim,o,r)[s21]
Ci,0,m [l00p(Az. 5)] = Az, Ci 0,2)[8]

Listing 3: DAGGER to IR compiler rules.

1> 11>

Adapting a conservative version of the original method
[19], the stream stt takes as instructions from the reorder
buffer (ROB) as input and produces instructions that are
either unchanged or zeroed away for speculative execution.
In the former case, the visibility point is manually updated
to maintain the same value to prevent speculative execution
from advancing beyond the current unsafe instruction. The
taint_track stream judges the safety of speculative instructions
and masks unsafe instructions to prevent execution. This is
done by checking if the instruction is an access instruction and
is behind a tainted instruction in the ROB, thus propagating
taint information. If deemed unsafe, the instruction is masked
to all zeroes. The ite branch checks if this has occurred. If not,
then the instruction given as output is identical to the original
and executed. If so, then the visibility point is manually kept
constant to stall speculative execution until the instruction
in question becomes safe. This example shows the ability
of DAGGER to dynamically reconfigure policies to prevent
unsafe instructions from execution.

III. COMPILATION TO HARDWARE MONITORS

To address the security concerns of technologies like low-
power embedded systems that lack software-level security
methods, we designed a compiler from the high-level DAG-
GER language to synthesizable Verilog modules that can be
placed directly into a pipeline. Our compiler first compiles

DAGGER streams into an intermediate representation (IR),
which is extracted to Verilog code. We discuss the semantics
of the IR and the compilation tool chain in this section.

Our IR is a simple imperative language that supports
variable assignment (SAssign) and modularization of code
(SModule) for the purpose of staging. Listing 2 shows the full
suite of commands, including sequential execution (SSeq) and
conditional branching (SITE). The DAGGER to IR compiler
rules are given in Listing 3. While most statements in DAG-
GER have direct analogues in the IR, the cases for stream
staging (x <— s1; s2) and loops (loop(Az. s)) are less trivial.

For stream staging, we treat s; and so as separate modules.
This extracts in a straightforward way to Verilog modules
containing the code for s; and s, respectively, helping to
reduce area overhead and allowing the policy designer to
optimize the placement of streams within the pipeline. For
loops, we compile the code of the loop body s and create a
local variable to save the return value from each iteration of
the loop. The usage of the term “loop” begins to lose meaning
from here on, since it refers to the action of looping a stream
computer indefinitely. As hardware, the loop command acts as
a standard monitor that implements the loop’s body, with the
addition of an internal register to save some value for future
runs.

We use the IR as a guide for building Verilog modules. This
is done using Coq’s support for extraction to Haskell. The
extracted program prints Verilog code matching the behavior
of the original DAGGER stream. Since the IR is designed as
an imperative, HDL-like language, marginal effort is needed
to convert it into Verilog with the exception of supporting
modules. An example of a simple SFI policy at each step of
compilation is given in Figure 3. This policy enforces that
store instructions write to a sandbox in memory by masking
the highest order byte and manually setting it to be 0xA2.

To support the modularization of stream staging, we deter-
mine if a module is the active policy, and therefore if it should
execute its logic. Two flags are needed to determine if a policy
is active; one to see if it has control and one to see if it has
been terminated. The module is allowed to run if and only
if the control flag is on and the termination flag is off. The
termination flag for one stream is used as the control flag for
the stream that follows. That is, for the command x + s1; s9,
the termination flag in s; is used as the control flag for ss.
This propagates control flow information between modules.
Likewise, data lines for return values are connected between
modules. This allows s, to use the value saved into x by sj.

IV. IMPLEMENTATION AND PERFORMANCE EVALUATION

In this section, we describe the implementation & integra-
tion of the DAGGER policies in an OpenRISC1000 processor.
We then synthesize this processor using Electronic Design
Automation (EDA) tools at different technology nodes and
measure the power and area of the design.

OptimSoC [17] is an open source implementation of a
tiled, manycore system-on-chip based on the OpenRISC1000
architecture. The processor itself is based on the morlkx

Definition mask e £ (val 32’hO0FFFFFF) && e.

Definition force_range e = (val 32°’hA2000000) || e.

Definition sfi : stream T tvec32 tvec32 =
ite store
then ((upd mask) >> (upd force_range))

else (upd (A e = e)).

(a) sfi in DAGGER. store checks the instruction for store opcodes.

SITE store
(SSeq
(SAssign internal0 (32’ hOOFFFFFF & 1))
(SAssign o (32°’hA2000000 | internal0)))
(SAssign o 1)

(b) sfi compiled to our IR.

module sfi(
input clk,
input [31:0] i,
output [31:0] o,

reg [31:0] internalO;
wire [31:0] internal0_w;
assign internal0_w = internalOQ;

always @(posedge clk) begin
if (store) begin
internal0 = (32’hOOFFFFFF & i);
0 = (32’hA2000000 | internal0);
end else begin
0=1;
end
end
endmodule

(c) sfi extracted to Verilog.

Fig. 3: SFI policy (sfi) in DAGGER, compiled IR, and extracted Verilog.

implementation, with code to interface with Network-on-Chip
(NoC) routers, memory and other peripherals. The code base is
mainly written in SystemVerilog, allowing users to simulate its
behavior using tools such as Verilator, or synthesize the design
using EDA tools. An accompanying compiler and test/debug
infrastructure enable bare metal applications to “run” on this
processor during simulation.

Due to the complexity of the code base, it becomes hard
to directly integrate the Verilog code extracted from Coq into
the OptimSoC code base. We have therefore used the extracted
code as a starting point for integration, and implemented the
following policies - data leak, secure jump and software fault
isolation (SJSFI), shadow stack, and taint tracking. In all
cases, if the policy is violated, an exception is raised and the
processor stops execution of code.

1) Data Leak: The memory location 0x60000 can only be

written to but any read will trigger a violation.

2) SISFI: All writes to the memory address
range 0x80000-0x8FFF will be redirected to
0x70000-0x7FFF.

3) Shadow: A 32-deep stack is maintained in the hardware,
onto which return addresses are pushed whenever a
function is called. When it returns, the return address
is checked against the value stored on the stack. A
mismatch will trigger a violation.

4) Taint Tracking: Memory addresses
0x61230-0x61238 are tainted as write-only.
These addresses are stored in a 32-deep associative
array implemented in hardware. Any attempt to read
from any memory location will cause the address to be
looked up in this table. If the address matches and is
marked as tainted, a policy violation is triggered.

For performance evaluation, we synthesized an OptimSoC-

based design after integrating these four policies. To isolate the
overhead of the four policies, we also synthesized OptimSoC

in the same configuration but without the policies. More
specifically, the baseline design (Vanilla in Fig. 4) consists
of a single core of the morlkx CPU which implements the
32-bit OpenRISC 1000 ISA. This CPU is instantiated on a
single tile with 32 MB of RAM, resulting in a single core
system that can run code compiled by a gcc-based toolchain.
The policies are implemented at various places in the pipeline
and then synthesized (Policies in Fig. 4). The mflowgen
framework is used to compile these Verilog designs through a
Synopsys Design Compiler R-2020.09-SP5-5 EDA workflow.
For the standard cell library, we use both the Synopsys 14nm
educational library as well as the FreePDK-based Nangate
45nm library.

The results are shown in Fig. 4. They demonstrate an
almost consistent 1% overhead for the policies across both
cell libraries, for both area and power measurements. The
clock period (speed) was varied over a range from 1ns (1GHz)
to 10ns (100 MHz). In both 14nm and 45nm nodes, the
total area remains almost constant for 400 MHz to 100 MHz
speeds, but we see a slight increase for S00 MHz on the
45nm node. This suggests that more probing is required at
speeds between 400 MHz and 1 GHz, but we’ve chosen
to keep the speeds constant across different nodes for easy
comparison. Power consumption (note the different Y axes
ranges) again shows expected behavior, with higher speeds
consuming exponentially more power. Still, the larger trend
holds: the combined Policies implementation still sees a low
overhead of about 1%.

Two contrasting factors are responsible for this low over-
head. Currently, the policies are implemented as being static
in nature, requiring memory addresses and ranges to be hard-
coded into the Verilog implementation. There are no special
instructions to configure these policies at run time. As a
result, very few registers and combinational logic circuitry are
needed to implement mechanisms such as detecting whether

Policies Vanilla Policies mmmmm Vanilla

5 2.8 8
T 24 %

@O 2.0 g

Zz 18 g,

ﬁg 1.2)

£5 80)

" 60 0
':><, 1.0 2.0 2.5 5.0 10.0 = 1.0 20 25 5.0 10.0

Clock period (ns) Clock period (ns)

(a) Synopsys 14nm (b) Synopsys 14nm

Policies Vanilla Policies mmmmm Vanilla

T 1.2 S5
€ 1.0 Eas
82 80 g3
<g 6.0 %2
Tjg 4.0 o
£ 1
X 20 25 50 100 F 20 25 50 100

Clock period (ns) Clock period (ns)

(c) Nangate 45nm (d) Nangate 45nm

Fig. 4: Comparison of total area and total power consumption of a single core single tiled OptimSoC-based design with (Policies)
and without (Vanilla) the policies, at different clock periods at different technology nodes: (a) total area for Synopsys 14nm,
(b) total power for Synopsys 14nm, (c) total area for Nangate 45nm, (d) total power for Nangate 45nm.

Policies Vanilla

bsort qgsort crc32 recursion cover
Benchmark Name (BEEBS)

Total No. of Cycles (%)
(Normalized)
(o]
o

Fig. 5: Measuring the total number of CPU cycles required
to fully execute a benchmark program: bubblesort (bsort),
quick sort (gsort), 32-bit cyclic redundancy check (crc32),
a program with self- and mutual recursion (recursion) and a
loop containing many switch cases (cover). In each case, the
number of cycles incurred by the Policies implementation was
normalized to the one incurred by Vanilla.

a given memory address falls within a certain range (i.e.,
matches certain bits). Exception raising and handling circuitry
is already part of the Vanilla implementation since it’s required
to support operating systems; policy errors only raise a new
type of exception with a new error code, which is again
cheaper to implement. Second, there are several other parts of
the CPU such as the memory (cache) and clock gating circuitry
that dwarf the policy-related circuitry. Therefore, due to the
comprehensive nature of the Vanilla implementation, the Poli-
cies implementation is able to leverage existing mechanisms;
minimal circuitry is needed to hook into certain parts of the
pipeline, perform simple computations, and raise exceptions if
necessary.

The OptimSoC platform allows benchmarking of the de-
signed CPU by running compiled bare metal applications
without any application/binary interfaces needed for operating
systems. The verilator framework is used to translate the
HDL source code into C++, which is then compiled on the host
to yield a design simulator. Then, the bare metal application
is given as input to this, allowing us to measure the number
of cycles required to execute as well as any input/output
of the program (through terminal emulation). We’ve ported
the BEEBS benchmark suite for embedded systems to the
OptimSoC platform, and chose five different benchmarks at
random. The source code for the programs were compiled

and identical binaries were fed to the verilated versions of
the Policies and Vanilla implementations.

The number of CPU cycles were measured in each case
(Fig. 5). To easily compare across benchmarks, the values for
each benchmark were normalized to the Vanilla implemen-
tation. As we can see in the figure, the number of cycles
incurred are identical for both implementations, for each of
the five benchmarks. This can be easily explained, as the
policies are embedded into the processing pipeline and do not
incur an additional cycle. For example, memory addresses are
computed by adding an immediate (base) to the contents of a
register (offset). This computed address is intercepted at the
output of the ALU just before it is sent to the memory unit.
The policy implementation checks whether the access is legal
and raises an exception accordingly. This incurs power/area
costs but not timing costs as it leverages the existing memory
access infrastructure.

V. RELATED WORK

Designs for hardware monitors that prioritize efficiency and
limited overhead come the cost of being domain specific. DIFT
[13], FlexiTaint [15], MemTracker [16], and Speculative Taint
Tracking (STT) [18] all achieve low performance overhead
with their proposed architectures. However, each is constricted
to a certain domain of security policies that it can enforce,
such as IFC in the case of DIFT, CFI in the case of STT, or
memory safety in the case of MemTracker. In order to protect
against a broader domain of attacks, multiple solutions have
to be implemented simultaneously, potentially compounding
overhead costs.

In contrast, designs that prioritize flexibility, like PUMP
[6], PHMon [4], and Nile [5] can represent a rich class
of policies. PHMon, for example, demonstrated capability
to prevent a range of attacks on memory and control-flow
vulnerabilities, as well as demonstrated ability to conduct
hardware-accelerated fuzzing and debugging. The flexibility of
PHMon stems from its general design and programmability.
This is accomplished with support from a custom OS kernel
to interface with the architecture, making a hybrid solution.
Likewise, PUMP demonstrated ability to enforce memory and
control-flow safety policies through a general, reprogrammable
design without the need for an operating system. Instead,
the PUMP monitor is added as a new stage in the pipeline.

However, embedded systems may be designed without an
operating system to interface with or otherwise lack the
additional computing capacity to accommodate an extra stage
in the processor’s pipeline or an entire co-processor for tag
checking.

The GARUDA [10] project attempted to consolidate these
two issues by allowing the flexibility of a high-level language
for designing policies and the efficiency of hardware monitors
by compiling to synthesizable Verilog modules that contain
only the logic necessary to execute policies within a pipeline.
This reduces the overhead of more general designs like PUMP
or Nile, which introduced entire stages or additional processors
for the sake of flexibile policy support. However, GARUDA'’s
synthesized monitors are static in design. That is, monitors
have to be resynthesized and replaced in the pipeline to change
behavior. Thus, policies that require adjusting behavior in
reaction to events during program execution are not supported.
DAGGER addresses this by introducing a modular design to
the high-level policy language and a compiler that generates
hardware monitors with the ability to reconfigure in response
to programmer-defined conditions at runtime. The result is a
flexible, highly expressive language to representing security
specifications while limiting the overhead of introducing gen-
eral architectures that incur unnecessary overhead.

VI. FUTURE WORK & CONCLUSION

Enforcing safety guarantees on modern computing plat-
forms comes with a non-trivial performance cost. Software-
level solutions offer immense flexibility by allowing security
experts to explicitly counter anticipated attacks. Hardware
monitors attempt to strike a middle-ground between the flex-
ibility of software and the efficiency of hardware. DAG-
GER offers the flexibility of implementing dynamic policies
that can be compiled to verilog. Further, policies implemented
in DAGGER can be verified in CoQ assistant proof, further
validating the design and implementation of the policies. Over-
all, DAGGER expands on prior work of designing language
semantics by designing low-overhead dynamically reconfig-
urable policies.

VII. ACKNOWLEDGMENT

This research was partially supported by NSF grants CCF-
1936794, CCF-1703013, and CCF-1901192. We sincerely
thank the anonymous reviewers for their excellent feedback.

REFERENCES

[1] “CVE-2014-0160.” Available from MITRE, CVE-ID CVE-2014-
0160., Dec. 3 2013. [Online]. Available: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-0160

[2] J. Coburn, S. Ravi, A. Raghunathan, and S. Chakradhar, “Seca:
Security-enhanced communication architecture,” in Proceedings of
the 2005 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, ser. CASES ’05. New York, NY,
USA: Association for Computing Machinery, 2005, p. 78-89. [Online].
Available: https://doi.org/10.1145/1086297.1086308

[3]1 A. P. Deb Nath, S. Ray, A. Basak, and S. Bhunia, “System-on-chip
security architecture and cad framework for hardware patch,” in 2018
23rd Asia and South Pacific Design Automation Conference (ASP-DAC),
2018, pp. 733-738.

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

L. Delshadtehrani, S. Canakci, B. Zhou, S. Eldridge, A. Joshi, and
M. Egele, “{PHMon}: A programmable hardware monitor and its
security use cases,” in 29th USENIX Security Symposium (USENIX
Security 20), 2020, pp. 807-824.

L. Delshadtehrani, S. Eldridge, S. Canakci, M. Egele, and A. Joshi,
“Nile: A programmable monitoring coprocessor,” IEEE Computer Ar-
chitecture Letters, vol. 17, no. 1, pp. 92-95, 2017.

U. Dhawan, C. Hritcu, R. Rubin, N. Vasilakis, S. Chiricescu, J. M.
Smith, T. F. Knight Jr, B. C. Pierce, and A. DeHon, “Architectural
support for software-defined metadata processing,” in Proceedings of
the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2015, pp. 487-502.
Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer,
N. Weaver, D. Adrian, V. Paxson, M. Bailey, and J. A. Halderman,
“The matter of heartbleed,” in Proceedings of the 2014 Conference
on Internet Measurement Conference, ser. IMC ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 475-488.
[Online]. Available: https://doi.org/10.1145/2663716.2663755

F. Restuccia, A. Meza, and R. Kastner, “Aker: A design and
verification framework for safe and secure soc access control,”
in 2021 IEEE/ACM International Conference On Computer Aided
Design (ICCAD). 1IEEE Press, 2021, p. 1-9. [Online]. Available:
https://doi.org/10.1109/ICCADS51958.2021.9643538

R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Trans.
Inf. Syst. Secur., vol. 15, no. 1, mar 2012. [Online]. Available:
https://doi.org/10.1145/2133375.2133377

S. Sefton, T. Siddiqui, N. S. Amour, G. Stewart, and A. K. Kodi,
“Garuda: Designing energy-efficient hardware monitors from high-level
policies for secure information flow,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37, no. 11, pp.
2509-2518, 2018.

G. Stewart, M. Gowda, G. Mainland, B. Radunovic, D. Vytiniotis, and
C. L. Agullo, ‘“Ziria: A dsl for wireless systems programming,” in
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS ’15. New York, NY, USA: Association for Computing
Machinery, 2015, p. 415-428. [Online]. Available: https://doi.org/10.
1145/2694344.2694368

C. Sturton, M. Hicks, S. T. King, and J. M. Smith, “Finalfilter: Asserting
security properties of a processor at runtime,” IEEE Micro, vol. 39, no. 4,
pp. 35-42, 2019.

G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” ACM Sigplan Notices,
vol. 39, no. 11, pp. 85-96, 2004.

B. Tan, R. Elnaggar, J. M. Fung, R. Karri, and K. Chakrabarty, “Toward
hardware-based ip vulnerability detection and post-deployment patching
in systems-on-chip,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 40, no. 6, pp. 1158-1171, 2021.
G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic, “Flexitaint:
A programmable accelerator for dynamic taint propagation,” in 2008
IEEE 14th International Symposium on High Performance Computer
Architecture. 1EEE, 2008, pp. 173-184.

G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic, “Mem-
tracker: Efficient and programmable support for memory access moni-
toring and debugging,” in 2007 IEEE 13th International Symposium on
High Performance Computer Architecture. 1EEE, 2007, pp. 273-284.
S. Wallentowitz, A. Lankes, A. Zaib, T. Wild, and A. Herkersdorf,
“A framework for open tiled manycore system-on-chip,” in 22nd In-
ternational Conference on Field Programmable Logic and Applications
(FPL), 2012, pp. 535-538.

J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative taint tracking (stt) a comprehensive protection
for speculatively accessed data,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
954-968.

J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative taint tracking (stt): A comprehensive protection
for speculatively accessed data,” in MICRO-52, ser. MICRO °52. New
York, NY, USA: Association for Computing Machinery, 2019, p.
954-968. [Online]. Available: https://doi.org/10.1145/3352460.3358274

