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Abstract—Time-sensitive networking (TSN) is an
industry-standard networking protocol that is widely deployed
in safety-critical industrial and automotive networks thanks
to its quality-of-service (QoS) mechanisms, esp. deterministic
transmission and bounded end-to-end delay for time-triggered
(TT) flows. In this article, we focus on TT flows and address
the issue of fault tolerance against permanent and transient
faults with both spatial and temporal redundancy. We present
an efficient heuristic algorithm for online incremental rerouting
and rescheduling of disrupted flows, assuming the paths and
schedules of existing flows stay fixed. It is complementary to and
can be combined with offline routing and scheduling algorithms
for achieving fault tolerance based on frame replication and
elimination for reliability (FRER) (IEEE 802.1CB). Performance
evaluation shows that our approach is able to better recover
the system’s degree of redundancy (DoR) and has a higher
acceptance rate than related work.

Index Terms—Fault tolerance, online recovery, time-sensitive
networking (TSN).

I. INTRODUCTION

DETERMINISTIC real-time communication is a crucial
requirement in modern embedded and cyber–physical

systems, e.g., safety-critical networks in automotive and
industrial automation applications. Time-sensitive networking
(TSN) [1], [2], [3] specifies two main types of traffic shapers
to regulate traffic arrival and transmission in the network,
including the IEEE 802.1 Qbv time-aware shaper (TAS) for
time-triggered (TT) traffic, a TT shaper where all network
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Fig. 1. Architecture of an IEEE 802.1Qbv switch with an example GCL.

nodes have a synchronized clock, and transmission deci-
sions are based on precomputed time schedules. TAS aims
to provide deterministic transmission service and bounded
end-to-end delay for TT traffic; and the IEEE 802.1Qav credit-
based shaper (CBS) for audio video bridging (AVB) traffic, an
event-triggered shaper that does not rely on the synchronized
clock. The other traffic class is best effort (BE), with no timing
guarantees. A flow is defined as a sequence of frames (pack-
ets) between a source end system (ES) and a destination ES,
traversing one or more switches in-between. In this article, we
focus on TAS for TT flows, which are typically safety-critical
and have hard real-time constraints.

We consider multihop TSN switched Ethernet over full-
duplex physical links, consisting of ordered operations to
open or close transmission gates for each port. Fig. 1 shows
the architecture of an IEEE 802.1Qbv-enabled switch, which
consists of the following major components [4].

1) Scheduled FIFO Queues: There are eight independent
FIFO queues controlled by transmission gates. The
incoming traffic is filtered by the packet filtering unit,
which sends a packet to its designated queue. This
information is encoded as the class of service (CoS)
in the priority code point (PCP) header in the Ethernet
frame.

2) Gate Control List (GCL): TT flows are periodic and
shaped by the TAS on egression ports. TAS syn-
chronously grants transmission to traffic queues based
on a predefined schedule in GCLs, which can periodi-
cally trigger gate-open and gate-close events with a gate
control cycle. Depending on the specific implementa-
tion, the time granularity between events can be as low
as l ns. The schedule is located in a GCL look-up table
that is distributively configured to each TSN node. For
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example, the GCL in Fig. 1 specifies that at time T01,
the gate for Queue 7 is open, and the gates for Queues
0–6 are closed; at time T02, the gate for Queue 5 is
open, and all other gates are closed, and so on.

3) Time Synchronization: To allow TT transmission that
is distributed through the network, a timer is glob-
ally synchronized with all the switches in the same
network using precision time protocols (PTPs), e.g.,
IEEE 802.lAS [5].

Two types of faults may compromise the reliability of TT
flows: 1) Permanent faults may cause link or switch failure
and disrupt the transmission service and 2) Transient faults
such as packet losses or bit-flips caused by electromagnetic
interference (EMI) may compromise the message transmission
at the time of fault occurrence but do not affect subsequent
messages. For fault tolerance, TSN supports seamless redun-
dancy with frame replication and elimination for reliability
(FRER) (IEEE 802.1CB) [6]. According to FRER, multiple
redundant paths (routes), defined as multiple paths that do not
share any common switches, are allocated for each TT flow.
Frames are replicated at the source and transmitted through
separate paths to the destination, and duplicates are eliminated
at destinations. While effective against single-point failures,
FRER introduces significant overheads since it requires at least
twice the bandwidth to transmit the redundant packets for fault
tolerance.

In this article, we extend the static offline approach of
FRER to have online incremental rerouting and rescheduling.
We handle both permanent and transient faults by combin-
ing spatial and temporal redundancy to transmit redundant
message copies either on disjoint paths or on the same path.
Our approach consists of an offline phase and an online
phase. In the offline phase, for each flow, we build its set
of redundant paths based on FRER and its candidate redun-
dant paths used during online rerouting. In the online phase,
upon detection of a link or switch failure due to a per-
manent fault, we perform online incremental rerouting and
rescheduling to find another redundant path and offset assign-
ment (schedule) for the disrupted flow while keeping the paths
and offset assignments of existing flows fixed and cannot
be modified. This unique assumption brings new challenges
in terms of worst-case delay (WCD) analysis and offsets
assignment, and we propose novel algorithms to address these
challenges.

This article is structured as follows. We discuss related
works in Section II; present our system model and definitions
in Section III; present our approach in Section IV; present
performance evaluation results in Section V, and conclude this
article in Section VI.

II. RELATED WORK

A. Flow Interleaving and Flow Isolation

In this section, we focus on the frame interleaving, which is
one of the guarantees for deterministic communication behav-
ior of TT flows presented in [7]. Fig. 2 illustrates the flow
interleaving problem, and two approaches to avoiding it as
presented in [7]. Two flows f1 and f2 arrive at switch vb from

(a) (b) (c)

Fig. 2. Flow interleaving and flow isolation within an egress port of a switch.
The arrows denote message transmission paths, not time, e.g., the blue frames
arrive earlier than the red frames in (b) and (c). (a) Flow interleaving in the
same egress queue. (b) Flow isolation in different egress queues. (c) Flow
isolation with nonoverlapping time slots.

different links [va, vb] and [vx, vb] at roughly the same time
and are forwarded via the same egress port. Within the switch,
they may be assigned to the same queue or two different
queues. Due to the finite precision of time synchronization,
the order in which the individual frames arrive and are placed
in the queues at runtime is nondeterministic. Both flows are
assigned to the same queue in Fig. 2(a). If the timed gate
of the queue is opened first for the time interval needed
to transmit two frames and sometime later for another two
frames, then any combination of the respective frames of both
flows may occur on the egress port. Hence, different flow
instances in different periods may experience different delays
through the switch, causing high jitters in each flow’s delay
at the switch. In order to meet a flow’s end-to-end dead-
line, the WCD introduced on each egress port along each
path should be added together, and the high jitters caused by
flow interleaving are not desirable in hard real-time systems.
Additionally, the nondeterminism caused by flow interleav-
ing breaks the temporal isolation among different flows since
any change in one flow may affect other flows’ delays and
jitters.

We formally define the concept of conflicting flows.
Definition 1 (Conflicting Flows): Two flows are conflicting

flows if they traverse the same link [va, vb], or if they tra-
verse two different links [va, vb] and [vx, vb] to reach the same
switch vb, and are assigned to the same queue within vb.

Craciunas et al. [7] discussed two solutions to avoid the flow
interleaving problem by either placing the conflicting flows in
different queues or isolating them on the time axis. In Fig. 2(b),
the two flows arriving during interfering intervals are placed
in different queues, and each frame is dispatched determinis-
tically according to each queue’s associated timed gate. But
this is not always feasible since each switch only has eight
queues, typically much smaller than the number of flows that
go through each switch. In Fig. 2(c), the two flows are assigned
to the same queue in switch vb, so they must be isolated on
the time axis to enforce deterministic order of transmissions
in nonoverlapping time slots, i.e., one flow instance must be
transmitted completely before the other flow instance is put
into the queue. Fig. 2(c) shows that f1 is transmitted before
f2, but it is also possible for f2 to be transmitted before f1.
This leads to an important constraint in incremental schedul-
ing for (assigning offsets to) a flow f1 along a given path,
i.e., f1’s transmission duration must fit within an idle window
of another conflicting flow. Otherwise, f1 may be delayed or
blocked by idle windows of other conflicting flows that are
not large enough to fit it.

Authorized licensed use limited to: Howard University. Downloaded on January 17,2023 at 02:21:41 UTC from IEEE Xplore.  Restrictions apply. 



FENG et al.: ONLINE REROUTING AND RESCHEDULING OF TT FLOWS FOR FAULT TOLERANCE IN TSN 4255

TABLE I
SUMMARY OF RELATED WORKS ON TSN FAULT TOLERANCE. ABBREVIATIONS: ALO: ANT LION OPTIMIZATION, GAS: GENETIC ALGORITHMS, CP:

CONSTRAINT-PROGRAMMING, GRASP: GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURE, ILP: INTEGER LINEAR PROGRAMMING, SA:
SIMULATED ANNEALING, SMT: SATISFIABILITY MODULO THEORY, AND UBS: URGENCY-BASED SCHEDULER

B. Related Works on TSN Fault Tolerance

Table I summarizes and compares related works on TSN
fault tolerance. We can distinguish between two types of
redundancy for achieving fault tolerance in TSN: 1) spatial
redundancy through routing each flow through multiple dis-
joint redundant paths (i.e., FRER) can be used to tolerate
both permanent and transient faults and 2) temporal redun-
dancy through sending redundant copies of frames/messages
of a flow on the same path can be used to tolerate transient
faults only. Another axis to classify related works is offline,
online, or both. Next, we provide detailed descriptions of each
work.

1) Offline Design Based on Spatial Redundancy:
Avni et al. [8] addressed the problem of finding a (k, l)-
resistant schedule, which guarantees that at least l copies of
a message arrive at their destination by the timeout with
at most k link failures. Gavrilut et al. [9] presented algo-
rithms for joint topology selection and routing synthesis to
achieve fault tolerance of the urgency-based scheduler (UBS)
traffic type. Atallah et al. [10] presented a heuristic algo-
rithm for joint topology selection, routing, and scheduling
to achieve fault tolerance of TT flows. Pahlevan et al. [11]
presented a heuristic list scheduling algorithm for fault-tolerant
routing and scheduling of TT flows to maximize system reli-
ability. Syed et al. [12] presented four different dynamic
routing and scheduling heuristic algorithms based on vec-
tor bin-packing to support FRER in a TSN-based in-vehicle
network. Huang et al. [13] presented a meta-heuristic ant
lion optimization (ALO)-based algorithm for fault-tolerant
routing and scheduling of TT flows. Reusch et al. [14]
presented constraint-programming (CP) and simulated anneal-
ing (SA)-based algorithms for routing and scheduling of
TT flows to satisfy both fault tolerance (with FRER)
and security (with the Tend-system authentication protocol)
requirements.

2) Offline Design Based on Temporal Redundancy: With
standard TSN, the talker end-system sends only one copy of
each message on each redundant path. To provide temporal
redundancy for tolerating transient faults, higher-level proto-
cols such as automatic repeat request (ARQ) may be used,
which relies on ACK/NACK messages and/or timeouts to trig-
ger the retransmission of lost frames. Dobrin et al. [15] gener-
ated an offline schedule for TT flows by using the integer linear
programming (ILP) solver and provisioning for the specified
number of retransmissions upon faults, and perform priority
assignment for rate-constrained (AVB) flows to satisfy timing
and fault tolerance requirements. Park et al. [16] presented
a genetic algorithm (GA)-based optimization framework for
routing and scheduling of TT flows to maximize system relia-
bility, assuming that end-systems support the ARQ protocol
and switches support frame preemption. Feng et al. [17]
proposed an offline reservation-based fault-tolerant schedul-
ing algorithm for IEEE 802.1 Qbv. The satisfiability modulo
theory (SMT) solver generates resource allocation for an alter-
native message according to the constraints established to
ensure deterministic transmission.

To address the shortcomings of ARQ, i.e., increased
delay and jitter caused by frame retransmission and loss of
ACK/NACK messages, Álvarez et al. [18], [19], [20] proposed
proactive transmission of replicated frames (PTRFs), which
works by transmitting several copies (replicas) of each frame
in a preventive manner, to increase the chances of each frame
reaching its destination. If more than one replica of the same
frame reaches the listener end-system successfully, then the
listener end-system delivers only the first-received copy to the
application and discards the rest. They designed three different
variants of PTRF.

1) End-to-end estimation and replication, where only the
talker end-system replicates frames, only the listener
end-system eliminates surplus replicas, and the switches

Authorized licensed use limited to: Howard University. Downloaded on January 17,2023 at 02:21:41 UTC from IEEE Xplore.  Restrictions apply. 



4256 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Fig. 3. CA consisting of CUC and CNC.

are standard TSN switches that simply forward every
received frame. The number of replicas is calculated to
achieve a given end-to-end reliability value.

2) End-to-end estimation and link-based replication, where
both the talker end-system and switches replicate frames,
and both switches and the listener end-system eliminate
surplus replicas.

3) Link-based estimation and replication, where the talker
end-system and each switch may produce a different
number of replicas, and the number of replicas is cal-
culated separately for each link. Our work is motivated
by PTRF and adopts the first approach of PTRF, i.e.,
end-to-end replication (assuming the number of replicas
is given), to provide temporal redundancy for tolerating
transient faults. On top of PTRF, we also propose an
integration of PTRF with the IEEE Std 802.1CB stan-
dard (FRER) for space redundancy and efficient runtime
online reconfiguration.

Atallah et al. [21] presented an ILP formulation for
reliability-aware routing of AVB streams, i.e., determining
the path and number of replicas for each AVB stream to
meet the minimum reliability requirement for each stream and
maximize overall network reliability. Feng et al. [22] presented
a pro-active fault-tolerant TSN scheduling algorithm, which
determines the number of transmissions per instance for TT
flows in case of transient failures and also provides degraded
network transmission service for non-TT flows, i.e., trans-
mitting one message with multiple periods. Zhou et al. [23]
presented SMT-based and heuristic techniques for routing and
scheduling TT flows that combine spatial redundancy and
temporal redundancy, considering reliability constraints and
end-to-end deadlines.

3) Online Recovery Approaches: There are two aspects of
online recovery: 1) the low-level online reconfiguration mecha-
nism/protocol supported by the network and 2) the high-level
online routing and scheduling algorithm for generating new
configurations used for online recovery.

Regarding the online reconfiguration mechanism, the IEEE
802.1 TSN Working Group proposed the standard IEEE
802.1Qcc [26] to specify the configuration and runtime recon-
figuration behavior of the network devices, which enables
online recovery algorithms for fault tolerance of TSN. It
specifies three network configuration models: 1) fully dis-
tributed; 2) centralized network/distributed user; and 3) fully
centralized. Fig. 3 shows a fully centralized model with
a configuration agent (CA) that performs configuration and
reconfiguration of a TSN network at runtime. It consists of the
central user configurator (CUC), which receives information

from the ESs regarding changes to the traffic patterns in
terms of appeared and disappeared flows (dotted arrows);
and the centralized network configurator (CNC), which uses
the received information to generate a new schedule for the
network and distributes it to all network devices (dashed
arrows). The delays in the transmission of configuration mes-
sages and reconfiguration of the nodes may cause inconsistent
intermediate states where only a subset of all nodes are
reconfigured while others have old configurations. To prevent
this situation, Kostrzewa and Ernst [27] proposed a safe
reconfiguration protocol that achieves traffic isolation, fault
recovery, and controlled adjustments of network performance.

There are only a few related works on online routing, and
scheduling algorithms for online recovery, which are orthogo-
nal to and independent of the reconfiguration mechanism, e.g.,
either one of the three models specified in IEEE 802.1Qcc or
some other protocol such as [27]. Pozo et al. [24] presented a
repair algorithm capable of reacting to unpredictable link fail-
ures in TSN by modifying the schedule such that all frames
are transmitted again. However, the timing constraints may be
violated when a link failure occurs close to the deadline of a
TT flow due to a lack of spatial redundancy. Kong et al. [25]
presented a three-mode recovery scheme for TT flows, includ-
ing full functionality, reduced functionality, and emergency
halt modes. Runtime recovery for TT flows is explored using
ILP and a heuristic routing and scheduling (HRS) algorithm.
This work only handles permanent faults, not transient faults.

In relation to related works, our work has the following
distinguishing characteristics.

1) We handle both permanent and transient faults by
combining spatial and temporal redundancy.

2) We perform online recovery with rerouting and
rescheduling, which is complementary to and can be
used in combination with any offline routing/scheduling
algorithm to form a complete (offline + online) algo-
rithm (c.f., line 5 in Algorithm 2).

3) During online recovery, the routes and schedules of
existing flows are kept unchanged to reduce disruption
and runtime overhead.

Note on AVB Flows: In addition to TT flows, AVB flows
scheduled with CBS may also play an essential role in safety-
critical systems and have soft or hard timing constraints. There
are some works (e.g., [28], [29], and [30]) on formal tim-
ing analysis of AVB flows in the presence of TT flows, and
some works (e.g., [28] and [31]) on routing and scheduling
of both TT and AVB flows so that all flows are schedula-
ble. There may be multiple different problem formulations
of fault-tolerant scheduling of (TT + AVB) flows: 1) offline
design based on spatial and/or temporal redundancy to pro-
vide fault tolerance for both TT and AVB flows; 2) offline
design based on spatial and/or temporal redundancy to pro-
vide fault tolerance for TT flows only, but not for AVB flows;
3) online reconfiguration for fault recovery of both TT and
AVB flows; and 4) online reconfiguration for fault recovery
of TT flows only, but considering their impact on AVB flows.
However, we are not aware of any related work that addresses
any one of the four problem formulations. Most related works
on TSN fault tolerance listed in Table I address TT flows
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only or (TT + BE) flows. The only work that addresses AVB
flows, Atallah et al. [21], simply imposes constraints on link
utilization upper bound (e.g., from 25% to 75%) to guarantee
schedulability of flows traversing the link, so it is not specifi-
cally targeting AVB flows. We think one reason for the lack of
related work may be that, from a research perspective, there
is not much novelty in adding fault tolerance to offline design
optimization of (TT + AVB) flows; another reason may be due
to the computational complexity of timing analysis for AVB
flows, either by computing the worst-case response time [29],
[30] or by network calculus [32], especially for online recon-
figuration. Our work in this article addresses TT flows as the
only safety-critical flows, but we leave it as a possible future
work to address AVB flows.

III. SYSTEM MODEL AND NOTATIONS

We model a TSN network as a directed graph G = (V,L),
where V denotes the set of nodes, which may be either end-
systems or switches, and L ⊆ V × V denotes the physical
links between pairs of nodes. We only consider TT flows and
use F to denote the set of all TT flows. Each flow fi is peri-
odic with period Ti. Non-TT flows, either AVB or BE flows,
can be transmitted during idle windows, i.e., time slots not
occupied by TT flows. Flow instance f k

i is the kth instance
of fi, which sends one flow instance per period Ti ∈ N of fi.
HP ∈ N denotes the hyperperiod, defined as the least com-
mon multiple (LCM) among all the periods of TT flows. Each
flow fi ∈ F has a talker end-system (source) src(fi) ∈ V and
a listener end-system (destination) dest(fi) ∈ V . Pi denotes
fi’s set of N redundant paths; Pn

i denotes the nth redundant
path in Pi. The path Pn

i = {[v1, v2], [v2, v3], . . . , [ve − 1, ve]}
consists of a linear path from node v1 to node ve with e nodes
and e−1 links, including both end-systems and switches. |Pn

i |
denotes the total number of nodes in Pn

i , and Nn
i (j) denotes

the jth node of Pn
i , i.e., Nn

i (j) = src(fi). [va, vb] denotes the
physical link from node va to vb. c[va,vb]

i ∈ N denotes the
transmission duration of flow fi through link [va, vb]. Flow
transmission on each link is nonpreemptive and cannot be
interrupted. �

[va,vb]
i,j ∈ N denotes the transmission offset of

f j
i on link [va, vb] relative to the start of the hyperperiod, i.e.,

f j
i starts transmission on [va, vb] at time �

[va,vb]
i,j , and finishes

transmission at time �
[va,vb]
i,j + c[va,vb]

i . iroi ∈ N denotes the
initial release offset of fi at src(fi),1 which may be any value
in the interval [0, Ti). Its value may be dependent on appli-
cation task scheduling on the talker node, or it may be an
optimization variable for load balancing on the time axis. (In
our experiments, we set iroi = 0 for simplicity.) Qi denotes
the queue ID of fi in all the switches it passes through, which
reflects its priority level. Di denotes the end-to-end deadline
of fi.

We define F [va,vb]
exi and F [va,vb]

rer as the set of existing and
rerouted flows transmitted traverse link [va, vb].

1Note that iroi may be different from fi’s transmission offset at the talker
ES �

[src(fi),vx]
i,j , due to possible interference that may delay its start of

transmission.

Definition 2: A path is a broken path if it passes through
any failed link or switch due to permanent faults. A flow is
a disrupted flow if at least one path among the flow’s set
of redundant paths contains a failure. A rerouted flow is a
recovered flow after rerouting its broken path to a new healthy
path.

For a given flow fi, we define its degree of redundancy
(DoR) for permanent or transient faults to measure its degree
of fault resilience.

Definition 3: A flow fi’s DoR for permanent faults κ
p
i ∈ N

is defined as the number of redundant paths assigned to the
flow, i.e., fi can tolerate up to κ

p
i − 1 permanent faults.

Definition 4: A flow fi’s DoR for transient faults κ t
i ∈ N is

defined as the number of redundant message copies transmitted
either on the same path or on different redundant paths, i.e.,
fi can tolerate up to κ t

i − 1 transient faults.
If a transient fault corrupts one of the messages of flow fi,κ

p
i

and κ t
i are not affected because the fault duration is transient,

and the failure does not propagate to subsequent messages
of fi. If a permanent fault occurs and causes loss of a redun-
dancy path, then both κ

p
i and κ t

i are decreased. To recover the
DoRs for both permanent and transient faults (κp

i and κ t
i ), new

disjoint paths need to be established to bypass the failed link.
To recover the DoR for transient faults (κ t

i ) only, additional
redundant messages can be transmitted on an existing path.

We give some examples to clarify the DoR concept: if flow
fi has a single path from its talker to its listener, and a single
message transmitted on the path, then κ

p
i = κ t

i = 1. If flow
fi has a single path and two redundant messages transmitted
on the path, then κ

p
i = 1, κ t

i = 2. If flow fi has two redundant
paths and a single message transmitted on each path, then
κ

p
i = κ t

i = 2. If flow fi has two redundant paths and two
messages transmitted on each path, then κ

p
i = 2, κ t

i = 4. If
a path of flow fi is disrupted by a link failure, then κ

p
i is

decreased by 1, and κ t
i is decreased by the number of messages

transmitted along the path.
Table II contains the main notations used in this article.

IV. OUR FAULT RESILIENCE ALGORITHM

In this section, we first present the overall fault resilience
algorithm in Section IV-A, then present the component
algorithms that it invokes, including: Algorithm 2 for the
offline phase collection of redundant paths in Section IV-B,
Algorithm 3 for offset assignment for a rerouted flow in
Section IV-C, and WCD analysis for a rerouted flow in
Section IV-D.

A. Overall Algorithm

Algorithm 1 shows our overall online recovery algorithm to
recover the DoR of each TT flow. It consists of two phases:
1) an offline phase and 2) an online phase, explained as
follows.

1) Line 2: In the offline phase, for each fi, we build its
set of ri redundant paths Pi and ki candidate redundant
paths CP i used for online recovery. The value of ri =
max(κ

p
i , κ t

i ) is set to satisfy both DoRs for permanent
and transient faults.
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TABLE II
MAIN NOTATIONS

2) Line 3: Perform routing and scheduling with an offline
algorithm for all flows and all ri redundant paths of each
flow fi, assuming no temporal redundancy, i.e., one mes-
sage is transmitted on each redundant path initially (but
after executing the online recovery phase, more than one
messages may be transmitted on each path).

3) Lines 4–7: Upon detecting a link failure,2 collect the set
of disrupted flows Frer due to the failed link. Assuming
nmi number of redundant messages of flow fi are trans-
mitted on the failed link, then its DoR for permanent
faults κ

p
i is decremented by 1; its DoR for transient faults

κ t
i is decremented by nmi.

4) Lines 8–10: Calculate the WCD of each of the ki can-
didate paths, used for selecting the candidate path with
minimum WCD to be added to fi’s set of paths.

5) Line 11: We aim to recover the DoR for both permanent
and transient faults via spatial (and temporal if nmi > 1)
redundancy by tentatively adding an additional path CPn

i
to fi’s set of redundant paths Pi, chosen as the path
with the minimum WCD min{wcd(CPn

i )} among fi’s

2We only consider link failures since a switch failure caused by a permanent
fault can be considered as equivalent to failures of all the links connected to
it.

Algorithm 1: Overall Fault Resilience Algorithm (Offline
+ Online)

Input: G,F , {κ t
i , κ

p
i |∀fi ∈ F}

Output: paths and offsets {Pn
i , �

[Nn
i (j),Nn

i (j+1)]
i,k |fi ∈ F}

1 Offline phase;
2 Invoke Alg. 2 in Section IV-B to build an initial solution with a

set of ri = max(κ
p
i , κ t

i ) redundant paths Pi for each flow fi, and
a set of additional ki candidate redundant paths CP i;

3 Online phase;
// The online recovery algorithm is run if

a permanent fault causes failure of a
link.

4 Remove the failed link from the network topology G;
5 Move the disrupted flows due to the failed link from F to Frer

to be re-routed and re-scheduled;
6 foreach fi ∈ Frer do

// Assume nmi number of redundant
messages from fi are transmitted on the
failed link.

7 κ
p
i = κ

p
i − 1, κ t

i = κ t
i − nmi;

8 foreach candidate path CPn
i ∈ CP i do

9 Calculate its wcd(CPn
i ) with Eqn. (2) in Section IV-D;

10 end
11 Tentatively add the path CPn

i with min{wcd(CPn
i )} to fi’s

set of redundant paths Pi, and invoke Alg. 3 in
Section IV-C to schedule it (assign offsets);

12 if Alg. 3 succeeds for CPn
i then

13 Add CPn
i to fi’s set of redundant paths Pi;

14 κ
p
i = κ

p
i + 1, κ t

i = κ t
i + nmi;

15 else
16 foreach path Pn

i ∈ Pi do
17 Calculate its wcd(Pn

i ) with Eqn. (2);
18 end
19 Tentatively add a duplicate path by replicating the path

Pn
i with min{wcd(Pn

i )}, and invoke Alg. 3 to schedule
it;

20 if Alg. 3 succeeds for Pn
i then

21 Add the duplicate path Pn
i ;

22 κ t
i = κ t

i + nmi;
23 else
24 Goto Line 4;
25 end
26 end
27 end

set of candidate paths CP i, and sending nmi redundant
messages along it.

6) Lines 12–14: If the path is feasible, i.e., Algorithm 3 suc-
ceeds in assigning offsets to it, then the path is actually
added, and its DoRs for both permanent and transient
faults are restored to their original values.

7) Lines 16–19: If Algorithm 3 fails to assign feasible off-
sets to the additional path CPn

i , then we only aim to
recover the DoRs for transient faults via temporal redun-
dancy. We tentatively add a duplicate path by replicating
one of fi’s existing set of redundant paths Pi with the
shortest WCD (i.e., sending an additional nmi redundant
messages along it).

8) Lines 20–22: If the path is feasible, i.e., Algorithm 3 suc-
ceeds in assigning offsets to it, then the path is actually
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(a) (b) (c) (d)

Fig. 4. Toy example of online rerouting. (a) Normal operation with two redundant paths for flow f1-based FRER. (b) Upon link failure on [v5, v7], and flow
f1 loses one redundant path. (c) Flow f1 is rerouted through {[v5, v6], [v6, v7]}. (d) Legend.

added, and its DoR for transient faults is restored to its
original value.

9) Lines 23–25: If Algorithm 3 fails to assign feasible off-
sets to the duplicate path, then we give up on flow fi and
keep its current DoRs, and move on to the next flow in
Frer.

Fig. 4 shows a toy example to illustrate the basic operations
of Algorithm 1. Suppose f1 is a TT flow in that transmits
messages from v1 to v7, and the required DoRs are κ

p
1 =

κ t
1 = 2.

1) Fig. 4(a): In the offline phase, we build its set of
ri = max(κ

p
i , κ t

i ) = 2 redundant paths, includ-
ing P1

1 = {[v1, v3], [v3, v5], [v5, v7]} and P2
1 =

{[v1, v2], [v2, v4], [v4, v7]}, and ki candidate redundant
paths CP i (not shown in the figure).

2) Fig. 4(b): Link [v5, v7] is broken at time t due to a
permanent fault. Since f1 now has only one path, its
DoRs κ

p
1 = κ t

1 both drop to 1.
3) Fig. 4(c): We recover the DoRs for both permanent and

transient faults via spatial redundancy by adding an addi-
tional path Pn

i , i.e., {[v1, v3], [v3, v5], [v5, v6], [v6, v7]},
selected as the path with minimum WCD among its ki

candidate redundant paths. Assuming Algorithm 3 suc-
ceeds in assigning feasible offsets to this new path, so
now f1 again has ri = 2 redundant paths, and its DoRs
κ

p
1 = κ t

1 are both incremented by 1 to become 2 again.

B. Offline Phase

For each flow fi between a given source-destination pair of
end-systems, we collect a group of ri + ki redundant paths,
including a set of ri = max(κ

p
i , κ t

i ) redundant paths Pi, and a
set of additional ki candidate redundant paths CP i, used as a
pool of backup paths to choose from if one or more of the ri

paths in Pi fails due to a permanent fault, The choice of ki is
a design hyperparameter that can be set by the designer. The
set of ri + ki redundant paths is collected among all possible
paths between the source and destination with the criteria of
having the shortest distances as measured by the number of
hops.

For any given path Pn
i ∈ Pi ∪CP i, we define its NHn

i as the
Number of Hops along the path Pn

i , equal to the number of
switches along the path excluding the source and destination
end-systems: NHn

i = len(Pn
i )−2. We define its residual band-

width Bn
i as the minimum residual bandwidth among all of its

component links, i.e., Bn
i = min

len(Pn
i )−1

m=1 BW([Nn
i (m), Nn

i (m +
1)]), where BW([Nn

i (m), Nn
i (m + 1)]) denotes the residual

Algorithm 2: Offline Routing and Scheduling

Input: F , {κp
i , κ t

i |∀fi ∈ F}, ki
Output: Pi and CP i

1 foreach Flow fi ∈ F do
2 ri = max{κp

i , κ t
i };

3 Collect the set of ri + ki redundant paths Pi ∪ CP i for fi,
based on the shortest distance metric;

4 Select the set of ri redundant paths Pi for fi, as the top ri
paths among the ri + ki paths, ranked by QoS metric ρn

i in
Eqn. (1);

5 Perform scheduling by assigning offsets for all flows and
all ri redundant paths of each flow fi with an offline
algorithm (assuming no temporal redundancy);

6 end

bandwidth over the link [Nn
i (m), Nn

i (m+1)], i.e., the currently
available bandwidth after subtracting the occupied bandwidth
from the total available bandwidth on the link.

We define a quality-of-service (QoS) metric ρn
i based

on [33]

ρn
i = w1

NHmin

NHn
i

+ w2
Bn

i

Bmax
(1)

where weighting factors w1 + w2 = 1; NHmin denotes the
minimum NHn

i among the ri + ki paths Pi ∪ CPi; and Bmax is
the maximum of Bn

i among the ri + ki paths.
For each flow fi, we rank the set of ri + ki paths by the

metric ρn
i in (1), and select the top-ranking ri paths among

them as the initial set of redundant paths Pi for flow fi. That
is, we preferably chose a path with a higher QoS metric, i.e.,
higher bandwidth Bn

i and/or smaller number of hops NHn
i , in

order to avoid bandwidth bottlenecks along the path.
Algorithm 2 is mostly self-explanatory. For line 5, any

offline TSN schedule synthesis algorithm may be used. (In
our experiments, we use the ILP formulation in [34], which
performs scheduling assuming the routed paths of all flows
are obtained from a preprocessing step.)

C. Offset Assignment for the Rerouted Flow

Consider the set of rerouted disrupted flows Frer that have
been assigned new paths, but have not been scheduled, we
address the problem of rescheduling, i.e., assigning time slots
to each flow fi ∈ Frer on each link along its new path, so that
its end-to-end deadline Di is satisfied, and there is no flow
interleaving with the existing set of flows Frer. Since TT flows
are scheduled along the path statically, and flow transmission
on each link is nonpreemptive, we use the following terms
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Algorithm 3: Efficient Algorithm for Offset Assignment
of a Rerouted Flow fi

Input: a path Pn
i for flow fi ∈ Frer

Output: either feasible offsets {�[va,vb]
i,k |k = 1, ..., HP

Ti
} for Pn

i ,
or Fail

// For each period Ti of fi within the
hyperperiod

1 for k = 1, ..., HP
Ti

do
// For each node along the path

2 for j = 1, ..., |Pn
i | − 1 do

// Set initial offset values
3 if j == 1 then

4 �
[Nn

i (j),Nn
i (j+1)]

i,k = (k − 1)Ti + iroi;
5 else

6 �
[Nn

i (j),Nn
i (j+1)]

i,k =
�

[Nn
i (j−1),Nn

i (j)]
i,k + c

[Nn
i (j−1),Nn

i (j)]
i ;

7 end

8 Find the smallest feasible offset �
[Nn

i (j),Nn
i (j+1)]

i,k that
avoids flow interleaving;

9 if �
[Nn

i (j),Nn
i (j+1)]

i,k + c
[Nn

i (j),Nn
i (j+1)]

i > Di then
10 return Fail
11 end
12 end
13 end
14 return {�[va,vb]

i,k |k = 1, ..., HP
Ti

}

interchangeably for a flow along a given path: rescheduling,
offset assignment, and time slot assignment. Recall that we
perform incremental scheduling, which means that schedules
of existing flows Fexi cannot be modified to accommodate new
flows.

Algorithm 3 shows the heuristic algorithm for online
rescheduling of the set of rerouted flows Frer by assigning off-
sets to each switch along each new path. We use Fexi to denote
the set of existing flows that have already been scheduled. Note
that the hyperperiod HP is a constant that is calculated based
on all the flows in the system.

1) Lines 1 and 2: Self-explanatory with the inline com-
ments.

2) Lines 3 and 4: For flow instance f k
i , set the initial offset

of the 1st link along the path (from the source end-
system) to be the start of its period: �

[Nn
i (1),Nn

i (2)]
i,k =

(k − 1)Ti + iroi.
3) Lines 5 and 6: For flow instance f k

i , set initial offset
of the jth link along the path to be the transmission
finish time of the (j − 1)th link: �

[Nn
i (j),Nn

i (j+1)]
i,k =

�
[Nn

i (j−1),Nn
i (j)]

i,k + c
[Nn

i (j−1),Nn
i (j)]

i . This offset is the ear-
liest possible time for f k

i to start transmission, but it
may cause flow interleaving, hence it may need to be
adjusted/pushed to a later time point for flow isolation.

4) Line 8: Find the smallest feasible offset �
[Nn

i (j),Nn
i (j+1)]

i,k
that avoids flow interleaving, i.e., start of the first/earliest
idle window on the link [Nn

i (j), Nn
i (j + 1)] with window

size not less than its transmission duration on the link,
so that f k

i can fit into the idle window.

(a) (b)

Fig. 5. Example of offset assignment for flow fi on link [va, vb] with
Algorithm 3. (a) Initial offset assignment. (b) Final offset assignment.

Fig. 6. Illustration of the end-to-end WCD of path Pn
i in (2).

5) Lines 9–11: If the offset assignment causes f k
i to miss

the end-to-end deadline of fi, return Fail.
Fig. 5 shows a toy example to illustrate the operation of

Algorithm 3 on a single link. The blue and red boxes denote
the time slots assigned to existing flows along links [va, vb] and
[vx, vb], respectively. Assume a disrupted flow fi is rerouted to
pass through [va, vb], and its transmission duration c[va,vb]

i = 3.
(In the figure, we use fi and omit the superscript k in f k

i for the
sake of simplicity.) We assume the flow that occupies the red
box shares the same egress queue as fi in switch vb. Hence, it
is a conflicting flow and must be assigned a nonoverlapping
time slot from fi to avoid flow interleaving (refer to Fig. 2).
Suppose after lines 3–7, the flow instance f k

i is assigned an
initial offset of 3 on [va, vb], as shown in Fig. 5(a). But this
offset assignment is infeasible due to flow interleaving with
the flow occupying the red box on link [vx, vb]. After executing
line 8 to avoid flow interleaving, its offset is postponed to 6,
which is a feasible offset assignment, since its transmission
duration c[va,vb]

i = 3 fits within the idle window of [6, 9].

D. WCD Analysis for the Rerouted Path

In this section, we present an algorithm for computing a pes-
simistic estimate of the end-to-end WCD for a rerouted path
Pn

i , denoted wcd(Pn
i ), without performing offset assignment

using Algorithm 3 for the sake of computational efficiency.
Equation (2) shows that the end-to-end WCD of path Pn

i is
computed by summing over the WCD on each link [va, vb]
along the path, denoted R[va,vb]

i . Fig. 6 illustrates (2) graph-
ically, including the end-to-end WCD wcd(Pn

i ), WCD on
each link R[va,vb]

i , transmission offset �
[va,vb]
i,j , and transmission

duration c[va,vb]
i

wcd(Pn
i ) =

∑

[va,vb]∈Pn
i

R[va,vb]
i . (2)

Next, we focus on the issue of computing the WCD R[va,vb]
i

on a single link [va, vb].
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(a) (b)

Fig. 7. Illustration of interference to fi due to conflicting flows. (a) Flow fi
on link [va, vb] and a flow on another link [vx, vb] are assigned to different
queues in vb, hence they are not conflicting flows. (b) Flow fi on link [va, vb]
and a flow on another link [vx, vb] are assigned to the same queue in vb,
hence they are conflicting flows.

Fig. 7 illustrates two types of conflicting flows. In both sub-
figures, there is a conflicting flow (denoted by blue boxes) on
the same link [va, vb] as fi (the green box). In Fig. 7(a), it is
the only conflicting flow, since the flow on another link [vx, vb]
(denoted by a red box) is assigned to a different queue within
vb; In Fig. 7(b), the flow on link [vx, vb] is also a conflicting
flow, since it is assigned to the same queue within vb.

Next, we present a series of lemmas for computing worst-
case interference caused by conflicting flows to a rerouted flow
fi on link [va, vb], and a theorem for computing the WCD of
flow fi.

Lemma 1 (Maximum Number of Interferences by a
Conflicting Flow Within Any Time Interval): Consider an exist-
ing conflicting flow fj on link [v∗, vb], which may be either
the same link [va, vb] or another link [vx, vb]. During any time
interval of length �, at most (�(�/Tj)	 + 2) instances of fj
may cause interference to the rerouted flow fi.

Proof: Since we do not make any assumptions on the off-
set assignments of existing flows, in the worst case, there are
�(�/Tj)	 whole periods for each conflicting flow fj during �.
Before and after �(�/Tj)	 whole periods of fj, there are up to
two incomplete periods within � that may contain up to two
flow instances of fj. Thus, during �, at most (�(�/Tj)	 + 2)

instances of fj may arrive at the same switch vb as fi. When
the last flow instance of fj finishes transmission, fi can start
transmission if there is no other interference. The lemma is
thus proven.

Lemma 2 (Worst-Case Interference by a Conflicting Flow
Within Any Time Interval): During any interval with length
�, the worst-case interference caused by a conflicting flow
fj on link [v∗, vb] to the rerouted flow fi on link [va, vb] is
(�(�/Tj)	 + 2)(c[v∗,vb]

j + c[va,vb]
i − 1), where c[v∗,vb]

j denotes

the transmission duration of fj on link [v∗, vb], and c[va,vb]
i

denotes the transmission duration of fi on link [va, vb].
Proof: A conflicting flow fj’s interference to the rerouted

flow fi may consist of two parts: its own message transmis-
sion duration c[v∗,vb]

j , and the idle windows in-between its
message transmissions. Since message transmission is nonpre-
emptive, fi can only be transmitted when an idle window is no
less than c[va,vb]

i . The worst-case interference due to idle win-
dows happens when every idle window has size (c[va,vb]

i − 1),
so that the flow instance of fi cannot fit within it (assum-
ing integer time unit). In the worst case, there may be up to
(�(�/Tj)	 + 2) − 1 idle windows in-between transmissions
of all flow instances during �. An additional idle window

TABLE III
FLOWS IN FIG. 8. ALL TIME UNITS ARE IN US

would be generated between the beginning of � and the first
appearing instance. We then can obtain the total worst-case
interference of fi by fj within time interval � over [va, vb] as
(�(�/Tj)	 + 2)(c[v∗,vb]

j + c[va,vb]
i − 1).

Based on Lemmas 1 and 2, the following lemmas fol-
low by summing over all conflicting flows on the same link
(Lemma 3) or on different links (Lemma 4).

Lemma 3 (Total Interference From Conflicting Flows on the
Same Link): During any time interval with length �, the worst-
case interference to the rerouted flow fi ∈ F [va,vb]

rer on link
[va, vb] from conflicting flows on the same link [va, vb] is

Is(i,�, va) =
∑

j∈F [va,vb]
exi

(⌊
�

Tj

⌋
+ 2

)(
c[va,vb]

j + c[va,vb]
i − 1

)

(3)

where F [va,vb]
exi denotes the set of existing flows on link [va, vb].

Lemma 4 (Total Interference From Conflicting Flows on
Different Links): During any time interval with length �, the
worst-case interference to the rerouted flow fi ∈ F [va,vb]

rer on
link [va, vb] from conflicting flows on different links [vx, vb]
that share the same queue as fi in switch vb is

Io(i, �, va) =
∑

[vx,vb]∈L
vx 
=va

∑

j∈F [vx,vb]
exi

Qj=Qi

(⌊
�

Tj

⌋
+ 2

)(
c[vx,vb]

j + c[va,vb]
i − 1

)
.

(4)

Flow fi’s WCD R[va,vb]
i on link [va, vb] consists of its

own transmission duration plus the worst-case interferences
from both types of conflicting flows, as shown in
Theorem 1.

Theorem 1 (WCD On a Given Link): Given a rerouted TT
flow fi ∈ F [va,vb]

rer and existing flows, fi’s WCD R[va,vb]
i on the

link [va, vb] can be computed as the minimum fixed point of
the following recursive equation:

R[va,vb]
i = c[va,vb]

i + Is

(
i, R[va,vb]

i , va

)
+ Io

(
i, R[va,vb]

i , va

)
(5)

where Is(i, R[va,vb]
i , va) and Io(i, R[va,vb]

i , va) are obtained by
Lemmas 3 and 4, respectively.

A Toy Example: Consider three flows, f1, f2, and f3, shown
in Fig. 8(a) and Table III. The column ci denotes each flow
fi’s transmission duration on each link. f1 and f2 are existing
flows; f3 is a rerouted flow resulting from the online phase
of Algorithm 1. The routes and schedules of existing flows f1
and f2 are fixed, and f3 needs to be scheduled online to meet
its deadline in the presence of f1 and f2. We now calculate its
WCD R[v4,v2]

3 .
Flows f2 and f3 are always conflicting flows, since they

traverse the same link [v4, v2] before reaching switch v2. In
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(a) (b) (c)

Fig. 8. Example of computing the WCD R
[v4,v2]
3 of f3 on link [v1, v2]. On the time axis in (b) and (c), t = 0 denotes the start of the busy period based on

the release time of f3. (a) Topology. (b) f1 and f3 are assigned to different queues in v2, hence they are not conflicting flows. (c) f1 and f3 are assigned to the
same queue in v2, hence they are conflicting flows.

Fig. 8(b), we assume that flows f1 and f3 are assigned to two
different queues in switch v2 (Q1 
= Q3), hence they are not
conflicting flows; in Fig. 8(c), we assume that f1 and f3 are
assigned to the same queue in switch v2 (Q1 = Q3), hence
they are conflicting flows. We treat each case separately.

Case 1 in Fig. 8(b): Since f1 is not a conflicting flow with
f3, we only need to consider the interference of f2 (on the same
link) to f3. According to (5), we have

R[v4,v2]
3 = c[v4,v2]

3 + Is

(
3, R[v4,v2]

3 , v4

)

= c[v4,v2]
3 +

(⌊
R[v4,v2]

3

T2

⌋
+ 2

)(
c[v4,v2]

2 + c[v4,v2]
3 − 1

)

= 3 +
(⌊

R[v4,v2]
3

40

⌋
+ 2

)
(1 + 3 − 1)

= 9 + 3

⌊
R[v4,v2]

3

40

⌋
= 9.

Case 2 in Fig. 8(c): Since both f1 and f2 are conflicting
flows with f3, we need to consider both the interference of f1
(on another link) to f3, and the interference of f2 (on the same
link) to f3. According to (5), we have

R[v4,v2]
3 = c[v4,v2]

3 + Is

(
3, R[v4,v2]

3 , v4

)
+ Io

(
3, R[v4,v2]

3 , v4

)

= c[v4,v2]
3 +

(⌊
R[v4,v2]

3

T2

⌋
+ 2

)(
c[v4,v2]

2 + c[v4,v2]
3 − 1

)

+
(⌊

R[v4,v2]
3

T1

⌋
+ 2

)(
c[v1,v2]

1 + c[v4,v2]
3 − 1

)

= 3 +
(⌊

R[v4,v2]
3

40

⌋
+ 2

)
(1 + 3 − 1)

+
(⌊

R[v4,v2]
3

20

⌋
+ 2

)
(1 + 3 − 1)

= 15 + 3

⌊
R[v4,v2]

3

40

⌋
+ 3

⌊
R[v4,v2]

3

20

⌋
= 15.

The WCD R[v2,v3]
3 can be computed similarly, and we omit the

detailed derivations. Finally, the WCD of f3 can be obtained
by summing up all delays on each link that f3 pass through,
i.e., wcd(f3) = R[v4,v3]

3 = R[v4,v2]
3 + R[v2,v3]

3 .

V. PERFORMANCE EVALUATION

The experiment platform is a workstation with 64-bit 4-core
2.3-GHz Intel Core i5-6300HQ with 32-GB memory. We adopt

a similar experimental setup to [7]. We generate 80 random
network topologies, each with eight switches and eight end-
systems. Each flow’s source and destination nodes are chosen
randomly from the end-systems. Every end-system is attached
to three switches, and every switch is attached to at least three
other switches. The time granularity used by the scheduler
(macrotick) is 1 us. Each flow fi’s period Ti is uniformly ran-
domly distributed within [80, 160] us, with deadline equal to
period Di = Ti. Flow fi’s queue ID in each switch Qi is uni-
formly randomly chosen as an integer within [0, 7]. Each flow
has two redundant paths, and one message is transmitted on
each path, i.e., κ

p
i = κ t

i = 2. The link bandwidth is 1 Gb/s.
Every message has the same size of 500 bytes, so its transmis-
sion delay on each link is 4 us. All flows start transmitting at
t = 0. We set ki = 8, i.e., we collect an additional eight candi-
date redundant paths for use during online fault recovery. For
offline path selection described in Section IV-B, we set equal
weights w1 = w2 = 0.5 and impose a maximum number of 5
hops for every path, i.e., NHn

i ≤ 5 in (1).
We compare the following methods.
1) FRER: The offline configuration obtained by

Algorithm 2 based on the ILP-based offline schedul-
ing algorithm in [34], enhanced to establish two
redundant paths for each flow. We use Gurobi
(https://www.gurobi.com) as the ILP solver. It also
serves as the initial configuration for the three online
recovery methods below. There is no online recovery
phase.

2) OUR: Algorithm 1.
3) OUR-Ran: Algorithm 1 with random selection of the

candidate path CPn
i ∈ CP i on line 11, instead of the

candidate path with minimum WCD min{wcd(CPn
i )}.

4) HRS: The HRS algorithm in [25]. The period of TAS
is referred to as the base period, and it is divided
into smaller synchronized time slots with uniform size,
and the duration of each time slot must be larger than
the nonqueuing end-to-end delay of a maximum-sized
frame. We adopt these parameter settings for HRS: the
base period is 80 us; the maximum number of hops is
5. The time slot length is set to be the end-to-end delay
5 × 4 = 20 us, since each hop has a transmission delay
of 4 us. So the base period contains 80/20 = 4 time
slots.

We first evaluate the fault tolerance performance in terms of
the DoR values for both permanent and transient faults upon
link failures. We set the total number of TT flows F in the
system to be 20. For each network topology, we randomly
inject a permanent fault to cause a random link failure and
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(a) (b)

(d)(c)

(e)

Fig. 9. Experiment results with random network topologies. (a) Recovered
minimum DoR for permanent faults versus the number of link failures.
(b) Recovered minimum DoR for transient faults versus the number of link
failures. (c) Recovered average DoR for permanent faults versus the number
of link failures. (d) Recovered average DoR for transient faults versus the
number of link failures. (e) Acceptance rate versus the number of flows.

run each of three online recovery methods. After executing
the online recovery phase, we record the following metrics
for all flows fi: minimum DoR values for permanent faults
min(κ

p
i ) and for transient faults min(κ t

i ); average DoR values
for permanent faults avg(κ

p
i ) and for transient faults avg(κ t

i ).
3

We repeat the experiment for seven rounds, with one additional
link failure in each round starting from the configuration after
recovery from the previous round, hence the number of con-
secutive link failures grows from 0 to 7. The results are plotted
in Fig. 9(a)–(d).

1) For the Minimum DoR Values min (κp
i ) and min (κ t

i ) in
Fig. 9(a) and (b): For FRER, they both drop linearly
(until reaching 0) with the number of failures since it
has no online recovery phase. For the three online meth-
ods, the performance ranking is OUR>HRS>OUR-ran
for both min(κ

p
i ) and min(κ t

i ). All three methods can
provide perfect protection against one single-link failure
(min(κ

p
i ) = min(κ t

i ) = 2). They drop to 0 (min(κ
p
i ) =

min(κ t
i ) = 0) upon 6, 5, and 3 link failures for OUR,

3The minimum DoR values are important, if we assume all TT flows to be
safety-critical, and the flow with the lowest reliability determines the overall
system reliability. The average DoR values are also useful metrics, since they
describe the average fault tolerance capability among all flows.

HRS, and OUR-ran, respectively. This happens when at
least one of the flows’ talker and listener end-systems
become disconnected.

2) For the Average DoR Values avg(κp
i ) and avg(κ t

i ) in
Fig. 9(c) and (d): We observe similar performance rank-
ings, with OUR consistently being the best-performing
method, but with smaller differences among the three
online methods. [OUR-ran outperforms HRS slightly in
Fig. 9(d), which may be within the statistical noise due
to the randomness in the experimental setup.]

Next, we consider the fault-free scenario, in order to eval-
uate the general effectiveness of different methods in finding
feasible solutions. For each of the 80 network topologies, we
vary the number of TT flows from 5 to 80 with a step size
of 5, so the total number of test scenarios is 80 × 16 = 1280.
We define the metric of acceptance rate as the percentage of
problem instances for which all flows are successfully routed
and scheduled with no spatial or temporal redundancy, i.e.,
even there is only one single flow fails to be routed and sched-
uled, the set of flows F is not accepted. We consider the
following approaches.

1) The ILP-based offline scheduling algorithm in [34].
2) HRS in [25].
3) OUR-Online: OUR (Algorithm 1) with online phase

only.
4) OUR-Ran-Online: OUR-ran with online phase only.
Fig. 9(e) plots the acceptance rates versus the number

of flows. Each data point is the average value over all 80
network topologies for a given number of flows. The accep-
tance rates for all methods decrease with increasing number
of TT flows. The ILP-based offline scheduling algorithm has
the best performance, since it performs routing and scheduling
for all flows at the same time, while the three online meth-
ods consider each flow sequentially as each one is generated.
The three online methods have an acceptance rate ranking of
OUR-online>HRS>OUR-ran-online, which is consistent with
the results in Fig. 9(a)–(d).

VI. CONCLUSION

In this article, we address the issue of fault tolerance against
permanent and transient faults for TT flows in TSN and pro-
pose an efficient heuristic algorithm for online incremental
rerouting and rescheduling of disrupted flows, where the paths
and schedules of existing flows stay fixed. Performance eval-
uation experiments by injection of permanent faults indicate
that our approach can better recover the system’s DoR and has
a higher acceptance rate than the comparison baselines.
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