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Confining light by plasmonic waveguides is promising for
miniaturizing optical components, while topological pho-
tonics has been explored for robust light localization. Here
we propose combining the two approaches into a simple
periodically perforated plasmonic waveguide (PPW) design
exhibiting robust localization of long-range surface plasmon
polaritons. We predict the existence of a topological edge
state originating from a quantized topological invariant,
and numerically demonstrate the viability of its excita-
tion at telecommunication wavelength using near-field and
waveguide-based approaches. Strong modification of the
radiative lifetime of dipole emitters by the edge state, and
its robustness to disorder, are demonstrated. © 2022 Optica
Publishing Group

https://doi.org/10.1364/0OL.471442

Compactness and robustness are among the most desirable
features of any photonic system. Compactness enables fit-
ting multiple photonic components, such as waveguides, delay
lines, or modulators, on a single chip. One of the fundamen-
tal approaches to achieving compactness is to replace standard
dielectric components with metallic ones: hence the emergence
of plasmonics [1-4] as one the most exciting sub-fields of
optics. However, robustness enables reflectionless propagation
or spatial localization even in the presence of finite disorder.
Topological photonics, which takes advantage of the conserva-
tion of quantized topological invariants [5,6], has been proposed
as a promising approach to ensure robustness to certain types of
defects and disorder [7].

Implementing topologically nontrivial photonic structures
using plasmonic platforms (including the ones based on two-
dimensional materials [8,9]) is a natural step to achieving both
features. However, several challenges must be overcome to
achieve this objective. Because many underlying concepts of
topological photonics rely on Hermitian physics, this can be
a serious limitation for inherently lossy plasmonic platforms.
Nevertheless, open (i.e., non-Hermitian) photonic systems with
loss and/or gain have been shown to exhibit topological robust-
ness [10-14]. Intrinsic material losses are particularly severe
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for plasmonic platforms. Difficult to compensate, such Ohmic
losses are particularly high in the vicinity of resonances that
provide the necessary negative permittivity for plasmonics. One
method that has been successfully used is to create a hybrid plat-
form of dielectrics and plasmonic nanostructures [15]. Another
method to mitigate the Ohmic losses in plasmonic devices is
by modifying their material composition or geometry [16]. For
example, a finite metal strip can support multiple plasmonic
modes of different symmetries and spatial dimensions [17]. The
long-range surface plasmon polariton (LRSPP) has particularly
low losses as it propagates along the strip [2] because it is local-
ized mostly in the dielectric region, i.e., outside of the lossy
plasmonic material.

In this Letter, we use the LRSPP to overcome material losses
in plasmonic systems and demonstrate a realizable plasmonic
topological structure emulating the simplest one-dimensional
(1D) topological insulator inspired by the Su-Schrieffer—Heeger
(SSH) model [18]. Such a system can be part of an integrated
photonic circuit for communications and sensing applications.
We begin with the unit cell design and discuss the origin of
low losses and the bulk topological invariant that gives rise
to a topological edge state. Next, we present two methods of
exciting the topological edge state using: (i) a judiciously placed
point dipole simulating a near-field scanning optical microscopy
(NSOM) experiment [19]; and (ii) LRSPP waveguides as input
and output channels [20].

The periodic topological structure analyzed in this Letter is
shown in Fig. 1(a). It comprises a gold strip waveguide periodi-
cally perforated along the propagation direction x of the LRSPPs,
and is sandwiched between a quartz (ng,, = 1.5 refractive index)
and air region. Each waveguide period contains two half-circular
holes on each side of the strip as shown in Fig. 1(a), bottom.
We note that other hole shapes and locations would work just
as well as long as inversion symmetry is maintained. LRSPP
modes of the unperforated plasmonic strip are characterized by
their continuous wavenumber & along the waveguide and their
complex-valued frequency w, = 2xfy(k) + ivy, where f; is the
vacuum frequency and v, is the decay rate. For convenience, the
continuous spectrum fy(k) of LRSPPs is presented in Fig. 1(b)
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Fig. 1. Bulk design of LRSPP topological insulator. (a) Struc-
ture geometry. Top and side views of topological (left) and trivial
(right) unit cell designs. Yellow, Au; gray, Cr; teal, quartz. Param-
eters: L =w =500nm; r = 70nm; Bipo = 1.2; Buiy = 0.8; hay =
45 nm; hc, = 5nm; and the substrate is semi-infinite. (b), (¢) Band
structures f(k) of LRSPPs in (b) un-patterned and (c) periodi-
cally perforated plasmonic waveguides presented as normalized
Lorentzian line shape at resonance peaks. Dashed white lines in
panel (b), targeted LRSPP with Ay = Arc = ¢/frc. Inset, unit cell.
White dashed lines in panel (c), band centers. Pink (red) star, the
wavelengths A. of the symmetric (anti-symmetric) Bloch LRSPPs
shown in panel (d). (d) Electric field E, of the modes marked as
stars in panel (c).

in the form of Lorentzian line shape Ay(k,f) according to the
value of v, (see Supplement 1).

For the periodically perforated plasmonic waveguide (PPW),
Bragg scattering of LRSPPs by the holes introduces two prop-
agation bands separated by a bandgap. Two such bands f. (k)
and the bandgap are visualized in Fig. 1(c) as A, (k,f) obtained
using three-dimensional COMSOL Multiphysics simulations,
where the Bloch LRSPPs characterized by the Bloch wavenum-
ber k are driven using randomly placed/oriented electric dipoles
[21] oscillating with frequency w = 27¢/A. To ensure a prop-
agation bandgap around a telecommunication (TC) wavelength
Arc = 1.55 um, we have chosen the x—periodicity (unit cell
length L) as L = 500 nm. The details of calculating A,(k, f) for
the un-patterned and periodically perforated plasmonic waveg-
uides, as well as the optical properties of gold and the adhesive
chromium nano-layer are discussed in Supplement 1. Geometric
dimensions of the plasmonic strip waveguide are given in the
caption of Fig. 1.

Assuming that the center of a given hole is unequally spaced
between its left and right immediate neighbors, two types of
mirror-symmetric with respect to y — z midplane unit cells can
be chosen as shown in Fig. 1(a): topological and trivial. The
center-to-center distance between the 1st (left) and 2nd (right)
holes, expressed as BL/2, determines topological properties of
the unit cell: S = B,>1 for the topological, and 8 = B <1
for the complementary trivial unit cells, as shown in Fig. 1(a),
bottom. The main difference between topological and trivial unit
cells is the symmetry of the propagation bands below and above
the bandgap. The topological unit cell has a band below (above)
the bandgap that is anti-symmetric (symmetric) with respect to
the y — z midplane, as shown in Fig. 1(d). The opposite is true
for the trivial unit cell (see Supplement 1). This type of band
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inversion is related to a topological invariant known as the Zak
phase ¢, [22] (see Supplement 1 for definition).

While generalizations of the Zak phase for non-Hermitian
systems with chiral symmetry have been introduced [23], our
system lacks chiral symmetry due to long-range interactions of
the plasmonic modes. Nevertheless, our system maintains inver-
sion symmetry in the X direction which quantizes the Zak phase
to just two possible values: ¢, = 0, 1 [24,25]. For the topolog-
ical (trivial) unit cell, we find the Zak phase equal to ¢,™ = 7
(¢5¥ = 0). This can be calculated according to the symmetry
of the modes in Fig. 1(d) and by noting that as k — O (the
long wavelength limit), the LRSPP mode is symmetric [2,22]
(see Supplement 1). An implication of the quantized Zak phase
of ¢, is a filling anomaly [26] that introduces an additional
(edge) state at the interface with a trivial domain. However, for
the edge state to be spectrally pinned to the midgap frequency,
an additional (chiral) symmetry is required [25].

While the PPW shown in Fig. 1 clearly does not posses global
chiral symmetry across the entire Brillouin zone (BZ), it does
locally around the edge of the BZ, as can be observed in Fig. 1(c)
from the symmetric band structure around X = 7r/L. To show this
local chiral symmetry, we use an expansion model in the vicinity
of the BZ edge using the following two-band Hamiltonian H(g),
which is the function of ¢ = X — k:

H(q) = AG, + gA. 5. + iN G + iN 6, (1)

where H(q) is expressed on the basis of the symmetric and
anti-symmetric eigenstates of the inversion operator shown in
Fig. 1(d). Here, A, A,, AJ®, AT are real-valued coefficients, &
is the 2 x 2 identity matrix, and &, d, are the first and third
Pauli matrices, respectively. If losses are neglected, the system
respects bosonic time-reversal symmetry, which is expressed
as complex conjugation. Hence, the Hamiltonian H(q) does
not contain Hermitian terms proportional to &;. The first two
terms describe the finite-mass (from A, # 0) Hermitian 1D Dirac
Hamiltonian. The non-Hermitian terms in H(q) describe the
lowest-order shared (third term) and differential (fourth term)
loss rates, respectively.

It can be shown (see Supplement 1) that the anti-symmetric
and symmetric modes have very similar Ohmic loss rates
because of their similar penetration into the plasmonic mate-
rial. Therefore, only the third term in Eq. (1) needs to be
retained, and the chiral symmetry is broken in a trivial manner
[24], making the bulk topological classification of the non-
Hermitian model equivalent to the Hermitian classification.
To establish the existence of a midgap-pinned edge state, we
note that the value of the Berry connection A(k)—the quan-
tity proportional to the k-derivative of the Berry phase used

to calculate the Zak phase according to ¢, = [ }; dkA(k)—is
inversely proportional to the bandgap size at k [18]. There-
fore, as long as the bandgap size is small compared to the
entire energy spectrum, the only contributions to the Zak phase
are localized near the minima of the bandgap in k, i.e., at
k =X (see Supplement 1). Because the contributions to the
Zak phase originate only near the BZ edges, where a local
chiral symmetry approximately exists to the lowest order in
g, an edge mode (if present) must be pinned to the midgap
frequency [25].

This conclusion is confirmed in Fig. 2(a), where topolog-
ical and trivial semi-infinite PPWs are interfaced to form
a domain wall (red and blue dashed lines), and an edge
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Fig. 2. Topologically robust edge state of long-range SPPs in a
periodically perforated plasmonic waveguide. (a) A domain wall
between semi-infinite topological (left) and trivial (right) PPWs
supports a localized edge state that strongly (weakly) couples to an
electric dipole emitter marked by a blue (red) circle. The emitter is
placed inside the first (second) holes of the topological waveguide.
(b) Top: |E|? of the edge eigenmode concentrated inside the first
hole of the topological and trivial waveguides on the two sides of
the domain wall. Bottom: E, field component of the zoomed pink
box. Interface marked in dashed black line.

mode exponentially localized at the domain wall with an
exponential decay length /.4, ~ 8L ~ 4 pm was revealed using
eigenvalue COMSOL simulations. The obtained complex-
valued frequency of the edge state is fie =~ (190 +i5) THz;
its real-valued frequency—corresponding to vacuum wave-
length Aeq, ~ 1.58 pum—is indeed close to the midgap frequency
f ~ 191 THz, while its decay rate is close to the shared loss rate
of the two bulk modes at the edge of the BZ. Moreover, it can
be observed from Fig. 2(b) that the distribution of the electric
field energy of the edge state is highly unequal between the two
perforating holes: it is primarily concentrated in the 1st hole
of the PPWs. This is similar to the property of the edge mode
described within the SSH model [18]: to occupy only one-half
of the lattice sites, with every other site unoccupied. Therefore,
it can be expected that: (i) near-field excitation of the edge state
by an electrically small antenna (e.g., SNOM tip) or a dipole
emitter is strongly dependent on their location inside the unit
cell; and (ii) the radiative decay time of an emitter placed in one
of the perforating holes close to the domain wall is also modified
in a hole-dependent manner.

To verify these predictions, we performed a driven simula-
tion with a dipole emitter oriented in the Z direction placed at
the center of holes 1 and 2 [blue and red circles in Fig. 2(a),
respectively] at the domain wall formed by N = 40 trivial and
topological unit cells on each side. The interaction strength of
these two emitters with the photonic structure is expressed by
the Purcell factor Fp(2) = y/y, = P(1)/Py(A) equal to the ratio
of the powers P(1) and Py(1) emitted by a dipole with and
without the structure, respectively [27] (see Supplement 1). The
radiative decay rate y(A1) of the emitter is increased in the same
proportion. The corresponding Purcell factors color-coded for
the two emitter locations (blue and red) are plotted in Fig. 3 for
the following cases: (i) a PPW uninterrupted by the domain wall
(dot—dashed line); and (ii) a topological device with a domain
wall shown in Fig. 2(a) (solid curves).

As expected, case (i) does not reveal any dependence on
the emitter location. Moreover, F»(4d) has a dip inside the
photonic bandgap 1_<A<A, (shaded region in Fig. 3), where
A, = 1.62 um and A_ ~ 1.53 um are the edges of the lower and
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Fig. 3. Purcell factors for two dipole emitters placed inside two
adjacent holes of a PPW. Emitter locations (1st and 2nd holes)
and color-coding (blue and red), same as in Fig. 2(a). Solid lines,
the emitters are placed at the domain wall separating semi-infinite
topological and trivial PPWs shown in Fig. 2(a). Dash—dotted lines,
infinite PPW. Dashed lines, finite disorder of inter-hole distance
in the topological and trivial PPWs. Dotted curves, x10 increased
loss. Shaded gray area, the bandgap wavelengths. Inset shows PPW
with no disorder (gray) overlaid with PPW with disorder (yellow).
Interface region marked with black dashed line.

upper LRSPP propagation bands, respectively. This feature of
the Purcell factor is related to the reduction of the density of
optical states (DOS) inside the bandgap and, therefore, reduced
emitter coupling to the propagating LRSPPs.

An entirely different spectral dependence of the Purcell factor
is observed in case (ii). First, for the emitter placed inside hole
1, we observed considerable Purcell factor enhancement (up to
F ,(Dl_l)(,pn ~ 3.5) inside the bandgap with respect to its baseline value
of Fp ~ 2 outside the bandgap. Such dramatic Purcell factor
enhancement is not possible in most nanoparticle plasmonic
systems [24,28] where the shared loss is significantly larger
than the bandgap size, as can be seen from the dotted curves in
Fig. 3 generated by increasing the Drude loss by a factor of 10.
However, the LRSPPs supported by PPWs have moderate decay
rates (of the order of ~ 5THz at ¢ = 0) that are comparable
with the bandgap (Af ~ 10 THz), thereby enabling preferential
coupling of a dipole oscillating at the f.. frequency to the
edge state. However, the Purcell factor of the emitter placed
inside hole 2 isreduced to F gf@o ~ 1.7.InRef. [29], qualitatively
similar results were obtained but the emitter dipole had to be
embedded inside a gold nanoparticle, which is not feasible.

To illustrate the robustness of the edge states to disorder, we
introduce randomness in the hole center locations [x;,x,] along
the entire topological device shown in the inset of Fig. 3. This
is done using a uniform random variable U[-25 nm, +25 nm]
(see Supplement 1. Of most importance is that the edge mode
frequency does not shift, as predicted by the topological nature
of the system. The Purcell factor baseline in Fig. 3 increases due
to effective localization in the entire spectrum by multiple scat-
terings, and the edge mode Purcell enhancement is maintained
in relation to the baseline, showing the strength of topological
robustness and enabling more robust experimental detection of
the edge states using NSOM (see Supplement 1). This approach
may also be used in the design of robust plasmonic antennas
whose performance is enhanced by the presence of disorder
[30].

Next, we examine the excitation of the LRSPP topological
edge mode in the context of an integrated photonic circuit.
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Fig. 4. Waveguide excitation of topological edge mode. (a)
LRSPP waveguide with trivial and topological bandgap sections
interfacing (topological device). (b) Reflection spectra of trivial
device (orange) and topological device (blue) normalized to the
maximal value to account for Ohmic losses. (¢c) Normalized max-
imum value of the averaged energy density per unit cell for the
topological (blue) and trivial (orange) devices at the frequency of
the edge mode. Inset shows interface region for the topological
device located between unit cells 20 and 21.

The excitation schematic is shown in Fig. 4(a): an unpatterned
gapless plasmonic waveguide [see Fig. 1(a)] delivers LRSPPs
to a PPW-based topological plasmonic device (12-units-long
topological/trivial PPWs on the two sides of the domain wall)
discussed above. The reflection plot (blue line) in Fig. 4(b) shows
a broad spectral peak covering the entire bandgap, with a nar-
rower dip at midgap. To understand the origin of the broad
reflection peak, we substitute the topological portion of the PPW
by a trivial one (or vice versa). As expected [20], the bandgap
of the resulting trivial (i.e., devoid of the domain wall) device
increases reflection (orange curve) and reduces transmission (see
Supplement 1). The reflection dip for the topological device is
then explained by the tunneling to/from the edge state supported
by the domain wall. This is supported by plotting the energy
density inside the trivial (orange circles) and topological (blue
circles) devices shown in Fig. 4(c). While the former exhibits
a purely exponential decay along the length of the device, the
latter exhibits a non-monotonic dependence on the distance into
the topological device. The energy density peak in the middle
of the topological device indicates the excitation of the edge
state. We note that the physical dimensions and bandwidth of
the topological LRSPP device shown here are encouraging for
its application in standard integrated photonic circuits at telecom
wavelengths [31].

In summary, we have introduced a realizable plasmonic
device operating in the TC band that supports a topological
edge mode. The device is based on periodically perforated
plasmonic waveguide supporting band-folded LRSPPs. Pro-
hibitively high plasmonic losses that would normally obscure
any topological features are circumvented by using lower-loss
LRSPP modes. Two different experimentally accessible excita-
tion methods—near-field based and integrated photonics—are
proposed, and their corresponding manifestations of the edge
state are discussed. Integration of plasmonics and topologi-
cal photonics opens new opportunities to make nanophotonic
devices simultaneously compact and robust.
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