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ABSTRACT: In this work, we present a general framework that unites the two primary 20
strategies for constructing density functional approximations (DFAs): nonempirical (NE)
constraint satisfaction and empirical (E) data-driven optimization. The proposed method 15
employs B-splines, bell-shaped spline functions with compact support, to construct each
inhomogeneity correction factor (ICF). This choice offers several distinct advantages over
traditional polynomial expansions by enabling explicit enforcement of linear and nonlinear = e..__responses
constraints as well as ICF smoothness using Tikhonov and penalized B-splines (P-splines) T
regularization. As proof-of-concept, we use the so-called CASE (constrained and smoothed
empirical) framework to construct a constraint-satisfying and data-driven global hybrid that
exhibits enhanced performance across a diverse set of chemical properties. We argue that the 0.0
CASE approach can be used to generate DFAs that maintain the physical rigor and
transferability of NE-DFAs while leveraging high-quality quantum-mechanical data to remove

the arbitrariness of ansatz selection and improve performance.

I{ohn—Sham density functional theory (KS-DFT) has
become the de facto standard for electronic structure
calculations in chemistry, physics, and materials science due to
its favorable trade-off between accuracy and computational
cost." While there now exist hundreds of density functional
approximations (DFAs) of varying complexity across all rungs of
Perdew’s popular Jacob’s ladder,” most have been designed
using either nonempirical (NE) or empirical (E) strategies.l";’4
NE-DFA strategies construct DFAs by proposing simple ansatze
designed to satisfy well-defined physical constraints and norms
(e.g., the uniform electron gas (UEG) limit,” second-order
gradient responses,”’ Lieb—Oxford bound'*'"). Resulting NE-
DFAs (e.g, Perdew—Burke—Ernzerhof (PBE),* PBEO,"”
SCAN" (strongly constrained and appropriately normed))
tend to be more transferable across complex condensed-phase
systems, making them more favored in the physics and materials
science communities. E-DFA strategies construct DFAs by
optimizing a physically motivated and flexible functional form to
best reproduce reference quantum-chemical data. The resulting
E-DFAs (e.g., Becke, three-parameter, Lee—Yang—Parr
(B3LYP),'* Minnesota functionals,"””~"" B97 family">"®)
often perform quite well (typically exceeding NE-DFAs) on
chemical systems and properties similar to the training data, and
tend to be more popular for chemical applications.

When used independently, both of these strategies have
shortcomings. For one, NE-DFA ansitze are somewhat
arbitrary, and there is some flexibility when constructing a
NE-DFA that satisfies a given set of constraints; 1319 hence, there
is no guarantee that the chosen ansatz will perform best in
practice. The choice of constraints is also somewhat arbitrary or
empirical;”® for example, the correct series expansion of the
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exchange-correlation energy (E,.) is sometimes ignored as it
often results in inaccurate DFAs for real systems.”' In the same
breath, striving for the best-performing functional using an E-
DFA strategy often goes hand-in-hand with sacrificing exact
physical constraints, which is not ideal for transferability.”'>'%**
Furthermore, some E-DFAs suffer from nonphysical “bumps” or
“wiggles” in the inhomogeneity correction factor (ICF), which
violate an implicit smoothness constraint and can require
significantly larger grids for accurate quadrature in practice.”*~>°

While both strategies provide useful information about the
optimally performing DFA, neither suffices on its own. Hence,
several groups have advocated for combining these strat-
egies,ﬂ’2 although constraint satisfaction during the data-
driven optimization process has remained difficult to date. To
address the E-DFA smoothness (})roblem, the Ba?resian error
estimation functional (BEEF)**~*° and Minnesota®' functionals
have adopted an explicit smoothness penalty in the regression
procedure with reasonable success; the resulting ICFs are
smoother than previous generations, albeit not always
completely devoid of spurious features. Furthermore, the recent
MCML (multi-purpose, constrained, and machine learned)
approach”” has made efforts to combine NE-DFA and E-DFA
strategies by algebraically enforcing three linear constraints
during the optimization process (expanding on an approach
originally used by Truhlar and co-workers when constructing
numerous Minnesota functionals'”*>**). While successful in
enforcing the targeted constraints, the polynomial basis used in
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MCML (and all but a few’* E-DFAs) prevents explicit
enforcement of nonlinear constraints (such as inequalities)
and makes satisfying any additional constraints nontrivial as
each regression coeflicient appears in every algebraic constraint.

In this work, we address this long-standing challenge of
uniting NE-DFA and E-DFA strategies by presenting a general
framework that seamlessly enables one to enforce exact physical
constraints and ICF smoothness while simultaneously leverag-
ing high-quality quantum-mechanical data during DFA
construction. The proposed constrained and smoothed
empirical (CASE) framework uses B-splines (i.e., compact
bell-shaped piecewise functions®®) during ICF construction,
which allows for a tunable trade-off between ICF smoothness
and flexibility via penalized B-splines (P-splines),*® as well as
explicit enforcement of both linear and nonlinear constraints via
generalized Tikhonov regularization. As proof-of-concept, we
use this framework to construct a global hybrid DFA that
completely satisfies all but one constraint (and partially satisfies
the remaining one) met by the PBEO NE-DFA. When compared
to PBEO (and the popular BALYP E-DFA), this CASE-generated
DFA exhibits improved performance across a diverse set of
chemical properties without sacrificing transferability or
requiring large numerical quadrature grids. As such, we argue
that the CASE framework can be used to construct next-
generation DFAs that maintain the physical rigor and trans-
ferability of NE-DFAs while leveraging high-quality quantum-
mechanical data to remove the arbitrariness of ansatz selection
and improve performance.

Proof-of-Concept: Functional Form. As a proof-of-
concept illustration of the CASE approach, we constructed
and critically assessed a constraint-satisfying global hybrid
generalized gradient approximation (GGA). The overall func-
tional form for this CASE-generated DFA (hereafter referred to
as CASE21) was chosen to be as simple as possible and was
assembled from well-established ingredients used during DFA
construction for over two decades now, that is, gradient
corrections to the semilocal E,. components in conjunction
with a set fraction (25%) of exact exchan%e (Eq), as generally
recommended for global hybrid GGAs.">*” Our choice to
construct a hybrid GGA (instead of a more complicated meta- or
hybrid meta-GGA) was intentional, as the simpler functional
form of GGA-based ICFs allows us to more clearly demonstrate
how CASE can be used to enforce physical constraints and ICF
smoothness during a data-driven DFA optimization procedure.
However, the selection of such a relatively simple functional
form is not a limitation of the CASE framework, which can be
used to construct DFAs on every rung of Jacob’s ladder. In fact,
we expect that the full scope of this approach will be better
realized when constructing more sophisticated functionals (e.g.,
meta- and hybrid meta-GGAs) that have the ability to satisfy
more physical constraints and the flexibility to leverage larger
amounts of benchmark data.

With these points in mind, we write CASE21 as the following
sum of exchange and correlation contributions:

CAsE2l __ 3
E p—

1
xC - ZEx[pT) pl] + ZExx + Ec[p) C]

1

The semilocal exchange is defined using the exchange spin
scaling relationship:**

EX[PT; Pl] = %(EX[ZPT] + Ex[zﬂl]) (2)

in which

pubs.acs.org/JPCL
Elpl= [pe(p)E(u,,) dr 3)

. is the spin density (with spin 6 € {1, | }), €-P*is the exchange

energy density per particle within the local density approx-
imation (LDA), and F,(u ) is the yet to be determined CASE21
exchange ICF. We employ 0 < u, , = (7.8.)/ (1 + 75,2 < 1 (as
originally proposed by Becke®) as the finite-domain represen-
tation of the PBE dimensionless spin density gradient, s, =
IVp,l/[7*/(2p,)*?]. Here, we note that the PBE exchange ICF
can be written as a linear function of u, , if y, = u/x = 0.273022
(where y and k are the NE parameters in PBE), which we denote
by Fx(uw) = 1 +Ku, ,. Hence, we argue that this is an appropriate
choice for y, since the UEG exchange limit,” UEG linear
response,* and Lieb—Oxford bound'”"" can still be straightfor-
wardly enforced in this smooth limiting form (vide infra).
We construct E_[p,{] in analogy to E,[p,], namely,

Ec[p; é‘] = /‘pecI:JDA(p) C)E:(uc) dl‘ (4)

in which €P2(p, ) is the PW92*" LDA correlation energy
density per particle, p = p; + p, is the total density, = (p; — p,)/
p is the relative spin polarization, and F.(u.) is the yet to be
determined CASE21 correlation ICF. As with exchange, we
suggest a form for u_ such that a linear ICF, that is, F.(u.) = 1 —
u, would satisfy the UEG correlation limit,” rapidly varying
density limit," and second-order gradient expansion for
correlation.””” Namely, we propose 0 < u. = (—¢*f)/(—¢’*f
+7.65P%) < 1, where ¢p = 1/2[(1 + 0)¥® + (1 — £)**] is a spin
scaling factor, y. = 1/ ~ 14.986886 (where /3 is another NE
parameter in PBE), and ¢ is the following dimensionless spin-
separated density gradient:

V6|Vp |+ IVpl
T T 1
t= Jag|—| ———
"(3) 4p7%¢ (s)

This quantity reduces to the PBE dimensionless density gradient
(", which has IVpl instead of IVp,| + IVp,| in the numerator)
when |V{l = 0, which was assumed during the construction of
PBE correlation and is a relationship that allows DFAs based on ¢
to satisfy PBE correlation constraints. We note in passing that
the use of t"*F yields qualitatively similar results to t (which
might be expected, given that t and f**F are equivalent for closed-
shell systems), although t slightly outperforms £** quantita-
tively. With the above definition of u,, eq 4 does not fully satisfy
uniform scaling to the high-density limit for correlation;*'
however, it does completely cancel the e:"* logarithmic
singularity”> and allows for satisfaction of all other PBE
correlation constraints. Since the functional form described
above was chosen for its simplicity, partial satisfaction of this
constraint is not a restriction of the CASE approach; in principle,
a functional form (albeit more complex) that completely satisfies
all PBE correlation constraints could have been used.

The CASE Framework. CASE exchange and correlation
ICFs are written as linear combinations of Ny, compact
piecewise bell-shaped cubic (k = 3) uniform B-spline basis
functions ({B;}),” that is,

N,

Fx(ux,o') = Z Cx,iBi(ux,o') = Cx.Bx,(r
i

N

Fc(uc) = Z Cc,iBi(uc) = Cc'Bc
i (6)
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which is equivalent to constructing each ICF using a cubic
spline®® (see Supporting Information (SI) for more details).
With an appropriate uniformly spaced knot vector,”>*° the
B,(uy,) and B;(u.) are also uniformly spaced with all points in 0
<u,<1 and 0 < u. < 1 supported by three nonzero B-splines.
As depicted in Figure 1la, setting ¢, = 1 = c. in eq 6 results in
F,(uy,) =1 (LSDA exchange) and F(u.) = 1 (LDA correlation).

(a)
1.0

=c9g=cpp=1

—

S
= 0.5¢
<8

0.0

0.0

Figure 1. (a) B-spline basis functions ({B;},.; o rainbow) used to
represent exchange and correlation ICFs in the CASE approach. When
all expansion coefficients are set to unity, the B-spline curve (F(u) =
ZiciBi(u), black) is uniform in 0 < u < 1 and recovers the LSDA/LDA
limit. (b) B-spline curve with nonuniform coefficients. Note how the
coefficients again closely align with the curve for 0 < u < 1.

To seamlessly unite the NE-DFA and E-DFA strategies, the
CASE approach uses generalized Tikhonov regularization®* to
determine ¢ = (c, c_), that is, ICF coefficients are found by
minimizing the following loss function:

L= 1Xe =yl + 2 llelz + 7 lle = clly, o
i ! 7

wherein ||v]|} = v'M v is the matrix norm of the vector v using
the matrix M, the sum is over the enforced constraints, and all
other quantities will be defined below. Hence, the key to
determining c lies in appropriate matrix norm choices in each
term in L.

Goodness of Fit. In the goodness of fit term (i.e., the first
term in L), we construct the design matrix X by first noting that
substitution of eq 6 into eqs 3 and 4 (with fixed orbitals) casts
E[p,] and E_[p, {] into linear forms in c, and c_:

Ny
Ex[pn] = Z Cx,i p(feiDA(pn')Bi(uxﬁ) dl‘ = Cxigx,rr
N
Ec[p) C] = Z Cc,i ‘/‘pecI:JDA(p) C)Bi(uc) dl‘ = cc'gc
i (8)

6898

Hence, linear combinations of & , and & can be used to
construct semilocal xc contributions to energy differences AE,
(e.g., atomization energies, reaction energies, barrier heights) in
a form amenable to linear regression using reference data. That
is, defining & = (&, £.), with &, obtained after applying eqs 1 and
2to €, yand € | in eq 8, allows us to define x (a single row of X) as

AE = Z v](cfj) = C'Z vE = cx
j j ©)
in which v; is the stoichiometric coefficient for the j-th
component in AE,, (i, the energy of a molecule or atom), y
is the corresponding vector of reference energy differences AE
and our choice for W (a square diagonal matrix of weights w; =
min[1,1/AE®]) is motivated by the fact that the ¢ minimizing
the goodness of fit term only (i.e., weighted least-squares) is the
best linear unbiased estimator (under some common
assumptions) if the w; are inversely proportional to the variance
in each measurement.** Since E,. is the only nonexact term in
KS-DFT, both bias- and variance-type DFA errors should scale
linearly with E,,**~** making this a natural choice for W. Here,
we argue that the piecewise nature of the B-spline curves used in
CASE offers more flexibility than the low-order polynomial
expansions often used to represent E-DFA ICFs (e.g., the B97
family"*'®); with the ability to conform to more subtle shapes, a
B-spline ICF should be able to better leverage the reference data.
ICF Smoothness. For the second term in £, we note that B-
splines can be regularized by explicitly penalizing deviations
from smoothness (ie, ICF “bumps” or “wiggles”) using P-
splines, a regularization technique suggested by Eilers and
Marx*>*° based on the observation that B-spline coefficients
closely resemble the B-spline curve (see Figure 1b). As such, ICF
smoothness can be explicitly enforced in the CASE framework
via a finite-difference penalty on ¢; in this work, we interpret
nonsmoothness as nonlinearity in the ICF, and construct A from
the second-derivative finite-difference matrix (see SI). A is a
hyperparameter that governs the relative importance of the
smoothness and goodness of fit contributions to L, and
interpolates (assuming # >3 1, vide infra) between linear ICFs
(ie., R(ux,,;) and F.(u.)) that are completely constraint-driven
(A = o0) and wiggly ICFs that are data-driven to the maximum
amount possible in this framework (1 — 0). As such, any
nonlinearity in the final optimized ICFs can be attributed to the
data. Here, we note that alternative interpretations of smooth-
ness would result in penalizing other derivatives (e.g., F” (u)).
Separately penalizing the exchange and correlation ICFs (i.e.,
using two A-hyperparameters) is also possible if the ICF
smoothness contributions to £ from F,(u,,) and F.(u.) strongly
differ. In this work, we found that P-spline regularization yields
ICFs devoid of any spurious “wiggles” via single-A penalization
of F"(u) (vide infra). In contrast, an excessively large penalty
(which results in decreased performance) is usually required to
remove all nonphysical “bumps” or “wiggles” in polynomial ICFs
regularized via Tikhonov (or ridge) regression. %% Further-
more, although such polynomial-based smoothness penalties are
somewhat effective in reducing DFA grid dependence,”**" these
approaches have been largely ineffective when enforced
alongside constraints.”**° On the other hand, we find no issues
when simultaneously enforcing ICF smoothness in conjunction
with numerous linear and nonlinear constraints using the CASE
approach.
Constraint Satisfaction. In the constraint satisfaction term
in £, the {Q;} are chosen to measure constraint-specific

https://doi.org/10.1021/acs.jpclett.2c00643
J. Phys. Chem. Lett. 2022, 13, 6896—6904


https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c00643/suppl_file/jz2c00643_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c00643/suppl_file/jz2c00643_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c00643?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c00643?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c00643?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c00643?fig=fig1&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.2c00643?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The Journal of Physical Chemistry Letters

pubs.acs.org/JPCL

deviations of ¢ from ¢, the coefficients corresponding to lt*'x(ux’,,)
and F.(u.). Each Q; corresponds to a constraint on F(u) or
F'(u) and is constructed such that any constraint-satisfying ¢
yields [|c — ¢,llg, = 0 (see SI for Q, construction details). 77 is a

hyperparameter that governs the relative importance of the
constraint satisfaction contribution to .£, and should be chosen
to be large enough for strict constraint satisfaction but small
enough to avoid conditioning issues. Since each B-spline has
compact support, each Q ; only enforces a constraint on a small
subset of ¢ (e.g., those corresponding to the nonzero B-splines at
u =0); in contrast, each constraint would generally involve every
parameter in a polynomial-based ICF (e.g, MCML""). Another
important consequence of this local support is that the B-spline
curve itself will lie within the range of ¢ (cf. Figure 1b). Hence,
inequality constraints can be enforced via an iterative update to
the corresponding Q; using the shape constraint algorithm
(SCA) of Bollaerts et al.,”" which fixes all inequality-violating ¢
to the constraint boundary. In contrast, there is no
straightforward way to apply inequality constraints on a
polynomial-based ICF, as each basis function is uniquely shaped
and has global support.

CASE21: Training Procedure. Now we will demonstrate
how the CASE framework described above can be used to train a
fully self-consistent DFA, that is, the proof-of-concept CASE21
functional. Our self-consistent training procedure (Scheme 1,

Scheme 1. Self-Consistent Training Procedure for
Generating DFAs in the CASE Framework

Generate Initial Orbitals

l{w?}

Minimize'

Xtraim Ytrain, {Qz}

X\'al: Yral
L(c;{A})
Eq. (7)
Generate Optimize
New Orbitals wRMSE(X)
c = {¢;} Eq. (10)

Final

Testing

R A" = argmin wRMSE(\)
Minimize' A

Lie M)
Eq. (7)

yes

X‘n'ain U X\fa‘l s Ytrain U Yval, {Qt}

X testy Ytest

TSubjcc‘f to inequality constraints enforced by the SCA.

see Computational Methods for more details) leverages three
distinct data sets: training (Xqqin Yirain), Validation (X, yya), and
testing (Xeq Yeest)- For CASE21, we fully enforce the followin

10 physical constraints satisfied by PBE: exchange spin scaling,’

uniform density scaling for exchange,52 UEG exchange limit,®
UEG linear response,4 Lieb—Oxford bound,'*"’ exchange
energy negativity, UEG correlation limit,® second-order gradient
expansion for correlation,”™” rapidly varying densit;y limit for
correlation,” and correlation energy nonpositivity.” We also
partially enforce uniform scaling to the high-density limit for
correlation (vide supra).*"** In a given iteration, the training set
(a single database of heavy atom transfer reaction energies,
HAT707"°%) is used to initially determine ¢ by minimizing £
(in conjunction with the SCA for satisfying inequality
constraints) for a range of A and a given set of orbitals {y;}
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(with initial {y)} generated using I_JX(ux’(,) and F.(u_)). With
c(4), a weighted root-mean-square error,

wRMSE(1) = \/diag(W) x(1)*/Tr(W) (10)
in which r(4) = X, ;c(1) — y,a is the error vector and r(1)” is the
element-wise square of r(4), is computed on the validation set
(which contains absolute energies of H-O from AE18"** and
all atomization energies in TAE203°%°°). Using 1* = argmin,
wRMSE(1), c¢* is determined by reoptimizing £ (in
conjunction with the SCA) over the training and validation
sets. New {1} are then generated using c*, and the entire cycle is
repeated until ¢* is stationary. At this point, the testing set
(which contains more diverse chemical properties than the
training and validation sets, vide infra) is used to assess
performance and transferability. During initial minimization of
eq 7, we found that ¢* was fairly insensitive to the choice of
training data, and the determination of A* was most robust if the
training and validation sets contained distinct chemical
properties. Hence, we limited the databases used for the training
and validation sets to only a few chemical properties (ie.,
reaction, atomization, and absolute energies), as this emphasizes
transferability when evaluating the more diverse set of properties
in the testing set. In particular, HAT707,"%* TAEZOS,SS'56 and
AE18"°" were chosen because they are fairly large and reliable
databases comprised of distinct chemical properties that
collectively quantify the energies of covalent bonds (HAT707)
relative to the energies of atoms (TAE203 and AE18).

We used Ny, = 10 in Scheme 1 to generate the self-consistently
optimized CASE21 DFA (six iterations; convergence criterion
of IAcl < 107%; see SI for c*). Even with a finite # value ( = 10%),
CASE21 nearly exactly satisfies all enforced constraints, that is,
F,(0), F.(0), Fi(0), and F.(0) differ from their corresponding
exact values by ~1075%, F.(1) differs by ~107%, and all other
constraints are exactly satisfied. When nonzero, the deviations
were similar in magnitude to the convergence criterion and
negligible in practical calculations. We therefore conclude that
the proposed CASE framework successfully enforced all
constraints without sacrificing smoothness, which still remains
a challenge for other DFA training procedures.””*° To confirm
that CASE21 remains representative of DFAs trained with other
N, values (and to investigate the dependence of the CASE
framework on Nj,), we non-self-consistently optimized ¢ for
select Ny, € [6,40] using the CASE21 orbitals. As depicted in
Figure 2, the resulting ICFs and their first derivatives were all
smooth and very similar (particularly for Ny, > 10), and the
number of effective degrees of freedom®’ (DoF, see SI for
derivation and more details) change slowly for N, > 10. We
therefore expect little dependence on N, for any DFA
constructed with 10—40 B-splines and use this observation as
an a posteriori justification for our choice of Ny, = 10. From the
piecewise nature of F'(u) in this plot, one can also see that the
CASE21 ICFs (DoF = 1.22) subtly deviate from linearity in ways
that cannot be precisely obtained using low-order polynomial
expansions. Here, we also note that the CASE21 xc enhance-
ment factors (see SI) are noncrossing for different r, values,
which is a consequence of satisfying uniform density scaling for
correlation at the GGA level;’ although this additional
constraint was not explicitly enforced during the construction
of CASE21 or PBE, both of these DFAs have this property.

CASE21: Final Testing. Having demonstrated that the
CASE approach is able to enforce physical constraints and ICF
smoothness in conjunction with a data-driven optimization
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Figure 2. (top) Exchange and correlation ICFs (blue) and first
derivatives (red) for select N,, € [6,40]. Highlighted curves (dark blue
and dark red) correspond to the self-consistently optimized CASE21
DFA (with Ny, = 10). Dashed lines represent the parameter-free linear
ICFs (F,(u,,) and F.(u.)) designed to satisfy the same constraints as
CASE21. (bottom) Effective degrees of freedom (DoF) for select Ny, €
[6,40], with the dark purple point corresponding to CASE21.

procedure, we now compare the performance of CASE21 to the
PBEO and B3LYP hybrid DFAs across a diverse set of chemical
properties in Figure 3. Since correlation is treated semilocally in
CASE21, PBEO, and B3LYP, only databases containing small-to-

-11.14

m CASE21
m PBEO
m B3LYP

-0.79

4o[062

MAE (kcal/mol)

0
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(707) (203)

AE RXN BDE PA BH IP EA
(8) (111) (109) (39) (103) (59) (38)

IE NCIGEO*
(775) (111) (69)

Figure 3. Mean absolute errors of CASE21 (blue), PBEO (gray), and
B3LYP (orange) in the training/validation (shaded region) and testing
(white region) sets. Bar labels indicate the relative performance of
CASE21 and PBEO, with green and red numbers representing increased
(MAECASE2L « MAEPBEY) and decreased (MAECASEX! > MAEFPBE?)
performance, respectively. Properties (number of data points) include
HAT (heavy atom transfer reaction energies),”>> TAE (total
atomization enersgies) 530 AR (absolute energies),l’54 RXN (reaction
energies),l“’}”‘%‘5 ~%* BDE (bond dissociation energies),1’53”56’61’65 PA
(proton affinities),”**""**%” BH (barrier heights),"****~°' IP (ioniza-
tion potentials), ***%1 %% EA (electron affinities),"*¥**% IE
(isomerization energies),1’15’16’53’56’58’61’67’70780 NCI (noncovalent
interaction energies), **' ™*” and GEO (geometry energy offsets).** ™
See SI for more details regarding the databases used in this work. The
asterisk (*) indicates that all three GEO MAEs were scaled by 10X for
clarity.
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medium molecules with minimal contributions from nonlocal
correlation were selected for the testing (as well as training and
validation) set; this also applies to the noncovalent interaction
(NCI) databases used here, which are mostly comprised of
hydrogen- and halogen-bonded dimers (instead of primarily
dispersion-bound systems). In this work, we report the robust
mean absolute error (MAE) metric for the selected DFAs on
databases grouped by chemical property, as this avoids the use of
arbitrarily weighted error metrics (which would otherwise be
needed to account for the differences in frequency and
magnitude of the various properties in the training, validation,
and test sets).

With these points in mind, we find that CASE21 outperforms
the PBEO NE-DFA on 11 of 12 properties, with improvements
as large as 0.81 and 0.82 kcal/mol for bond dissociation energies
(BDE) and electron affinities (EA), respectively. In the testing
set, CASE21 decreases the PBEO MAE in 8 of 9 properties by an
average of 0.34 kcal/mol. On the other hand, PBEO outperforms
CASE21 for ionization potentials (IP), which may be attributed
to incomplete or partial satisfaction of uniform scaling to the
high-density limit for correlation in CASE21,*” as this results in
slightly less accurate (but still reasonable) correlation energies in
the He isoelectronic series (see SI for more details). CASE21
also outperforms B3LYP (a popular E-DFA for chemical
applications) on 8 of 12 properties; in the testing set, CASE21
decreases the B3LYP MAE in 6 of 9 properties by an average of
0.41 kcal/mol (while B3LYP only offers a marginal ~0.05 kcal/
mol improvement on the remaining 3 of 9). In this assessment,
we also measured the performance of CASE21 for molecular
structure optimization using the geometry energy offset (GEO)
metric of Vukovic and Burke,”® and found that CASE21
improves upon PBEO and performs on par with B3LYP, which is
recognized as one of the best DFAs for predicting molecular
geometries. To put these results into context, the more advanced
@B97X (wB97X-V) E-DFA"*”" improves upon the PBE0 MAE
for 8 of 9 (9 of 9) properties in the testing set by an average of
0.58 kcal/mol (0.59 kcal/mol). Despite the fact that CASE21 is
a hybrid GGA that does not include range-separated exact
exchange and nonlocal correlation, the improved performance
of CASE21 in the testing data set is 58% (57%) on average of
that achieved by wB97X (wB97X-V). Encouraged by these
results, we also considered how the performance of CASE21
depends on the fraction of exact exchange, but ultimately found
that the initial value of 1/4 was essentially optimal (see SI for
more details). Although our focus to this point has been on
molecular properties, CASE21 calculations of the lattice
constants, bulk moduli, and cohesive energies of bulk Si and C
(diamond) also showed promising preliminary results for solid-
state properties (see SI). For these systems, the CASE21
predictions were significantly better than B3LYP and slightly
worse than PBEO, suggesting that further studies into the
performance of CASE21 on solid-state properties (as well as the
inclusion of such properties in the training and validation sets)
are warranted. Taken together, this analysis demonstrates that
CASE21 is largely able to preserve the physical rigor and
transferability of the PBEO NE-DFA while offering a noteworthy
increase in performance on chemical systems (even when
compared to the B3LYP E-DFA), despite having only 1.22
effective DoF (compared to the 3.0 effective DoF in B3LYP; see
SI for derivation).

Although the CASE21 ICFs are clearly smooth (cf. Figure 2),
we also investigated the grid dependence of this DFA for
completeness. Since Lebedev—Treutler grids” with 50 radial
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and 194 angular grid points (i.e., (50, 194)) are typically large
enough to obtain accurate energetics with standard hybrid
GGAs (such as PBE0),” we compared the performance of
CASE21 using this grid to the larger grids employed during the
training procedure (see Computational Methods). Using all
points in the training, validation, and testing data sets (N = 2263;
excluding GEO), we found nearly identical mean absolute
deviations of 1.84 X 107> kcal/mol for CASE21 and 1.83 X 1072
kcal/mol for PBEQ, thereby indicating that CASE21 does not
require larger quadrature grids than PBEO for accurate
integration and demonstrating the effectiveness of the P-spline
regularization central to the CASE framework.

Closing Remarks. In this work, we presented the CASE
(constrained and smoothed empirical) framework for uniting
the NE-DFA and E-DFA construction paradigms. By employing
a B-spline representation for the ICFs, this approach has several
distinct advantages over the historical choice of a polynomial
basis, namely, explicit enforcement of linear and nonlinear
constraints (using Tikhonov regularization) as well as penal-
ization of nonphysical ICF “bumps” or “wiggles” (using P-
splines), that are seamlessly integrated with data-driven
optimization. As proof-of-concept, we used this approach to
construct a global hybrid GGA that completely satisfies all but
one constraint (and partially satisfies the remaining one) met by
the PBEO NE-DFA. Despite being trained on only a handful of
properties, this CASE-generated DFA outperforms PBEO and
B3LYP (arguably the most popular E-DFA for chemical
applications) across a diverse set of chemical properties. As
such, we argue that the CASE framework solves the long-
standing problem of uniting these seemingly disparate DFA
strategies, and can be used to design next-generation DFAs that
maintain the physical rigor and transferability of NE-DFAs while
leveraging benchmark quantum-mechanical data to remove the
arbitrariness of ansatz selection and improve performance.
Alternatively, the CASE framework can also be used to enforce
ICF smoothness in conjunction with physical constraints during
NE-DFA construction (i.e., without leveraging data) or enforce
ICF smoothness in conjunction with data-driven optimization
during E-DFA construction (i.e., without requiring constraint
satisfaction). Future work will extend this approach to more
sophisticated DFAs (e.g., meta-GGAs, range-separated hybrids,
DFAs with nonlocal correlation) that have the ability to satisfy
more physical constraints and the flexibility to leverage larger
amounts of data, where we expect that the larger function space
made accessible by a B-spline ICF expansion will provide even
more significant advantages over traditional low-order poly-
nomials. Future work will also explore the performance of
CASE-generated DFAs when treating condensed-phase systems
as well as the use of B-splines for constructing robust features for
machine-learning chemical properties.

Computational Methods. All gas-phase electronic struc-
ture calculations were performed using in-house versions of
Psi4 (v1.3.2)”andLibXC (v4.3.4)”" modified with
a self-consistent implementation of the CASE21 DFA
(including functional derivatives analytically computed using
Mathematica v12.1). Self-consistent field (SCF) calcu-
lations were performed usin§ density fitting (DF) in conjunction
with the def2-QZVPPD”>"° and def2-QZVPP-JKEIT”"® basis
sets and an energy convergence threshold of e conver-
gence le-12. During DFA training, all calculations
employed (99, 590) Lebedev—Treutler grids”* except for the
calculations of the absolute energies in AFE18,"** which used
(500, 974). Minimization of £ in eq 7 and optimization of
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wRMSE(4) in eq 10 were performed in Mathematica
v12.1. All solid-state electronic structure calculations were
performed using the PWscf package in Quantum ESPRES-
S0,”” in conjunction with norm-conserving HSCV-PBE
pseudopotentials'**'°" and converged planewave kinetic energy
cutoffs (40 Ry and 120 Ry for Si and C, respectively) and k-point
grids (4 X 4 X 4 and 8 X 8 X 8 for Si and C, respectively). All
solid-state properties were determined by fitting the Murnaghan
equation of state'”” to 10 points centered around the expected
equilibrium lattice constant.
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