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Fig. 1. Illustration of our gaze-contingent and color-perception-aware display power saving model. We present a perceptually-guided, real-time, and closed-form

model for minimizing the power consumption of untethered VR displays while preserving visual fidelity. We apply a gaze-contingent shader onto the original

frame ((a) left) to produce a more power efficient frame ((a) right) while preserving the luminance level and perceptual fidelity during active viewing. The

dashed circles indicate the user’s gaze. Our method is jointly motivated by prior literature revealing that: i) the power cost of displaying different colors on

LEDs may vary significantly, even if the luminance levels remain unchanged [Dong and Zhong 2011]; ii) human color sensitivity decreases in peripheral

[Hansen et al. 2009] and active vision [Cohen et al. 2020]. The color palette of the original frame is modulated using our peripheral filter and is shown in (a)

for a visual comparison. While the color palettes appear different when gazed upon, an observer cannot discriminate between them when shown in their

periphery. (b) visualizes how our model shifts the image’s chromatic histograms to minimize the physically-measured power consumption. The blue LEDs

consume more energy than the red/green in our experiment display panel. Image credits to Tim Caynes © 2012.

Battery life is an increasingly urgent challenge for today’s untethered VR

and AR devices. However, the power efficiency of head-mounted displays

is naturally at odds with growing computational requirements driven by

better resolution, refresh rate, and dynamic ranges, all of which reduce the

sustained usage time of untethered AR/VR devices. For instance, the Ocu-

lus Quest 2, under a fully-charged battery, can sustain only 2 to 3 hours
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of operation time. Prior display power reduction techniques mostly target

smartphone displays. Directly applying smartphone display power reduc-

tion techniques, however, degrades the visual perception in AR/VR with

noticeable artifacts. For instance, the “power-saving modež on smartphones

uniformly lowers the pixel luminance across the display and, as a result,

presents an overall darkened visual perception to users if directly applied to

VR content.

Our key insight is that VR display power reduction must be cognizant of

the gaze-contingent nature of high field-of-view VR displays. To that end,

we present a gaze-contingent system that, without degrading luminance,

minimizes the display power consumption while preserving high visual

fidelity when users actively view immersive video sequences. This is enabled

by constructing 1) a gaze-contingent color discrimination model through

psychophysical studies, and 2) a display power model (with respect to pixel

color) through real-device measurements. Critically, due to the careful design

decisions made in constructing the two models, our algorithm is cast as a

constrained optimization problem with a closed-form solution, which can be

implemented as a real-time, image-space shader. We evaluate our system

using a series of psychophysical studies and large-scale analyses on natural

images. Experiment results show that our system reduces the display power

by as much as 24% (14% on average) with little to no perceptual fidelity

degradation.
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1 INTRODUCTION

Virtual and Augmented Reality (VR and AR) devices are increasingly

becoming untethered for portability, outdoor usage, and unrestricted

locomotion to enable ultimate immersion. At the same time, the

demands for higher resolution, framerate, and dynamic range are

steadily increasing, which is directly at odds with the limited energy

capacity of untethered AR/VR devices. For example, when fully

charged, both the Oculus Quest 2 and Hololens 2 can actively run

only for 2-3 hours [Microsoft 2021]. Since the total energy capacity

increases only marginally because “there is no Moore’s law for bat-

teriesž [Schlachter 2013], power consumption has become a primary

concern in the design process of AR/VR devices [Debattista et al.

2018; Wang et al. 2016; Zhang et al. 2021b].

This paper specifically focuses on reducing the display power. In

our measurement of HTC Vive Pro Eye and Oculus Quest 2, the

display consumes as much as half of the total power consumption by

comparing the power when the display is on vs. off. The results are

consistent with data reported in other measurement studies [Leng

et al. 2019; Yan et al. 2018]. Display power will only become more

important in the cloud rendering paradigm, where the computation

is offloaded to the cloud, heightening the contribution of display to

the total device power.

Conventional display power optimizations are geared toward

smartphones, which, when directly applied to VR devices, lead to

significant visual quality degradation. This is because smartphone

display optimizations are fundamentally gaze-agnostic, rightly so

because smartphone displays have very narrow field-of-view. These

optimizations either modulate pixels uniformly across the display

[Shye et al. 2009; Yan et al. 2018] or are purely based on the con-

tent (e.g., UI elements) [Dong et al. 2009; Dong and Zhong 2011;

Ranganathan et al. 2006]. Classic gaze-contingent optimizations in

AR/VR such as foveated rendering, while reducing the rendering

load [Krajancich et al. 2021; Patney et al. 2016], do not (directly)

reduce the display power.

We present a gaze-contingent rendering approach that reduces

the power consumption of untethered VR displays by asmuch as 24%

while preserving visual quality during active viewing. We achieve

this by only modulating the chromaticity of the display output

without changing luminance.

Our method is jointly motivated by hardware research that re-

vealed the variation of power consumption of displaying different

colors on LEDs [Dong and Zhong 2011], as well as the recently

discovered limitations of human peripheral color perception during

active vision [Cohen et al. 2020]. That is, given an original frame

such as in a 360 video, we seek a computational model that guides a

gaze-contingent color “shiftž that (1) requires the minimal power

cost, and (2) preserves the perceived fidelity.

To accomplish this, we conducted two pilot studies. First, we

quantitatively model how our color sensitivity degrades with higher

retinal eccentricities. Second, we physicallymeasure the LED display

power consumption as a function of the displayed color. Given the

perceptual and the power model, our system performs a constrained

optimization that identifies, for each pixel, an alternative color that

minimizes the power consumption while maintaining the same

perceptual quality. Critically, the optimization problem has a closed-

form solution because of the judicious design decisions we made

in constructing the perceptual and power models. As a result, our

perception-perserving color modulation can be implemented as a

real-time shader.

We validate ourmethodwith both subjective studies on panoramic

videos, as well as an objective analysis on large-scale natural image

data. We demonstrate the model’s effectiveness in display power

reduction and perceptual fidelity preservation, relative to an al-

ternative luminance-based “power saverž. Our objective analysis

concludes that this model shows generalizability to a large variety

of natural scenes and save, on average, 14% power. In summary, our

main contributions include:

• a psychophysical study and data that measure human color

discrimination sensitivity at various retinal eccentricities and

reference colors in the Derrington-Krauskopf-Lennie (DKL)

color-space;

• a physical system and data that measure the power consump-

tion of VR-alike stereoscopic displays as a function of dis-

played color;

• a closed-form formulation that suggests the optimal (in terms

of lowest display power cost without compromised visual

fidelity) per-pixel chromaticity modulation by leveraging two

learned models from our two aforementioned datasets;

• a real-time shader for gaze-tracked VR headsets and natural

content viewing applications, as well as a demonstration of

its general benefits with a large-scale analysis.

We provide the source code for our model regression and shader

implementations at www.github.com/NYU-ICL/vr-power-saver.

2 RELATED WORK

2.1 Energy-Aware Graphics and Display

The graphics rendering pipeline requires heavy computation to

execute in real-time. Reliably maintaining the performance require-

ments of these applications consumes considerable power. As such,

energy-aware methods have been developed to minimize power

while maintaining rendering quality. Most prior work in the graph-

ics literature, however, focuses on reducing the rendering power

[Debattista et al. 2018; Wang et al. 2016; Zhang et al. 2018, 2021b].

Complementary to prior work on reducing the rendering power,

our work reduces the display power Ð by modulating the display

color while preserving perceptual fidelity. The relationship between

display power and color is studied in the mobile computing com-

munity, mostly in the context of smartphones. Dash and Hu [2021],

Dong et al. [2009], and Dong and Zhong [2011] model the power

consumption of smartphone displays with respect to color. Miller
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et al. [2006] discusses how various hardware design optimizations

can affect the power modeling accuracy.

Other work focuses on reducing the display power by modulating

the brightness/luminance of the display rather than color, which our

work focuses on. For instance, Shye et al. [2009] gradually dims the

smartphone display after a user stares at the display for an extended

period of time. Yan et al. [2018] pushes the empirical approach in

Shye et al. [2009] a step further, and uses physiological data to derive

a quantitative method to adaptively reduce the display luminance.

Our work on color modulation is orthogonal and complementary to

luminance-modulating techniques. We show that significant power

saving is readily obtainable by adjusting only color; combining color

and luminance modulation would conceivably lead to higher power

savings, which we leave to future work (see Section 8).

Another orthogonal line of work is to reduce OLED power via

better hardware design. Shin et al. [2013] propose to dynamically

scale the display supply voltage, coupled with image-space color

transformation, to minimize the display power while maintaining

perceptual color similarity (as quantified by the CIELAB Δ𝐸∗ metric).

Boroson et al. [2009], Miller et al. [2008] and Miller et al. [2007]

propose four-color OLED structures, where a fourth sub-pixel has a

higher power efficiency (luminous efficacy) than one of the RGB sub-

pixels. The fourth, higher-efficiency sub-pixel allows many colors

that usually dominate an image (e.g., neutral or saturated colors) to

be produced with less contribution from the blue and red sub-pixels,

which have low power efficiency. These prior works, however, do

not consider the gaze-contingent color perception in VR.

2.2 Perceptually-Aware Immersive Rendering

Perceptual graphics studies hinge on the idea that the human visual

system’s ability to receive and process light signals deteriorates for

stimuli located at higher retinal eccentricities, due to the signifi-

cantly denser distribution of retinal cone cells in the fovea [Song

et al. 2011]. Studies have taken advantage of this fact to create

perceptually-aware models of rendering imagery [Duchowski et al.

2005]. Foveated rendering takes advantage of the drop in visual acu-

ity as retinal eccentricity increases by reducing image quality in the

periphery, ultimately improving performancewhilemaintaining per-

ceptual quality [Guenter et al. 2012; Patney et al. 2016; Sun et al. 2017;

Walton et al. 2021]. Similar perceptually-aware gaze-contingent algo-

rithms have been proposed to save spatio-temporal data bandwidth

[Kaplanyan et al. 2019; Krajancich et al. 2021]. However, other than

modulating user-perceived color [Mauderer et al. 2016] or remap-

ping peripheral luminance and color for power saving [Li et al. 2022],

there has been little work leveraging gaze-contingent color percep-

tion to optimize real-time rendering. That could be mainly because

the modulated color does not introduce performance acceleration

within the graphics pipeline.

2.3 Visual Perception of Displayed Color

Color and the corresponding human perception is a long-standing

and extensive research topic in computer graphics [Rhyne et al.

2018]. Here, we discuss prior research that understands perceptual

effects on display color.

First, perception of color is studied from psychophysical and even

physiological perspectives. Early color perception research was

largely based on psychophysical color matching experiments, which

resulted in the CIE 1931 RGB [Guild 1931; Wright 1929] and CIE 1931

XYZ color spaces [Fairman et al. 1997]. The CIE XYZ color space

has since become the cornerstone of modern color research, because

it presents a hardware/device-independent way of quantifying col-

ors. In fact, the first measurements of human color-discriminative

thresholds, widely known as the MacAdam ellipses were presented

in the xy chromaticity plot [MacAdam 1942].

The sRGB color space widely used in graphics, display, and vision

fields today is derived from the XYZ color space. The sRGB color

space, however, is rarely directly used in color perception studies,

because sRGB is a device-dependent color space with non-uniform

quantization and has a gamut smaller than the gamut of the hu-

man visual system. Color perception studies usually operate on

some form of physiologically-based LMS color spaces, which are

developed from measurements of the surgically removed cone cells

[Bowmaker and Dartnall 1980; Dartnall et al. 1983] or from color

defective vision [Stockman and Sharpe 2000]. Cone color spaces

provide the ability to make “feed-forwardž reasoning about our

visual perception system.

One such physiologically-based study of color-discriminative

thresholds was established in [Krauskopf and Karl 1992]. Similar

to the color-opponent theory, upon which CIELAB was based on

[Schiller and Logothetis 1990], neural recordings within the vi-

sual cortex confirmed the existence of a cone-opponent mecha-

nism where signals from the 𝐿,𝑀 , and 𝑆 cones are compared in a

feed-forward fashion [De Valois et al. 1966]. The DKL color space

[Derrington et al. 1984] leverages this cone-opponent mechanism

to derive a physiologically-relevant and perceptually uniform color

space. Our perceptual study is based on the DKL color space.

Second, human color perception exhibits eccentricity effects. Simi-

lar to our resolution and depth [Sun et al. 2020] acuity, color sensitiv-

ity also decreases as retinal eccentricity increases [Cohen et al. 2020;

Hansen et al. 2008, 2009]. For instance, given a reference color, our

discrimination thresholds are observed to have the shape of an el-

lipse in DKL space, and this region of sub-threshold colors increases

significantly as the retinal eccentricity of stimuli increase (∼ 4.5×

larger ellipse radii at 50◦ compared to 5◦) [Hansen et al. 2009]. In

AR, the interference between virtual and physical colors raises new

challenges in correctly aligning perceived color [Hassani and Mur-

doch 2016; Murdoch et al. 2015; Zhang et al. 2021a]. However, to

our knowledge, there is no computational model that numerically

predicts the sensitivity given an eccentricity and reference color.

Third, chromaticity and luminance have different temporal roles

and sensitivities [Hermann et al. 2021]. The eccentricity effects of

luminance contrast have been leveraged to perform gaze-contingent

rendering [Tursun et al. 2019] and measure spatio-temporal video

quality, comparedwith a reference [Mantiuk et al. 2021]. Chromaticity-

based sensitivity has been leveraged to encode high dynamic range

displays [Kim et al. 2021]. However, perhaps because modulating col-

ors does not play a role in accelerating performance, the eccentricity

effect has not been investigated for advancing VR/AR systems.

Finally, our color sensitivity is also correlated to human status

and task nature. For instance, the color sensitivity during fixation
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shifting (a.k.a. saccade) uniformly and significantly decreases [Braun

et al. 2017]. Prior literature showed notably lower sensitivity in

discrimination than detection tasks [Vingrys and Mahon 1998].

More recently, studies by Cohen et al. [2020] revealed the remarkably

further decreased color sensitivity during active and natural viewing

tasks: in those conditions, even desaturating peripheral images are

imperceptible by viewers. Those studies all exhibit the complex

nature of color perception, which is still undergoing active scientific

discoveries. In this research, we focus on active viewing scenarios,

which are representative conditions of VR/AR applications such as

gaming and video-watching.

3 PILOT STUDY: ECCENTRICITY EFFECTS ON COLOR
PERCEPTION

We aim to exploit how human perception of color varies across the

visual field, so that we can adjust the appearance of visual stimuli in

our peripheral vision in an advantageous way. Hansen et al. [2009]

showed that while our ability to discriminate colors significantly de-

teriorates at high retinal eccentricities, we still maintain some ability

to discriminate colors at eccentricities as high as 45◦. Drawing inspi-

ration from this work, we designed and performed a psychophysical

study on the perceptual discrimination thresholds of colors, given

various reference colors (5 total) and retinal eccentricities (from 10◦

to 35◦). The experimental data later transforms to a computational

model in Section 5.1.

Setup. We perform our study with the HTC Vive Pro Eye head-

mounted display as shown in Figure 2a. Participants remained seated

during the duration of the study, and interacted with the user study

software via the keyboard.

Participants. We recruited 5 participants (ages 20-32, 2 female)

for a series of four-alternative forced choice (4AFC) staircase exper-

iments (similar to [Hansen et al. 2009]) to determine the discrimina-

tion thresholds. All participants had normal or corrected-to-normal

vision and exhibited no color perception deficits as tested by the Ishi-

hara pseudo-isochromatic plates. In this pilot study, we chose 5 par-

ticipants due to the long duration of our staircase experiment. This

is also practiced for similar threshold-determination psychophysical

experiments [Krajancich et al. 2021; Sun et al. 2020]. All experiments

were approved by an ethics committee and all participants’ data

was de-identified.

Stimuli. As shown in Figure 2a, the stimuli were four colored

disks (with a diameter of 5 degrees). They were rendered simultane-

ously on top of a neutral gray background (i.e., [0.5, 0.5, 0.5] in the

linear sRGB space, or 71.5 cd/m2). The azimuth position of the disks

remained constant throughout the entire study, located at 45◦, 135◦,

225◦, and 315◦ (i.e. the four diagonals in the participant’s visual

field), while the radial position (i.e., the retinal eccentricity) varied

across sequences to be either 10◦, 25◦, or 35◦. Three of the disks

have the same “referencež color, and the fourth has a “calibrationž

color which changes throughout a sequence of trials. The space

of colors that the disks can obtain is visualized as a color-space in

Figure 2c. The luminance of all disks is maintained at the same level

as the background’s luminance.

Tasks. The task was an 1-up-2-down 4AFC staircase procedure.

Specifically, the study was conducted in a single session split into

60 sequences (= 5 reference colors × 3 eccentricities × 4 color space

dimensions, as specified below) of trials. Each sequence was a stair-

case procedure meant to determine a participant’s discriminative

threshold of the calibration disk, which was colored with subtly dif-

ferent chromaticities. Each sequence may contain a variable number

of trials depending on the staircase convergence.

Each trial was a single 4AFC task where the participants were in-

structed to identify which one of the 4 color disks appeared different.

The participant was instructed to fix their gaze on a white crosshair

at the center of the screen for the duration that the stimuli were

shown. We used eye tracking to ensure participants maintain their

gaze at the central crosshair. We automatically rejected a trial if the

user’s gaze moves beyond 3◦ eccentricity, randomized the trial order

again, and notified them. At the start of each trial of a sequence,

we shuffle the four colored disks, and display them for 500ms (the

same stimulus duration used in prior color discrimination literature

[Hansen et al. 2009]). Once the stimuli disappear, we prompt the

participant to identify and select the disk with the calibration color,

using the keyboard. Depending on their answer, the calibration

disk’s color was made easier or harder to discriminate in the subse-

quent trial by adjusting the chromaticity of the calibration disk to

be closer/farther from the reference color while preserving its lumi-

nance. After 6 reversals of this staircase procedure (or a maximum

of 50 trials), the sequence terminates, and the next sequence begins.

We visualize the progression of an example staircase-procedure in

Figure 2b.

Across the sequences, we present 5 different reference colors, as

visualized with black crosses in Figure 2c, each presented at 10◦, 25◦,

and 35◦ retinal eccentricities. For each reference color, we adjust

the color from four directions along the two equi-luminant cardinal

axes in the DKL color-space. Briefly, DKL is a perceptually uniform

color space that is conducive to color vision research [Hansen et al.

2008, 2009; Krauskopf and Karl 1992]. Please refer to Section 5.1 for

a detailed overview of the DKL color space and why it is used in

our perceptual studies.

The entire study took approximately 1.5 hours for each participant

and they were encouraged to take breaks in between sequences.

At the beginning of each user study, the participants completed 1

sequence to familiarize with the procedure and equipment.

3.1 Results

In total, 8,123 trials were obtained from our participants (5 par-

ticipants each with 60 sequences consisting of ≈21 trials each on

average). We record the color values at each reversal in DKL coordi-

nates, and average the last 3 reversals (out of 6 total) to determine

the final discrimination threshold for each participant. The average

thresholds across all participants are visualized in Figure 2c in red,

along with the 75% confidence interval error bars. As we approach

the reference color from four directions in DKL space, we obtain

four different thresholds for each color at each eccentricity. The

lines connecting the four thresholds do not represent the shape

of the overall threshold, and is only served as a visual guide to

group each set of thresholds together. To avoid visual clutter, we
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Fig. 2. Pilot study for color discrimination threshold. The 𝑆 − (𝐿 +𝑀) and 𝐿 −𝑀 axes are axes in the DKL color-space, which compares the difference between

𝑆 vs 𝐿 +𝑀 and 𝐿 vs𝑀 cone activations [Derrington et al. 1984]. (a) Participants were instructed to fix their gaze at the center of a VR headset display and to

distinguish the łcalibrationž disk out of the four shown in their periphery. The other three łreferencež disks were colored with the reference color, while the

calibration disk’s color is adjusted via a 1-up-2-down staircase procedure by the participant. (b) The staircase procedure aims to narrow down the peripheral

color-discrimination threshold of the participant. As the participant completes a series of 4AFC tasks as depicted in (a), the staircase procedure automatically

adjusts the color of the calibration disk to make it harder if the participant identified the calibration disk correctly and vice-versa. We continue each trial until

a total of 6 reversals (denoted by outlined points) occur or 50 trials are completed, whichever occurs first. In this example, the experiment continues until

the threshold in the 𝑆 − (𝐿 +𝑀) axis is converged. (c) The black crosses indicate our 5 sampled reference/pedestal colors in DKL space. The experimental

thresholds are displayed with red dots as mean, and white bars as 75% confidence intervals. For the other two sampled eccentricities (25◦/35◦), we only plot

the results from one reference color, at 12 o’clock in the figure, to avoid visual clutter. We plot splines (dashed gray lines) for ease of visualization only.

plot discrimination thresholds at 10◦ eccentricity for each reference

color and 10◦, 25◦, and 35◦ eccentricity thresholds for one reference

color. Refer to Supplement B for all the measured threshold values

separated by each participant.

3.2 Discussions

We chose the DKL color-space as our color sampling space primar-

ily because prior work suggests that the DKL color space yields a

perceptually uniform sampling space and, for that reason, is used ex-

tensively in perceptual studies [Hansen et al. 2008, 2009; Krauskopf

and Karl 1992]. For our work, we only sampled colors on a single

equi-luminant plane. In DKL space, this corresponds to keeping

the third dimension of the color space constant. First, we observed

unequal thresholds with different reference colors even if they were

displayed at the same eccentricity. However, they all appeared an el-

lipse shape, as also evidenced by prior literature [Krauskopf and Karl

1992]. That motivates us to develop our computational perceptual

model considering the reference color as one of the inputs.

Prior work which utilizes the DKL color-space suggests that dis-

criminative thresholds measured with respect to a specific adaption

luminance can be extended to arbitrary adaptation luminances due

to the linearity of the cone-opponent process [Larimer et al. 1974,

1975]. We use these results in this research and only conducted

discriminative threshold measurements at a single adaptation lumi-

nance of 71.5 cd/m2 as mentioned above.

In the scope of our work, we did not study how spatial frequencies

of stimuli affect discriminative thresholds. Our experimental data

provides the thresholds for a stimulus with a dominant frequency

equal to 0.2 cpd corresponding to the stimulus size used throughout

the experiment.

Unsurprisingly, our data shows a decrease of ability to discrimi-

nate chromatic discrepancies as the retinal eccentricity increases.

The trend agrees with past experiments [Hansen et al. 2009], and is

intuitive given the higher density of retinal receptors in the fovea

[Song et al. 2011]. Figure 2c shows that the fall-off of discriminative

sensitivity is very sharp, and the region of sub-threshold chromatic-

ities at 35◦ can take up as much as a third of the observable hues.

Some participants noted that at high eccentricities, all four disks

appeared to be different, even though three of the disks were colored

identically. As such, the amount of noisy thresholds at high eccen-

tricities attribute to the larger uncertainty for the overall threshold

measurements as shown in Figure 2c. Further investigations into

this surprising phenomenon is an interesting future work.

We also observe inter-subject variation in the measured thresh-

olds, as shown in Supplement B.While this could be due to a number

of reasons (e.g., observer metamerism [Xie et al. 2020], prerecep-

toral filtering [Norren and Vos 1974], calibration, experimental setup,

etc.), further study is required to understand the reason for these

differences. Nevertheless, for developing a computational model,

we use the most conservative thresholds across participants, instead

of an average fit. This assures generalization to a larger population

considering individual variances (see Section 6.1).

Lastly, it is notably critical that those thresholds only hold for

discriminative tasks. Using the observed thresholds, we performed
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Fig. 3. Display power measurement and modeling. (a) The display is connected to an Nvidia Xavier board, which provides power and frame data. The display

power is intercepted by a Texas Instruments INA219 current sensor. The current and voltage readings are transmitted to an Arduino Uno board, which

calculates the power. A host laptop obtains the power consumption from Arduino Uno through the serial port. (b) The voltage and current readings are

multiplied at each timestep to compute the power reading time-series. To measure the power for displaying different colors, we sample the sRGB color space;

each color is displayed for a period of 5 seconds. Here we show the power trace when cycling through the eight vertices of the sRGB color cube. (c) We regress

a linear power model by randomly sampling 52 colors in the sRGB color space, and plot the measured power (𝑥-axis) vs. the estimated power (𝑦-axis). The

mean relative error of the regression is 0.996%, indicating an accurate power model. The dashed line indicates the line of perfect agreement (i.e. 𝑦 = 𝑥 ).

a preliminary validation with a sequential detection task and two-

alternative-forced choice (2AFC). In this study, the same group of

participants was instructed to observe pairs of stimuli and identify

whether they appear identical. Some of the trials consist of one non-

altered image, with the other containing peripheral color altering

within the identified thresholds. We observed that a majority of

users can successfully identify the altered condition, suggesting the

distinct perceptual thresholds between discrimination and detection

tasks. Nevertheless, during active vision tasks where an observer is

instructed to freely observe natural visual content, their sensitivity

may significantly reduce [Cohen et al. 2020]. We hypothesize that

the color sensitivity during active vision is also lower than during

discriminative tasks. We investigate and validate the hypothesis in

more detail in Section 7.1.

4 PILOT STUDY: MEASURING DISPLAY POWER WITH
VARIED COLORS

To measure the power consumption characteristics of VR displays

and how it varies depending on the images displayed on them, we

conduct a hardware study, and later use the collected data to derive

a model for predicting the power consumption of a display given

the image displayed on it.

4.1 Setup

For our power study, we use the Wisecoco H381DLN01.0 OLED

[Wisecoco 2022]. The display module has two identical displays,

each with a resolution of 1080×1200, matching the aspect ratio of

HTC Vive Pro Eyes, which is what we use for perceptual studies.

We do not use the native display modules in Vive Pro Eye HMD

and Oculus Quest 2 for power studies, because their displays are

physically tightly integrated into the headsets; thus, the display

power cannot be easily isolated from the rest of the system. In the

case of the Oculus Quest 2, the headset is powered by a battery that

is tightly integrated into the headset, which prevents us from using

methods used in studying smartphone display power, where the

battery is unplugged and replaced with an external power supply

that has internal power sensing capabilities [Dash and Hu 2021;

Dong et al. 2009; Halpern et al. 2016].

Figure 3a shows the experimental setup to measure display power.

We intercept the display power supply with a SwitchDoc Power-

Central board, which has an on-board INA219 module (with a 0.1Ω

shunt resistor) to measure the current. The INA219 module is con-

nected to an Arduino board through the I2C interface. We develop

a driver that runs on the Arduino board to get the display current

and voltage, from which we can calculate the power.

The driver running on the Arduino board configures the INA219

sensor to output a new power measurement every ∼ 68 ms; each

power reading is internally averaged over 128 samples, resulting in

an effective power sampling rate of ∼ 1, 882 Hz.

4.2 Measurement and Discussion

As a preliminary test, we measure the power consumption of the

eight vertices of the sRGB color cube. For each color, we set all the

display pixels to that color, display it for five seconds, and calculate

the average power. Figure 3b shows the measured power trace. It is

clear that the display power consumption is sensitive to the color.

We make two observations from Figure 3b. First, even when the

display is showing black pixels, i.e., when the LEDs are not emitting

light, there is a non-trivial amount of static power consumption. The

power beyond the static portion is consumed by the LEDs, which we

dub the dynamic display power. This static power is consumed by

the peripheral circuitry that drives the LEDs, such as the per-pixel

transistors and capacitor as well as the addressing logic [Huang
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Table 1. Our microscopic photos of the display under different colors. We

image the display under sRGB red, green, blue, and white colors using a

Carson MicroFlip mircoscope with a magnification of 120x. One can observe

that the display red and green primaries roughly match the red and green

primaries in the sRGB color space, but the sRGB blue requires contributions

from both the blue and red sub-pixels from the display.

red green blue white

et al. 2020]. The contribution of the static power is about 50% in

display white and is about 80% when displaying red and green.

The trend of semiconductor technology is that the circuit power

is decreasing over time with better fabrication technologies [Bohr

2007], but the LED power is much harder to reduce because the

display must sustain certain luminance levels to meet brightness

requirements, which arguably do not change dramatically over time.

Our work aims to reduces the (color-sensitive) dynamic power of

the display, which will become more important as the static power

reduces in the future.

Second, the dynamic power consumption of red and green colors

are roughly half that of blue. This is because displaying the sRGB

blue on our display requires contributions from both the blue and

red sub-pixels (due to the primaries used by this display) as con-

firmed by examining the microscopic images of the display (Table 1).

As a result, if we expect to see any energy wins, we anticipate that

green-, and/or, red-shifting images can decrease the power consump-

tion of the image. We will leverage the measured data to obtain a

computational power-vs-color model in Section 5.2.

5 MODEL: PERCEPTUALLY GUIDED POWER
OPTIMIZATION

Using the results of our perceptual user study, and hardware power

measurements, we develop a display power optimization model

under the constraint that the change in the images observed by

human subjects is not perceptible. In Section 5.1, we first derive

a computational model of human color discrimination (Figure 4)

using the data obtained from Section 3. In Section 5.2, we build

a linear power consumption model regressed from the physical

measurement data in Section 4. Finally, in Section 5.3, we integrate

the twomodels above (as a constrained convex optimization) toward

a closed-form display color modulation function. It aims to minimize

the display’s power consumption while ensuring the modulation

within the human discriminative thresholds.

5.1 Perceptual Model for Color Discrimination

The study of human color vision suggests that the physiological

mechanisms which govern our discriminative ability of colors rely

on comparing the different cone receptor cell activations in our reti-

nas [De Valois et al. 1966]. Specifically, the two primary comparison

mechanisms are the difference between (1) the 𝐿 vs 𝑀 cone and

(2) the 𝐿 +𝑀 vs 𝑆 cone activations [Derrington et al. 1984]. These

observations are the foundation of the cone opponent theory of color

discrimination and are widely accepted for measuring human color

discriminative thresholds [Conway et al. 2018].

In this research, we leverage these results from the vision science

community and develop a computational framework that quantifies

the discriminative threshold of any given color at different retinal

eccentricities. That is, given a colored stimulus at some retinal eccen-

tricity, we determine the extent to which we can modulate its color

while maintaining its perceptual color appearance to an observer.

The set of colors which are indistinguishable from some test

color by human observers are modeled as ellipse shaped regions

defined over equi-luminant color-spaces [Hansen et al. 2008, 2009;

Krauskopf and Karl 1992]. Notably, the MacAdam ellipses [1942] are

the first to model discriminative thresholds as such. Additionally,

Krauskopf and Karl et al. [1992] show that the sizes of these ellipses

are best described in the DKL color-space [Derrington et al. 1984].

We first introduce the DKL space, followed by how we model the

discriminative threshold in the DKL space.

DKL color space. DKL space defines colors in two steps. First, it

quantifies a color using the cone-opponent mechanism. Therefore,

a color is first defined over a basis that computes the cone-opponent

neural activations. Namely, a color with LMS coordinates (𝑡𝐿, 𝑡𝑀 , 𝑡𝑆 )

is first converted to the basis:

𝑡𝐿−𝑀 = 𝑡𝐿 − 𝑡𝑀

𝑡𝑆−(𝐿+𝑀) = 𝑡𝑆 − (𝑡𝐿 + 𝑡𝑀 )

𝑡𝐿+𝑀 = 𝑡𝐿 + 𝑡𝑀 ,

(1)

Second, instead of directly using the cone-opponent basis, the

DKL space models colors in terms of color contrast; that is, colors

are defined relative to a reference (a.k.a., the adaptation) color. This

is different from the more absolute measure of color used in sRGB,

XYZ, and LMS color spaces, where each color is defined based on

its own characteristics. Specifically, given a test color, t, and an

adaptation color, b, we can compute the color-contrast of the test

color with respect to the adaptation color as:

𝜅 (𝑡𝑖 ;𝑏𝑖 ) =
𝑡𝑖 − 𝑏𝑖

𝑏𝑖
, for 𝑖 ∈ {1, 2, 3}. (2)

Depending on the specific basis used to represent these colors, the

indices {1, 2, 3} could be {𝑋,𝑌, 𝑍 } for the XYZ basis or {𝐿,𝑀, 𝑆}

for the LMS basis. In our case, the indices {1, 2, 3} are {𝐿 −𝑀, 𝑆 −

(𝐿 +𝑀), 𝐿 +𝑀}, since we have already defined colors in the cone-

opponent space, as shown in Equation (1).

It is worth noting Equation (1) can be seen as producing an inter-

mediate color space that is a linear transformation away from the

conventional LMS space. We will henceforth refer to the intermedi-

ate color space given by Equation (1) as i(ntermediate)-DKL.

We use the LMS color space as defined by Smith and Poko-

rny [1975], which is what the original DKL space is based on [Der-

rington et al. 1984]. The particular LMS cone fundamentals are so

defined that the coordinate 𝑡𝐿+𝑀 of a color is strictly equal to the

luminance of the color, i.e., the 𝑌 coordinate in the XYZ space.
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(c) vector field for power optimization

Fig. 4. Color perception model and power-aware chromaticity optimization. (a) illustrates our color discrimination model’s ellipse thresholds at nine coordinates.

They are evaluated on an equi-luminant plane in the DKL color space, with eccentricities 10◦ (light gray curve) and 25◦ (dark black curve). All colors within an

ellipse are perceptually indistinguishable from the center (black-cross) color. Similarly, these ellipse thresholds can also be sampled in linear sRGB space.

(b) shows ellipses of samples across a 3 × 3 grid sampled within the sRGB cube. Each ellipse in this illustration is shaded with the color at its center. Since

equi-luminant planes are parallel in linear sRGB, all the ellipses appear on parallel planes. (c) visualizes the model-guided chromaticity shifting (at 25◦

eccentricity) to minimize display power consumption. We use our perceptual constraints in combination with our power cost function to shift the chromaticities

of various sample colors inside the sRGB color cube (illustrated in Figure 5). The original, and power-optimized colors correspond to the tail and head of the

vectors, respectively.

Modeling ellipse level sets. In our model, we represent the set of

all equi-lumiant colors which cannot be discriminated from a test

color, t ∈ i-DKL, relative an adaptation color, b ∈ i-DKL, using

an ellipse-shaped region centered around the color contrast of the

test color. The boundary of this ellipse region corresponds to the

discriminative threshold of 𝜅 (𝑡𝑖 , 𝑏𝑖 ), for 𝑖 ∈ {𝐿−𝑀, 𝑆−(𝐿+𝑀)}. The

set of color coordinates which represent this threshold, x ∈ i-DKL,

fulfill the system of equations:{
𝑥𝐿+𝑀 = 𝑏𝐿+𝑀

E(x; t, b,𝜶 ) = 0.
(3)

The first constraint ensures that all the color coordinates on the

threshold are equi-luminant to the adaptation color. The second

constraint ensures that all x are on the edge of the ellipse region with

major and minor semi-axes equal to 𝜶 = (𝛼𝐿−𝑀 , 𝛼𝑆−(𝐿+𝑀) ) ∈ R
2.

Formally, the function E(·) is defined as

E(x; t, b,𝜶 ) =
∑

𝑖={𝐿−𝑀,𝑆−(𝐿+𝑀) }

(
𝜅 (𝑥𝑖 ;𝑏𝑖 ) − 𝜅 (𝑡𝑖 ;𝑏𝑖 )

𝛼𝑖

)2
− 1, (4)

Model Regression. Equation (4) requires the knowledge of the

ellipse-size parameters, 𝛼𝑖 . Prior work has shown that 𝛼𝑖 relates

to the color-contrasts of various test colors, 𝜅 (𝑡𝑖 , 𝑏𝑖 ), as well as the

retinal eccentricity, 𝑒 ∈ R+, at which a colored stimulus is displayed

[Hansen et al. 2009; Krauskopf and Karl 1992]. We leverage our user

study data from Section 3 to learn the relationship

Φ : (𝜿 , 𝑒) ↦→ 𝜶 (5)

where 𝜿 ∈ R2 are the 𝐿 −𝑀 and 𝑆 − (𝐿 +𝑀) coordinates of the test

color in DKL space computed using Eqs. (1) and (2). Specifically, we

use our data to optimize a shallow neural network, which estimates

the discrimination thresholds, using least-squares regression:

𝜶̂ = argmin
Φ

∥Φ(𝜿 , 𝑒) − 𝜶 ∥22 . (6)

The 𝑅2 value of the regression is 0.58 (adjusted 𝑅2 value of 0.51),

indicated an acceptable regression accuracy. Note that our raw data

from Section 3 is intentionally pre-processed as described in detail

in Section 6.1. Briefly, we aim to cover more conservative thresholds

that are generalizable to broad users instead of an “average fitž.

Neural Network Architecture. We chose the Radial Basis Function

Neural Network (RBFNN) with a sigmoid output layer to ensure

local smoothness, as well as a positive, localized output range. Math-

ematically, the network is summarized as

Φ(𝜿 , 𝑒) = 𝜼 ⊙ 𝑆
©­«
𝑁∑
𝑗=1

𝝀 𝑗𝜌

(




[
𝜿

𝑒

]
− c𝑗






2

, 𝜎 𝑗

)
+ 𝝂 𝑗

ª®¬
, (7)

where ⊙ is the term-wise multiplication operator. The RBFNN takes

the input, and computes the weights of the effect each of the 𝑁

nodes of the latent representation have on the input. It does so by

applying a Gaussian Radial Basis function, 𝜌 , centered at c𝑗 with

std of 𝜎 𝑗 , for each node, 𝑗 . The weights of each node is scaled by a

scaling constant 𝝀 𝑗 , incremented by the linear bias 𝝂 𝑗 , summed up,

and passed to the sigmoid function 𝑆 and mutliplied by a scaling

factor 𝜼 to produce the final prediction. The trainable parameters

of this network are the centres, c𝑗 , sizes, 𝜎 𝑗 of the radial bases,

as well as the final scaling factors 𝝀 𝑗 , and linear biases 𝝂 𝑗 . 𝜼 is a

normalization constant and chosen to be the maximum possible

value of contrasts within the capability of the display used in our
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work, and hence does not change. For our work we keep the number

of nodes 𝑁 = 5 low to maintain smoothness of the outputs. Please

refer to our source code for more details on the model specifications.

Ellipse re-parameterization. Since the adaptation color, b, is the

same for all variables in Eq. (4), we simplify the function by re-

parameterization as 𝑎𝑖 = 𝛼𝑖𝑏𝑖 for 𝑖 ∈ {𝐿 −𝑀, 𝑆 − (𝐿 +𝑀)}:

E(x; t, a) =
∑

𝑖={𝐿−𝑀,𝑆−(𝐿+𝑀) }

(
𝑥𝑖 − 𝑡𝑖

𝑎𝑖

)2
− 1. (8)

While the original formulation in Eq. (4) relates the ellipse to vari-

ables in DKL space, and are ultimately the variables used to regress

the model, as we’ll see in Section 5.2, it’s helpful to reformulate the

model with respect to the differences of color in i-DKL: x− t, as well

as the new parameter, a, which clearly represents the size of the

ellipse in i-DKL space, are both measures defined within i-DKL. In

summary, Eq. (8) converts Eq. (4) from aDKL space parameterization

to a i-DKL parameterization. The obtained model is visualized in

Figures 4a and 4b.

5.2 Power Model for Display Illumination

In this section we derive a computation model that correlates an

OLED’s power consumption with the pixel color. The display power

is modeled as the sum of the LED power, which consists of the

powers of its three sub-pixels, and the power of the peripheral

circuitry (e.g., the thin-film transistors) [Huang et al. 2020]. It is

known that the power of an OLED sub-pixel is roughly proportional

to its current, which is proportional to the numerical value of the

corresponding channel [Tsujimura 2017]. Thus, given the RGB value

of the three sub-pixels, x𝑑𝑖𝑠𝑝 ∈ disp-RGB (i.e., the pixel value in the

display native color space), its total power consumption is

P =

©­«
∑

𝑖={1,2,3}

𝑝𝑖𝑥𝑖
ª®¬
+ 𝑝𝑐𝑖𝑟𝑐 = p𝑇

𝑑𝑖𝑠𝑝
x𝑑𝑖𝑠𝑝 + 𝑝𝑐𝑖𝑟𝑐 , (9)

where p𝑑𝑖𝑠𝑝 ∈ R
3 is the vector of unit powers of each sub-pixel,

and 𝑝𝑐𝑖𝑟𝑐 ∈ R is the static power consumption (consumed by the

peripheral circuits) when all the pixels are black, i.e., the LEDs do

not emit light and, thus, do not consume power.

In most computer graphics applications, it is impractical to use

the display’s native color space because it varies depending on the

manufacturer specifications, and could be unknown. Color-spaces

that are commonly used, such as (linear) sRGB, can transform to a

display’s native color-space via some linear transformation, 𝑀 ∈

R
3×3. Without loss of generality, using this transformation, we can

rewrite Eq. (9) in terms of the (linear) sRGB pixels as

P(x𝑠𝑟𝑔𝑏 ) = p𝑇
𝑑𝑖𝑠𝑝

𝑀𝑠𝑟𝑔𝑏2𝑑𝑖𝑠𝑝x𝑠𝑟𝑔𝑏 + 𝑝𝑐𝑖𝑟𝑐

= p𝑇
𝑠𝑟𝑔𝑏

x𝑠𝑟𝑔𝑏 + 𝑝𝑐𝑖𝑟𝑐 ,
(10)

where𝑀𝑠𝑟𝑔𝑏2𝑑𝑖𝑠𝑝 is the transformation matrix from (linear) sRGB’s

color-space to the display’s, and x𝑠𝑟𝑔𝑏 ∈ sRGB denotes the pixel

color in linear sRGB space. For convenience, we define p𝑇
𝑠𝑟𝑔𝑏

=

p𝑇
𝑑𝑖𝑠𝑝

𝑀𝑠𝑟𝑔𝑏2𝑑𝑖𝑠𝑝 , which intuitively denotes the power consumption

of the three display sub-pixels under unit sRGB simuli.

p𝑠𝑟𝑔𝑏 depends on the specification of a particular display. In our

work, we study an OLED display module from Wisecoco that has

two 1080×1200 displays, as described in Section 4. Critically, our

methodology is not unique to the specific display at study and, thus,

can be extended to build power models for any other three-primary

display.

Power model regression. To build an analytical power model, we

must find the parameter, p𝑠𝑟𝑔𝑏 . We do so by physically measuring

the power consumption of 52 randomly sampled colors in the sRGB

space, including the eight colors that correspond to the eight vertices

of the sRGB color cube, as described in Section 4, and solving an

over-determined linear system,

P (𝑐𝑜𝑙𝑜𝑟 ) = p𝑇
𝑠𝑟𝑔𝑏

x
(𝑐𝑜𝑙𝑜𝑟 )

𝑠𝑟𝑔𝑏
+ 𝑝𝑐𝑖𝑟𝑐 , (11)

where 𝑐𝑜𝑙𝑜𝑟 is the 52 sampled colors, via the classic linear least

squares method. Figure 3c shows the measured power of these

sampled colors (𝑦-axis) and the regressed model outputs (𝑥-axis).

The mean relative error of the regression is 0.996%, indicating an

accurate model.

5.3 Optimizing Display Energy Consumption under
Perceptual Constraints

Finally, using Eq. (3) and Eq. (10) we can minimize the power con-

sumption function of a display, P(x), while constrained within the

perceptual limits set by E(x). Qualitatively, we notice that the power

function is a linear function of the input, x, so the minimizing power

will be on the surface of the discriminative threshold ellipse (as op-

posed to its interior). Notice that in this optimization problem, it is

more convenient to use the definition of the ellipses in i-DKL space,

instead of the DKL space definition (cf. Eq. (8) and Eq. (4)) because

the i-DKL space is only a linear transformation away from (linear)

sRGB, therefore making its energy computations a lot simpler.

Formally, we define the optimization process as:

x∗
𝑖𝑑𝑘𝑙

= argmin
x𝑖𝑑𝑘𝑙

P(𝑀𝑖𝑑𝑘𝑙2𝑠𝑟𝑔𝑏x𝑖𝑑𝑘𝑙 )

subject to: E(x𝑖𝑑𝑘𝑙 ; t𝑖𝑑𝑘𝑙 , a = 𝜶 ⊙ b𝑖𝑑𝑘𝑙 ) = 0,
(12)

where the original color of the pixel is t and, the adaptation color

of the display is b. In our work we choose b to be equal to a color

with a chromaticity equal to the CIE D65 Standard Illuminant (i.e.,

the reference white in the sRGB color space) and a luminance equal

to the luminance of the test pixel t. While the choice of adaptation

color is an interesting question to explore, it is beyond the scope of

this work and is left as future work.

Due to the convexity of both the cost and constraint functions,

we can apply the method of Lagrange multipliers to find the output

color, x∗
𝑠𝑟𝑔𝑏

, which minimizes the total power consumption in closed

form:

x∗
𝑠𝑟𝑔𝑏

= 𝑀𝑖𝑑𝑘𝑙2𝑠𝑟𝑔𝑏


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, (13)
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Fig. 5. Illustration of deriving the closed-form and optimal chromaticity.We

aim to search the color x∗ which (1) minimizes our first-order power function,

P (x) ; (2) is under the constraint E(x) = 0 when the gradients of both

functions are co-linear. The straight lines represent the set of all colors

consuming the same amount of power. Since the color-spaces sRGB and

i-DKL are related via a linear transformation, this solution works in either

color-space.

where {1, 2, 3} correspond to {𝐿 −𝑀, 𝑆 − (𝐿 +𝑀), 𝐿 +𝑀}. Figure 5

visually illustrates how this optimal color is found using the deriva-

tives of E, and P. Please refer to Supplement A for the derivation

of the above result.

6 IMPLEMENTATION

6.1 Perception Study Data Pre-processing

We take two steps to pre-process the perception study data. Both

steps are meant to keep the model’s threshold estimation conser-

vative, which is necessary for two reasons. First, there are natural

variances across participants (Section 3.2) and, thus, a conservative

estimation allows our model to generalize to large populations. Sec-

ond, our model is built to modulate the displayed colors to preserve

the visual fidelity in active viewing, which we hypothesize to have

a lower threshold than that in discriminative tasks.

First, we use the smallest thresholds across participants, instead

of an average fit. Second, we observed small asymmetries in the

collected thresholds, and we confirmed that this is also the case in

Krauskopf and Karl et al. [1992]. We made the engineering deci-

sion to keep our model’s thresholds more conservative; thus each

threshold is chosen to be the narrower one from the two thresholds

approached from opposing sides along a DKL axis. That is, given a

threshold approached from the positive 𝐿 −𝑀 side, 𝛼+
𝐿−𝑀

, and one

from the negative 𝐿 −𝑀 side, 𝛼−
𝐿−𝑀

, the discrimination threshold

we pick for model regression is:

𝛼𝐿−𝑀 = min(𝛼+𝐿−𝑀 , 𝛼−𝐿−𝑀 ), (14)

and similarly for the 𝑆 − (𝐿 +𝑀) axis.

6.2 Eccentricity Extrapolation

In our perceptual model regression, we restricted the range of valid

input eccentricities to be between 10◦ and 35◦ because we had only

measured discriminative thresholds within this range of eccentrici-

ties. We avoided color-shifting content at eccentricities < 10◦ due

to the low power-saving payoffs for foveal and para-foveal regions.

Meanwhile, eccentricities > 35◦ were clamped down to 35◦ as a

conservative estimate.

6.3 Shader

We implement a post-processing image-space shader in the Unity

ShaderLab language to compute per-pixel power-minimizing color.

Figure 6 outlines the pseudocode of our shader. We tested our shader

on the HTC Vive Pro Eye (relevant specs shown below) powered

by an NVIDIA RTX3090 GPU, and observed that processing each

frame takes less than 11 ms, which ensures no loss of frames in the

displays.

Table 2. Relevant specifications for the HTC Vive Pro Eye

Feature Specification

Display Resolution 1440 × 1600 pixels per eye

Display Refresh-rate 90 Hz

Peak Luminance 143 cd/m2

Eye-tracker Accuracy 0.5◦ − 1.1◦

Eye-tracker Frequency 120 Hz.

7 EVALUATION

In this section we evaluate the performance and applicability of

our model. In Section 7.1, we first conduct a psychophysical experi-

ment to assess the perceptual fidelity between our method and an

alternative luminance-based power reduction approach. The experi-

ment design follows previous literature [Cohen et al. 2020]. Then,

in Section 7.2, we measure the model’s generic benefits in broad

applications by further analyzing the display power saving ratio

with a large scale natural image dataset, ImageNet.

7.1 Psychophysical Study for Perceptual Quality

Motivated by the experiment of Cohen et al. [2020], we conduct

a psychophysical user study to measure participant-experienced

fidelity deterioration, as well as the corresponding power-saving

level during active and real-world viewing. “Active and real-worldž

is notably a condition where participants may freely rotate their

head/eyes and naturally investigate an immersive scene.

Setup and participants. We recruited 13 participants (ages 21-32, 3

female). None of the participants were aware of the research, the hy-

pothesis, or the number of conditions. All participants have normal

or corrected-to-normal vision. We used the same hardware setup

as our preliminary user study in Section 3. Before each experiment,

we ran a five-point eye-tracking calibration for each participant.

Stimuli and conditions. The stimuli were 6 panoramic video se-

quences as shown in Figure 8. For broader coverage, the tested

scenes contain natural/synthetic, static/dynamic, bright/dark, and

indoor/outdoor content.

We studied the perceptual quality by applying two gaze-contingent

and power-saving shading approaches to the scenes: a baseline

luminance-modulated shader, LUM; and the shader with our chro-

maticity modulation method, OUR (Section 6.3). Specifically, in

LUM, we applied a constant scaling factor to all peripheral (eccen-

tricity > 10◦) pixels’ colors. That is, LUM can be understood as a
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Power-Minimizing Color Computation

1: function Fragment_Shader

2: pospixel = GetPixelPos

3: posgaze = GetGazePos

4: tsrgb = SampleTexture(MainTex, pospixel)

5: 𝑒 = GetEccentricity(posgaze, pospixel)

6: if 𝑒 < eccmin then

7: return tsrgb
8: else if 𝑒 > eccmax then

9: 𝑒 = eccmax

10: end if

11: tidkl = 𝑀srgb2idkltsrgb
12: lum = tidkl.z

13: ⊲ Adaptation color

14: bidkl = 𝑀srgb2idkl [lum, lum, lum]
𝑇

15: ⊲ ⊙: element-wise multiply

16: 𝜿 = (tidkl − bidkl) ⊙
1

bidkl

17: input =

[
𝜿

𝑒

]
⊲ Model input

18: Init rbf[5], linear[2] ⊲ Model output

19: ⊲ Lines 14-22: RBFNN from equation (7)

20: for 𝑖 in [0, 5) do

21: rbf𝑖 ← 𝜌 (∥input − c𝑖 ∥2 , 𝜎𝑖 )

22: end for

23: for 𝑖 in [0, 2) do ⊲ Linear layer

24: linear𝑖 ← 𝝀𝑖 ⊙ rbf + 𝝂𝑖
25: end for

26: 𝜶 ← 𝜼 ⊙ Sigmoid(Linear)

27: a = 𝜶 ⊙ bidkl
28: ⊲ Compute power-optimal color

29: p = GetPowerModelCoeffs

30: x∗idkl = tidkl + a
2 ⊙ p 1√∑

𝑖 𝑎
2
𝑖
𝑝2
𝑖

31: return𝑀idkl2srgbx
∗
idkl

32: end function

Fig. 6. Shader implementation pseudocode. The shader routine optimizes

an input color into the optimized color as described by our method from

Section 5. Refer to our source code for the ShaderLab implementation.

gaze-contingent version of the “power-saving modež on mobile de-

vices. The scaling factor was determined in such a way that the

power saving (estimated using the power model) of LUM is similar

to that of OUR. An example frame of the original stimulus, OUR,

and LUM are shown in Figure 7.

Similar to [Cohen et al. 2020], we temporally inserted one of the

two shaders to the original stimulus during each trial. More formally,

let 𝐼𝑜 be the original video and 𝐼𝑝 be the power optimized version.

Then starting at timestamp 𝜏𝑜 = 5s, we linearly interpolate (i.e.

𝑙𝑒𝑟𝑝) between 𝐼𝑜 and 𝐼𝑝 over a course of 10 seconds. At 𝜏𝑝 = 15s,

the transition completes and the power optimized video is played

henceforth. That is,

𝐼 (𝜏) = 𝑙𝑒𝑟𝑝

(
𝐼𝑜 , 𝐼𝑝 ,

𝜏 − 𝜏𝑜

𝜏𝑝 − 𝜏𝑜

)
(15)

The process is illustrated in Figure 7d. Note that the temporal in-

sertion also implicitly compares the original frame with each of the

two power-saved conditions.

Tasks. Our experiment consisted of 24 trials (6 scenes × 2 con-

dition × 2 repetitions), lasting approximately 15 minutes for each

participant. Before the experiment started, we first displayed 2 trial

runs to familiarize the participant with the setup. Afterwards, six

20-second video sequences (with representative frames displayed

in Figure 8) were shown to the participant in a counter-balanced

randomized order.

During each trial, the participant was instructed to perform a

scene-specific task, such as “count the number of chairsž to ensure

they were actively viewing the scene. After each trial, the participant

was instructed to answer both the scene-specific task and a two-

alternative forced choice (2AFC, similar to [Cohen et al. 2020])

question “did you notice any visual artifacts?ž. Before beginning

the experiment, we show the participants static frames from the

“skylinež video as visual examples of “artifactž stimuli, including

one original frame and the two corresponding conditions,OUR, and

LUM. The example images were displayed on a computer monitor

(as opposed to the VR headset); thus, the participants’ retinal image

was significantly different from the stimuli shown during the study.

This is to ensure that the participants are not biased when shown

artifacts.

Metrics and results. We use the percentage of trials where partic-

ipants noticed artifacts as the metric of perceptual quality. Lower

values indicate better quality, i.e., less noticeable visual modula-

tion. Figure 7e plots the user-reported values of each scene and

each condition. As visualized in Figure 7e, the average percentage

of observed artifacts in LUM is 63.5 ± 9.4% (STE) and in OUR is

16.7 ± 7.3%. The lowest percentage of observed artifacts in scenes

with OUR applied occurred in the monkeys scene, a scene with

large amounts of green, whereas the highest percentage occurred in

the office scene, a very bright and uniformly colored scene relative

to the other scenes. A one-way repeated ANOVA analysis showed

that the shading condition (OUR vs. LUM) has a significant effect

on the perceptual quality (𝐹 (1,24) = 18.42, 𝑝 = .00025).

As plotted in Figure 7f, we also measured the display power

consumption of each power-saved shading condition for each scene.

The average savings between OUR and LUM are similar (20.8 ±

1.2% vs. 18.6 ± 1.4% (95% confidence)). OUR exhibits the highest

power saving in the skyline scene, due to higher relative uniform

distribution of blue colors.

Discussion. The results reveal our method OUR’s significant out-

performance on preserving perceptual quality over a gaze-contingent

luminance-reduction-based approach (LUM), even though both con-

ditions achieve a comparably similar power-saving scale. Note that,

under the same power, there are infinite ways of constructing LUM,

including smoothing the edge but darkening the farther periphery.

Our implementation of LUM is partially inspired by Pöppel and
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Fig. 7. User study stimuli and results. (b) and (c) show the results of applying the two gaze-contingent shading conditions OUR and LUM to an example

frame (a) in the video sequence stimuli, with the dashed circles indicating the user’s gaze. (d) We increase the intensity of the gaze-contingent filter in a

temporal fashion, while keeping the foveal region unchanged. From 0-5 seconds, the video is unfiltered. Between 5-15 seconds we gradually insert one of the

two conditions, with the remaining time between 15-20 seconds the full filter is applied. Please refer to our supplementary video for a dynamic visualization of

this temporal process. (e) shows the percentage of trials where users identified łartifactsž. Across the 6 scenes, OUR exhibits significantly lower values than

LUM, evidencing our method’s benefit in preserving perceptual fidelity. The error bars indicate standard error across users. (f) Using the hardware setup in

Section 4, we physically measure the scene-dependent display power (measured power excluding the ∼ 1000mW peripheral circuit power) consumption of

each 20-second video clip among three conditions: the original, LUM, and OUR. OUR achieves similar power saving capability to LUM. Unmodified image

credits to Humaneyes Technologies.

Harvey [1973], which suggests that human luminance change detec-

tion thresholds remain relatively constant beyond 10◦ eccentricity.

The design, however, may not be perceptually optimal. Therefore,

studying and modeling the luminance-induced effects may not only

provide a stronger baseline condition, but improve our model that

is currently restricted to colors only.

Our perceptual fidelity and power-saving capabilities are also

content-based. For example, we notice high power savings in the

“officež scene, but the average % of observed artifacts is higher than

other scenes. This is hypothetically because the scene has a signifi-

cantly higher brightness compared to the others. On the other hand,

the “monkeyž scene has relatively high density of green colors, and

thus has the lowest perceived average % of artifacts. The observa-

tions motivate us to investigate, in the future, the chromaticity-

luminance joint effect (Section 8) beyond the first model that guides

color-perception-aware VR power optimization.

While detection tasks are commonly leveraged in the foveated

rendering literature [Patney et al. 2016; Sun et al. 2017], we opted to

validate our gaze contingent filter with active and natural viewing,

similar to [Cohen et al. 2020]. The design choice is two-fold. First,

we attempt to simulate the conditions of real-world VR applications

where the users, with various tasks in mind, make head and eye

movements to explore the environment. Examples include gaming

and video-watching. Second, prior literature suggests unequal color

detection and discrimination thresholds. Vingrys and Mahon [1998]

discovered that chromatic sensitivity for detection is significantly

greater than for discrimination. However, by leveraging our model

and shader in this experiment, we verify our hypothesis that our

color sensitivity during natural and active vision is, in fact, lower

than that of discrimination, and thus enable the method’s applica-

bility for broad VR scenarios.

7.2 Measuring Power-Saving Capability for Broad Content

In our psychophysical study Section 7.1, we observe that the pos-

sible power savings are dependent on the displayed content. For

example, colors that are highly saturated have little room in their

equi-luminant plane that is within the bounds of the sRGB cube.

Therefore, they have less power saving potential as any potential

power-saving chromaticity shifts are clipped by the sRGB bounds.

To study how much power can be saved in practical applications

where users may observe arbitrary imagery, we conduct an objec-

tive evaluation by applying our method to a large sample of the
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Dumbo Fortnite

monkeys office

skyline Thailand

Fig. 8. Panoramic Video Scenes. Representative panoramic frames cap-

tured from 360 degree monoscopic video scenes used in the evaluation user

study described in Section 7.1. Images of "Dumbo", "monkeys", and "skyline"

scenes by Humaneyes Technologies, rendering of historical Two Embar-

cadero Center in San Francisco, CA ("office") by Rene Rabbitt of Rabbitt

Design, "Thailand" by VR Gorilla, and "Fortnite" by AmiramiX.

ImageNet dataset [Russakovsky et al. 2015]. We then measure the

distribution of power savings using our power model.

Setup. We simulate how an image would be observed in a VR

setting by resizing the image to be displayed at 90◦ field-of-view,

and randomly sample a location within the image and select that

as the gaze location. The randomization of the gaze location was

applied to prevent bias in the power estimation. Specifically, we

observed that many images in ImageNet have a foreground object

centered on the image; selecting random gaze locations allows us to

include images where the foreground objects will sometimes have

the filter applied to them. We repeat this process for 10% (randomly

sampled) of the ImageNet dataset, totaling in over ∼ 120𝑘 images,

to collect original and power-optimized image pairs.

Metrics. For each image pair, we measure the estimated power

consumption using our model from Section 5.2, and compute the

relative decrease in power consumption by applying our filter with

respect to the ground-truth condition.

Results. We observe that the mean display power saving recorded

across the entire dataset is 13.9%, and guarantee 9.1− 23.5% savings

with P95 confidence. Please refer to Figure 9c for the detailed his-

togram of the estimated power savings. We visualize a small sample

of the images we applied the filter to in Figures 9a and 9b.

Discussion. Sample images from different percentiles of power-

saving as shown in Figure 9 show that imageswith the highest power

savings are commonly bright and/or blueish scenes, and vice versa.

Intuitively, bright scenes provide larger percentage changes in LED

luminance, and thus unlock larger space for power-saving. Since

blue colors on the LED consume the most power, as demonstrated

in Section 4, images rich in blue/green colors can be optimized most

effectively. Meanwhile, images which are already saturated with

red colors cannot be optimized for higher power-saving because the

space of power-wise “cheaperž colors is narrower.

8 LIMITATIONS AND FUTURE WORK

Active vision vs. discrimination vs. detection. While our evaluation

on active/natural viewing tasks in Section 7.1 is representative of

real-world VR scenarios [Cohen et al. 2020], our initial perceptual

data are collected using a more conservative discrimination task.

It is also common in the foveated rendering literature to evaluate

using detection tasks [Patney et al. 2016; Sun et al. 2017]. Our con-

ducted preliminary detection-based experiments, which showed

that sensitivity to color changes in detection tasks is significantly

greater that that in discrimination tasks, are consistent with prior

work [Vingrys and Mahon 1998].

An exciting future direction is, thus, to investigate an adaptive

model that accommodates for color sensitivity under all three tasks

(detection, discrimination, active/natural viewing). That way, our

color modulation algorithm can be dynamically configured accord-

ing to the specific viewing scenario of a VR user.

Perceptual model. Our current perceptual model is constructed

with respect to per-pixel colors. An interesting future extension is to

consider inter-pixel, potentially higher-dimensional, features such

as spatial frequency and local contrast. Performing these analyses

(e.g., frequency domain analyses as in [Tursun et al. 2019]), however,

increases the computational overhead. How to best balance the level

of details in perceptual analysis and display power saving is an open

question we leave to future work.

Luminance adjustment. In our work, we model and modulate

pixel chromaticity to reduce display power consumption while pre-

serving luminance. This design choice reduces the dimension of

our perceptual model and, thus, yields a convex constrained opti-

mization problem with a closed-form solution. Investigating the

luminance-chromaticity joint modulation is an interesting future

research direction that would conceivably lead to higher power

savings [Vingrys and Mahon 1998].

Jointly adjusting luminance and chromaticity, nevertheless, comes

with a few challenges. First, it would require sampling a new dimen-

sion in constructing the perceptual model. Second, prior literature

suggests the weak eccentricity-dependent effect [Metha et al. 1994]

in detecting and discriminating absolute luminance. Finally, the

perceptual level sets, when considering the luminance dimension,

might not be convex, which might complicate the optimization,

cause false local minima, and reduce the shading speed.

Color Temperature Adaptation. Another interesting direction for

future research is to leverage chromatic adaptation [Fairchild 2013]

to reduce display power by adjusting the color temperature of the

display white point. The advantage of this approach is that it is

not gaze-contingent: it can potentially reduce the power of the

entire display without requiring eye tracking. Adaptation to display

color has been long investigated [Fairchild and Reniff 1995; Peng

et al. 2021], but such studies in VR displays are relatively new and
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Fig. 9. ImageNet Offline Power Savings Estimation. We measure the statistics of power saved when our model is applied to the large database of natural

images, ImageNet. (a) The original images are sampled randomly to show exemplar images which exhibit different amounts of power-saving when our model

is applied to them. Each row of images are sampled from within different quantile bands of energy savings across the dataset (top to bottom each row saves

better than 99.9%, 55%, 45%, 0.1% of the entire dataset considered, and the bottom row shows the worst 0.1% performers). (b) Our shaders are applied to each

image have randomized gaze locations to prevent bias against the edges of the image being disproportionately affected. (c) We visualize the entire distribution

of the potential power savings in this evaluation.

rare [Chinazzo et al. 2021] and lack a comprehensive computational

model. Note that the chromatic adaptation benefits are additive:

our model can be seen as a sub-space initial attempt (by exploiting

spatial color perception) under a given adaptation state.

Display Persistence. VR displays usually have low persistence to

reduce motion blur [Hainich and Bimber 2016]. A common solution

is to hold a frame for only a short period of time during each display

refresh [Google 2019]. As a consequence, the display power is rela-

tively low to begin with (compared to displaying a frame throughout

a refresh cycle). Nevertheless, our work demonstrates significant

display power saving opportunities even with reduced displayed

times. In addition, reducing the display period leads to low average

luminance, which limits the applicability of a luminance-based ap-

proach to reduce power Ð another reason we choose to maintain

the luminance.

Implementation. Our implementation of LMS to DKL color space

transformation does not strictly follow the canonical implementa-

tion [Derrington et al. 1984; Westland et al. 2012]. Notably, we judi-

ciously choose to use a per-luminance adaptation color rather than

one single adaptation color. Effectively, this allows us to eliminate

the luminance dimension from all colors. As a result, all subsequent

color adjustments naturally preserve the luminance Ð a goal we set

out to achieve. This design choice also simplifies the color space

transformation and contributes to the real-time speed of the shader.

There is room for improving the speed of our shader, which cur-

rently is bottlenecked by the atomic for-loop. Deferred shading

techniques may shed light on alleviating the bottleneck. One promis-

ing solution is to evaluate the optimization problem (Equation (12))

offline (e.g., sampling colors and eccentricies) and save the results

as a 3D texture, which the shader simply looks up at rendering time.

Due to the tight integration of the display, computation module,

and battery in commercial AR/VR devices, our display power mea-

surement has to be done on a 3rd party display module that has the

identical aspect ratio of the VR device we use for perceptual studies.

Investigating physical means to measure the exact display power

as in an AR/VR device would reveal the real-world energy savings

concerning the battery equipped with the device. It would also be

interesting to see how our perception-conserving color modula-

tion idea can be applied to smartphone displays, which have much

narrower field-of-views.

9 CONCLUSION

Understanding the nature of color generation and perception is

a long-standing pillar for computer graphics. In this research, we

build a bridge from color to the emerging demand for power-friendly

graphics with the rapid growth of wireless platforms. In particu-

lar, we present a perceptually motivated computational model for

optimizing the power usage of VR displays based on the limited dis-

criminative ability of color by the human visual system. We validate

the model’s application with various real-world immersive content

viewing use-cases and physically-measured power consumptions.

While the research is now benefiting untethered VR applications,

we envision potential in exploiting more properties of the “humanž

aspects of the study of color and how to incorporate them into

generic computer graphics systems. We hope that our work to de-

velop the first building block in this direction will pave the way for

more sophisticated applications, such as cloud rendering.
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