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Abstract. In this paper we give sufficient conditions for the almost sure
central limit theorem started at a point, known under the name of quenched
central limit theorem. This is achieved by using a new idea of conditioning with
respect to both the past and the future of the Markov chain. As applications
we provide a new sufficient projective condition for the quenched CLT.

1 Introduction and the main result

We assume that (£,)nez is a stationary Markov chain, defined on a probability
space (€2, F, P) with values in a Polish space (5, .A). Denote by F,, = 0(&, k <
n) and by F"* = o(&, k > n). The marginal distribution on A is denoted by
m(A) = P(& € A). We shall construct the Markov chain in a canonical way
on S% from a kernel Q(x, A), and we assume that an invariant distribution 7
exists.

Next, let LE(m) be the set of measurable functions on S such that [ f2dr <
o0 and [ fdm = 0. For a function f € L(r) let

Xi=[&), Su=) . _ X (1)
Denote the regular conditional probability on F, with respect to Fy by
P°()(w) = P(-|Fo)(w),

and the conditional expectation, E°(X) = E(X|F,). By the Markov property,
if Ae F°=0(&,i>0), we have P°(A) = P(Al&), and for X measurable with
respect to FO, E9(X) = E(X|&). We are studying the quenched central limit
theorem for Markov chains, which can be stated in two equivalent ways: For
P-almost all w € Q

P%(S,,/vn <t)(w) — P(N(0,0%) < t) for any t, (2)

where N(0,0?) is a normal random variable with mean 0 and variance o2.



Another formulation is known under the name of the CLT started at a point.
Let P* be the probability associated to the Markov chain started from z € S
and E” be the corresponding conditional expectation. Then, for m-almost every
x €S,

P*(S,/vn <t) — P(N(0,0%) < t) for any t. (3)

Clearly the quenched CLT implies that for any ¢
P(Sn/vn <t) — P(N(0,0%) < 1), (4)

where N(0,0?) is a normal random variable with mean 0 and variance 0. This
is called annealed CLT. On the other hand, there are numerous examples of
processes satisfying the annealed CLT but failing to satisfy the quenched CLT.
Some examples of this kind have been constructed by Volny and Woodroofe
([36], [38]). Therefore, some additional conditions are needed in order for the
central limit theorem to hold in the quenched form.

The limit theorems started at a point are often encountered in evolutions in
random media and they are of considerable importance in statistical mechanics.
They are also useful for analyzing Markov chain Monte Carlo algorithms. Due
to its importance, the problem was intensively studied in the literature. Two
of the most influential papers are due to Derriennic and Lin ([14], [15]), which
opened the way for many further results we shall mention throughout the paper.
For a survey on quenched invariance principles under projective conditions we
direct to [25].

The difficulty of obtaining quenched limit theorems consists in the fact that
a Markov chain started at a point is no longer stationary. This is the reason
this problem is very difficult to solve and there are still many open problems
and long standing conjectures to be settled. Since stationary martingales satisfy
the quenched CLT, the best technique to solve such a problem is to obtain a
martingale approximation with a suitable rest. This technique was successfully
used to get quenched CLT’s for various classes of random variables in numerous
papers, [14], [15], [39], [7], [36], [37], [21], [8], [12], [3], among others. The novelty
here is that we use a martingale construction and approximation based on a new
idea of conditioning with respect to both the past and the future of the Markov
chain. This idea was introduced in [26], and [27]. In the annealed setting, if a
stationary and ergodic Markov chain satisfies E(S?)/n is convergent, then the
CLT holds (pending only a random centering) (see [26]). By using a similar
martingale construction we obtain in this paper a new almost sure martingale
approximation under P*, for m—almost all starting points. This approximation
will lead to the quenched CLT under the main condition that E%(S2)/n is
convergent m—almost surely. As application, we point out a new class of Markov
chains satisfying the quenched CLT, defined by using projective conditions. In
defining this class no assumption of irreducibility nor of aperiodicity is imposed.
Under the additional assumptions that the Markov chain is irreducible, aperiodic
and positively recurrent, Chen (Proposition 3.1., [6]) showed that if the CLT
holds for the stationary Markov chain then the quenched CLT holds.



Here are some notations we shall use throughout the paper. We denote by
|| X|| the norm in L?*(Q2,F, P). Unless otherwise specified, we shall assume the
total ergodicity of the shift T' of the sequence (£, )necz with respect to P, i.e. T™
is ergodic for every m > 1. For the definition of the ergodicity of the shift we
direct the reader to the subsection "A return to Ergodic Theory" in Billingsley
[1] p. 494. Let us consider the operator @ induced by the kernel Q(z, A) on
bounded measurable functions on (S,.A) defined by Qf(z) = [4 f(y)Q(z, dy).
By using Corollary 5 p. 97 in Rosenblatt [31], the shift of (£,)ncz is totally
ergodic with respect to P if and only if the powers Q™ are ergodic with respect
to w for all natural m (i.e. Q™f = f for f bounded on (S, .A) implies f is
constant m—a.e.). For more information on total ergodicity, we refer to the
survey paper by Quas [22].

Throughout the paper = denotes the convergence in distribution. By the
notation a.s. we understand P-almost surely. We shall also use the notation K
for the conditional expectation operator on Lq(P), namely

K(X)=E(XoT &), K"(X)=K(K""'(X))=EBE(EXoT")&).

The problem we address in Theorem 1 is to provide necessary and sufficient
conditions for a quenched CLT for a class of Markov chains.

Theorem 1 Assume (X,,) and (S,) are defined by (1),

E(S?
lim sup (50) < 00 (5)
n—00 n
and 1
T [ B(S, 6o, €)1 =0. (6)
Then there is o > 0 such that
Sh E(S?
2 = N(0,0?) and E(S) — 02 (7)
vn n
Furthermore, the following are equivalent:
E° (52
(a) lim sup M <o? as.
E%(S7)

(0)

(¢) The quenched CLT in (2) holds and S?%/n is uniformly integrable under
PO(w) for almost all w.

converges a.s.

Remark 2 Note that in condition (b) we do not have to specify the almost sure
limit of E°(S2)/n. However, under our conditions it will always be o*. In the
sequel, when we say that the quenched limit theorem holds we understand that
(¢) of Theorem 1 holds.



Relevant for the next Corollary is the notion of two-sided tail sigma field.
We define the two-sided tail sigma field by

Tq = ngl(}—fn \/.7:n>

where F_,, and F™ are completed with all sets of probability 0. We say that 7y
is trivial if for any A € 74 we have P(A) =0 or 1.

Corollary 3 Assume (X,,) and (S,) are defined by (1), Ty is trivial and S%/n
is uniformly integrable. Then the Markov chain is totally ergodic, (7) holds and
in addition (a), (b), and (c) of Theorem 1 are equivalent.

Examples of stationary processes with trivial two-sided tail sigma field in-
clude absolutely regular Markov chains and interlaced mixing Markov chains.
We refer to Subsection 2.5 in Bradley [4] for a survey and Bradley [5] for the
proofs of the results in that survey. The definitions for these classes are also
included in Subsection 2.1 of this paper.

In the next section we shall point out a sufficient condition for the quenched
CLT by using projective criteria.

2 A sufficient condition for the quenched CLT

In this section we give a new sufficient condition for the quenched CLT based
on the proof of Theorem 1. This condition arises in a computation of E° (S2)
by dyadic expansion.

We recall that the sequences (X,,) and (S,,) are defined by (1).

As shown in Theorem 2.7 in Cuny and Merlevede [8], it is known that the
quenched CLT holds under a condition introduced by Maxwell and Woodroofe

[20], namely
E(S,|¢
Z” 3/|2° < 00, (®)
n>1 n

There are examples of Markov chains pointing out that, in general, condition
(8) is as sharp as possible in some sense. Peligrad and Utev [24] constructed
an example showing that for any sequence of positive constants (a,), a, — 0,
there exists a stationary Markov chain such that

E(S
o IEG I
n3/2
n>1

but S,,/+/n is not stochastically bounded. This example and other counterex-
amples provided by Volny [35], Dedecker [13] and Cuny and Lin [9], show that,

in general, condition
Z E S’ 2

n>1



does not assure that (S,/v/n) is stochastically bounded. However, Corollary
3.5 in [27] contains a CLT under a reinforced form of (9). We provide next a
quenched form of that result.

Theorem 4 The quenched CLT holds under the condition
g 1B, S IE(Sn \fo,é“n)||2

n>1

(10)

As a corollary to Theorem 4, by Lemma 14 in [27] we have the following
sufficient condition for (10) in terms of individual summands:

Corollary 5 The quenched CLT holds under the condition
2
2@1 [ E(Xo|&—k, &) < oo (11)

We end this section by mentioning a conjecture due to Kipnis and Varadhan
[19], which is unsolved. The conjecture asks if the quenched CLT and its func-
tional form hold for stationary reversible and ergodic Markov chains (Q = Q*
with @* the adjoint of Q) satisfying (9). For reversible Markov chains (9) is an
equivalent formulation of E(S2)/n converges. This problem was investigated in
several papers, [14], [7] where the quenched CLT for reversible Markov chains
was obtained under various reinforcements of (9). Our condition (10) provides
another reinforcement of (9), which in particular, gives a quenched CLT for
reversible Markov chains.

2.1 Classes of stationary Markov Chains
There are several classes on stationary Markov chains for which || E(Xo|¢—k, &)|]
is easy to estimate:

Absolutely regular Markov chains.

For a stationary Markov chain £ = (€ )rez with values in a separable Banach
space endowed with the Borel sigma algebra B, the coefficient of absolutely
regularity is defined by (see Proposition 3.22 in Bradley [5])

By = Ba(€) =B(c0, &) =E (sup B(6n € Aléo) — Pl € A>|) ,
AEB

where B denotes the Borel sigma filed.
Equivalently, (see Corollary 3.30 in Bradley [5])

Br = Bn(&) =880, &n) = Sup, |P((§0,&n)€C) — P((0,£1)€C)],

where (£, &) are independent and identically distributed. This coefficient was
introduced by Volkonskii and Rozanov [34] and was attributed there to Kol-
mogorov. If 3, — 0, the Markov chain is called absolutely regular. Let us men-
tion that there are numerous examples of stationary absolutely regular Markov



chains. We know that a strictly stationary, countable state Markov chain is ab-
solutely regular if and only if the chain is irreducible and aperiodic. Also, any
strictly stationary Harris recurrent and aperiodic Markov chain is absolutely
regular. For easy reference we refer to Section 3 in Bradley [4] survey paper
and to the references mentioned there. The condition 5, — 0 implies total
ergodicity.

In general, the CLT for this class requires the knowledge of the rate of
convergence to 0 of the (/3,,) coefficients (see for instance Doukhan et al. [16]
and Peligrad [26] for a discussion on the CLT under /3, — 0). Denote by @ the
quantile function of | Xy|, i.e., the inverse function of ¢ — P(|X| > ¢). According
to Corollary 1 Doukhan et al. (1994), condition

Brn
Zn>1 Q*(u)du < oo, (12)

0

is a minimal condition for the CLT for S,,/v/n in the following sense. In their
Corollary 1, Doukhan et al. (1994) constructed a stationary absolutely regular
Markov chain (£)xez and a function f €IL2(w), which barely does not satisfy
(12) and S,,/+/n does not satisfy the CLT. For instance, this is the case when
for an a > 1, 3, = en~® and Q*(u) behaves as u~'TV/?|logu|~" as u — 0F. In

this case ) 1
ZnZl /0 QQ(u)du = /O Bgl(u)QQ(u)du =0

and, according to Corollary 1 in Doukhan et al. [12], there exists a Markov
chain with these specifications, such that S,,/v/n does not satisfy the CLT.

If (12) holds, by Chen (Proposition 3.1., [6]), besides the CLT, the quenched
CLT also holds.

It should be mentioned that a quenched CLT under (12) can be easily ob-
tained from our Corollary 5. Indeed, by Rio’s [29] covariance inequality (see
also Theorem 1.1 in Rio [30]) we know that

Bn
E(Xol 60| < 2 / Q(u)du,

where 3, = B(c (&), 0(E_n,&n)). But, according to Lemma 11 in Peligrad [26],
applied with A =c(¢_,,), B =0(&), and C =0(&,,) we obtain

ﬁn = /8(0.(50)7 O-(f—'mgn)) < 36(0(60)3 U(gn)) = Sﬁna

and so, we recover the optimal quenched CLT for absolutely regular Markov
chains under (12).

Perturbations of absolutely regular Markov chains.

Furthermore, let us point out another situation where Corollary 5 is useful.

Let us consider two stationary Markov chains § = (&),c, and n = (9:),c,



independent among them. Then (&;,7;),., is also a stationary Markov chain.
Let f and g be two bounded functions, |f| < C; a.s. and , |g| < Cs a.s.

Define ¥; = f(&) — E(f(£)) and Z; = g(n;) — E(g(:)), and set X; = Y; s
Assume that ) -, n(&) < co. Then, by independence,

1B(Xo| (€0, 100), 6=y =)l = IE(Yolé—n, &) E(Zo|n—n, ) I
< 6CTC36n(8),

and, from Corollary 5, the quenched CLT follows for (X;);ez.
As a particular example of this kind let us consider two stationary Markov
chains § = (&;);c5, and 7 = (1;)icz , with countable state space {0,1,2,...} and

independent among them. For the transition probabilities of (&;),., we take for
1

i>1, P(& =i—1|§ =1) =1, p; = P(& =il = 0) = (2°(log(i + 1))?)
and po = P(§1 =0[ = 0) =1 — P(& > 1§ = 0).

From Theorem 5 in Davydov (1973), we know that the f—mixing coefficients
for £ satisfy

1
<O -
Il = Coga s 12

where ¢ is a positive constant. Construct the sequences (Y;)iecz, (Zi)icz, and
(X:)icz as above. For this example,

1
EYoZ nylin)s \&—ny !/[—n < 0202—7
|| ( 0 0|(£ n ) (5 n ))H > cby 2n(10g(n+1))2
and Corollary 5 applies to (X;)iez. Such examples cannot be treated by the
results available so far in the literature.

Interlaced mixing Markov chains and their perturbations.

Another example where our results apply is the class of interlaced mixing
Markov chains. Let A, B be two sub c-algebras of F. Define the maximal
coefficient of correlation

E
(A B) = sup |E(f9)] ,
rerza), gerz) |1f11 - llgll

where L3(A) (L2(B)) is the space of random variables that are .A—measurable
(respectively B—measurable), zero mean and square integrable. For a sequence
of random variables, (£x)kez, we define

pr, =supp(o(&,i€ S),0(&,j€T)),

where the supremum is taken over all pairs of disjoint sets, 7' and S or R such
that min{|t—s|: t € T, s € S} > n. We call the sequence p* —mixing if p} — 0 as
n — oo. The p*-mixing condition goes back to Stein [33] and to Rosenblatt [32].
It is well-known that p* —mixing implies total ergodicity. Also, there are known
examples (see Example 7.16 in Bradley, [5]) of p*—mixing sequences which are



not absolutely regular. Let Xy as in Corollary 5. By the definition of p} we
immediately have

|E(Xol€—n, EI* = [EX0E(Xolé—n, &n)| < o311 Xol| - [|E(Xol0, &),

and so
[[E(Xolé—n, &Il < |1 Xol]-

Because for a p*—mixing Markov chain, p;, — 0 at least exponentially fast,
(see Theorem 7.5 in Bradley [5]) by Corollary 5 we have that the quenched CLT
holds for stationary p*—mixing Markov chains. This result and further reaching
results can be found in Cuny and Merlevede [8]. Although this result is not new
for this class, the results in this paper provide a unified approach for different
classes of Markov chains and also allow for other examples. As for the case of
absolutely regular Markov chains, we can obtain a quenched CLT for certain
functions of independent stationary Markov chains, where, only one of them is
interlaced mixing and the other one is arbitrary.

3 Proofs

The starting point of the proofs is a new annealed CLT for Markov chains (see
Theorem 1 in [26]):

Theorem 6 Let (X,,)nez and (Sp)n>1 be as defined in (1), (&,) is totally er-
godic, and assume that (5) holds. Then, the following limit exists

. 1
nlggo E”Sn _E(Sn|§07fn)||2 =0’ (13)

and

Sn - E(Sn|£07 gn)
Jn

This result has the following consequence: (Corollary 5, [26]):

= N(0,0?) as n — oo.

Theorem 7 Assume that (5) and (6) holds. Then (7) holds.
The main step of proving Theorem 1 is the following proposition:

Proposition 8 If in addition to the conditions of Theorem 7 we assume that
0 52
lim sup 5 <o? as. (14)

n—00 n

then the quenched CLT in (2) holds.

Proof of Proposition 8



The proof of the quenched CLT is also based on the new idea to use a
martingale approximation by conditioning with respect to past and future of the
chain. We shall use the notations E(X?|&,&,) = || X|[§,, and E°(X?) = || X|[3.

We start the proof by a decomposition in blocks of random variables, which
is intended to weaken the dependence. Fix m (m < n) a positive integer and
make consecutive blocks of size m. Denote by Y, the sum of variables in the
k’th block. Let u = u,(m) = [n/m]. So, for k =0,1,...,u — 1, we have

Y. = Yk(m) = (ka+1 + ...+ X(k+1)m)- (15)

Also denote
Y. =Y.(m) = (Xums1 + ... + Xp).

With this notations we write

1 1

1 u—1 1
JSulm) = = S Vi) = S,

In the first step of the proof we show that it is enough to prove that S,(m)//u
satisfies the quenched CLT. Let us show that the last block Y,(m)/+/n has a
negligible contribution to the convergence in distribution. With this aim, by
Theorem 3.1 in Billingsley [1], it is enough to show that

E° (W)zzE(J(Yi}?)Q—ma.s. as n — oo. (16)

Note that the definition of Y, (m) and the Cauchy-Schwartz inequality imply

that 2 0 2
go (Yum)\™ _ maxicjcn B (X5)
\/7’7 - n '

Now, fix M > 0 and note that, for each ¢ > 0 and n > M,

max; <;j<n B(X7?) <y S ENXZI(1X| > ey/n))
n - n
n 0 2 )
<2y Ej:lE (XGI(1X5] > 5\’M).
n

So, by Hopt’s pointwise ergodic theorem for Dunford—Schwartz operators (The-
orem 7.3 in Krengel [17])

max ] ’I’LEO X2
1<j<n B°(XF) < & 1 B(X2I(|Xo| > ev/M) as.

lim sup
n—oo n

and so, letting ¢ — 0 and M — oo we have

maxj<;<n EO(XJQ)

lim sup =0 a.s.

n—oo



By the above arguments, we have proved that (16) holds for any m, and
therefore S, //n has the same limiting distribution as Sy, /v/n under P°(w) for
almost all w. Since um/n = [n/m](m/n) — 1 as n — oo, by Slutsky’s theorem,
Sum/+/n has the same limiting distribution as S, (m)/+/u. Furthermore, from
(14) and (16) we easily derive that

) 1
lim sup —||S,(m)||3 <o as. (17)
u—oo U
In the second step of the proof we construct the approximating martingale and
mention its limiting properties.

For £k =0,1,...,u — 1, let us consider the random variables

RS
Jm

By the Markov property, conditioning by o (&xm,§(k+1)m) is equivalent to con-
ditioning by Fpm V FHEHD™ Note that Dy, is adapted to Flk+1ym = Gk Also
note that Gy = o(&;,7 < 0). Then we have F(D1|Gy) = 0 a.s. Since we assumed
that the shift T' of the sequence (&,)ncz is totally ergodic, we deduce that for
every m fixed, we have a stationary and ergodic sequence of square integrable
martingale differences (Dy, Gi)r>0-

Therefore, by the classical quenched central limit theorem for ergodic mar-
tingales, (see page 520 in Derriennic and Lin [14]) for every m, a fixed positive
integer, we have for almost all w € 2,

Dy, = D(m) = (Y — E(Yk|&rms Elt1ym))-

1
Vu
where N,, is a normally distributed random variable with mean 0 and variance

E(D§) = m™|Sm — E(Sml[€o, &m)[>-
Since by (6) and (13),

1 u—1 0
M, (m) = W Zk:o Dy(m) = Ny, as u — oo, under P (w),

M8 — E(Sml€o, &m)lI* = m ™ ([1Sml® — 1 E(Smléo, €m)|?) — 02, (18)
it follows that N, = N(0,02). So, for almost all w € Q,

1
Vu
In the last step of the proof we shall approximate S,,(m) by M, (m) in a suitable
way, which will allow us to get the quenched limiting distribution N(0,¢?) also
for S, (m)/+/u, completing the proof of this theorem. By using Theorem 3.2 in

Billingsley [2] and taking into account (19), in order to establish the quenched
CLT from Proposition 8, we have only to show that

M,(m) = N,, = N(0,0?) under P°(w). (19)

1
lim inf lim sup E°(—=S,(m) (m))? =0 as. (20)

1
- M,
m—oo y—oo Vu Va

10



Denote by

u—1

Zi = m V2 E(Yi|€ms Eer1ym) and Ry (m) = Zk:o Z. (21)
With this notation we have:
Su(m) = M, (m) + Ry(m). (22)

Let us show that M, (m) and R, (m) are orthogonal given Fy V F". We show
this property by analyzing the conditional expected value of all the terms of the
product M, (m)R,(m). For m <n, and X € 0(&;, m < j < n) it is convenient
to denote E™"(X) = E(X|F, VF™) = E(X|&n VEn). Note that if j < k, since
Fii+1)ym C Fkm, and taking into account the Markov chain properties, we have
that

E°™[(Yie — B(Ya|&omo et 1ym ) E(Y51Emo € 1ym)]
= EO" BTV — B(Yil&hm, Err1ym)) BV jms €G1ym)]
= EOMEUTI™ (Y, — B(Yi| Fn V FET™ ) E(Y]|€jm, € 1ym)] = 0 aus.

On the other hand, if j > k, since F/™ c F*+D™ then

EO™ (Y = E(Ye|€km» it 1ym ) E(Y51Ems §(+1)m)]
= B0 [E%™(Y;, — E(Yk|&km, Eer1ym)) E (Y1 jms EG+1ym)]
= EOM[EY™ (Y — E(Ye| Fiom V FEV™) E(Y1Ejm, 41ym)] = 0 as.

For j = k, by conditioning with respect to o ({km, &(k+1)m), We note that

E%™[(Yie = B(Ya|&kmo £kt 1ym)) B (Ve ks €k 1ym)] = 0 as.

Therefore M, (m) and R,(m) are indeed orthogonal under E%™ almost surely.
By using now the decomposition (22), and the fact that M, (m) and R, (m) are
orthogonal a.s. under E%", we obtain the identity

L1 m))

1 1
2= MR, + LI Ru(m)IR 2 (23

By conditioning with respect to o(£p) in (23), and taking into account the
properties of conditional expectation, we also have

1 2 1 2 1 2
- = —||M - .
C1Sulm)lE = L IIMu(m)|3 + | Ru (m)

By the definition of M, (m),

1 1 u—1 1 u—1 k
M (m)l§ = =D, E°Dim) =~ K" (Dj(m)).

Now, by using the fact that (&,,) is totally ergodic along with Hopf’s pointwise
ergodic theorem for Dunford—Schwartz operators,

11



1 1
Jim (M (m)| 8 = (1S — E(Smléo, &m)]* a5

So, by (18)

1
lim lim a||Mu(m)||g:(72.

m—0o0 u—0o0

By passing now to the limit in (23) and using (17) we obtain

1 1
o? > lim sup ;||S’u(m)||g > ¢% 4 lim sup lim sup a||Ru(m)||(2) a.s.

uUu—00 m—00 u—00

Therefore,

1
lim lim sup —||R,(m)||Z =0 as.,
m— oo u

U— 00

which implies (20), and also the result follows. O

In the next lemma we mention a property of the limit of E°(S2)/n. The idea
of proof is borrowed from Dedecker and Merlevede [11], Subsection (3.2), where
it was used in another context.

Lemma 9 Assume that 1
EEO(S,%) —mnin L.

Then 1 is measurable with respect to the invariant sigma field.

Proof. Recall the definition of shift 7. Below, we denote by TX = X oT~!.
Clearly, n is Fp measurable. Then

1
E)EO (nS,%—n)‘ — 0 asn — oo. (24)
Therefore, with the notation E'(-) = E(-|F),

1
E|E! (TSZ—Tn) — 0 asn— oo.
n

Since Fy C F1, by the properties of conditional expectation, this implies

E|E° (iTSZ—Tn) — 0 as n — oo.

But, since the condition of this lemma implies that E(S2)/n is bounded,
RIS~ TS < LE|(S3 ~ (S~ X1+ Xo)?

< LB|(X) ~ Xui)(25 — X+ X))

4
< EHXOH “(1Snll + [1Xo[]) — 0 as n — oco.

12



So, by combining the last two limits, we also have
o1l
E\E° (=5, —-Tn)| —0asn — oo.
n

By combining this limit with (24) we obtain
Bl (n—E°(Tn))| =0,

implying that
n=E"(Tn) as.

It remains to apply Lemma 3 from Dedecker and Merlevede [11], giving that
n=7Tnas. O

Proof of Theorem 1

The first part in Theorem 1 is given in Theorem 7, so we have to prove only
the second part of this theorem.

We argue first that (a) implies (c).

Since we assume (a) the quenched CLT holds by Proposition 8. Note that,
by Theorem 25.11 in Billingsley [2], the quenched CLT implies that

o? < lim ni£>l£o E°(S8%)/n as.,
which combined with (a) gives EY(S2)/n — o2 a.s. Now, because we have the
quenched CLT and EY(S2)/n — o2 a.s., by Theorem 3.6 in Billingsley [2], we
have the uniform integrability of (S2/n), under P°(w) for almost all w.

Clearly (c) implies (b) by the convergence of the moments in the CLT in
Theorem 3.5 in Billingsley [2]. Actually (c) implies E°(S2)/n — o2 a.s.

It remains to show that (b) implies (a).

We start from (b), which is: for some random variable n, E°(S2)/n — n a.s.
By Theorem 7 the annealed CLT together with the convergence of the second
moments hold. Furthermore, by Theorem 3.6 Billingsley [2] we have that S2 /n
is uniformly integrable. This implies that EY(S2)/n is also uniformly integrable,
which, together with (b), implies the convergence E°(S2)/n — nin L*(Q, F, P).
By Lemma 9, the limit of E°(S2)/n is measurable with respect to the trivial
invariant sigma field, which means that it is constant. Because we assumed that
E(S2)/n — o? it follows that n = o2. O

Proof of Corollary 3
The fact that (€ )rez is totally ergodic follows by Proposition 2.12 in the Vol.

1 of Bradley [5]. Then, since we assume that (5’721 / n) is uniformly integrable, by
Lemma 4 in [28] we deduce that (6) holds. The result follows by Theorem 1. O
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We move now to prove Theorem 4. Relevant for the proof is the weak L,
space, define by

LP* = { f measurable, sup \’P(|f| > )\) < oco}.
A>0

Denote the norm in L% by ||-||...- Below we also use the notation Sy, = Sox—Sk.
The main step for proving Theorem 4 is the following upper bound concern-
ing E° (52) /n.

Lemma 10 For any stationary and ergodic sequence (1), not necessarily Markov,
define (V) by Vi, = g(nn) and S, = > p_, Vi. Assume Vy is in Ly and
is centered at expectation. Let IC, = o(n;,j < n) and keep the notation
E"(X) = E(X|K,). Then we have the following bound

L

E>0 2k‘E|E0 (SQkSQk) | .

1
—E(S2) |1, < 6E(V]) + 12
[Isup B (S3) lhw < 6E(VE) +12)
Proof. The proof follows the traditional technique of dyadic recurrence,
initiated by Ibragimov [18] and further developed in [23], [5], [24], [8], among
many others.
Let 2"~ < n < 2" and write its binary expansion:

r—1
n:22kak where a,_1 =1 and a;, € {0,1} for k=0,...,r —2.
k=0

Notice that

r—1 g 4
S, = E a; Ty where Thi = E X, n; = E a;2’ and n_; =0.
i=0 i=ni_1+1 §=0

By the triangle inequality, (recall that Sp = 0)

r—1 r—1
(E°(SENY2 =11Snllo = 11D aiE*(Sn, = Sn_)llo < > [1Sn, = S,y llo-
=0 1=0

Also, by stationarity and because n; — n;_1 is either 0 or 2¢, we obtain

EO(STM, - Sn171)2 = EO(E((STM - Sn171)2|lcn¢71)) = Kniil(EO(szLi—ni,l))

< K" (EY(S%))
It follows that
1 1= ’ 1
“E°(S2) <~ Kot (B(S2))]Y? ) < 6sup o [K70 (E°(S2))] -
Lot < (Sl ()] <o 00 (2]
(25)

We fix ¢ > 1 and evaluate the term in the right hand side of (25).

14



For each k and j, denote Sy or = Sak, Sjor = Sjor — S(j_1)2x. Clearly,
557 - Sizi—l + 53727‘,—1 + 2S1,2i7152’2i71 - 512,21'—2 + SS,Qi—2 + S§,2i—2 + 55,21:—2
+ 2 (81’217252’2172 + 53’21'72 54’2172 + SLQi—l 52521'71) .

We continue the recurrence and get the representation:

2—]91

S2, = Z Vung OZ Soj_1,2%S2j.2%-

Denoting by -
gk = EO (SQkSQk) )
note that, by using the definition of the conditional expectation K,
1yok+1
E° (523‘71,2’&'52;‘,2’@) = EO(E(S2j—1,2kS2j,2k|K(2j72)2k)) = KU-1? (9x)-

By the above considerations,

1 2 2tk _q (j—1)2k+1 1
SRS = 5 Y Ry, (S, K 509

So,

1 2!
21 —

- 1 2=k 1 yokt 1,
+2Zk:0 2i7k (Zj—l K(j y ) <2k;K 1(gk))

So, with the notation

s%p% <Zj_01 Kﬂk“(')) = M (),

%K"H (E°(52)) = KT (K (V)

we obtain
Km H(B0S3) < suwp Z K9 (K™ V) 423 M (K7 ()]

By using now Hopf’s ergodic theorem (see, e.g., Krengel [17], Lemma 6.1, page
51, and Corollary 3.8, page 131),

Mnq— gk 1 Mq— 1
M ([ (5)]) o < 52 1K™ gelly < o llgwl.

and also
le—n ., .
lsup =377 KT (K (V) < BUK™ V) = E(V).
Therefore,

1 g 1 s
[[sup 5 K™= (B(S5)) llvw < BOVE) +23, _ op BIE” (S8 ) |

15



To obtain the conclusion of this lemma we combine this last inequality with
(25). O

Based on this lemma we shall provide another bound needed for the proof
of Theorem 4.

Lemma 11 Assume in addition to the conditions of Lemma 10 that the se-
quence (1) has the Markov property. Then, for some universal constant C,

1 1
H Slvlzp EEO (5721) ||1,w < CE(‘/OQ) + Czn21 ﬁE (E(Sn|770777n))2 : (26)

Proof. This bound follows from Lemma 10. We start by noting that, by the
properties of conditional expectations and the Markov property,

E (S95S5k[10) = E (Sox E(Sar|nan)no) = E (E(Sax E(Sax |19x) 110, 725 )00
= E (E(Sax[no, mor ) E(Sax |12t ) o) -
So, by the Cauchy-Schwartz inequality,
E|E (S2k§2k|770) | < E|E(S2k|770a772k)E('§2k|772k)|
< 3B (B(Sulmo, m2))* + 3B (B(Sa, )’
< B (B(Sy|no,m2))” -

Therefore

1 - 1 2
D oo e BIE (S S2)lmo) | <D0, or B (B(Sarlno, ne))”

As proven in Lemmas 12 and 13 in [27], for some positive constant c,

. 1
> oo 3o B Bl ) ¢ 37  — E(E(Salno,m))*

It remains to apply Lemma 10 to obtain the desired result. OJ
Proof of Theorem 4

The CLT and the convergence of moments under condition (10) are known
(see Corollary 9 in [27]). The proof of the quenched CLT is based on the proof
of Proposition 8 combined with Lemma 11.

For m fixed, we apply Lemma 11 with nr1 = (&em,§+1)m) and the se-
quence Vpy1(m) = E(Ye|&em, Ee41)ym)/v/m where (Yy)sez is the extension to a
stationary sequence of Y defined in (15). It is easy to see that, by using the
Markov property and the properties of the conditional expectation, we obtain
for k>0

k+1
E(Zj:1 Vilno, me+1) = —=E(Skm€o, Ekm) + Vis1-

m

ﬂH
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It follows that
k+1 2 2
||E(Zj:1 Vilno, me1)|I* < E"E(Skmmmfkm)”z + E|\E(Sm|§o,§m)||2~

So, for R, (m) defined in (21), R,(m) = 3_7_, V;(m), we obtain by Lemma 11,
for some Cy > 0,

1 oo 1
lsup o E°CR (m) [0 < C1 D" 5= BB Sl i)

By the Cauchy-Schwartz inequality, and the properties of the conditional ex-
pectation,

1 1
oz P (SkmlSo,6m))?* < 15 E(E(Skl60, &)
and also
S i BB Sl ) € 30| 15 (S, 6))° < .

Since (10) implies that lim, ... E(E(S,|0,£0))?/n = 0, for any k fixed, we
have that

lim_ B (B (S o, Gen))” = 0.

m—oo M,

So, by the dominated convergence theorem for discrete measures,

. 0 1
Jim 37 g BESkn€o: Gun))* = 0.

It follows that

1
lim_ || sup —E°(R5 (m))l[1,0 = 0.

By Theorem 4.1 in Billingsley [1], note that the Fatou Lemma also holds in the
space L% . Therefore,

1 1
[|lim inf suprO(Ri(m))Hl,wglim inf ||supr0(R3(m))||1,w:0.
m—oo 4 U m—oo u U

and so 1
lim inf sup —E°(R%(m)) =0 a.s.

m—oo 4 U
This proves that the martingale decomposition in (20) holds. The proof is now
ended as in the proof of Proposition 8. [
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