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Abstract. In this paper we give su¢ cient conditions for the almost sure
central limit theorem started at a point, known under the name of quenched
central limit theorem. This is achieved by using a new idea of conditioning with
respect to both the past and the future of the Markov chain. As applications
we provide a new su¢ cient projective condition for the quenched CLT.

1 Introduction and the main result

We assume that (�n)n2Z is a stationary Markov chain, de�ned on a probability
space (
;F ; P ) with values in a Polish space (S;A). Denote by Fn = �(�k; k �
n) and by Fn = �(�k; k � n). The marginal distribution on A is denoted by
�(A) = P(�0 2 A). We shall construct the Markov chain in a canonical way
on SZ from a kernel Q(x;A), and we assume that an invariant distribution �
exists.

Next, let L20(�) be the set of measurable functions on S such that
R
f2d� <

1 and
R
fd� = 0: For a function f 2 L20(�) let

Xi = f(�i); Sn =
Xn

i=1
Xi: (1)

Denote the regular conditional probability on F , with respect to F0 by

P 0(�)(!) = P (�jF0)(!);

and the conditional expectation, E0(X) = E(XjF0): By the Markov property,
if A 2 F0 = �(�i; i � 0); we have P 0(A) = P (Aj�0), and for X measurable with
respect to F0; E0(X) = E(Xj�0): We are studying the quenched central limit
theorem for Markov chains, which can be stated in two equivalent ways: For
P -almost all ! 2 


P 0(Sn=
p
n � t)(!)! P (N(0; �2) � t) for any t; (2)

where N(0; �2) is a normal random variable with mean 0 and variance �2.

1

Journal of Theoretical Probability, May 2023 



Another formulation is known under the name of the CLT started at a point.
Let P x be the probability associated to the Markov chain started from x 2 S
and Ex be the corresponding conditional expectation. Then, for �-almost every
x 2 S,

P x(Sn=
p
n � t)! P (N(0; �2) � t) for any t: (3)

Clearly the quenched CLT implies that for any t

P (Sn=
p
n � t)! P (N(0; �2) � t); (4)

where N(0; �2) is a normal random variable with mean 0 and variance �2. This
is called annealed CLT. On the other hand, there are numerous examples of
processes satisfying the annealed CLT but failing to satisfy the quenched CLT.
Some examples of this kind have been constructed by Volný and Woodroofe
([36], [38]). Therefore, some additional conditions are needed in order for the
central limit theorem to hold in the quenched form.

The limit theorems started at a point are often encountered in evolutions in
random media and they are of considerable importance in statistical mechanics.
They are also useful for analyzing Markov chain Monte Carlo algorithms. Due
to its importance, the problem was intensively studied in the literature. Two
of the most in�uential papers are due to Derriennic and Lin ([14], [15]), which
opened the way for many further results we shall mention throughout the paper.
For a survey on quenched invariance principles under projective conditions we
direct to [25].

The di¢ culty of obtaining quenched limit theorems consists in the fact that
a Markov chain started at a point is no longer stationary. This is the reason
this problem is very di¢ cult to solve and there are still many open problems
and long standing conjectures to be settled. Since stationary martingales satisfy
the quenched CLT, the best technique to solve such a problem is to obtain a
martingale approximation with a suitable rest. This technique was successfully
used to get quenched CLT�s for various classes of random variables in numerous
papers, [14], [15], [39], [7], [36], [37], [21], [8], [12], [3], among others. The novelty
here is that we use a martingale construction and approximation based on a new
idea of conditioning with respect to both the past and the future of the Markov
chain. This idea was introduced in [26], and [27]. In the annealed setting, if a
stationary and ergodic Markov chain satis�es E(S2n)=n is convergent, then the
CLT holds (pending only a random centering) (see [26]). By using a similar
martingale construction we obtain in this paper a new almost sure martingale
approximation under P x; for ��almost all starting points. This approximation
will lead to the quenched CLT under the main condition that Ex(S2n)=n is
convergent ��almost surely. As application, we point out a new class of Markov
chains satisfying the quenched CLT, de�ned by using projective conditions. In
de�ning this class no assumption of irreducibility nor of aperiodicity is imposed.
Under the additional assumptions that the Markov chain is irreducible, aperiodic
and positively recurrent, Chen (Proposition 3.1., [6]) showed that if the CLT
holds for the stationary Markov chain then the quenched CLT holds.
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Here are some notations we shall use throughout the paper. We denote by
jjXjj the norm in L2(
;F ; P ). Unless otherwise speci�ed, we shall assume the
total ergodicity of the shift T of the sequence (�n)n2Z with respect to P; i.e. Tm

is ergodic for every m � 1. For the de�nition of the ergodicity of the shift we
direct the reader to the subsection "A return to Ergodic Theory" in Billingsley
[1] p. 494. Let us consider the operator Q induced by the kernel Q(x;A) on
bounded measurable functions on (S;A) de�ned by Qf(x) =

R
S
f(y)Q(x; dy).

By using Corollary 5 p. 97 in Rosenblatt [31], the shift of (�n)n2Z is totally
ergodic with respect to P if and only if the powers Qm are ergodic with respect
to � for all natural m (i.e. Qmf = f for f bounded on (S;A) implies f is
constant ��a.e.). For more information on total ergodicity, we refer to the
survey paper by Quas [22].

Throughout the paper ) denotes the convergence in distribution. By the
notation a.s. we understand P -almost surely. We shall also use the notation K
for the conditional expectation operator on L1(P ), namely

K(X) = E(X � T�1j�0); Kn(X) = K(Kn�1(X)) = E(E(X � T�n)j�0):

The problem we address in Theorem 1 is to provide necessary and su¢ cient
conditions for a quenched CLT for a class of Markov chains.

Theorem 1 Assume (Xn) and (Sn) are de�ned by (1),

lim sup
n!1

E(S2n)

n
<1 (5)

and
lim
n!1

1

n
jjE(Snj�0; �n)jj2 = 0: (6)

Then there is � � 0 such that

Snp
n
) N(0; �2) and

E(S2n)

n
! �2: (7)

Furthermore, the following are equivalent:

(a) lim sup
n!1

E0
�
S2n
�

n
< �2 a.s.

(b)
E0(S2n)

n
converges a.s.

(c) The quenched CLT in (2) holds and S2n=n is uniformly integrable under
P 0(!) for almost all !:

Remark 2 Note that in condition (b) we do not have to specify the almost sure
limit of E0(S2n)=n: However, under our conditions it will always be �2. In the
sequel, when we say that the quenched limit theorem holds we understand that
(c) of Theorem 1 holds.
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Relevant for the next Corollary is the notion of two-sided tail sigma �eld.
We de�ne the two-sided tail sigma �eld by

Td = \n�1(F�n _ Fn):

where F�n and Fn are completed with all sets of probability 0: We say that Td
is trivial if for any A 2 Td we have P (A) = 0 or 1.

Corollary 3 Assume (Xn) and (Sn) are de�ned by (1), Td is trivial and S2n=n
is uniformly integrable. Then the Markov chain is totally ergodic, (7) holds and
in addition (a), (b), and (c) of Theorem 1 are equivalent.

Examples of stationary processes with trivial two-sided tail sigma �eld in-
clude absolutely regular Markov chains and interlaced mixing Markov chains.
We refer to Subsection 2.5 in Bradley [4] for a survey and Bradley [5] for the
proofs of the results in that survey. The de�nitions for these classes are also
included in Subsection 2.1 of this paper.

In the next section we shall point out a su¢ cient condition for the quenched
CLT by using projective criteria.

2 A su¢ cient condition for the quenched CLT

In this section we give a new su¢ cient condition for the quenched CLT based
on the proof of Theorem 1. This condition arises in a computation of E0

�
S2n
�

by dyadic expansion.
We recall that the sequences (Xn) and (Sn) are de�ned by (1).
As shown in Theorem 2.7 in Cuny and Merlevède [8], it is known that the

quenched CLT holds under a condition introduced by Maxwell and Woodroofe
[20], namely X

n�1

jjE(Snj�0)jj
n3=2

<1: (8)

There are examples of Markov chains pointing out that, in general, condition
(8) is as sharp as possible in some sense. Peligrad and Utev [24] constructed
an example showing that for any sequence of positive constants (an); an ! 0;
there exists a stationary Markov chain such thatX

n�1
an
jjE(Snj�0)jj

n3=2
<1

but Sn=
p
n is not stochastically bounded. This example and other counterex-

amples provided by Volný [35], Dedecker [13] and Cuny and Lin [9], show that,
in general, condition X

n�1

jjE(Snj�0)jj2
n2

<1 (9)
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does not assure that (Sn=
p
n) is stochastically bounded. However, Corollary

3.5 in [27] contains a CLT under a reinforced form of (9). We provide next a
quenched form of that result.

Theorem 4 The quenched CLT holds under the conditionX
n�1

jjE(Snj�0; �n)jj2
n2

<1: (10)

As a corollary to Theorem 4, by Lemma 14 in [27] we have the following
su¢ cient condition for (10) in terms of individual summands:

Corollary 5 The quenched CLT holds under the conditionX
k�1

jjE(X0j��k; �k)jj2 <1: (11)

We end this section by mentioning a conjecture due to Kipnis and Varadhan
[19], which is unsolved. The conjecture asks if the quenched CLT and its func-
tional form hold for stationary reversible and ergodic Markov chains (Q = Q�

with Q� the adjoint of Q) satisfying (9). For reversible Markov chains (9) is an
equivalent formulation of E(S2n)=n converges. This problem was investigated in
several papers, [14], [7] where the quenched CLT for reversible Markov chains
was obtained under various reinforcements of (9). Our condition (10) provides
another reinforcement of (9), which in particular, gives a quenched CLT for
reversible Markov chains.

2.1 Classes of stationary Markov Chains

There are several classes on stationary Markov chains for which jjE(X0j��k; �k)jj
is easy to estimate:

Absolutely regular Markov chains.

For a stationary Markov chain � = (�k)k2Z with values in a separable Banach
space endowed with the Borel sigma algebra B, the coe¢ cient of absolutely
regularity is de�ned by (see Proposition 3.22 in Bradley [5])

�n = �n(�) =�(�0; �n) =E

�
sup
A2B

jP(�n 2 Aj�0)� P(�0 2 A)j
�
;

where B denotes the Borel sigma �led.
Equivalently, (see Corollary 3.30 in Bradley [5])

�n = �n(�) =�(�0; �n) = sup
C2B2

jP ((�0; �n)2C)� P ((�0; ��n)2C)j;

where (�0; ��n) are independent and identically distributed. This coe¢ cient was
introduced by Volkonskii and Rozanov [34] and was attributed there to Kol-
mogorov. If �n ! 0; the Markov chain is called absolutely regular. Let us men-
tion that there are numerous examples of stationary absolutely regular Markov
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independent among them. Then (�i; �i)i2Z is also a stationary Markov chain.
Let f and g be two bounded functions, jf j � C1 a.s. and ; jgj � C2 a.s.

De�ne Yi = f(�i)�E(f(�i)) and Zi = g(�i)�E(g(�i)), and set Xi = Yi �Zi:
Assume that

P
n�1 �n(�) <1: Then, by independence,

jjE(X0j(�n; �n); (��n; ��n))jj = jjE(Y0j��n; �n)E(Z0j��n; �n)jj2

� 6C21C22�n(�);

and, from Corollary 5, the quenched CLT follows for (Xi)i2Z.
As a particular example of this kind let us consider two stationary Markov

chains � = (�i)i2Z and � = (�i)i2Z , with countable state space f0; 1; 2; :::g and
independent among them. For the transition probabilities of (�i)i2Z we take for

i � 1; P (�1 = i � 1j�0 = i) = 1; pi = P (�1 = ij�0 = 0) =
�
2i3(log(i+ 1))2

��1
,

and p0 = P (�1 = 0j�0 = 0) = 1� P (�1 � 1j�0 = 0):
From Theorem 5 in Davydov (1973), we know that the ��mixing coe¢ cients

for � satisfy

�n(�) � c
1

n(log(n+ 1))2
;

where c is a positive constant. Construct the sequences (Yi)i2Z; (Zi)i2Z; and
(Xi)i2Z as above. For this example,

jjE(Y0Z0j(�n; �n); (��n; ��n))jj � cC21C22
1

n(log(n+ 1))2
;

and Corollary 5 applies to (Xi)i2Z. Such examples cannot be treated by the
results available so far in the literature.

Interlaced mixing Markov chains and their perturbations.

Another example where our results apply is the class of interlaced mixing
Markov chains. Let A;B be two sub �-algebras of F . De�ne the maximal
coe¢ cient of correlation

�(A;B) = sup
f2L20(A); g2L20(B)

jE(fg)j
jjf jj � jjgjj ,

where L20(A) (L20(B)) is the space of random variables that are A�measurable
(respectively B�measurable), zero mean and square integrable. For a sequence
of random variables, (�k)k2Z, we de�ne

��n = sup �(�(�i; i 2 S); �(�j ; j 2 T )),

where the supremum is taken over all pairs of disjoint sets, T and S or R such
thatminfjt�sj : t 2 T; s 2 Sg � n:We call the sequence ���mixing if ��n ! 0 as
n!1: The ��-mixing condition goes back to Stein [33] and to Rosenblatt [32].
It is well-known that ���mixing implies total ergodicity. Also, there are known
examples (see Example 7.16 in Bradley, [5]) of ���mixing sequences which are
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not absolutely regular. Let X0 as in Corollary 5. By the de�nition of ��n we
immediately have

jjE(X0j��n; �n)jj2 = jEX0E(X0j��n; �n)j � ��njjX0jj � jjE(X0j�0; �n)jj;

and so
jjE(X0j��n; �n)jj � ��njjX0jj:

Because for a ���mixing Markov chain, ��n ! 0 at least exponentially fast,
(see Theorem 7.5 in Bradley [5]) by Corollary 5 we have that the quenched CLT
holds for stationary ���mixing Markov chains. This result and further reaching
results can be found in Cuny and Merlevède [8]. Although this result is not new
for this class, the results in this paper provide a uni�ed approach for di¤erent
classes of Markov chains and also allow for other examples. As for the case of
absolutely regular Markov chains, we can obtain a quenched CLT for certain
functions of independent stationary Markov chains, where, only one of them is
interlaced mixing and the other one is arbitrary.

3 Proofs

The starting point of the proofs is a new annealed CLT for Markov chains (see
Theorem 1 in [26]):

Theorem 6 Let (Xn)n2Z and (Sn)n�1 be as de�ned in (1), (�n) is totally er-
godic, and assume that (5) holds. Then, the following limit exists

lim
n!1

1

n
jjSn � E(Snj�0; �n)jj2 = �2 (13)

and
Sn � E(Snj�0; �n)p

n
) N(0; �2) as n!1:

This result has the following consequence: (Corollary 5, [26]):

Theorem 7 Assume that (5) and (6) holds. Then (7) holds.

The main step of proving Theorem 1 is the following proposition:

Proposition 8 If in addition to the conditions of Theorem 7 we assume that

lim sup
n!1

E0(S2n)

n
� �2 a.s. (14)

then the quenched CLT in (2) holds.

Proof of Proposition 8
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The proof of the quenched CLT is also based on the new idea to use a
martingale approximation by conditioning with respect to past and future of the
chain. We shall use the notations E(X2j�0; �n) = jjXjj20;n and E0(X2) = jjXjj20:

We start the proof by a decomposition in blocks of random variables, which
is intended to weaken the dependence. Fix m (m < n) a positive integer and
make consecutive blocks of size m. Denote by Yk the sum of variables in the
k�th block. Let u = un(m) = [n=m]: So, for k = 0; 1; :::; u� 1; we have

Yk = Yk(m) = (Xkm+1 + :::+X(k+1)m): (15)

Also denote
Yu = Yu(m) = (Xum+1 + :::+Xn):

With this notations we write

1p
u
Su(m) :=

1p
u

Xu�1

k=0

1p
m
Yk(m) =

1p
um

Smu:

In the �rst step of the proof we show that it is enough to prove that Su(m)=
p
u

satis�es the quenched CLT. Let us show that the last block Yu(m)=
p
n has a

negligible contribution to the convergence in distribution. With this aim, by
Theorem 3.1 in Billingsley [1], it is enough to show that

E0
�
Sn � Smup

n

�2
= E0

�
Yu(m)p
n

�2
! 0 a.s. as n!1: (16)

Note that the de�nition of Yu(m) and the Cauchy-Schwartz inequality imply
that

E0
�
Yu(m)p
n

�2
� m

max1�j�nE
0(X2

j )

n
:

Now, �x M > 0 and note that, for each " > 0 and n > M;

max1�j�nE
0(X2

j )

n
� "2 +

Pn
j=1E

0(X2
j I(jXj j > "

p
n))

n

� "2 +
Pn

j=1E
0(X2

j I(jXj j > "
p
M)

n
:

So, by Hopf�s pointwise ergodic theorem for Dunford�Schwartz operators (The-
orem 7.3 in Krengel [17])

lim sup
n!1

max1�j�nE
0(X2

j )

n
� "2 + E(X2

0I(jX0j > "
p
M) a.s.

and so, letting "! 0 and M !1 we have

lim sup
n!1

max1�j�nE
0(X2

j )

n
= 0 a.s.
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By the above arguments, we have proved that (16) holds for any m, and
therefore Sn=

p
n has the same limiting distribution as Sum=

p
n under P 0(!) for

almost all !. Since um=n = [n=m](m=n)! 1 as n!1; by Slutsky�s theorem,
Sum=

p
n has the same limiting distribution as Su(m)=

p
u: Furthermore, from

(14) and (16) we easily derive that

lim sup
u!1

1

u
jjSu(m)jj20 � �2 a.s. (17)

In the second step of the proof we construct the approximating martingale and
mention its limiting properties.

For k = 0; 1; :::; u� 1; let us consider the random variables

Dk = Dk(m) =
1p
m
(Yk � E(Ykj�km; �(k+1)m)):

By the Markov property, conditioning by �(�km; �(k+1)m) is equivalent to con-
ditioning by Fkm _ F (k+1)m: Note that Dk is adapted to F(k+1)m = Gk: Also
note that G0 = �(�i; i � 0): Then we have E(D1jG0) = 0 a.s. Since we assumed
that the shift T of the sequence (�n)n2Z is totally ergodic, we deduce that for
every m �xed, we have a stationary and ergodic sequence of square integrable
martingale di¤erences (Dk;Gk)k�0.

Therefore, by the classical quenched central limit theorem for ergodic mar-
tingales, (see page 520 in Derriennic and Lin [14]) for every m; a �xed positive
integer, we have for almost all ! 2 
,

1p
u
Mu(m) :=

1p
u

Xu�1

k=0
Dk(m)) Nm as u!1; under P 0(!),

where Nm is a normally distributed random variable with mean 0 and variance
E(D2

0) = m
�1jjSm � E(Smj�0; �m)jj2.

Since by (6) and (13),

m�1jjSm � E(Smj�0; �m)jj2 = m�1(jjSmjj2 � jjE(Smj�0; �m)jj2)! �2; (18)

it follows that Nm ) N(0; �2). So, for almost all ! 2 
;

1p
u
Mu(m)) Nm ) N(0; �2) under P 0(!). (19)

In the last step of the proof we shall approximate Su(m) byMu(m) in a suitable
way, which will allow us to get the quenched limiting distribution N(0; �2) also
for Su(m)=

p
u; completing the proof of this theorem. By using Theorem 3.2 in

Billingsley [2] and taking into account (19), in order to establish the quenched
CLT from Proposition 8, we have only to show that

lim inf
m!1

lim sup
u!1

E0(
1p
u
Su(m)�

1p
u
Mu(m))

2 = 0 a.s. (20)
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Denote by

Zk = m
�1=2E(Ykj�km; �(k+1)m) and Ru(m) =

Xu�1

k=0
Zk: (21)

With this notation we have:

Su(m) =Mu(m) +Ru(m): (22)

Let us show that Mu(m) and Ru(m) are orthogonal given F0 _ Fn. We show
this property by analyzing the conditional expected value of all the terms of the
product Mu(m)Ru(m). For m � n; and X 2 �(�j ; m � j � n) it is convenient
to denote Em;n(X) = E(XjFm_Fn) = E(Xj�m_ �n). Note that if j < k; since
F(j+1)m � Fkm, and taking into account the Markov chain properties, we have
that

E0;n[(Yk � E(Ykj�km; �(k+1)m))E(Yj j�jm; �(j+1)m)]
= E0;n[E(j+1)m;n(Yk � E(Ykj�km; �(k+1)m))E(Yj j�jm; �(j+1)m)]
= E0;n[E(j+1)m;n(Yk � E(YkjFkm _ F (k+1)m))E(Yj j�jm; �(j+1)m)] = 0 a.s.

On the other hand, if j > k; since Fjm � F (k+1)m then

E0;n[(Yk � E(Ykj�km; �(k+1)m))E(Yj j�jm; �(j+1)m)]
= E0;n[E0;jm(Yk � E(Ykj�km; �(k+1)m))E(Yj j�jm; �(j+1)m)]
= E0;n[E0;jm(Yk � E(YkjFkm _ F (k+1)m))E(Yj j�jm; �(j+1)m)] = 0 a.s.

For j = k; by conditioning with respect to �(�km; �(k+1)m); we note that

E0;n[(Yk � E(Ykj�km; �(k+1)m))E(Ykj�km; �(k+1)m)] = 0 a.s.

Therefore Mu(m) and Ru(m) are indeed orthogonal under E0;n almost surely.
By using now the decomposition (22), and the fact that Mu(m) and Ru(m) are
orthogonal a.s. under E0;n, we obtain the identity

1

u
jjSu(m))jj20;n =

1

u
jjMn(m)jj20;n +

1

u
jjRu(m)jj20;n a.s. (23)

By conditioning with respect to �(�0) in (23), and taking into account the
properties of conditional expectation, we also have

1

u
jjSu(m)jj20 =

1

u
jjMn(m)jj20 +

1

u
jjRu(m)jj20.

By the de�nition of Mu(m),

1

u
jjMn(m)jj20 =

1

u

Xu�1

k=0
E0D2

k(m) =
1

u

Xu�1

k=0
Kk
�
D2
0(m)

�
.

Now, by using the fact that (�n) is totally ergodic along with Hopf�s pointwise
ergodic theorem for Dunford�Schwartz operators,
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lim
u!1

1

u
jjMu(m)jj20 =

1

m
jjSm � E(Smj�0; �m)jj2 a.s.

So, by (18)

lim
m!1

lim
u!1

1

u
jjMu(m)jj20 = �2:

By passing now to the limit in (23) and using (17) we obtain

�2 � lim sup
u!1

1

u
jjSu(m)jj20 � �2 + lim sup

m!1
lim sup

u!1

1

u
jjRu(m)jj20 a.s.

Therefore,

lim
m!1

lim sup
u!1

1

u
jjRu(m)jj20 = 0 a.s.,

which implies (20), and also the result follows. �

In the next lemma we mention a property of the limit of E0(S2n)=n: The idea
of proof is borrowed from Dedecker and Merlevède [11], Subsection (3.2), where
it was used in another context.

Lemma 9 Assume that
1

n
E0(S2n)! � in L1:

Then � is measurable with respect to the invariant sigma �eld.

Proof. Recall the de�nition of shift T . Below, we denote by TX = X �T�1:
Clearly, � is F0 measurable. Then

E

����E0� 1nS2n � �
�����! 0 as n!1: (24)

Therefore, with the notation E1(�) = E(�jF1);

E

����E1� 1nTS2n � T�
�����! 0 as n!1:

Since F0 � F1; by the properties of conditional expectation, this implies

E

����E0� 1nTS2n � T�
�����! 0 as n!1:

But, since the condition of this lemma implies that E(S2n)=n is bounded,

1

n
EjS2n � TS2nj �

1

n
Ej(S2n � (Sn �X1 +Xn+1)2j

� 1

n
Ej(X1 �Xn+1)(2Sn �X1 +Xn+1)j

� 4

n
jjX0jj � (jjSnjj+ jjX0jj)! 0 as n!1:
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So, by combining the last two limits, we also have

E

����E0� 1nS2n � T�
�����! 0 as n!1:

By combining this limit with (24) we obtain

Ej
�
� � E0 (T�)

�
j = 0;

implying that
� = E0 (T�) a.s.

It remains to apply Lemma 3 from Dedecker and Merlevède [11], giving that
� = T� a.s. �

Proof of Theorem 1

The �rst part in Theorem 1 is given in Theorem 7, so we have to prove only
the second part of this theorem.

We argue �rst that (a) implies (c).
Since we assume (a) the quenched CLT holds by Proposition 8. Note that,

by Theorem 25.11 in Billingsley [2], the quenched CLT implies that

�2 � lim inf
n!1

E0(S2n)=n a.s.,

which combined with (a) gives E0(S2n)=n ! �2 a.s. Now, because we have the
quenched CLT and E0(S2n)=n ! �2 a.s., by Theorem 3.6 in Billingsley [2], we
have the uniform integrability of (S2n=n)n under P 0(!) for almost all !:

Clearly (c) implies (b) by the convergence of the moments in the CLT in
Theorem 3.5 in Billingsley [2]. Actually (c) implies E0(S2n)=n! �2 a.s.

It remains to show that (b) implies (a).
We start from (b), which is: for some random variable �, E0(S2n)=n! � a.s.

By Theorem 7 the annealed CLT together with the convergence of the second
moments hold. Furthermore, by Theorem 3.6 Billingsley [2] we have that S2n=n
is uniformly integrable. This implies that E0(S2n)=n is also uniformly integrable,
which, together with (b), implies the convergence E0(S2n)=n! � in L1(
;F ; P ):
By Lemma 9, the limit of E0(S2n)=n is measurable with respect to the trivial
invariant sigma �eld, which means that it is constant. Because we assumed that
E(S2n)=n! �2 it follows that � = �2: �

Proof of Corollary 3

The fact that (�k)k2Z is totally ergodic follows by Proposition 2.12 in the Vol.
1 of Bradley [5]. Then, since we assume that

�
S2n=n

�
is uniformly integrable, by

Lemma 4 in [28] we deduce that (6) holds. The result follows by Theorem 1. �

13







To obtain the conclusion of this lemma we combine this last inequality with
(25). �

Based on this lemma we shall provide another bound needed for the proof
of Theorem 4.

Lemma 11 Assume in addition to the conditions of Lemma 10 that the se-
quence (�n) has the Markov property. Then, for some universal constant C,

jj sup
n

1

n
E0
�
S2n
�
jj1;w � CE(V 20 ) + C

X
n�1

1

n2
E (E(Snj�0; �n))2 . (26)

Proof. This bound follows from Lemma 10. We start by noting that, by the
properties of conditional expectations and the Markov property,

E
�
S2k �S2k j�0

�
= E

�
S2kE( �S2k j�2k)j�0

�
= E

�
E(S2kE( �S2k j�2k)j�0; �2k)j�0

�
= E

�
E(S2k j�0; �2k)E( �S2k j�2k)j�0

�
:

So, by the Cauchy-Schwartz inequality,

EjE
�
S2k �S2k j�0

�
j � EjE(S2k j�0; �2k)E( �S2k j�2k)j

� 1

2
E (E(S2k j�0; �2k))2 +

1

2
E
�
E( �S2k j�2k)

�2
� E (E(S2k j�0; �2k))2 :

ThereforeX
k�0

1

2k
EjE

�
(S2k �S2k)j�0

�
j �

X
k�0

1

2k
E (E(S2k j�0; �2k))2 :

As proven in Lemmas 12 and 13 in [27], for some positive constant c,X
k�0

1

2k
E (E(S2k j�0; �2k))2 � c

X
n�1

1

n2
E(E(Snj�0; �n))2:

It remains to apply Lemma 10 to obtain the desired result. �

Proof of Theorem 4

The CLT and the convergence of moments under condition (10) are known
(see Corollary 9 in [27]). The proof of the quenched CLT is based on the proof
of Proposition 8 combined with Lemma 11.

For m �xed, we apply Lemma 11 with �`+1 = (�`m; �(`+1)m) and the se-
quence V`+1(m) = E(Y`j�`m; �(`+1)m)=

p
m where (Y`)`2Z is the extension to a

stationary sequence of Yk de�ned in (15). It is easy to see that, by using the
Markov property and the properties of the conditional expectation, we obtain
for k � 0

E(
Xk+1

j=1
Vj j�0; �k+1) =

1p
m
E(Skmj�0; �km) + Vk+1:
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It follows that

jjE(
Xk+1

j=1
Vj j�0; �k+1)jj2 �

2

m
jjE(Skmj�0; �km)jj2 +

2

m
jjE(Smj�0; �m)jj2:

So, for Ru(m) de�ned in (21), Ru(m) =
Pu

j=1 Vj(m); we obtain by Lemma 11,
for some C1 > 0;

jj sup
u

1

u
E0(R2u(m))jj1;w � C1

X1

k=1

1

k2m
E(E(Skmj�0; �km))2:

By the Cauchy-Schwartz inequality, and the properties of the conditional ex-
pectation,

1

mk2
E(E(Skmj�0; �km))2 �

1

k2
E(E(Skj�0; �k))2

and alsoX1

k=1

1

mk2
E(E(Skmj�0; �km))2 �

X1

k=1

1

k2
E(E(Skj�0; �k))2 <1:

Since (10) implies that limn!1E(E(Snj�0; �n))2=n = 0, for any k �xed, we
have that

lim
m!1

1

mk
E(E(Skmj�0; �km))2 = 0:

So, by the dominated convergence theorem for discrete measures,

lim
m!1

X1

k=1

1

mk2
E(E(Skmj�0; �km))2 = 0:

It follows that
lim
m!1

jj sup
u

1

u
E0(R2u(m))jj1;w = 0:

By Theorem 4.1 in Billingsley [1], note that the Fatou Lemma also holds in the
space L1;w. Therefore,

jj lim inf
m!1

sup
u

1

u
E0(R2u(m))jj1;w � lim inf

m!1
jj sup

u

1

u
E0(R2u(m))jj1;w = 0:

and so
lim inf

m!1
sup
u

1

u
E0(R2u(m)) = 0 a.s.

This proves that the martingale decomposition in (20) holds. The proof is now
ended as in the proof of Proposition 8. �
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