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Abstract

While ionic liquids (ILs) have gained wide interest as potential alternative lubricants able to meet the requirements of next-
generation tribological systems owing to their unique physico-chemical properties and promising lubricating behavior, our
understanding of the mechanisms by which ILs reduce friction and/or wear is still elusive. Here, we combine macroscale
tribological experiments with surface-analytical measurements to shed light on the lubrication mechanisms of a class of
halogen-free ILs, namely tetraalkylammonium orthoborate ILs, at steel/steel sliding contacts. The tribological results indi-
cate an improvement of the friction-reducing properties of these ILs as the length of the alkyl chains attached to ammonium
cations increases. X-ray photoelectron spectroscopy analyses provide further evidence for the dependence of the lubrication
mechanism of tetraalkylammonium orthoborate ILs on the IL structure. In the case of tetraalkylammonium orthoborate ILs
with asymmetric ammonium cations containing a long alkyl chain, no sacrificial tribofilms were formed on steel surfaces,
thus suggesting that the friction-reducing ability of these ILs originates from their propensity to undergo a pressure-induced
morphological change at the sliding interface that leads to the generation of a lubricious, solid-like layered structure. Con-
versely, the higher friction response observed in tribological tests performed with tetraalkylammonium orthoborate ILs
containing more symmetric ammonium cations and short alkyl chains is proposed to be due to the inability of this IL to
create a transient interfacial layer owing to the reduced van der Waals interactions between the cationic alkyl chains. The
resulting hard/hard contact between the sliding surfaces is proposed to lead to the cleavage of boron-oxygen bonds in the
presence of water to form species that then adsorb onto the steel surface, including trivalent borate esters and oxalic acid
from the decomposition of orthoborate anions, as well as tertiary amines from the degradation of alkylammonium cations
induced by hydroxides released during the orthoborate decomposition reaction. The results of this work not only establish
links between the molecular structure of a class of halogen-free ILs, their lubricating performance, and lubrication mecha-
nism, but also provide evidence for the existence of multiple mechanisms underpinning the promising lubricating properties
of ILs in general.
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1 Introduction

Among the several additives commonly employed to blend
engine oils with, surface-active molecules able to adsorb on
material surfaces and create low-shear-strength interfaces are
normally used with the aim of reducing friction and/or wear
[1]. Even though phosphorus- and sulphur-based friction-
modifiers and anti-wear additives have been employed with
success for decades, their decomposition under engine oper-
ating conditions results in chemical species containing high
levels of metallic ashes along with phosphorus and sulphur
oxides, which degrade the efficiency of exhaust after-treat-
ment catalysts and filters [2]. Consequently, engine-lubricant
specifications have progressively decreased the permissible
content of sulphated ash, phosphorus, and sulphur (SAPS) in
oils [2, 3]. While the concentration of additives containing
all three catalyst-poisoning agents, such as zinc dialkyldithi-
ophosphates (ZDDPs), has been reduced over the years [4],
significant efforts have been spent in the development of
novel additives with lower- or zero-SAPS level [2]. In addi-
tion to several published studies focusing on the evaluation
of ashless equivalents to ZDDPs, such as thiophosphates or
phosphates without any metals, as potential replacement or
supplement to ZDDPs [5-8], a number of zero-SAPS addi-
tives has also been investigated, including nitrogen- and oxy-
gen-heterocyclic compounds, halides, and nanoparticles [2].
Among them, boron-containing compounds have attracted
considerable attention in tribology, as highlighted by a
recent review on the topic [9]. Even though organoboron
compounds were known to be effective corrosion inhibitors,
it was not until the 1960s that their anti-wear properties were
recognized [2]. Notably, Kreuz et al. highlighted, for the
first time, that the extreme-pressure performance of triben-
zylborate derives from its ability of forming a 100-200 nm
thick, hard film containing boric and ferrous oxides [10].
Subsequent investigations by Liu et al. provided evidence
for the good friction-reducing and anti-wear performance
of a series of triborate esters [11, 12]. Even though X-ray
photoelectron spectroscopy (XPS) analyses did not indicate
the formation of boron oxide (B,0;) or boron hydroxide
B(OH);, the spectroscopic results suggested the loss of
alkyl groups attached to boron. More recently, Philippon
et al. evaluated the tribochemical reaction of trimethylborate
(TMB) at steel/steel interfaces under gas-phase conditions
[13] and interpreted the experimental results on the basis
of Pearson’s hard and soft acid and base (HSAB) princi-
ple [14—17]: the scission of carbon—oxygen (C—O) bonds in
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TMB induced by the friction process was proposed to lead to
the formation of a “borderline” base (i.e., BO33_), which can
react with “borderline” acids (i.e., Fe** and Fe™) to form a
reaction layer made of a borate glass network with digested
abrasive iron oxide that reduces friction and wear. Despite
these promising results, trivalent borate esters are electron
deficient and have a vacant p-orbital, which makes them
electrophilic and susceptible to hydrolysis [2, 9]. While sig-
nificant efforts have been spent in improving the resistance
of organic borates to hydrolysis by improving their chemi-
cal architecture to inhibit the attack of water molecules [2,
18-23], the hydrolytic instability of trivalent organoborates
has hindered their wider used in tribological applications.

In the last two decades, technological developments in the
transportation sector, which resulted in vehicle electrifica-
tion, together with growing demands for enhancing sustain-
able development have brought about a need for “green”
lubricants with improved functionalities. As highlighted by
several reviews [24-28], ionic liquids (ILs), which are ionic
compounds with melting temperature below 373 K [29],
have gained wide interest as potential alternative lubricants
able to meet the requirements of next-generation tribological
systems. The attractive physico-chemical properties of ILs,
such as high thermal stability, low flammability, low vapor
pressure, and high degree of chemical tunability [30-33],
combines with their strong interaction with material surfaces
owing to their ionic nature, which has opened novel paths for
tailoring their lubricity by controlling the structure of the IL
boundary layers [34—40].

Several studies highlighted the good lubricating proper-
ties of neat ILs [41-47], which, in some cases, even outper-
form the one of commercially used fully-formulated oils [43,
44, 48]. Despite these promising results, the implementa-
tion of ILs in oil formulations has been constrained by four
main issues: (i) their high cost; (ii) the corrosivity of most
ILs, which derives from the sensitivity of halogenated ILs
to moisture that can result in the release of toxic and cor-
rosive halogen halides [49-52]; (iii) the limited solubility of
the vast majority of ILs in hydrocarbon fluids; and (iv) our
limited understanding of the IL lubrication mechanism(s),
which has hampered our ability of rationally designing task-
specific ILs [53]. The first three issues have progressively
been solved over the last decade with: (i) the recent syn-
thesis of air-stable, eco-friendly, protic ILs (PILs), whose
ease of preparation can significantly lower costs [54, 55];
(ii) the transition towards halogen-free ILs, which has dras-
tically decreased corrosion problems [56-65]; and (iii) the
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synthesis of oil-soluble ILs [31, 61, 66—72] and the devel-
opment of polymer-encapsulated ILs [53]. Despite these
remarkable advancements, the underpinning lubrication
mechanism of ILs is still under debate. Surface force appa-
ratus (SFA) and colloidal atomic force microscopy (cAFM)
studies demonstrated that, in the absence of mechanochemi-
cal reactions (at low normal pressures, i.e., < 100 MPa), ILs
form layered ionic structures when nanoconfined between
model, smooth surfaces [27, 28, 73-76], while also high-
lighting a strong dependence of the properties of the interfa-
cial layers on the molecular architecture of the ILs, the water
content in ILs, the chemistry of the solid surfaces, and the
applied electrical potential [26, 27]. To evaluate the response
of phosphorus-based ILs at higher contact pressure (> 500
GPa), Li et al. recently performed in situ AFM experiments
and provided evidence that the lubrication mechanism of
phosphonium phosphate ILs (PP-ILs) strongly depends on
the applied normal pressure [77, 78]. At an applied pres-
sure below 5.5 +0.3 GPa, a lubricious, quasi-solid interfacial
layer forms as a result of the pressure-induced morphologi-
cal change of confined ILs [77], while at normal pressures
between 5.5+0.3 GPa and 7.3 +0.4 GPa the progressive
removal of the oxide layer from the steel surface leads to
the adsorption of phosphate ions on metallic iron surface,
which was proposed to generate a densely-packed, bound-
ary layer that reduces nanoscale friction [78]. Macroscale
tribological experiments in the boundary-lubrication regime,
however, provided evidence that ILs can tribochemically
react on metallic surfaces [24, 31, 32, 44, 66, 67, 79-85].
As a particular example, phosphorus-based ILs could form
phosphate tribofilms on iron surfaces [31, 66, 67] in a simi-
lar manner to other anti-wear organo-phosphates [86, 87].
Li et al. recently reconciled the apparent disagreement
between published macroscale and nanoscale tribological
studies carried out with PP-ILs: the significantly different
contact conditions in nanoscale and macroscale tests result
in completely different temperature profiles at the contact
(i.e., a significant rise in contact temperature (up to 413 K)
occurred in macroscale experiments due to the high sliding
speeds, while a negligible interfacial temperature change
occurs in nanoscale tests due to the low sliding speeds),
which enhance the kinetics of tribochemical reactions only
at macroscale contacts [78].

In the last few years, a novel class of halogen-free ILs
including phosphonium cations and orthoborate anions has
extensively been employed for fundamental studies in lubri-
cation science [47, 58, 65, 88, 89]. Notably, Rohlmann et al.
evaluated the lubricating performance of trihexyl(tetradecyl)
phosphonium bisoxalatoorthoborate (P-BOB) at 353 K and
413 K in steel/steel contacts and proposed, on the basis of
infrared spectroscopy measurements, that the decomposi-
tion of bisoxalatoorthoborate anions occurs through the scis-
sion of boron-oxygen bonds and results in the formation of

oxalates that can easily adsorb on iron surfaces and reduce
friction [88]. Additionally, the authors detected by energy-
dispersive X-ray spectroscopy the presence of an increased
oxygen and boron content together with phosphorus inside
the wear tracks, which was interpreted as an indication for
the potential formation of iron(IIl) borate mixed with iron
oxalate as well as boron phosphate. Despite the relevance of
this study, a full mechanistic description of the lubrication
mechanism(s) of boron-containing ILs is still lacking and
calls for the exploitation of surface-analytical techniques,
such as XPS, to quantitatively determine the elements’ bond-
ing configuration in the near-surface region with the aim
of shedding light on the elementary processes occurring at
sliding interfaces. It has to be highlighted that, even though
phosphonium orthoborate ILs have extensively been studied,
the chemistry of this class of ILs poses significant challenges
for fundamental tribochemical studies owing to the presence
of two glass-forming elements, namely phosphorous and
boron, that have overlapping XPS signals (B 1 s and P 2 s).

To address this challenge and gain new insights into the
mechanism by which halogen-free orthoborate ILs reduce
friction and/or wear in steel/steel contacts, we herein syn-
thesize tetraalkylammonium orthoborate ILs. The results of
macroscale tribological testing, combined with XPS meas-
urements, indicated that the structure of the tetraalkylammo-
nium cations affects the IL ability of forming a mechanically
stable, transient boundary layer. In particular, tetraalkylam-
monium orthoborate ILs with symmetric cations having
short alkyl chains are not effective in reducing friction and
preventing the decomposition of orthoborate anions, which
results in the surface adsorption of borate esters and oxalic
acid together with amines formed by the degradation of qua-
ternary ammonium ions.

2 Materials and Methods
2.1 Chemicals

The ILs synthesized in the present work were prepared
using the following reactants: oxalic acid (anhydrous,
Fisher Scientific), salicylic acid (99%, Fisher Scientific),
boric acid (99.99%, Fisher Scientific), lithium carbonate
(99.99%, Sigma Aldrich), trimethyloctylammonium bro-
mide ([N ;g]Br, 97%, Tokyo Chemical Inc.), and tri-
ethylhexylammonium bromide ([N, , ,4]Br, 98%, Tokyo
Chemical Inc.). Dichloromethane (99.99%, dry, Arcos
Organics) was used as solvent during the synthesis together
with ultra-pure water (Milli-Q, electrical conductivity:
18.2 MQ cm). As a reference IL, 1-hexyl-3-methylimidazo-
lium bis(trifluoromethanesulfonyl)imide ([HMIM][TFSI],
99.99%, Tokyo Chemical Inc.) was employed.

@ Springer
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2.2 Synthesis of Tetraalkylammonium Orthoborate
lonic Liquids

The synthesis of tetraalkylammonium orthoborate ILs was
performed by modifying the approach developed by Shah
et al. to obtain alkylphosphonium orthoborate ILs [58]. The
synthesized cations and anions are displayed in Fig. 1, while
the scheme of the synthesis is reported in Figure S.1 (Sup-
porting Information).

A lithium orthoborate intermediate was synthesized in the
first step (Step I in Figure S.1) by adding 40 mmol of oxalic
or salicylic acid to an aqueous solution prepared by introduc-
ing 20 mmol of boric acid and 10 mmol lithium carbonate in
100 ml of ultra-pure water. After stirring the solution for 2 h
at 333 K, water was removed under reduced pressure until
precipitates began to form. The concentrate was then dried
overnight at 368 K to completely remove any residual water.
To carry out the metathesis reaction (Step II in Figure S.1)
and obtain the final ILs, the synthesized lithium carbonate
salts were then re-dissolved in 100 ml of ultra-pure water
to which 20 mmol of [N, | , g]Br or [N, ,, c]Br was added.
The mixture was then stirred at room temperature for 2 h.
The organic layer formed during the reaction was extracted
with 60 ml of dichloromethane (DCM), and the washed 3
times with 100 ml of ultra-pure water. The DCM was then
removed under reduced pressure, and the ILs was stored
under reduced humidity (< 10%). Before further use, the ILs
were dried at 413 K for 1 h to remove any residual solvents,
and decompose any transition anionic complexes formed
with exposure to water [89].

2.3 Characterization of Tetraalkylammonium
Orthoborate ILs

The synthesized ILs were characterized by nuclear mag-
netic resonance (NMR) spectroscopy (Bruker Avance
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Fig. 1 Tetraalkylammonium cations and orthoborate anions synthe-
sized in the present work
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400 spectrometer). The analyses (‘H, Bc, ''B) were car-
ried out on as-synthesized ILs using acetone-d, as solvent.
The density of the ILs was determined with an Anton Paar
DMAS00 densimeter under ambient conditions. The water
content in the ILs was routinely quantified either by Karl
Fischer (KF) titration using a Metrohm 317 coulometer or
by NMR spectroscopy. Finally, the viscosity of the ILs was
measured as a function of temperature (between room tem-
perature and 353 K) using a cone-on-plate rheometer (ATS
Nona Advanced Research, USA) at a shear rate between
1.2x10? s and 1.3x 10 s™!. The results are displayed in
the Figure S.2 (Supporting Information).

2.4 Tribological Testing

Reciprocating ball-on-flat tribological experiments were
carried out with a Bruker UMT-2 tribometer in open air
(relative humidity between 30 and 50%) and at elevated
temperature (353 +3 K. This temperature was selected to
perform tribological experiments in the mixed-lubrication
regime, as discussed below, as well as compare the results
with published works on other orthoborate-based ILs [88]).
The contacting surfaces, namely 4 mm diameter balls and
flat substrates, were both made of AISI 52100 steel (McMas-
ter-Carr, USA). The steel substrates were first polished to
achieve a final root-mean-square roughness of 2.1 +0.4 nm,
as measured by atomic force microscopy over a 5x 5 pum?
area [85]. At the end of the polishing procedure, the speci-
mens were sonicated for 10 min in light solvents (isopro-
panol, methanol, and acetone). All tribological experi-
ments were performed under mixed-lubrication conditions
(0.06 < 4 < 0.6) [90], where the A ratio was computed using
the Hamrock and Dowson formula [91] and an upper bound
for the pressure-viscosity coefficient of 12 GPa~![92]). The
applied load was 5 N, which corresponds to a mean Hertz-
ian contact pressure of 985 MPa, while the sliding speed
was 1 mm/s and the stroke length was 4 mm. During the
tests, the contact was fully immersed in the ILs. At the end
of tribological experiments, the samples were thoroughly
cleaned using acetone and sonicated in acetone for 10 min to
remove the supernatant IL, and dried using a nitrogen (N5)
stream. Prior to the tests, the ILs were left for at least 18 h
at 373 K to remove absorbed water. During each 1-h tribo-
logical experiment an equal amount of the tested IL was left
static in a vial in the same testing environment to quantify
the water uptake in the ILs.

To determine the wear rate of 52100 steel discs after tri-
bological tests, a Keyence VK X1100 optical profilometer
was employed. The average specific wear rate (together with
the corresponding standard deviation) was computed from
the cross-sectional area of the wear track obtained from at
least 50 line-scans across the worn region after subtraction
of a linear background.
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2.5 X-ray Photoelectron Spectroscopy
Measurements

X-ray photoelectron spectroscopy (XPS) analyses were
conducted on the steel discs after tribological testing.
XPS measurements were carried out using a VersaProbe-
IV XPS (ULVAC-PHI, Chanhassen USA) with a mono-
chromatic Al Ka X-ray source. The base pressure in the
XPS chamber was < 1 x 1077 Pa. The spectrometer was
calibrated according to ISO 15472:2001 with an accuracy
of £ 0.1 eV. The spectra were acquired at an emission
angle (EA) of 0° and using an incident X-ray beam of
20 um in diameter. High-resolution spectra were collected
in constant-analyzer-energy mode with a pass energy of
27 eV and a step size of 0.1 eV (full-width-at-half-maxi-
mum of the Ag 3ds,, peak: 0.55 eV), while survey spectra
were acquired using a pass energy of 140 eV and a step
size of 1 eV. Secondary X-ray excited images (SXI) were
used to locate regions of interest (i.e., the wear tracks).
The X-ray beam size was selected to collect data only
within the wear track. When analyzing pure ILs, the elec-
tron neutralizer was used to compensate for sample charg-
ing. The spectra were processed using CasaXPS (v2.3.25,
Casa Software Ltd, UK). The peak binding energies were
referred to the aliphatic carbon signal at 285.0 eV. Before
peak fitting, an iterated Shirley-Sherwood background
subtraction was applied using a linear-squares algorithm.
Quantitative analysis of XPS data was performed using
the method described in Ref. [5], which relies on the
first-principles method with Powell’s equations [93]. The
inelastic mean free path was computed using the Gries
G1 formula [94]

(b)=

3 Results and Discussion

Reciprocating ball-on-disc (52100-vs.-52100 steel) tribolog-
ical tests were performed at 353 +3 K in the mixed-lubrica-
tion regime with neat [N | ; s][[BOB], [Ny ; ; g][BScB], and
[N, 5, 6][BOB]. [HMIM][TFSI] was used as the reference
IL, due to its extensive use in tribological studies [27]. Fig-
ure 2a displays the evolution of coefficient of friction over
time represented as number of cycles, while the correspond-
ing steady-state coefficient of friction values are presented in
Fig. 2b. In the case of [N, ; ; ¢][BOB] and [N, ; ; s][BScB],
a steady-state coefficient of friction of 0.114+0.005 and
0.120+£0.003 was achieved after a running in period of 50
cycles and 190 cycles, respectively. While these values are
significantly lower than the friction response achieved with
neat [HMIM][TFSI], tribological experiments performed
with [N, , , (][BOB] resulted in a steady-state coefficient of
friction slightly higher than the one of neat [HMIM][TFSI]
after a running-in period of ~ 160 cycles. These results indi-
cate that the substitution of the [N, | ¢] cation with the
more symmetrical [N, , , ¢] has a significant impact on the
friction-reducing ability of tetraalkylammonium orthobo-
rate ILs. This finding agrees well with previous reports
indicating that increasing the length of the alkyl chains in
the cations improves the lubricating properties of ILs at the
macroscale [88, 95, 96]. However, the computation of the
specific wear rate of steel discs after tribological experi-
ments (Fig. 2¢c) shows that the anti-wear performance does
not correlate with the chemical architecture of the cation, but
it is influenced by the structure of the anion as the wear rate
was higher in the case of the tests carried out in the presence
of [Ny ; ; g][BScB] than in the experiments performed with
[BOB]-containing ILs. Notably, the specific wear rate of
52100 steel discs used in experiments performed with neat
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[HMIM][TFSI] is significantly lower than those observed
with discs lubricated with any of the ammonium orthobo-
rate ILs.

The analysis of the morphology of the wear tracks pro-
vided insights into the origin of this difference in specific
wear rates (Fig. 3). While a primarily abrasive wear mecha-
nism was observed in the case of the experiments performed
with ammonium orthoborate ILs, an abrasive/corrosive wear
mechanism is observed in neat [HMIM][TFSI], as indicated
by the presence of pits and discoloration within the wear
track. This is likely due to the formation of corrosive halo-
gen halides as a result of the reaction between the halogen-
ated [HMIM][TFSI] and atmospheric moisture [49, 50].

To gain insights into the chemical processes occurring
at sliding interfaces and dictating the difference in friction
response among the tetraalkylammonium orthoborate ILs
synthesized in the present work, X-ray photoelectron spec-
troscopy (XPS) analyses were performed.

Before analyzing the steel discs used in tribological
experiments, XPS measurements were performed on as-
synthesized ILs as well as 52100 steel discs after polishing
and aging (i.e., after storing the discs in a desiccator for at
least 3 days under reduced humidity to allow for the growth
of native oxides). The high-resolution carbon 1 s spectrum
(Fig. 4a) acquired on 52100 steel discs showed the pres-
ence of multiple components at 283.3+0.1 eV (assigned
to carbides [97, 98]), 285.0+0.1 eV (assigned to aliphatic
carbon [5, 97, 98]), and 286.5+0.1 eV, 287.7+0.1 eV,
and 288.7+0.2 eV (assigned to carbon bound to oxygen
[5, 97, 98]). The asymmetric oxygen 1 s signal (Fig. 4b)

includes components at 529.9+0.1 eV, 531.1+0.1 eV,
531.9+0.1 eV, and 533.0+0.1 eV, which were respec-
tively assigned to iron oxide [5, 99—102], iron hydroxide [5,
99-101], iron carbonate [5, 99—104], and adsorbed water [5,
100-102]. The high-resolution spectrum of iron 2p (Fig. 4e)
exhibited two peaks (2ps, and 2p,,,) due to spin—orbit cou-
pling. Curve synthesis, which was carried out only on the
2p;, peak, revealed the presence of the characteristic con-
tributions of metallic iron at 706.5 +0.1 eV, iron (II) oxide
at 709.2+0.1 eV (together with its shake-up satellite at
714.7 V), iron (III) oxide at 710.5+0.1 eV, and iron oxide-
hydroxide at 712.2+0.2 eV [5, 100-102, 105-107].

XPS analyses were also performed on the as-synthesized
ILs to obtain reference binding energies for the charac-
teristic signals of the ions. Figure 4 displays the spectra
acquired on [N, ,, c(][BOB] as example (the XPS spectra
of [Ny, 4][BOB] and [N, ; ¢][BScB] are shown in Figure
S.3 in the Supporting Information). The carbon 1 s spec-
trum shows three components at 285.0 +0.1 eV (assigned
to aliphatic carbon [5, 97, 98]), 286.6+0.1 eV (assigned
to carbon bound to nitrogen [98]), and 289.6 +0.2 eV
(assigned to carbon bound to oxygen [5, 97, 98]), while
the oxygen 1 s exhibited two main peaks at 532.5+0.1 eV
and 533.5+0.1 eV (assigned to oxygen bound to carbon in
[BOB]) together with a component at 534.1+0.1 eV due
to water absorbed in the ILs. The characteristic signals of
the cation and anion, namely the nitrogen 1 s and boron 1 s,
were respectively detected at 402.3 +0.1 eV (in agreement
with the nitrogen 1 s binding energy of other quaternary
ammonium-containing ILs [108-110]) and 193.4+0.1 eV

Fig. 3 Optical micrograph of
52100 steel discs after recipro-
cating ball-on-disc (52100-vs.-
52100 steel) tests carried out
at353+3 Kin neat [Ny ; ; g]
[BOBJ, [N, ; ; s][BScB],
[N.6/[BOB], and [HMIM]
[TFSI]
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(close to the boron 1 s binding energy of tetrafluoroborate-
containing ILs [108]). A small contribution to the boron 1 s
signal was detected at 192.2 +0.2 eV, which can be assigned
to species generated by the X-ray beam damage of the IL.
The composition of [N, , , (][BOB] computed on the basis
of XPS results agrees well (within the experimental uncer-
tainty) to the expected, nominal composition. While similar
results were obtained with for [N ; ; g][BOB], it has to be
highlighted that changing the chemical architecture of the
anion (from [BOB] to [BScB]) resulted in a shift towards
lower binding energy of the characteristic boron 1 s signal
of the anion (from 193.4+0.1 eV to 192.9+0.1 eV) without
any significant change of the position of the nitrogen 1 s sig-
nal of the cation (Figure S.3 in the Supporting Information).

715 710 705 700
Binding Energy (eV)

This result indicates that the introduction of aromatic rings
in the anion increases the negative charge density on the
boron atom without any significant charge-transfer from
anion to cation, which is most likely due to the presence
of alkyl chains around the cationic center that effectively
shields it from the anion, in agreement with the previous
work by of Blundell and Licence [108].

The XPS spectra acquired in the non-contact region
of the steel discs used for tribological experiments in the
presence of tetraalkylammonium orthoborate ILs exhib-
ited carbon 1 s, oxygen 1 s, and iron 2p signals that were
comparable to those collected on as-prepared steel sub-
strates. In other words, no surface adsorption of ammonium
or orthoborate ions was detected on steel. In contrast, the
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acquisition of XPS spectra inside the wear tracks showed
evidence of shear-induced mechanochemical reactions. First
of all, the characteristic boron 1 s signal was detected at
191.9+0.1 eV, which most closely corresponds to surface-
adsorbed trivalent borate esters [12, 13, 111]. The presence
of a boron-containing reaction product was corroborated by
a new contribution in the iron 2p signal at 714.1 +£0.2 eV,
which is assigned to Fe**—~0?~—B** bonds [112-114]. Sec-
ondly, the most intense peak in the nitrogen 1 s was detected
at 399.8+0.1 eV, which corresponds to surface-bound
amines [98, 115]. A minor component at 402.3 +0.1 eV is
also present and was assigned to adsorbed alkylammonium
cations. It must be highlighted that, while the sample clean-
ing procedure used in the present work completely removes
the supernatant IL in the non-contact region, it might not be
effective in washing off the IL present on any adsorbed reac-
tion film in the wear track. In other words, the alkylammo-
nium cations detected by XPS inside the worn region might
be adsorbed on surface locations where trivalent borate
esters and amines are present. Further investigations based
on the use of spatially-resolved, surface-analytical measure-
ments are required to shed light on the lateral arrangement
of adsorbed IL ions within the wear track.

In addition to these spectral changes relative to the non-
contact region, a much more intense peak assigned to carbon
bonded to oxygen (i.e., the CO;/COOX synthetic peak) was
also present in both carbon 1 s and oxygen 1 s spectra col-
lected within the worn regions.

The surface coverage of boron- and nitrogen-contain-
ing compounds as well as species containing CO;/COOX
groups inside the wear track was found to strongly depend
on the chemical structure of the ILs used in the tribological
experiments and be correlated with the lubricating proper-
ties of the ILs. Figure 5a, b displays the ratio between the
intensity of the boron signal assigned to adsorbed trivalent
borate esters (nitrogen signal assigned to adsorbed amines)
and the total intensity of the iron signal as a function of the
steady-state coefficient of friction, while Fig. Sc presents the
intensity of the CO;/COOX synthetic peak in the carbon 1 s
signal relative to the intensity of the iron signal as a function
of the steady-state coefficient of friction. In the case of the
experiments performed with ILs containing [N ; ; ¢] cations,
in which a very low steady-state coefficient of friction was
achieved, a low surface coverage of boron, nitrogen, and
CO,/COOX functional groups was observed. In contrast,
in the case of the IL that resulted in a higher steady-state
friction coefficient, i.e., [N, ,, c][BOB], a much higher sur-
face coverage of boron, nitrogen, and CO,/COOX functional
groups was detected, indicating that a significantly higher
fraction of cations and anions tribochemically reacted on
steel surfaces.

Based on the results of tribological experiments and XPS
measurements, the following model is proposed to explain
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Fig.5 a Ratio between the intensity of the boron 1 s signal assigned
to adsorbed trivalent borate esters and the total intensity of the iron
2p signal as a function of the steady-state coefficient of friction;
b ratio between the intensity of the nitrogen 1 s signal assigned to
adsorbed amines and the total intensity of the iron 2p signal as a
function of the steady-state coefficient of friction; ¢ ratio between the
intensity of the CO;/COOX peak in the carbon 1 s signal and the total
intensity of the iron 2p signal as a function of the steady-state coef-
ficient of friction. The dash orange line and shaded area in (c) respec-
tively correspond to the average and standard deviation intensity of
the CO,/COOX peak in the carbon 1 s signal relative to the total
intensity of the iron 2p signal measured in the non-contact region of
the samples

the tribological response of steel/steel contacts in the pres-
ence of tetraalkylammonium orthoborate ILs (Fig. 6). Under
the contact conditions used in the present study, tetraal-
kylammonium orthoborate ILs with asymmetric cations (i.e.,
[N 11 8]) do not form sacrificial tribofilms via shear-induced
mechanochemical reactions (note: in the present work, the
term “sacrificial” is used to describe surface layers formed
on sliding surfaces as a result of tribochemical reactions, in
a similar way to tribofilms formed by well-studied lubricant
additives, such as zinc dialkyldithiophosphate [116]. This
terminology thus highlights the difference between the lay-
ers formed by the shear-assisted interfacial reaction of lubri-
cant additives and the boundary layers that can be formed
by ILs, as discussed in the following). This supports the
conclusions of previous studies that suggested the lubrica-
tion mechanisms of ILs to arise from their pressure-induced
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Fig.6 Model proposed to
describe the friction response of
steel/steel contacts in the pres-
ence of tetraalkylammonium
orthoborate ILs
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morphological change, which results in the formation of a
solid-like layered structure at the contact interface with low
shear strength and difficult to displace [27, 28, 73-77]. How-
ever, in the case of IL with a more symmetric cation (i.e.,
[N, 5,6][BOB]), the higher friction response is proposed to
originate from the inability of this IL to create a lubricious,
solid-like layer due to the reduced van der Waals interactions
between the alkyl chains. The resulting hard/hard contact
induces, in the presence of absorbed water, the cleavage of
B-O bonds to generate trivalent borate esters along with
oxalic acid and hydroxide ions (Step I in Fig. 6). The tribo-
chemically formed oxalic acid then adsorbs onto the steel
surface, contributing to the detected increase in the intensity
of the peak assigned to carbon—oxygen bonds in the carbon
1 s and oxygen 1 s XPS signals collected within the wear
tracks. Furthermore, as reported by Kleijwegt et al., the gen-
eration of hydroxides can lead to the degradation of alkylam-
monium cations through either Hoffmann elimination or
nucleophilic substitution reactions (Step II in Fig. 6) [117].
In the case of the Hofmann elimination reaction (mechanism
“a’), the hydroxides perform a nucleophilic attack on the
B-hydrogen, leading to the release of a long alkene, a tertiary
amine (which can adsorb on the steel surface, as indicated
by XPS analyses) and water. In the less prevalent nucleo-
philic substitution reaction (mechanism “b”), the hydroxide
reacts with the a-carbon of the long alkyl chain, generating
an alcohol and a tertiary amine, which both adsorb on steel,
as indicated by XPS measurements. While a similar set of
degradation mechanisms was proposed in the case of phos-
phonium orthoborate ILs [88], the XPS analyses performed
in the present study demonstrate, for the first time, that
orthoborate ILs do not form inorganic iron borate glasses.
It has to be pointed out that, while the friction response
of tetraalkylammonium orthoborate ILs was found to

strongly depend on the cation structure (Fig. 2b), the anti-
wear properties depend on the anion architecture (Fig. 2c).
Even though [N ;¢][BScB] has the highest viscosity
among the ILs used in the present study (Figure S.2), which
would result in the largest A ratio, the profilometry results
indicated that the highest specific wear rate was measured
in tribological experiments performed in the presence of
[Ny ;1 gl[BScB] (Fig. 2¢). This finding agrees well with the
results reported by Shah et al. [58], who reported that, in the
case of phosphonium orthoborate ILs comprising trihex-
yltetradecylphosphonium [P¢¢ ¢ 14] anion and [BOB] or
[BScB] cations, the specific wear rate measured in pin-on-
disk (steel-on-aluminum) experiments was higher in tests
carried out with [Pg¢ ¢ 1,][BScB] than in tests performed
with [P ¢ ¢ 14]J[BOB]. The variation of the anti-wear proper-
ties of tetraalkylammonium orthoborate ILs on the anion
structure observed in the present work is proposed to origi-
nate from the effect of the anion architecture on the rate of
formation of the protective boundary layer. Relative to ILs
with [BOB] anions, the presence of aromatic rings in the
chelated structure of [BScB] anions results in stronger inter-
molecular interactions between anions and a higher “rigid-
ity” of the anionic moieties [57], which leads to a higher
viscosity. As the self-diffusivity D; of a species i with radius
r; is inversely proportional to the viscosity n according to
Stokes—Einstein relation (i.e., D; = M;kzT = ;”B—;,where M;
is the mobility of species i, kz is the Boltzmann constant and
T is the temperature), the ions in [N ; ; g][BScB] are less
mobile compared to the ions in [N | | s][BOB], which agrees
well with the lower self-diffusion coefficient of anions in
[Pg 6.6.14][BScB] than the one in [P¢¢ 4 14][BOB] measured
by Filippov et al. using nuclear magnetic resonance (NMR)
spectroscopy [118]. The resulting lower growth rate of
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protective boundary layers in the experiments performed
with [N | | ¢][BScB] relative to the tests carried out with
[N ;.1 s][BOB] causes stochastic friction spikes (Fig. 2a) and
a higher specific wear rate. This finding is in agreement with
a previous study performed by Li et al. [77], who performed
in situ atomic force microscopy (AFM) experiments to eval-
uate the formation of a boundary layer by trihexyltetrade-
cylphosphonium bis(2-ethylhexyl) phosphate ([Pg ¢ 6 14]
[DEHP]) as a result of pressure-induced structural transition
of confined IL molecules: the AFM results highlighted that
decreasing the viscosity of the IL by performing the AFM
experiments at higher temperatures leads to an increase in
the growth rate of the protective, solid-like interfacial layer.

4 Conclusion

While ILs have been extensively evaluated for tribological
applications, our understanding of their lubrication mecha-
nism is still elusive. Here, we report a fundamental surface-
analytical investigation of the mechanism by which a class of
halogen-free ILs, namely tetraalkylammonium orthoborate
ILs, reduces friction and wear at steel/steel sliding contacts.
The tribological results indicate that increasing the length
of the alkyl chains attached to ammonium cations improves
the lubricating properties of the IL at the macroscale. XPS
analyses shed light on the underpinning lubrication mecha-
nisms and their strong dependency on the geometric asym-
metry of the cation. The spectroscopic results revealed that
the ILs with asymmetric ammonium cations containing a
long alkyl chain (i.e., [N ; ; 4] cations) do not tribochemi-
cally react on steel surfaces to form sacrificial tribofilms,
thus suggesting that the friction-reducing property of these
ILs originates from their ability to undergo a pressure-
induced morphological change leading to the generation
of a lubricious, solid-like interfacial layered structure dif-
ficult to squeeze out from the contact region. Conversely,
in the case of the IL having a more symmetric cation with
a shorter alkyl chain (i.e., [N, , , (][BOB]), the higher fric-
tion response is proposed to originate from the IL inability
to create a transient interfacial layer due to the reduced van
der Waals interactions between the alkyl chains. The result-
ing hard/hard contact between the sliding surfaces leads to
the mechanically-induced scission of boron-oxygen bonds
in the presence of water, which not only results in the for-
mation of trivalent borate esters and oxalic acid that adsorb
on the steel surface, but also generates hydroxides that can
trigger the degradation of alkylammonium cations and form
tertiary amine able to absorb on steel. The results of this
work establish links between the molecular structure of a
class of halogen-free ILs, their lubricating performance,
and lubrication mechanism, while also providing evidence

@ Springer

for the existence of multiple mechanisms underpinning the
promising lubricating properties of ILs in general.
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