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Bistability in Coupled Opto-Thermal
Micro-Oscillators

Aditya Bhaskar™, Mark Walth, Richard H. Rand, and Alan T. Zehnder

Abstract—1In this work, we experimentally investigate the
dynamics of pairs of opto-thermally driven, mechanically cou-
pled, doubly clamped, silicon micromechanical oscillators, and
numerically investigate the dynamics of the corresponding
lumped-parameter model. Coupled limit cycle oscillators exhibit
striking nonlinear dynamics and bifurcations in response to
variations in system parameters. We show that the input laser
power influences the frequency detuning between two non-
identical oscillators. As the laser power is varied, different
regimes of oscillations such as the synchronized state, the drift
state, and the quasi-periodic state are mapped at minimal and
high coupling strengths. For non-identical oscillators, coexistence
of two states, the synchronized state and the quasi-periodic
state, is demonstrated at high coupling and high laser power.
Experimentally, this bistability manifests as irregular oscillations
as the system rapidly switches between the two states due to
the system’s sensitive dependence on initial conditions in the
presence of noise. We provide a qualitative comparison of the
experimental and numerical results to elucidate the behavior of
the system. [2022-0005]

Index Terms—Limit cycle oscillations, mechanical coupling,
frequency detuning, bistability, irregular oscillations, continuous-
wave laser, numerical analysis.

I. INTRODUCTION

ICRO- and nano-electromechanical systems (MEMS

and NEMS) provide a rich testing ground for studying
nonlinear phenomena. Flexural MEMS devices exhibit non-
linearities that can be mechanical in nature resulting from
geometric effects such as large deformations, or may arise
from the devices’ interactions with the external environment
such as thermal modulation of stress, nonlinear radiation
pressure, electrostatic or magnetomechanical forces etc. A sur-
vey of the origins of nonlinearities in MEMS devices is
given in [1]. Nonlinear effects in the sub-micron scale can
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be beneficial and have been utilized to create novel MEMS
devices such as gyroscopes, energy harvesters, filters, and
stable time-keeping oscillators [2]-[6]. An active line of
research exploits nonlinearities in MEMS devices to study
dynamical phenomena [7]-[9]. The short time scales, scope
for innovative device design using established microfabrication
techniques, and fine control of the system parameters are
advantageous for an experimental study of nonlinear dynam-
ics. In the present work, we use pairs of coupled MEMS
oscillators to study different oscillation regimes associated
with different system parameters.

We refer to oscillators that draw energy from a steady
source and maintain oscillations via an interchange with a
dissipation mechanism, as Limit Cycle Oscillators (LCO).
The term is inspired by dynamical systems such as the
foundational Van der Pol oscillator which are described by a
stable limit cycle in the phase plane [10]. In this paper, LCOs
are also simply referred to as oscillators. LCOs, in contrast
to resonators, do not require an external periodic forcing
function to maintain steady oscillations. In the literature, they
are variously referred to as self-sustained oscillators, active
oscillators, or autonomous oscillators [11]. Mathematical mod-
els for coupled, non-identical LCOs show phenomena such
as synchronization to a common locking frequency in the
presence of coupling forces, entrainment of oscillators by an
external sinusoidal drive, and synchronization in the presence
of noise [12]. When the LCOs are nearly identical and weakly
coupled their dynamics can be studied through their phase
evolution alone [13]. In the present work, we avoid this
assumption and use numerical techniques to study the full
amplitude-phase equations and discuss the various oscillation
regimes such as the drift state, the synchronized state, and
the quasi-periodic state, and highlight the coexistence of two
stable states of oscillations in the system, also referred to
as bistability. Previous work on the Van der Pol oscillator
system reveals that for a linearly coupled pair of oscillators,
stable in-phase and out-of-phase synchronization states can
coexist [14], [15]. For a system with nonlinear coupling,
regimes of multistability have been demonstrated with a multi-
frequency attractor and a chaotic attractor coexisting [16].
Third-order models for LCOs with simple linear coupling also
support coexisting modes of vibration [17].

There has been a significant interest in using MEMS
devices to study the nonlinear behavior of coupled LCOs.
Synchronization in a pair of coupled LCOs has been observed
in systems that are piezoelectrically actuated and electron-
ically coupled [18], optically actuated and coupled [19],
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Fig. 1. (a) Schematic of a pair of mechanically coupled, doubly clamped,

silicon micro-oscillators on an SOI chip. The continuous-wave (CW) laser
beam drives the silicon beams into out-of-plane limit cycle oscillations.
(b) Optical microscope images of silicon beams with minimal mechanical
coupling (top), and strong mechanical coupling via bridges (bottom). The
undercut silicon dioxide layer is seen as the yellow region surrounding the
device features.

magnetomotively actuated and mechanically coupled [20], and
electrically actuated and coupled [21]. Uniform rings of eight
LCOs have been used to examine different dynamical states
such as weak chimeras, decoupled states, traveling waves,
and inhomogeneous synchronized states in the presence of
simple linear coupling, beyond the weak coupling limit [8].
Higher-order frequency locking of an LCO by an external
sinusoidal force has also been recently demonstrated [9].
Notably, chaotic and irregular oscillations have been observed
in opto-mechanical oscillators driven by radiation pressure due
to nonlinearities exhibited by optical cavities at high laser pow-
ers [22]-[24]. We contrast this with the present work where
we use opto-thermal laser actuation to drive mechanically
coupled, doubly clamped silicon structures into limit cycle
oscillations. A schematic of the devices is shown in Fig. 1(a).
We study two types of devices: minimally coupled devices
with mechanical coupling acting via the silicon overhang,
and strongly coupled devices with coupling bridges near the
anchor points as shown in the optical microscope images
in Fig. 1(b). Opto-thermal excitation of silicon beams into
limit cycle oscillations was first described in [25] and an
interpretation from the perspective of nonlinear dynamics was
provided in [26]. The laser power threshold at which the limit
cycle is born in a Hopf bifurcation was calculated using an
analytical perturbation treatment of a lumped-parameter model
for the devices. This analysis was extended to the doubly
clamped silicon micro-beam design [27], [28] which we use
in the present work. It was shown that this model for LCOs
exhibits synchronization for a coupled network of two or
more oscillators, sensitive dependence on initial conditions
for certain system parameters, and entrainment by an external
sinusoidal drive [29], [30]. Further, prior work has been done
on a simplified system of equations for the opto-thermally
driven, coupled MEMS model to explain the bifurcations, and
coexistence of stable dynamical states has been shown [17],
[31], [32].

In this paper, the results are presented in two main sections.
Section II describes the lumped-parameter model for a pair
of coupled LCOs, the numerical methods used to solve the
system, and the results from the simulations. The different
regimes of oscillations are mapped in the laser power vs.
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coupling strength parameter space. Section III describes the
MEMS device, fabrication techniques, the experimental setup
and procedures, and the results from the experiments. The
different regimes of oscillations from the numerical simula-
tions and from the experiments are qualitatively compared and
bistability induced by changing laser power is demonstrated
experimentally. The main result is that the laser power can
be used to change the effective frequency detuning between
the oscillators while keeping the other parameters in the
experiment fixed. This allows us to access regions of bista-
bility, where the steady state solution of the system depends
sensitively on initial conditions and can either fall into a state
of synchronization or into a state of quasi-periodic oscillations.
Experimentally, bistability is seen as irregular oscillations due
to the system jumping between the two states in the presence
of noise.

II. NUMERICAL ANALYSIS OF COUPLED
MICROMECHANICAL LCOs

This section presents the computational results for the
dynamics of pairs of coupled opto-thermally driven MEMS
oscillators. The lumped-parameter model for the MEMS oscil-
lators and the numerical methods to study the model are
described in detail. Parameter sweeps are used to unravel the
various states exhibited by the oscillators. The coexistence
of two stable states of oscillations and sensitive dependence
on initial conditions at high input laser powers and strong
coupling between the oscillators is highlighted.

A. Mathematical Model

We use a lumped-parameter model for the opto-thermally
driven, mechanically coupled MEMS oscillators. This model
was introduced in prior work [26], [29], and is given by
Egs. (1)-(4). The out-of-plane deflection of the center of the
micro-beam normalized by the wavelength of the laser source,
z(t), and the average temperature of the oscillator, T (¢), are
the time-dependent variables in the model. Each oscillator is
modeled by a third order system containing a pair of ordinary
differential equations i.e. Eqs. (1) and (2) for the first oscillator
and Egs. (3) and (4) for the second oscillator.

2_1
o
Tl = —BTi + H Piaser (OC +vy Sin2(27T (z1 — Z))) s 2)

14+ = +xi1(1+ CT)z1 + Bz} + ¢ (21 — 22) = DT, (1)

5+ % +i2(l + CT)z + B3 + (22 — 21) = DT, (3)

fo = =BTy + HPer (a +7 sin’Qr(22 - 2)) . (4)

The kinematic equations given by Egs. (1) and (3) describe
the variation of the displacement, z(¢) and consist of terms
corresponding to a damped harmonic oscillator with unit mass,
damping coefficient equal to the inverse of the quality factor,
Q, and linear stiffness, x. Micro-resonators typically have a
high quality factor which translates to low damping. In this
work, the two oscillators have different fixed linear stiffness
values, k1 = 1 in Eq. (1) and x» = 0.81 in Eq. (3), to model
the baseline frequency detuning in the system. The stiffness
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Fig. 2. Numerical heat map of the probability of synchronization for a pair of coupled micromechanical LCOs at different laser powers and coupling

strengths. For sample parameter values, three qualitatively different dynamics are indicated by the corresponding spectra: (i) drift state at minimal coupling
strengths (¢ = 2 X 1073) (ii) stable synchronized state in the presence of strong coupling at low laser powers (¢ = 0.15 and P50 = 1.2 or 1.6 mW)
(iii) bistability i.e. coexistence of stable synchronized oscillations and stable quasi-periodic oscillations in the presence of strong coupling at high laser powers

(¢ =0.15 and Pjg50r =2 mW).

values are chosen such that the ratio of the linear frequencies
of the two oscillators match that of the MEMS oscillators
studied experimentally and described in Section III-A. The
kinematic equations also have a Duffing-like nonlinearity with
cubic stiffness, f. Thermal feedback to the oscillations is
modeled via the static displacement per unit temperature with
coefficient, D, and the linear stiffness per unit temperature
with coefficient, C.

The thermal equations given by Eqgs. (2) and (4) are obtained
by modifying Newton’s law of cooling with a coefficient of
heat transfer, B, by adding a laser absorption term to it.
The laser absorption, which is a dimensionless ratio between
0 and 1, varies with the gap between the center of the device
and the substrate underneath and is approximated by a sine-
squared function with constants for the minimum absorption,
o, the contrast in absorption, y , and the normalized position of
the minimum of the absorption curve relative to the device’s
equilibrium position, z. The coefficient of thermal absorption
is given by H. The majority of the model parameter values are
derived in [33] and reproduced in Table I for completeness.
However, the cubic stiffness here is negative to model the
amplitude-softening behavior of the oscillators seen in the
experiments. Furthermore, the coefficient of linear stiffness per
unit temperature is higher than the previously-derived value.
The oscillators are driven at a constant laser power, Pjgers
and are symmetrically coupled via a linear term with coupling
strength, (.

B. Numerical Methods

The model given by Eqs. (1)-(4) was numerically integrated
primarily for the time series, z(f), of each oscillator. The
input laser power, Pyser, the coupling strength, ¢, and the
initial displacements of the oscillators, z;(0) and z2(0) were

varied in the model to study their effects on the dynamics.
The other initial conditions were fixed for all runs at z;(0) =
22(0) = T1(0) = T2(0) = 0. Each simulation was run for a
time span of 500 [AU] so that any initial transient behavior
had decayed completely. The steady-state dynamics of the two
oscillators were studied via the resultant frequency spectra,
with a frequency resolution of &~ 1.5 x 107 [AU].

The synchronization behavior of the pair of oscillators is
classified as drift state if the peaks of the spectra corresponding
to the two oscillators do not coincide, and satellite peaks i.e.
peaks in the spectra different from the limit cycle frequency,
are absent. The behavior is classified as synchronized state if
the peaks of the spectra corresponding to the two oscillators
coincide and the satellite peaks are absent. The behavior is
classified as quasi-periodic state if the peaks of the spectra
corresponding to the two oscillators do not coincide and
satellite peaks are present. We performed parameter sweeps
and analyzed the resultant spectra to classify the states of
oscillations for different model parameters. Parallel computing
was used to perform the parameter sweeps over 251 x251 para-
meter grids [34].

C. Numerical Results

The behavior of the coupled MEMS LCO system is visual-
ized in Fig. 2. The two parameters in the system that are varied
are the laser power, Pju5r € [1,2.2] mW, and the coupling
strength, ¢ € [0, 0.25]. The laser power is always kept above
the Hopf threshold value to get stable limit cycle oscillations
in the system. The Hopf thresholds for the LCOs in the model
depend on the stiffness values and are approximately Pjyser &
1 mW. A span of coupling strengths, from minimal to strong,
was chosen to illustrate qualitatively different oscillations such
as the synchronized, quasi-periodic, and drift states. It should
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TABLE I
FIXED PARAMETER VALUES USED IN EQS. (1)-(4) FOR THE NUMERICAL STUDY. [AU] STANDS FOR ARBITRARY UNITS

Parameter Symbol  Value Units

Quality factor Q 1240 [AU]

Cubic stiffness B —10 [AU]

Coefficient of static displacement per unit temperature D 2.84x 1073 1/K

Coefficient of linear stiffness per unit temperature C 0.04 1/K

Coefficient of heat transfer B 0.112 [AU]

Minimum absorption e 0.035 [AU]

Contrast in absorption o 0.011 [AU]

Minimum of absorption w.r.t device equilibrium z 0.18 [AU]

Coefficient of thermal absorption H 6780 K/W
be noted that the units of the input source and coupling P L, R
strength do not directly correspond exactly to the experimental I‘—ylule — ! ]
laser power and coupling strength, and are to be understood w__ I_T—l
only qualitatively. For every pair of parameters, (¢, Pigser), the ?Iﬂ | ¢g I‘\
system of differential equations was numerically solved for |4 N|
25 different initial conditions z1(0) € [—0.2,0) and z2(0) € L, /
[0,0.2) and the resultant spectra were used to calculate the Anchor Overhang Siliconbeam  Coupling bridge

probability of synchronization for the coupled oscillators. The
resulting heat map for the probability of synchronization is
plotted in Fig. 2.

For minimal coupling strengths, the probability of syn-
chronization is zero for any input laser power. The spectra
corresponding to three different values of laser power, Pjyser €
{1.2, 1.6, 2} mW, for minimal coupling strength { = 2x 1073,
are shown in Fig. 2(i). All three spectra show two distinct
peaks corresponding to the frequencies of the two LCOs.
Physically, this implies that the two oscillators exert minimal
influence on each other and are free-running LCOs. A key
observation is that the difference between the frequencies of
the LCOs increases with increasing laser power. This suggests
that the laser power can be used to change the effective
frequency detuning between the oscillators.

In Fig. 2, for high coupling strengths, there is a region
of certain synchrony for any initial conditions in the chosen
range. The boundary of this region varies with the input laser
power such that for a fixed coupling strength, if the laser power
is increased, the system may lose synchronization. This is
shown numerically in a series of three spectra for coupling
strength fixed at a high value, ¢ = 0.15. For relatively lower
laser powers, Piyser = 1.2 mW and Pju50r = 1.6 mW, the
spectra of the two LCOs always collapse into a single peak
corresponding to the frequency of synchronization, as shown
in Fig. 2(ii). When the laser power is increased to a higher
value, Pj,50r = 2 mW, there are two states of oscillations that
the system might exhibit depending on the initial conditions.
There is a stable, synchronized state with the two oscillators
having coincident frequencies corresponding to the peaks of
the spectra, and there is a stable quasi-periodic state where
multiple prominent satellite peaks appear in the spectra of
the two oscillators. These two stable states are shown in
Fig. 2(iii). Physically, the quasi-periodic state corresponds to
a significant influence of each oscillator on the other but
failure to synchronize. The coexistence of two stable states
is attributed to the increasing frequency detuning with laser

Fig. 3. Schematic of mechanically coupled, doubly clamped beams with
key dimensions labelled (not to scale). For the strongly coupled devices
studied in this work, L1 = 40 um, Ly = 38 ym,w =2 ym,g = 3 um,
[ =3 um, and v = 1 gm. The thickness of the silicon device layer is 205 nm.
For minimally coupled devices, the coupling bridges are absent and all other
dimensions remain the same.

power, such that the coupling strength is unable to guarantee
synchronization. This can also be inferred from the boundary
for certain synchronization in Fig. 2, where the coupling
strength required for certain synchronization increases with
increasing laser power.

III. EXPERIMENTAL ANALYSIS OF COUPLED
MICROMECHANICAL LCOs

This section presents the results from the experiments
performed on mechanically coupled, opto-thermally driven
pairs of MEMS LCOs to reveal their dynamics. The design
and fabrication of the MEMS devices are described in brief.
The experimental setup to opto-thermally drive and detect
the oscillations are also described. Devices in the minimally
coupled and in the strongly coupled regimes are analyzed
and their dynamics at various laser powers are mapped and
discussed.

A. Device Design and Fabrication

Doubly clamped, beam microresonators were fabricated on
a 0.5 in x 0.75 in silicon-on-insulator (SOI) chip with a stack
consisting of a 205 nm silicon device layer on a 400 nm
silicon dioxide layer with a thick silicon substrate under-
neath. Single microbeams and coupled pairs of microbeams
of various lateral dimensions were fabricated on the chip, out
of which devices of certain dimensions were chosen for the
final experiments. The dimensions of the strongly coupled pair
of microbeams that are investigated in the current paper are
labelled in Fig. 3. Note that the devices in this schematic

Authorized licensed use limited to: Cornell University Library. Downloaded on May 19,2022 at 02:37:59 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BHASKAR et al.: BISTABILITY IN COUPLED OPTO-THERMAL MICRO-OSCILLATORS

RF power Sofﬁgon Piezo
amplifier purmp drive
Ton Angle Chip Vacuum
pump valve holder cube )
| p Vacuum High speed
> gauge photodetector
LIV Focusing Linear Neutral Helium-
Gat B lenses polarizers density neon CW
ate N | filter laser
i
Spectrum  valve Camera chip TC
walve =l | s | o
CCW 1 S
11— (] M s;p
I e |
<« |cw Up ol p \J U p Steering
Microscope Quarter—¢ T_ Polarizing S,p mirrors
body wave beamsplitter
plate Half-wave plate

Fig. 4. Schematic of the experimental setup to analyze the dynamics of coup
a vacuum cube and opto-thermally driven using a continuous-wave laser. The

led MEMS limit cycle oscillators. The SOI chip with the devices is housed in
frequency spectrum of the oscillations is measured through the reflected light

collected in the high-speed photodetector. The light reflected from the chip retraces the path of incidence but are shown separately in the schematic for clarity.

The piezo-drive is not used in the study of limit cycle oscillations.

are not drawn to scale. In the minimally coupled case, the
beams were of the same dimensions but the coupling bridges
between the beams were absent. Standard photolithography
was used for fabricating the devices. The SOI chip, spin-
coated with positive photoresist, was patterned using a 5x
g-line stepper with a resolution of 0.9 um. After developing
the photoresist, the exposed silicon device layer was shallow-
etched using inductively coupled plasma reactive ion etching
with C4Fg/SFg chemistry. The silicon dioxide layer was then
undercut using a 6 : 1 buffered oxide etchant to release the
devices. The lateral undercut near the anchors was at least
1 um which causes the oscillators to exert a minimal influence
on each other via the mechanical overhang [35]. The undercut
region can be visually seen in Fig. 1(b) as the thick yellow
border on the periphery of the device features. Thus, there
is always some minimal mechanical coupling between the
oscillators even in the absence of explicit coupling bridges.
Critical point drying was used after the wet etch release step to
circumvent surface tension effects [36]. Optical profilometry of
the released devices revealed that the microbeams are buckled
outwards with stronger buckling effect in longer beams. As an
example, a pair of micro-beams that were 28 um long and
2 um wide with coupling bridges between them had a center
displacement of about 0.2 gm. Outward buckling is caused
due to the presence of axial compressive stresses in the silicon
device layer prior to the release step.

B. Setup and Procedures

We now briefly describe the experimental methods used
to drive and detect oscillations in the MEMS devices.
A schematic of the experimental setup is given in Fig. 4. The
micro-beams were induced to undergo out-of-plane limit cycle
oscillations using opto-thermal excitation from a continuous-
wave (CW) laser source. In this work we used a 20 mW
helium-neon CW laser source at a wavelength of ~ 633 nm.

The laser beam path was adjusted using a pair of steering mir-
rors kept in a Z-fold configuration. The power and polarization
of the laser beam were controlled using a half-wave plate sand-
wiched between two linear polarizers. The transmission axes
of the two polarizers were fixed to set the plane of polarization
to be parallel to the optical table. The half-wave plate is able
to rotate the plane of polarization of the light passing through
it without attenuating the intensity. The half-wave plate and
the second linear polarizer effectively work as cross-polarizers,
and the half-wave plate is rotated to control the laser intensity
going into the setup. The laser power going into the setup was
calibrated to the rotation angle of the half-wave plate which
was recorded while performing the experiments. Focusing
lenses were used to reduce the laser spot diameter to illuminate
only the devices of interest. The plane of incidence in the
current setup is set by the orientation of the polarizing beam-
splitter cube and is parallel to the optical table. In Fig. 4, the
polarization of the laser light is marked as p-polarized (parallel
to the plane of incidence), s-polarized (perpendicular to the
plane of incidence), or circularly polarized: cw (clockwise),
or ccw (counterclockwise). The polarizing beam-splitter and
a quarter wave plate were used to create an optical isolator
such that the light reflected from the devices was redirected
to a high-speed photodetector [33].

The laser light passes through the optical elements and
enters the microscope through a port and is then redirected
towards the silicon device layer of the SOI chip. The partially
transmissive silicon-device layer, gap in the silicon dioxide
layer, and the reflective substrate underneath form a Fabry-
Pérot cavity interferometer. The laser light undergoes multiple
rounds of transmission, reflection, and absorption, in the cavity
such that the net absorbed energy and the net reflected energy
are periodic functions of the gap between the center of the
silicon device and the substrate underneath [37]. The absorbed
light energy causes thermal expansion of the silicon devices
and an out-of-plane deflection. The device dimensions are
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chosen such that the absorption-displacement curve results in
thermal feedback to support stable limit cycle oscillations. This
mechanism of thermal feedback is explained in more detail in
prior work [27]. The SOI chip with the devices was indium-
bonded to a piezoelectric disc actuator and was held inverted
in a vacuum chamber. The piezoelectric actuator is driven
using a spectrum analyzer output via a power amplifier to
provide external sinusoidal forcing. Note that the piezo-drive
is used only in resonance experiments to establish the baseline
resonance frequencies of the devices and not in the opto-
thermally driven limit cycle oscillation experiments. In the
resonance experiments, the laser power is below the Hopf
threshold for limit cycle oscillations and the laser is used only
for detection of oscillations.

The pressure in the vacuum chamber was reduced in a
two-stage process: first using a sorption pump to reduce the
pressure to ~ 1073 mBar, followed by an ion pump to
reach a final pressure < 107® mBar. The devices are kept
in the vacuum chamber to minimize damping and to keep the
devices clean. For detection of oscillations, the reflected light
modulated by the oscillations of the microbeams was collected
in a high-speed photodetector and its frequency components
were recorded in a spectrum analyzer. A beam of laser light
with a spot diameter greater than the total width spanned
by the pair of oscillators was used to both drive and detect
the dynamics. The intensities of light reflected from the two
oscillators get added and thus the resultant spectrum recorded
on the spectrum analyzer was a sum of spectra corresponding
to the two oscillators. It should be noted that the actual laser
power reaching the device is less than the power entering
the microscope due to the losses in the optical path inside
the microscope. For a similar setup, this loss was previously
measured to be about 65% [33]. The experimental laser powers
reported in this work were measured as the laser entered the
microscope. Lastly, we mention that the microscope camera
and the neutral density filter are two components of the setup
that were used only in the laser alignment procedure; the filter
to attenuate the laser power, and the camera to visualize the
laser spot as we position the laser at the center of the device
of interest. Centering the laser spot on the devices is necessary
for equal laser power to reach both oscillators. A manual linear
stage supporting the entire vacuum chamber was used for
centering and for scanning across the chip to study different
devices. The laser spot was aligned at the lowest laser power
setting such that the intensities of the reflected light from
both beams were roughly the same on visual inspection. This
protocol was repeated consistently for each experiment.

C. Experimental Results

We charted the dynamics for two sets of devices at the
extremes of our coupling strengths: 1) a pair of oscillators
38 and 40 um long and coupled via bridges with dimensions
shown in Fig. 3, and 2) a pair of oscillators of the same dimen-
sions minimally coupled via the mechanical overhang, with the
coupling bridges absent. The uncoupled resonance frequen-
cies of the micro-beams are roughly 1.655 and 1.755 MHz.
We measured the resonance frequencies at laser powers below
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the Hopf threshold such that the laser is used only for sensing
and is not responsible for driving limit cycle oscillations. Base
excitation was provided via the piezo-drive.

For the experiments on limit cycle oscillations, the base
excitation was turned off and the laser power was always
kept at a value higher than the Hopf threshold. The laser
power was varied continuously and the two sets of devices,
at minimal and strong coupling strengths, were studied. The
quantitative coupling strengths are not necessary to distinguish
the two regimes. A qualitative map of the different oscillatory
responses is shown in Fig. 5. In the plotted results, the
magnitude of measured frequency spectra is normalized by the
laser power entering the microscope to consistently represent
the relative amplitude of oscillations [33]. At minimal coupling
strength, there are two stable, distinct peaks in the measured
spectra at the three different laser powers above the Hopf
threshold: 3.7,4.8, and 6.1 mW. Note that these are the laser
power values at the microscope port, not accounting for the
losses inside the microscope. The peaks in each spectrum
correspond to the drifting LCOs exerting minimal influence
on each other and are shown in Fig. 5(i). It is noted that the
difference between the frequencies of the LCOs increases as
the laser power is increased. For the strongly coupled case, low
laser powers above the Hopf threshold give rise to a stable
synchronized state, shown in Fig. 5(ii). Note that again the
frequency of synchronization changes with laser power.

When the laser power crosses a critical value, a sudden
onset of irregular oscillations characterized by a broadband
spectrum with fluctuations was observed. Snapshots of the
frequency spectra reveal that there are two states that the
system exhibits as shown in Fig. 5(iii): a synchronized state
with the two oscillators having identical frequencies, and
a quasi-periodic state with prominent satellite peaks in the
spectrum suggesting a strong influence of each oscillator on
the other. We explain the irregular motion as the system
switching between these two states in the presence of noise.
The system spends most of the time in the intermediate state
between the synchronized state and the quasi-periodic state
which is seen as a broadband spectrum. The irregular spectrum
is persistent for a few minutes in the experiments, which is
long compared to the time-scale of the oscillator with a period
of the order of 1 us. Further, the experiment showing irregular
oscillations is repeatable with consistent results each time it
was performed. Irregular oscillations are not observed when
a single oscillator of length 38 or 40 xm is driven at high
laser powers at around 6.1 mW. Such irregular oscillations are
also not observed in identical oscillators, minimally coupled
or strongly coupled. Further, irregular oscillations are not
observed in non-identical oscillators with minimal coupling.
This indicates that irregular oscillations observed in the exper-
iments are not chaotic oscillations intrinsic to the optical
cavity which have been reported previously [22]. Videos of the
frequency spectra of the devices as the laser power is swept up
and then down are available as supplementary material [38].

IV. DISCUSSION

Bistability of the synchronized state and the quasi-periodic
state is seen in strongly coupled, opto-thermally driven,
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Fig. 6. Laser-induced frequency detuning between the limit cycle oscillators
in the (a) MEMS experiments and (b) numerical simulations, with other
system parameters held constant.

frequency-detuned oscillators at high laser powers in both the
numerical simulations (Section II) and in the MEMS experi-
ments (Section III). Bistability is precipitated by the increase
in effective frequency detuning between the oscillators with the
increase in laser power. This effect is shown in Fig. 6, where
the difference in the frequencies between the two oscillators
is plotted against the laser power from the numerical and
experimental results. It should be noted that the absolute values
of the laser power and the frequencies differ between the
numerical and experimental results due to the scaling, thus
we only capture the dynamics of the system qualitatively. For
opto-thermally driven oscillators, the laser power changes the
frequency detuning between oscillators. The other parameters
that influence the frequency detuning in the system such as
the dimensions of the micro-beams, the material, the out-
of-plane buckling, are parameters that are either immutable
or not smoothly variable. Thus, the laser-induced scheme for
frequency detuning can be used to study and access different
regimes of coupled oscillator dynamics.

Here, we record and discuss the differences between the
results in the numerical simulations and the MEMS experi-
ments. The numerical models show two steady-state solutions

0.0

—7-0.10

0350 0.1
z,(0)

I Quasi-periodic

0.2

Synchronized

Fig. 7. Numerical plot showing sensitive dependence of the system on initial
conditions z1(0) € [—0.2,0) and z2(0) € [0, 0.2), at coupling strength ¢ =
0.15, and high laser power, Pjg5or = 2 mW.

for the same system parameters at different initial conditions.
The basins of attraction for these two states are shown in
Fig. 7, where a 251 x 251 grid of initial displacements is
used. However, no transient behavior is seen in the numerical
simulations. This is explained by the fact that there is no
noise in the mathematical model. In future work, we plan
to investigate the possibility that adding noise to the numer-
ical model can cause the transient behavior that we observe
experimentally. The sensitive dependence on initial conditions
that is captured in the simulations suggest that any noise
present in the experiments such as thermo-mechanical noise or
fluctuations in laser power would result in the system switch-
ing between the two stable solutions. This is experimentally
observed and the intermediate state between the synchronized
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Fig. 8. Bistability manifests as a broad-band spectral response in strongly

coupled oscillators in the experiments (center). The oscillators rapidly switch
between the synchronized state (left) with a single prominent peak in the
spectrum, and the quasi-periodic state (right) with multiple satellite peaks,
due to sensitive dependence of the system on the dynamical variables.

and quasi-periodic states is a spectrum with a broad-band
response as shown in Fig. 8. The abrupt onset of irregular
spectra associated with the bifurcation to bistability could be
exploited in a bifurcation-based sensor application [39].

V. CONCLUSION

In this paper, we have demonstrated the use of laser power
to change the frequency detuning between two non-identical,
strongly coupled, opto-thermally driven MEMS limit cycle
oscillators. This allowed us to access the various regimes
of oscillations to study the dynamics of coupled oscilla-
tors. A regime of irregular oscillations was experimentally
demonstrated and explained using numerical simulations as
the system rapidly switching between the synchronized and
quasi-periodic states in the presence of noise due to sensi-
tive dependence on initial conditions. This phenomenon was
caused by an increase in frequency detuning between strongly
coupled oscillators with an increase in laser power. Other
states of oscillations such as the drift state, stable synchronized
state, and the quasi-periodic state were also experimentally
demonstrated and numerically validated. Use of the smoothly
variable laser power for changing the frequency detuning in
a pair of opto-thermal oscillators is valuable in the study
of nonlinear dynamics as well as in potential bifurcation-
based sensors. The bifurcation from the stable synchronized
state to irregular oscillations is distinct and can be used
for the detection of and warning at threshold laser powers.
As future work, we expect to carry out a theoretical analysis
of the bifurcation to bistability using perturbation theory on a
simplified mathematical model for the coupled MEMS system.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their suggestions and feedback. The experimental work was
performed in part at the Cornell NanoScale Facility, a member
of the National Nanotechnology Coordinated Infrastructure
(NNCI). The numerical work used the Extreme Science and
Engineering Discovery Environment (XSEDE). Specifically,

JOURNAL OF MICROELECTROMECHANICAL SYSTEMS

it used the Bridges-2 system, at the Pittsburgh Supercomputing
Center (PSC). This work also made use of the Cornell Center
for Materials Research Shared Facilities.

REFERENCES

[1] S. Tiwari and R. N. Candler, “Using flexural MEMS to study and
exploit nonlinearities: A review,” J. Micromech. Microeng., vol. 29,
no. 8, Aug. 2019, Art. no. 083002.

[2] S. H. Nitzan et al., “Self-induced parametric amplification arising
from nonlinear elastic coupling in a micromechanical resonating disk
gyroscope,” Sci. Rep., vol. 5, no. 1, pp. 1-6, Aug. 2015.

[3] P. Taheri-Tehrani, M. Defoort, and D. A. Horsley, “Operation of a high
quality-factor gyroscope in electromechanical nonlinearities regime,”
J. Micromech. Microeng., vol. 27, no. 7, Jul. 2017, Art. no. 075015.

[4] B. Ando, S. Baglio, C. Trigona, N. Dumas, L. Latorre, and P. Nouet,
“Nonlinear mechanism in MEMS devices for energy harvesting appli-
cations,” J. Micromech. Microeng., vol. 20, no. 12, Dec. 2010,
Art. no. 125020.

[5] A. T. Alastalo and V. Kaajakari, “Intermodulation in capacitively
coupled microelectromechanical filters,” IEEE Electron Device Lett.,
vol. 26, no. 5, pp. 289-291, May 2005.

[6] D. Antonio, D. H. Zanette, and D. Lépez, “Frequency stabilization in
nonlinear micromechanical oscillators,” Nature Commun., vol. 3, no. 1,
pp. 1-6, Jan. 2012.

[7]1 D. K. Agrawal, J. Woodhouse, and A. A. Seshia, “Observation of locked
phase dynamics and enhanced frequency stability in synchronized micro-
mechanical oscillators,” Phys. Rev. Lett., vol. 111, no. 8, Aug. 2013,
Art. no. 084101.

[8] M. H. Matheny et al., “Exotic states in a simple network of nano-
electromechanical oscillators,” Science, vol. 363, no. 6431, Mar. 2019,
Art. no. eaav7932.

[9] C.C. Rodrigues, C. M. Kersul, A. G. Primo, M. Lipson, T. P. M. Alegre,
and G. S. Wiederhecker, “Optomechanical synchronization across multi-
octave frequency spans,” Nature Commun., vol. 12, no. 1, pp. 1-9,
Dec. 2021.

[10] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to
Physics, Biology, Chemistry and Engineering. Nashville, TN, USA:
Westview Press, 2000.

[11] A. Jenkins, “Self-oscillation,” Phys. Rep., vol. 525, no. 2, pp. 167-222,
2013.

[12] A. Pikovsky, M. Rosenblum, and J. Kurths, “Synchronization: A uni-
versal concept in nonlinear sciences,” Self, vol. 2, p. 3, Jun. 2001.

[13] S. H. Strogatz, “From Kuramoto to Crawford: Exploring the onset
of synchronization in populations of coupled oscillators,” Phys. D,
Nonlinear Phenomena, vol. 143, nos. 1-4, pp. 1-20, 2000.

[14] T. Chakraborty and R. H. Rand, “The transition from phase locking to
drift in a system of two weakly coupled van der pol oscillators,” Int. J.
Non-Linear Mech., vol. 23, nos. 5-6, pp. 369-376, Jan. 1988.

[15] G. V. Osipov, J. Kurths, and C. Zhou, Synchronization Oscillatory
Networks. Cham, Switzerland: Springer, 2007.

[16] J. Kengne, J. C. Chedjou, M. Kom, K. Kyamakya, and V. K. Tamba,
“Regular oscillations, chaos, and multistability in a system of two
coupled van der pol oscillators: Numerical and experimental studies,”
Nonlinear Dyn., vol. 76, no. 2, pp. 1119-1132, Apr. 2014.

[17] B. Shayak, A. Bhaskar, A. T. Zehnder, and R. H. Rand, “Coexisting
modes and bifurcation structure in a pair of coupled detuned third
order oscillators,” Int. J. Non-Linear Mech., vol. 122, Jun. 2020,
Art. no. 103464.

[18] M. H. Matheny, M. Grau, L. G. Villanueva, R. B. Karabalin,
M. C. Cross, and M. L. Roukes, “Phase synchronization of two anhar-
monic nanomechanical oscillators,” Phys. Rev. Lett., vol. 112, no. 1,
Jan. 2014, Art. no. 014101.

[19] M. Zhang, G. S. Wiederhecker, S. Manipatruni, A. Barnard, P. McEuen,
and M. Lipson, “Synchronization of micromechanical oscillators using
light,” Phys. Rev. Lett., vol. 109, no. 23, Dec. 2012, Art. no. 233906.

[20] S.-B. Shim, M. Imboden, and P. Mohanty, “Synchronized oscillation
in coupled nanomechanical oscillators,” Science, vol. 316, no. 5821,
pp. 95-99, 2007.

[21] D. K. Agrawal, J. Woodhouse, and A. A. Seshia, “Synchronization in
a coupled architecture of microelectromechanical oscillators,” J. Appl.
Phys., vol. 115, no. 16, Apr. 2014, Art. no. 164904.

[22] T. Carmon, M. C. Cross, and K. J. Vahala, “Chaotic quivering of micron-
scaled on-chip resonators excited by centrifugal optical pressure,” Phys.
Rev. Lett., vol. 98, no. 16, Apr. 2007, Art. no. 167203.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 19,2022 at 02:37:59 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BHASKAR et al.: BISTABILITY IN COUPLED OPTO-THERMAL MICRO-OSCILLATORS

[23]

[24]
[25]
[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

S. Tallur and S. A. Bhave, “Non-linear dynamics in opto-mechanical
oscillators,” in Proc. Transducers 18th Int. Conf. Solid-State Sensors,
Actuat. Microsyst. (TRANSDUCERS), Jun. 2015, pp. 993-996.

D. Navarro-Urrios et al., “Nonlinear dynamics and chaos in an optome-
chanical beam,” Nature Commun., vol. 8, no. 1, pp. 1-10, Apr. 2017.
R. Langdon and B. Lynch, “Photoacoustics in optical sensors,” GEC J.
Res., vol. 6, no. 1, pp. 55-62, 1988.

K. Aubin et al., “Limit cycle oscillations in CW laser-driven NEMS,”
J. Microelectromech. Syst., vol. 13, no. 6, pp. 1018-1026, Dec. 2004.
D. Blocher, A. T. Zehnder, R. H. Rand, and S. Mukerji, “Anchor defor-
mations drive limit cycle oscillations in interferometrically transduced
MEMS beams,” Finite Elements Anal. Des., vol. 49, no. 1, pp. 52-57,
Feb. 2012.

D. Blocher, R. H. Rand, and A. T. Zehnder, “Analysis of laser power
threshold for self oscillation in thermo-optically excited doubly sup-
ported MEMS beams,” Int. J. Non-Linear Mech., vol. 57, pp. 10-15,
Dec. 2013.

A. T. Zehnder, R. H. Rand, and S. Krylov, “Locking of electrostatically
coupled thermo-optically driven MEMS limit cycle oscillators,” Int. J.
Non-Linear Mech., vol. 102, pp. 92-100, Jun. 2018.

A. Bhaskar, B. Shayak, R. H. Rand, and A. T. Zehnder, “Synchronization
characteristics of an array of coupled MEMS limit cycle oscillators,” Int.
J. Non-Linear Mech., vol. 128, Jan. 2021, Art. no. 103634.

R. H. Rand, A. T. Zehnder, B. Shayak, and A. Bhaskar, “Dynamics of
a system of two coupled MEMS oscillators,” in Proc. IUTAM Symp.
Exploiting Nonlinear Dyn. Eng. Syst.,, Cham, Switzerland: Springer,
2018, pp. 225-233.

R. H. Rand, A. T. Zehnder, B. Shayak, and A. Bhaskar, “Simplified
model and analysis of a pair of coupled thermo-optical MEMS oscilla-
tors,” Nonlinear Dyn., vol. 99, no. 1, pp. 73-83, 2020.

D. Blocher, “Optically driven limit cycle oscillations in MEMS,”
Ph.D. dissertation, Dept. Sibley School Mech. Aerosp. Eng., Cornell
Univ., Ithaca, NY, USA, 2012. [Online]. Available: https://ecommons.
cornell.edu/handle/1813/31202

J. Towns et al., “XSEDE: Accelerating scientific discovery,”
Sci. Eng., vol. 16, no. 5, pp. 62-74, Sep./Oct. 2014.

M. Sato, B. Hubbard, and A. Sievers, “Colloquium: Nonlinear energy
localization and its manipulation in micromechanical oscillator arrays,”
Rev. Modern Phys., vol. 78, no. 1, p. 137, 2006.

D. W. Carr, L. Sekaric, and H. G. Craighead, “Measurement of
nanomechanical resonant structures in single-crystal silicon,” J. Vac.
Sci. Technol. B, Microelectron. Nanometer Struct. Process., Meas.,
Phenomena, vol. 16, no. 6, pp. 3821-3824, 1998.

L. Sekaric, “Studies in NEMS: Nanoscale dynamics, energy dissipation,
and structural materials,” Ph.D. dissertation, Dept. School Appl. Eng.
Phys., Cornell Univ., Ithaca, NY, USA, 2003.

A. Bhaskar, M. Walth, R. Rand, and A. Zehnder. (Jan. 10, 2022). Fre-
quency Spectra of a Pair of Laser-Driven, Coupled MEMS Oscillators
as Laser Power is Varied, doi: 10.21227/2yyx-6669.

A. Z. Hajjaj, N. Jaber, S. Ilyas, F. K. Alfosail, and M. 1. Younis,
“Linear and nonlinear dynamics of micro and nano-resonators: Review
of recent advances,” Int. J. Non-Linear Mech., vol. 119, Mar. 2020,
Art. no. 103328.

Comput.

equations arising from
biology.

Aditya Bhaskar was born in Mumbai, India.
He received the B.Tech. and M.Tech. degrees in
mechanical engineering from the Indian Institute of
Technology Madras, Chennai, India, in 2017. He is
currently pursuing the Ph.D. degree with the Sibley
School of Mechanical and Aerospace Engineering,
Cornell University, Ithaca, NY, USA. His research
interests include nonlinear dynamics of microme-
chanical oscillators, distributed averaging algorithms
in multiagent networks, and fracture propagation in
heterogeneous materials.

Mark Walth was born in Colorado Springs, CO,
USA. He received the B.A. degree in mathemat-
ics from the Reed College, Portland, OR, USA,
in 2014, and the M.A.T. degree in mathematics edu-
cation from American University, Washington, DC,
USA, in 2015. He is currently pursuing the Ph.D.
degree with the Department of Mathematics, Cornell
University, Ithaca, NY, USA, working in nonlinear
dynamics. Prior to that, he was a Middle School
Mathematics Teacher in Washington, as a member
of the Math for America Fellowship Program.

Richard H. Rand received the B.S. degree from
The Cooper Union, New York, NY, USA, in 1964,
and the M.S. and Sc.D. degrees from Columbia Uni-
versity, New York, in 1965 and 1967, respectively,
all in civil engineering. He has been a Professor
with Cornell University, Ithaca, NY, USA, since
1967, and is currently with both the Mathemat-
ics Department and the Mechanical and Aerospace
Engineering Department. His recent research works
involve using perturbation methods and bifurcation
theory to obtain approximate solutions to differential
nonlinear dynamics problems in engineering and

Alan T. Zehnder received the B.S. degree from the
University of California at Berkeley and the Ph.D.
degree from the California Institute of Technology,
Pasadena, both in mechanical engineering. He is
a Professor with the School of Mechanical and
Aerospace Engineering, Cornell University, where
he serves as the Associate Dean for Undergraduate
Programs. His current research interests include the
nonlinear dynamics of nanomechanical oscillators
and the deformation and fracture of hydrogels. He is
a fellow of the American Society of Mechanical

Engineers (ASME) and the Society for Experimental Mechanics (SEM).
He was a recipient of the S. Nemat Nassar Award from the SEM. He is
the Editor-in-Chief of Experimental Mechanics.

Authorized licensed use limited to: Cornell University Library. Downloaded on May 19,2022 at 02:37:59 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.21227/2yyx-6669

