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ABSTRACT: MnO, is a versatile, cost-effective transition metal  Flower-like 5-MnO, "‘".

oxide that has attracted interest in multiple domains, including
as an active cathode material or catalyst for electrochemical
energy storage in batteries. Hydrothermal methods are among
the most efficient approaches for MnO, synthesis. These
approaches enable facile, versatile production of MnO, in any
of its crystalline phases (@, f, 8, etc.), with the dominant
product being determined by reaction conditions such as
precursor concentration and temperature. These benefits
unfortunately come with impractically low product yields
(~9%) and long reaction times. Here, we report that low-
molecular weight, water-soluble polymers function as effective
nucleating agents for the hydrothermal synthesis of MnO,. For
fundamental reasons, these polymers are also reported to promote large (10- to 40-fold) increases in reaction rate and yield.
We evaluate the physical and crystallographic features of the synthesized MnO, and find that depending upon the reaction
conditions, the polymer-assisted synthesis yields dominantly §-MnO, or f-MnO,. The as-prepared 6-MnO, materials with
extra interlayer water are studied as electrodes for aqueous Zn-ion battery applications and are shown to support long-
duration storage at both moderate and high rates.
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anganese oxide (MnO,) is a transition metal oxide 5-MnO, in aqueous Zn-ion batteries (ZIB) where it has been

I \ / I material, which by virtue of its low cost, high earth reported to facilitate a rapid ion diffusion kinetics for Zn in
abundance (Mn is the fifth most abundant metal in ZIBs '%**~**—illustrate the broad promise of the material.

the earth’s crust), and chemical versatility has attracted interest Multiple chemical and electrochemical pathways, including

in an increasingly wider range of technologies.l_s MnO, has electrodeposition,5 sol—gel methods,”® and microwave-assisted

for example been demonstrated as an electrode material for synthesis,”® have been developed to synthesize MnO, in the

energy storage in batteries and pseudocapacitors,””"* as an specific crystal phases required for each of the various

adsorbent/ion-exchange medium in air and water treat-
ment,”'*"> and as a catalyst for organic synthesis.”

MnO, has likewise enjoyed a long history as an essential and
versatile electrode component in dry cell batteries.” Notably,
different polymorphs of MnO, show potential as electrode
materials in batteries with working ions in a range of sizes and
chemistries (e.g., Zn, Li, Na, K, Al, etc.). A large body of
research over the last four decades has shown that MnO,’s
promise as an electrode material is in fact limited neither to dry Received:  January 3, 2023
cell nor to primary batteries."®"*' Two recent examples—the Accepted: March 9, 2023
industrial-scale utilization of MnO,, either alone or as a
component, in the cathode for rechargeable lithium-ion
batteries (LIBs) that offer higher average discharge voltage
and improved specific capacity; and the growing use of layered

applications. Hydrothermal synthesis nonetheless stands out
as being one of the most versatile and used synthesis methods
for large-scale synthesis of MnO, structures in a variety of form
factors and mass distributions (e.g., hollow, core—shell, rattles,
etc.).””’7* Advantages of the hydrothermal method are
manifold and important: (i) Synthesis and crystallization can
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Flower-like 6-MnO,

Figure 1. Morphology changes of MnO, synthesized with PEG additive. (a) Schematic illustration of PEG-regulated synthesis of PR-6-MnO,
and PR-f-MnO,. Scanning electron microscopy (SEM) images of (b) pristine §-MnO,, (c) PR-f-MnO,, and (d) PR-6-MnO,.

occur in a single step: compared with other synthesis pathways
that require several separated steps, the hydrothermal method
offers a simple one-pot synthesis. (ii) The dominant
polymorphs produced can be controlled by straightforward
changes in the synthesis conditions: different phases of MnO,
(e.g, a, B, 6, etc.) can be acquired by adjusting temperature
and precursor concentrations used in the synthesis.’’ (iii)
Although some solid-phase methods have been reported to
offer a high product yield, the synthesized product often
contains non-negligible quantities of impurities, and the
particle size is uncontrolled: hydrothermal synthesis, in
contrast, has been reported to provide stable crystal structures
with high crystallinity and narrow particle size distributions.”'
Notwithstanding these advantages, the low MnO, yield and
long reaction times associated with hydrothermal synthesis
methods are significant drawbacks. Several strategies have been
reported to overcome these shortcomings of the hydrothermal
synthesis, including the work by Whittingham et al.,” which
showed that addition of 4 M HNOj to neutralize the produced
KOH increases yield of -MnO, to over 90%. However, the
reaction kinetics remain sluggish, and the high yields are
achieved for long reaction times, e.g., 4 days.

A significant body of work has shown that regulation of the
size of the MnO, particles is important for achieving stable,
long-duration charge—discharge cycling in rechargeable
batteries.”**™*° Meng et al,’® for example, reported that
decreasing the average particle size of MnO, to nanoscale
dimensions improves electrochemical performance. This
finding apparently comes from two interrelated phenomena:
(i) the increased specific surface area achieved at smaller
particle sizes improves interfacial contact between electrolyte
and electrode particles; and (ii) the smaller particle sizes result
in shorter ion diffusion path lengths, which alleviate the
problem of the relatively low ionic conductivity of MnO,.”*

Water-soluble polymers like poly(ethylene oxide) are known
to physisorb strongly on specific crystallographic facets
exposed on the surface of metal oxide nanoparticles.”” " At
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high molecular weights and particle concentrations, the
polymers are also known to cause particle—particle aggregation
and flocculation through a bridging effect.”'~* An open
question is whether low-molecular weight versions of these
polymers might be able to form dynamic coordination with a
growing metal oxide nanostructure to favor nucleation and
catalyze growth of during hydrothermal synthesis. Herein, we
evaluate this question using water-soluble PEG additives in the
hydrothermal synthesis of MnO,. We find that at concen-
trations as low as 0.05 wt %, PEG with M, &~ 3 kDa increases
both the yield (from approximately 9% to 97%) and reaction
rate (from 4 days to 4 h reaction time) for hydrothermal
synthesis of 6-MnO,. Under some conditions the resultant
material (denoted as PR-6-MnQO,) exhibits smaller particle
size, and under other reaction conditions PEG-regulated p-
MnO, nanorods (denoted as PR-f -MnO,) were obtained.
Evaluation of the synthesized PR-6-MnO, as the active
material in the positive electrode of aqueous zinc-ion batteries
revealed large improvements in long-term cycling stability and
storage capacity due to significantly increased interlayer water
brought by PEG. Additionally, based on literature reports,**~*°
we also analyzed the potential of the synthesized PR-$-MnO,
as a cathode material in sodium metal batteries. For brevity, we
focus mainly on the synthesis, analysis, and application of the
PR-6-MnO, material.

Figure la reports our findings for hydrothermal synthesis
runs without and with PEG (M,, = 3 kDa, PEG 3000) at
different concentrations. A key finding is that the characteristic
flower-like 0-MnO, particles are formed in the absence of PEG,
PR-$-MnO, nanorods are formed at relatively high concen-
tration of PEG 3000, and urchin-shaped PR-6-MnO, with
smaller particle size are obtained at lower concentration of
PEG 3000. As shown in Figure S1, the PR-6-MnO, powder
shows a brownish color while the 6-MnO, powder is black.
Scanning electron microscopy (SEM) images (Figure 1b)
show that conventional 6-MnO, formed in the absence of PEG
exhibits an approximate spherical structure surrounded by
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Figure 2. Design principle and proposed reaction mechanism. (a) PEG 3000 coordinates with water molecule and permanganate ions in the
precursor solution for synthesizing PR-6-MnO,. (b) Nuclear magnetic resonance (NMR) spectrum of 0.0375 M KMnO,, 0.05 wt % PEG
3000 solution, and 0.05 wt % PEG 3000 solution with different concentrations of KMnO,. (c) X-ray diffraction (XRD) analysis of pristine §-
MnO, and PR-6-MnO, with different synthesis time (10 min and 4 h). (d) Yield of §-MnO, with and without PEG 3000 additive collected at

different synthesis time.

petal-like flakes with average particle size in the range of 1.5—-2
um. However, with the additional PEG 3000 in precursor
solution and other synthesis conditions maintained the same,
the polymorph of MnO, can be changed and the morphology
altered dramatically as well. Additional 0.05 wt % of PEG3000
in precursor solution produces urchin-shaped PR-5-MnO, with
average particle size of around 100 nm. Higher concentrations
of PEG 3000 (0.1 wt % and higher) provide PR-$-MnO,
nanorods whose diameter varies from 150 to 200 nm. It is
speculated that the decreased particle size and urchin-shaped
structure will contribute to boosting the material’s specific
surface area, which benefits its electrochemical performance.
Brunauer—Emmett—Teller (BET) analysis was conducted to
quantify the specific surface area increment; as shown in Figure
S2, the pristine 5-MnO, shows a specific surface area of 9.90
m?/ g, while PR-6-MnO, has an obvious, higher value of
approximately 45.68 m*/g.

As a first step toward understanding the large effect of PEG
3000 on the crystallographic and morphological features of
MnO,, we conjectured that the polymer in solution may serve
as both a dispersant and linker for particle nuclei. Specifically,
as a hydrophilic molecule, the oxygen in the PEG repeating
units is thought to offer multiple, concatenated sites for
hydrogen bonding. The relatively hydrophobic hydrogen in the
PEG repeating units may conversely associate strongly with the
oxygen in the permanganate anion. As shown in Figure 2a,
PEG functions somewhat like a linker, such that permanganate
anions and water molecules coordinate alternatively with the
PEG3000 chain. We speculate that this prelinked structure
helps reduce the migration energy barrier of permanganate
ions during the nucleation process and may also hinder MnO,
particle growth, causing the decreased particle size of PR-6-
MnO,.
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To evaluate the accuracy of the hypothesized prelinked
structure, nuclear magnetic resonance (NMR) analysis were
conducted. As shown in Figure 2b, the lower peak and the
higher peak in the top three lines represent hydrogen in PEG
repeating unit and hydrogen in water, respectively. It is
speculated that the low intensity of the PEG peak is due to the
small additive amount (0.05 wt %). After adding the same
concentration of KMnO, as we used for 6-MnO, synthesis,
both peaks become significantly broader, indicating a more
sluggish proton motion.””~* By forming bonds with MnO,~,
the hydrogens in water and PEG are less sensitive to the
magnetic filed. Additionally, after calibration, there is a slight
upfield shift of the PEG hydrogen peak with increasing MnO,~
concentrations (Figure S3), which is also consistent with our
hypothesis. Coordinating to MnO,~, the hydrogens in PEG
repeating units were deshielded because the electronegatively
of oxygen is higher than that of hydrogen. The NMR data
therefore implies that the large effect of PEG 3000 on MnO,
morphology likely arises from its ability to regulate the
molecular arrangement in the precursor solution. Furthermore,
according to the Raman spectroscopy analysis shown in Figure
S4, the water environment is different among 0.05 wt % PEG
solution, 0.0375 M KMnO,, and 0.0375 M KMnO, in 0.05 wt
% PEG solution.

Instead of random nucleation, the crystallization achieved in
the presence of PEG results in a noticeably higher reaction rate
and improved yield. Results from X-ray powder diffraction
analysis reported in Figure 2c reveal that the material
synthesized with low-concentration PEG 3000 has the same
crystal framework as 6-MnO,; PR-6-MnO, produced after 10
min and 4 h of synthesis exhibits peaks that have identical 26
locations with the pristine -MnO,. Nevertheless, PR-6-MnO,
shows broader (001) and (002) peaks, which could be

https://doi.org/10.1021/acsenergylett.3c00018
ACS Energy Lett. 2023, 8, 1744—-1751


https://pubs.acs.org/doi/suppl/10.1021/acsenergylett.3c00018/suppl_file/nz3c00018_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsenergylett.3c00018/suppl_file/nz3c00018_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsenergylett.3c00018/suppl_file/nz3c00018_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsenergylett.3c00018/suppl_file/nz3c00018_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsenergylett.3c00018/suppl_file/nz3c00018_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.3c00018?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.3c00018?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.3c00018?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.3c00018?fig=fig2&ref=pdf
http://pubs.acs.org/journal/aelccp?ref=pdf
https://doi.org/10.1021/acsenergylett.3c00018?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Energy Letters

http://pubs.acs.org/journal/aelccp

a Ols b Ols Cu = PR-3-MnO,
Mn-O-Mn e ating 8
~ Mn-O-H Prinstine §-MnO,
- = 1.0 ——PR-B-MnO,
— 5 S
= . =
< Mn-O-H < s
> n-O- > 15}
2 Z K 0.9
2 5] 2
= -1 <
- = =038
v v v v T T v v 0.7 T T T T
528 530 532 534 528 530 532 534 100 200 300 400 500

Binding Energy (eV)

Binding Energy (eV)

Temperature (°C)

Figure 3. Material characterization and analysis. X-ray photoelectron spectra of (a) §-MnO, and (b) PR-6-MnO,. (c) Thermogravimetric
analysis of pristine §-MnO,, PR-6-MnO,, and PR-f-MnO,. (d) Energy-dispersive X-ray spectroscopy mapping of PR-6-MnO,. (e)

Transmission electron microscopy (TEM) image of PR-6-MnO,.

attributed to the formation of nanosized crystals.” According to
the Scherrer equation, line broadness at half the maximum
intensity is inversely proportional to the mean size of the
crystalline domains.*’ Additionally, Figure S5 shows the
synthesized PR-#-MnO, has the same structure as pristine f-
MnO, with limited impurity peaks. A series of syntheses was
conducted to probe the relation between reaction time and
PR-6-MnO, yield. All the reaction conditions, including
reactor size, precursor mass, and synthesis temperature, are
maintained identical; the only difference is with or without the
PEG 3000 additive. As shown in Figure 2d, 0.05 wt % of PEG
3000 additive dramatically increases the yield as well as the
reaction rate of hydrolysis reaction of producing 6-MnO,. It is
observed that the yield of PR-0-MnO, saturated after 4 h of
synthesis. Results reported in Figure S6 for higher PEG3000
concentrations show that the polymer has a similar effect on
the f-phase MnO,.

We investigated the effect of PEG molecular weight on the
yield and reaction kinetics of the hydrothermal synthesis. In
these experiments, the PEG concentration in the precursor
solution was held fixed at 0.05 wt % and the molecular weight
varied from 3000 to 20,000. The results reported in Figures
§7—89 indicate that there is not an obvious difference in the
yield, structure, or particle morphology. On this basis, we
selected PEG3000 as the additive material for the in-depth
physical and electrochemical analysis of the hydrothermally
synthesized MnO, materials.

X-ray photoelectron spectroscopy (XPS) was performed to
investigate the bonding information on synthesized PR-6-
MnO,. As shown in Figure 3a,b, the deconvoluted 6-MnO, O
Is spectra show three peaks at 529.8, 531.5, and 532.4 eV,
which correspond to Mn—O—Mn, Mn—O—H, and H-O—-H
bonds.”" A significant increased intensity and area of Mn—O—
H and H-O—H bonds was found on the PR-6-MnO, O 1s
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spectra, indicating more water molecules were bonded in the
interlayer of PR-6-MnO,. Additionally, the thermogravimetric
analysis (TGA) outcome is consistent with the XPS results. As
shown Figure 3c, there is a ~15% weight loss of PR-6-MnO, at
170 °C, which was reported to be the evaporation of bonded
crystal water,” while the pristine 5-MnO, yields a much lower
weight loss at 170 °C as shown in Figure S10. To further prove
that extra water content exists in the PR-6-MnO, interlayers,
XRD was conducted on PR-6-MnO, which has been heated at
180 °C in a dry environment for 12 h to ensure the
evaporation of structural water. As shown in Figure S11, the
(001) and (002) peaks showed a slight right-shift which
corresponds to a decreased interlayer spacing. Thus, the water
molecules were believed to be located between the layers of
PR-6-MnO, according to the XPS, TGA, and XRD results.

Previous literature resported that PEG degrades between 300
and 400 °C in TGA; >>* our TGA results shown in Figure S12
is consistent with these reports. As shown in Figure 3¢, PR-f-
MnO, shows no significant weight loss at around 170 °C, while
a ~15% weight loss was observed between 300 and 400 °C,
corresponding to the degradation of PEG. In contrast, no
obvious weight loss between 300 and 400 °C was found for
PR-5-MnO, whose PEG additive amount is half of the amount
for PR--MnO,. Therefore, we believe that PEG does not exist
in the synthesized PR-6-MnO,.

Energy-dispersive X-ray spectroscopy (EDS) mapping was
conducted to probe the spatial distribution of manganese,
oxygen, and intercalated potassium. According to Figure 3d,
the synthesized particles have a uniform distribution of Mn, O,
and K. To further determine the exact chemical formula of PR-
0-MnO,, laser ablation inductively coupled plasma optical
emission spectroscopy (LA-ICP-OES) analysis was performed.
Combined with the TGA result, the determined formula for
synthesized pristine 6-MnO, and PR-6-MnO, is K;;,sMnO,-
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Figure 4. Electrochemical analysis of MnO,. (a) Discharge profile of Zn | 2 M ZnSO, + 0.2 M MnSO, | PR-§-MnO, coin cell at 1 mA/cm>
(b) Rate stability analysis of PR-6-MnO, coin cell. Cycling performance of Zn | 2 M ZnSO, + 0.2 M MnSO, | PR-6-MnO, coin cell at
different current density: (c) 10 mA/cm” and (d) 1 mA/cm? (e) Pouch cell cycling performance after activation cycles. (h) Discharge profile
of Na | 1 M NaClO, in EC/PC (50:50 v: (v) | PR-f-MnO, coin cell (0.1C). (g) Cycling performance of Na | 1 M NaClO, in EC/PC (50:50

v:v) | PR-#-MnO, coin cell (0.2C).

0.16H,0 and K, ,,MnO,-1.11H,0. Additionally, the trans-
mission electron microscopy (TEM) images in Figure 3e
further prove the urchin-like morphology of PR-6-MnO,,
which is consistent with specific surface area increment. The
characterization results discussed above revealed that PR-o-
MnO, has smaller particle size, higher specific surface area, and
significantly increased interlayer water. In the following, PR-6-
MnO, is shown to be a superior cathode material for a zinc-ion
battery for hosting protons and zinc ions owing to its special
features.

Here, we evaluated PR-6-MnO, as the cathode material in
Znl2 M ZnSO, + 0.2 M MnSO, | PR-6-MnO, coin cells and
pouch cells. Galvanostatic charge/discharge (GCD) profiles of
Zn |2 M ZnSO, + 0.2 M MnSO, | PR-6-MnO, coin cells are
presented in Figure 4a. It shows a typical Zn-MnO, discharge
profile, which consists of one plateau at around 145 V
corresponding to proton intercalation and another plateau at
around 1.3 V corresponding to zinc-ion intercalation.
According to the cyclic voltammetry results shown in Figure
S13, there are two pairs of redox peaks for both PR-6-MnO,
and 6-MnO,. The observed results are consistent with
previously reported proton—zinc sequential intercalation
theory.” Notably, PR-6-MnO, provides a significantly
increased capacity (295 mAh/g) which approaches the
theoretical value of §-MnO, (308 mAh/g). It is tentatively

1748

believed that the previously demonstrated decreased average
particle size and higher specific surface area are responsible for
the dramatic capacity change because both ensure a broader
electrolyte/electrode interface that increases possible reaction
sites. A rate stability test was conducted, and the results are
shown in Figure 4b; stable capacity was maintained from 1C to
SC and back to 1C. Figure 4c compares the performance of
aqueous Zn-MnO, coin cells based on 6-MnO, and PR-6-
MnO, as the active material in the cathode under a high
current density of 10 mA/cm? After the first few activation
cycles, the cell can offer a ~120 mAh/g specific capacity and
cycle 5000 times with 80% retention. Pristine 6-MnO, whose
capacity fades rapidly shows a limited high-current capability.
Previous reports indicate that additional water molecules in the
interlayer help boost the proton intercalation according to the
Grotthuss mechanism and the zinc-ion intercalation via
electrostatic shielding, which could be a reason for the
significantly improved rate capability.”*~>” Thus, the galvano-
static intermittent titration technique (GITT) was applied to
quantify the proton and zinc cation diffusivity. The analysis
results are plotted in Figure S14a, and the calculated diffusivity
in Figure S14b versus the ion insertion state reveals that PR-6-
MnO, has a higher diffusion rate both for protons and for zinc
ions in solution. It is already known that a fast ion diffusion
rate allows the cathode to have high-current capability.
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In Figure 4d, it is apparent that significant capacity fade both
during and after the first hundred charge/discharge cycles is a
characteristic of the -MnO, not shared with PR-6-MnO,. The
latter instead manifests a stable plateau at around 290 mAh/g
for 500 cycles (976 h). We note further that the end-of-life of
these batteries is not limited by the MnO, cathode but rather
arises from failure of the Zn anode due to short-circuit caused
by dendritic growth of the zinc anode. A significant body of
work has studied the effect of interlayer ions and molecules on
stabilizing a layered material structure.”*™° It was shown
above that PR-5-MnO, has a unique water-rich interlayer; the
extra interlayer water is speculated to reduce electrostatic
interactions between working ions and PR-6-MnO, and also
pillaring of the layered structure.” Thus, PR-6-MnO, exhibits
a more stable cycling performance under a low current density.

Furthermore, owing to the benefits of fast and efficient
production of PR-6-MnO,, a Zn | 2 M ZnSO,, + 0.2 M MnSO,
| PR-6-MnO, pouch cell was assembled. As shown in Figure
4e, after activation cycles, a 3 X 3 cm pouch cell can cycle over
350 times with 75% capacity retention. At last, sodium metal
batteries paired with a PR-#-MnO, cathode were assembled
and analyzed. As shown in Figures 4f and S15, a flat discharge
plateau at around 2.3 V was observed in the discharge profile of
the Na Il PR-$-MnQO, coin cell. Figure 4g shows that the Na ||
PR-f-MnQO, coin cell can offer a stabilized discharge capacity
at around 120 mAh/g and cycle more than 80 times at a slow
charge/discharge rate (0.2C).

In summary, we report that introduction of even a small
amount of the water-soluble polymer (PEG 3000) in a
hydrothermal synthesis dramatically enhances the reaction rate
and yield of -MnO, and f-MnO,. The polymer is shown to
act as a linker, which appears to regulate the arrangement of
molecules in the precursor solution, which is believed to lower
the energy barrier for nucleation and refinement of MnO,
crystal growth. We analyzed the as-synthesized PR-6-MnO, in
detail and found that the polymer-assisted product also offers
smaller average particle sizes, higher specific surface area, and a
water-rich interlayer. All of these features enhance PR-6-
MnO,’s potential as a cathode material in aqueous zinc-ion
batteries. We evaluate this potential in electrochemical cells in
which Zn anodes are paired with a PR-5-MnO, cathode (e.g.,
Zn |12 M ZnSO, + 0.2 M MnSO, | PR-6-MnO, cells). The cells
are reported to manifest increased specific capacity, high
current density capability, and good long-term stability in
galvanostatic cycling at moderate rates. We also report that PR-
S-MnO, has potential to serve as a cathode in sodium metal
batteries. We conclude that the reported polymer-assisted
hydrothermal approach paves a path toward a scalable strategy
for synthesizing -MnO, and -MnO, on a large scale for use
in zinc-ion batteries and sodium-ion batteries.
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