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Abstract—Writing declarative models has numerous benefits,
ranging from automated reasoning and correction of design-level
properties before systems are built, to automated testing and
debugging of their implementations after they are built. Alloy is a
declarative modeling language that is well suited for verifying
system designs. A key strength of Alloy is its scenario-finding
toolset, the Analyzer, which allows users to explore all valid
scenarios that adhere to the model’s constraints up to a user-
provided scope. In Alloy, the Analyzer presents scenarios in the
order they are discovered by a backend SAT solver, which is
effectively unordered. This paper presents Reach, an enhance-
ment to the Analyzer which allows users to explore scenarios by
size. Experimental results reveal Reach’s enumeration improves
performance while having the added benefit of maintaining a
semi-sorted ordering of scenarios for the user. Moreover, we
highlight Reach’s ability to improve the performance of Alloy’s
analysis when the user makes incremental changes to the scope.

Index Terms—Alloy, SAT Solver, Scenario Enumeration

I. INTRODUCTION

Our lives are increasingly dependent on software systems.
However, these same systems, even the most safety-critical
ones, are notoriously buggy. Therefore, there is a growing need
to produce reliable software while keeping the cost low. One
solution is to make use of declarative modeling languages to
help improve software correctness. Alloy [9] is a first-order,
relational modeling language. A key strength of Alloy is the
ability to develop models in the Analyzer, a scenario enumer-
ation toolset that lets users explore behavior enabled by their
models. To achieve this, the Analyzer invokes off-the-shelf
Boolean satisfiability (SAT) solvers to search for scenarios,
which are assignments to the sets of the model such that all
executed formulas hold. As output, the Analyzer produces a
collection of scenarios the user can explore. Alloy scenarios
have been used to validate software designs [13], [17], to test
and debug code [5], [14], to repair program states [21], [29]
and to synthesize security attacks [27]. However, effectively
applying scenarios to improve the correctness of a software
system, and thus improve the system’s reliability, depends
heavily on how easily users can discover scenarios of interest.
The Analyzer’s enumeration process will explore all scenar-ios

up to the user provided scope. Unfortunately, this results in
the Analyzer finding hundreds of scenarios and there is
nothing in Alloy’s encoding that guarantees that the next
scenario enumerated will be in any way related to the previous
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scenario. Instead, the order in which scenarios are discovered is
based solely on the order that the back-end SAT solver
discovers them, which appears as random. For instance, it is
possible for the enumeration order to present a scenario of
size 1 followed by a scenario of size 3 followed by a scenario of
size 1 again. This places a high burden on the user toiterate
over scenarios and find ones of value. Furthermore, in order
to improve software reliability, the underlying model itself
needs to be accurate. However, writing models correctly is a
difficult and error-prone task. When a user is validating that
their modeled constraints are correct, it is common for the
user to desire to check the behavior of their model over
smaller scenarios first, then move onto larger scenarios.

To address these limitations, this paper introduces Reach,
an extension to the Analyzer which provides support for staged
generation of scenarios by size. In this paper, we refer to the
size of a scenario as the size of the largest signature set in
the scenario. This view of size is based on how Alloy scopes,
which outlines an upper bound on the size of all signatures,
work. Rather than producing one enumeration across the entire
scope, Reach’s execution results in a separate enumeration
per size allowed by the scope. Therefore, Reach enables the
user to intentionally explore scenarios of a specific size and to
control when they move onto exploring scenarios of a different
size. To achieve this, Reach (1) restricts the upper bound of
the conjunctive normal form (CNF) encoding to match the
size being enumerated and (2) modifies the CNF encoding to
enforce that a scenario meets the required size because of a
specific signature in the model, which results in a semi-sorted
ordering of scenarios for the user.

Our experimental results show that Reach’s enumeration
has no noticeable overhead and often improves the overall
runtime. Moreover, in comparison to the Analyzer, Reach
improves the feasibility of using Alloy models to increase
software reliability in two ways. First, Reach’s staged gen-
eration by size provides users with an execution environment
that directly enables them to efficiently validate their model.
As a result, users can produce more accurate software models,
which in turn, enables the user to verify the right software
system. Second, the predictable order of Reach’s enumeration
allows users to more easily navigate through the scenarios to
discover key scenarios that can be used to validate the software
system’s design or implementation.



(a)

(b) (c) (d)

sig List {header: lone Node}
sig Node {link: lone Node}

LO LO LO L1

pred acyclic {
all | List {

header header | header

Y Y Y

all n: l.header.*xlink | n lin n.Alink

1

run {acyclic} for 3

NoOouhbhwNPER

NO

NO N1 NO N1

Fig. 1. Alloy Model and Scenarios of a Singly-Linked List

In this paper, we make the following contributions:
CNF Encoding for Size: We present a novel CNF encoding
for scenario enumeration that both enforces a specific size of a
scenario and outlines how this size is achieved.
Staged Generation: We modify the Analyzer’s execution
environment to stage generation of scenarios by size, including
updating the Analyzer to support multiple concurrent enumer-
ations, one for each size in scope.
Evaluation: We compare Reach’s performance to the default
Analyzer enumeration and two baseline techniques using a
variety of subject models used to evaluate recent advancements
to Alloy. In addition, we explore how Reach can improve the
performance of Alloy in an iterative deepening setting.
Open Source: We release our enumeration framework as an
open-source extension to version 5.0.1 of the Analyzer. Reach
can be found at: https://REACHExtension.github.io.

Il. BACKGROUND
A. Alloy

To highlight how modeling in Alloy works, Figure 1
(a) depicts a model of a singly-linked list with an acyclic
constraint. Signature paragraphs introduce atoms and their
relationships (lines 1 - 2). Line 1 introduces a named set
List and uses the relation header to express that each
List atom has zero or one header nodes (lone). Similarly,
line 2 introduces the named set Node and uses the link
relation to express that each Node atom points to zero or one
other nodes. Predicate paragraphs introduce named first order
logic formulas that can be invoked elsewhere (lines 3 - 6).
The predicate Acyclic uses universal quantification (all),
set exclusion (!in), relation join (.), transitive closure (a)
and reflexive transitive closure (*) to express the idea that
“for every list, all nodes in the list are not reachable from
themselves. ” Commands indicate which formulas to invoke
and what scope to explore. The scope places an upper bound
on the size of all signature sets. The command on line 7 asks
the Analyzer to search for satisfying assignments to all the
sets of the model (List, header, Node, and link) such that
Acyclic istrue using up to 3 List atoms and 3 Node atoms.

Figure 1 (b), (c) and (d) displays the first three scenarios
found by the Analyzer: an empty list with a disconnected node
that has a cycle, a list with one node and a disconnected node
that has a cycle, and two lists each with one node and no
cycles. In Alloy, scenarios are produced by KodKod [26],
which generates a CNF formula equivalent to the invoked
constraints and uses a back-end SAT solver to find a satisfying

solution. KodKod then translates this solution back into an
Alloy scenario. Specifically, KodKod creates a list of all
possible assignments that can populate a set and ties those to
unique integer values, which make up the primary variables of
the CNF formula. While solving the CNF formula, the SAT
solver determines if each primary variable should be positive
(true) or negative (false). A positive assignment means the
atom is in the scenario.

To illustrate, for the command in Figure 1 (a), KodKod
produces 24 primary variables for the CNF encoding: variables
1-3 relate to set List, 4-6 relate to set Node, 7-15 relate to
set header and 16-24 relate to set link. For set List, the
primary variable “1” reasons over whether or not atom LO is
in List, primary variable “2” reasons over whether or not
atom L1 is in List, and primary variable “3” reasons over
whether or not atom L2 is in List. To create the scenario in
Figure 1 (b), the SAT solver found a satisfying assignment
for all 24 primary variables in which the following three
primary variables were positive: “1” (LO in List), “4” (NO in
Node), and “16” (NO->NO in link). The remaining primary
variables were all assigned negative values. To enumerate
a new scenario, KodKod instructs the SAT solver to find
another satisfying assignment to the primary variables with an
additional CNF clause that asserts that any new assignment
found must differ from all previously discovered assignments
by at least one primary variable.

B. Reach Enumeration

The Analyzer’s default enumeration process prevents re-
peatedly discovering duplicate scenarios; however, it does
not guarantee any sort of relationship between back-to-back
scenarios. Reach serves to give the user a high level structure
for which scenarios will be presented to them. Specifically,
Reach modifies Alloy’s enumeration process to create a
separate enumeration for each size up to and including the user
provided scope. To illustrate, for the model in Figure 1 (a),
Reach creates four distinct enumerations which produce 1
scenarios of size 0, 6 scenarios of size 1, 38 scenarios of size
2 and 299 scenarios of size 3, respectively. Figure 2 shows
the first 8 scenarios enumerated by Reach if the user decides
to enumerate scenarios from the smallest size to the largest
size. For scenarios of size 0, the user is presented with just
Figure 2 (a). Then, for scenarios of size 1, the user will be
presented with the scenarios shown in Figure 2 (b) - (g). Next,
for scenarios of size 2, Reach will present the scenario in
Figure 2 (h). From there, the user can continue to enumerate
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Fig. 2. Reach Enumeration

the remaining 37 scenarios of size 2. Importantly, users can
switch between enumerations of different sizes at any point.

In addition to focusing on enumeration by size, Reach’s
scenarios are generated in a semi-sorted order based on which
signature determines the size of the scenario. To illustrate,
consider the order of the size 1 scenarios in Figure 2. Reach
first enumerates all scenarios that are of size 1 due tothe List
signature, (Figure 2 (b) - (e)). Then, Reach enumerates all of
the scenarios that are of size 1 due to the Node signature
(Figure 2 (f) - (g)). Of note, Reach still appends the CNF
clause that prevents discovering duplicate scenarios from the
default enumeration strategy. Accordingly, when exploring
scenarios related to the signature Node, Reach does not
rediscover the scenarios in Figure 2 (b), (d), and (e) even
though these scenarios also have a Node set of size 1.

It is possible to enumerate scenarios by size using Alloy’s
first order logic. For instance, to enumerate scenarios of size
1, one could write the following sequence of commands:
run {Acyclic} for 1 but exactly 1 List
run {Acyclic and #List < 1} for 1 but exactly 1 Node

The first command uses exactly to ensure all scenarios
are of size 1 because of the List signature. The second
command additionally uses conjunction (and) and set cardi-
nality (#) to ensure all scenarios are of size 1 because of the
Node signature but avoids duplicate scenarios by preventing
the List signature from being size 1. While creating this
sequence of commands is trivial for our example, creating
these commands quickly become a burden on the user as the
number of signatures increases. A recent profiling of 1,652
Alloy models found that the median number of signatures in a
model is 8 and that 75% of models range from 2 to 25
signatures [7]. In addition, prior work has shown that setting
the size of signatures using the cardinality operator resultsin
slower solving times, thus it is discouraged [9], and our
experimentation revealed limitations of the exactly keyword.

C. Challenge: Augmenting Enumeration Without Loss of In-
formation

The Analyzer’s robust enumeration strategy often leads to
hundreds or even thousands of scenarios. Therefore, there have
been several efforts to augment the Analyzer’s enumeration
process [16], [25], [24], [23], [19], [18]. Overall, theses tech-
niques aim to present a smaller collection of highly valuable
scenarios to the user by applying additional criteria that a sce-
nario must meet during generation. Unfortunately, a user study
of different enumeration strategies for Alloy revealed that users

are more likely to switch back to the default Analyzer [4]. One
reason is that these techniques often produce significantly less
scenarios for the user. To illustrate, for the singly-linked list
model, there are 344 unique scenarios to discover. For this
same model, using Aluminum [16], which enumerates mini-
mal scenarios, produces just the empty scenario. As another
example, using AUnit [25], which enumerates scenarios with
different coverage, creates just 12 scenarios.

The decrease in scenarios created by these techniques can
be counter to one of the most common uses of scenario
finders: helping a user understand their system by exploring
the concrete examples of behavior enabled by their system.
While Alloy’s enumeration can feel random, there is value to
this: a user can be presented early with an unexpected scenario.
Therefore, although ensuring that interesting scenarios are
displayed early is good, if this is coupled with a tradeoff in
the breadth of behavior presented, then the user may find these
alternative enumeration strategies hinder their goals.

Reach aims to walk the line between adding structure to
the enumeration process while not limiting the information
given to the user. For the singly-linked list model, Reach
will produce all 344 scenarios. Unlike the default enumeration,
Reach will present the scenarios in a structured order based
on size. However, since our only restriction is only on which
signature is determining the size of the scenario, Reach is
able to maintain randomness within each signature exploration
for a given size. To illustrate, the first scenario of size 1 that
Reach enumerates is a list with a disconnected cyclic node
(Figure 1 (b)). As a result, even with Reach’s ordering, the
user is still prompted early to determine if it is their intention
to allow nodes to be disconnected from lists. We believe this
strikes a balance between giving the user an expected high-
level order while also still being able to surprise the user with
interesting and potentially unexpected behavior early.

In this section, we first describe Reach’s CNF encoding
and then we explain how we apply this encoding to stage
generation of scenarios by size.

TECHNIQUE

A. CNF Encoding

During enumeration, Reach creates new CNF clauses that
enforce the size of a specific signature. To achieve this, Reach
appends a sequence of CNF clauses that asserts each primary
variable mapped to the targeted signature is positive, meaning
that the atom represented by the primary variable must appear



in the signature for any scenario enumerated. There are two
main benefits of this. First, our CNF encoding is simplified,
as we don’t need to build clauses to express the broader idea:
“size of sig a is equal to Z or size of sig b is equal to
Z or ... size of sig x is equal to Z.” This concept is most
directly captured as a disjunctive normal form formula, which is
complicated to translate into an equivalent CNF formula.
Second, the single signature focus of our encoding allows us to
present scenarios in a semi-ordered format, which can help
users more confidently navigate the scenario space.

Of note, our encoding does not place any restriction on the
size of other signatures, giving the SAT solver the freedom to
explore all possible behavior of the other sets in the model. For
example, when enumerating scenarios of size 1 for the singly-
linked list model, if the focus is on the List signature, the
Node set is allowed to take any size, ranging from zero to one,
inclusive. To keep our CNF encoding simple, Reach creates
a distinct enumeration for each size within scope; therefore,
Reach also modifies KodKod’s CNF generation to place an
upper bound on all signatures that matches the target size.
KodKod’s translation will take care of ensuring that the size
of all other signatures falls between zero and the targeted size.

As an example, when enumerating scenarios of size 1 for
the command in Figure 1 (a), Reach will first append the
following CNF clause: {1}. This clause ensure that atom LO
will appear in the set List. Since Reach tells KodKod to
generate its CNF translation of the model with an upper bound
of 1, KodKod will generate only 4 primary variables: “1”
reasons over if LO isin List, “2” reasons over if NO is in Node,
“3” reasons over if NO is in LO’s header relation and “4”
reasons over if NO is in NO’s link relation. In contrast, using
the Analyzer’s default translation, KodKod would produce the
24 primary variables outlined in Section Il, which includes 3
primary variables per signature. As a consequence, in order to
enumerate scenarios of size 1, Reach would need to append
additional CNF clauses to prevent the size of all signatures
from being too large. For our example, Reach would need to
append the following clauses: {1}, {-2}, {-3}, {-5}, and
{-6}. Together, the first three clauses enforce the exact size
of the set List: {1} ensures that LO appearsin List and both
{-2} and {-3} ensure that L1 and L2 do not appear in List.
The last two clauses, {-5} amd {-6}, ensures that N1 and
N2 do not appear in Node. Rather than bloat the encoding
this way, Reach’s modification to the KodKod translation
streamlines Reach’s encoding to just one clauses ({1}).

B. Staged Generation

To stage generation by size and to enforce an ordering
on signatures, Reach modifies the Analyzer’s enumeration
algorithm in two ways. First, as mentioned, Reach creates a
separate enumeration per size allowed by the scope. Therefore,
Reach invokes KodKod multiple times, once for each size,
to translate the model into a CNF formula. Second, when
searching for scenarios, Reach adds the CNF clauses from
Section [l1-A that explicitly enforce the size of a given
signature. This results in an iterative process where Reach

Algorithm 1: Staged Generation of Scenarios

Input: Kodkod solver solver, Previous scenarios prev, Set of
signatures sigs,
Output: Set of scenarios of the target size.
1 activeSig = 0, addClauses = true // Initialize
2 while activeSig != sigs.size() do

3 if addClauses then

4 // Enact Reach’s CNF encoding over relevant
primary variables

5 for i & 1 to sigs.get(activeSig).getPVars().size() do

6 L solver.addClause(sigs.get(activeSig).getPVars().get(i))

7 addClauses = false

8 solution = solver.solve()  // Find next scenario

9 if solution != null then

10 prev.add(solution.getPreventDuplicateClause())

11 cnf.addClause(solution.getPreventDuplicateClause())

12 output(solution)

13 if solution == null then

14 activeSig++

15 solver.cnfClear()  // Clear to remove previous
active sig clauses

16 for i & 1 to prev.size() do

17 solver.addClause(prev.get(i))  // Add clauses to
L prevent dups

18 addClauses = true

may need to update the CNF clauses when transitioning from
focusing on one signature to the next. Our algorithm takes as
input a list signatures (sigs), allowing the user to provide any
order they may desire for exploration.

Our modified enumeration approach is outlined in Algo-
rithm 1. The variable activeSig is used to keep track of
which signature is the current focus of the enumeration. The
boolean flag addClauses is used to determine if Reach
should append new CNF clauses that assert the size of the
signature indicated by activeSig. The flag addClauses is
set every time the active signature changes. The enumeration
algorithm runs until all signatures in the model have been
fully explored, which is controlled by the whole loop starting
on line 2. When attempting to enumerate a new scenario, if
addClauses is true, CNF clauses are added to the SAT solver
following the encoding outlined in Section II1-A (lines 4-7).

Then, Reach searches for the next scenario by invoking the
SAT solver on line 8. If the result is satisfiable, Reach gener-
ates the CNF clause to prevent rediscovering this scenario and
outputs the scenario (lines 9 - 12). Once the SAT solver returns
an unsatisfiable result (line 13), Reach updates activeSig to
move onto the next signature. When this happens, Reach
removes all CNF clauses, so that Reach is not still enforcing
the exact size of the previous signature. In addition, Reach
adds back the CNF clauses which prevent duplicate scenarios
from being found (lines 16 - 17). Then, Reach sets the flag
addClauses to true, which will trigger Reach to add size-
based clauses at the start of the next enumeration for the new
signature indicated by activeSig.

To illustrate, to enumerate scenarios of size 1 for the
model in Figure 1 (a), Reach will translate the command into



Enter preference for order of signature exploration

I

Enter preference for order of signature exploration

Use Reach’s default ordering? Yes @ No

1f no, give your own order below. Enter integer values from "1" (For first) to "n" (For last).

this/List: 2

this/Node: |1

(a)

Exploring size "3"
Solver=sat4j Bitwidth=4 MaxSeq=3 SkolemDepth=1 Symmetry=20
322 vars. 24 primary vars. 482 clauses. 21ms.
Instance found. Predicate is consistent. 11ms.
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Acyclic is consistent for this size.

(b)

Fig. 3. Reach Interfaces

KodKod with an upper bound of 1, which sets the primary
variables returned by the getPVars call. The first active
signature is List; therefore, Reach will append the following
clause to assert the size of List: {1}. This will result in the
scenarios (b) - (e) in Figure 2. Once the SAT solver is no
longer able to find any scenarios, Reach removes the clause
{1} and append the clause {2}, which assert that NO must be
in Node, resulting in the scenarios in Figure 2 (f) and (g).
Once the SAT solver returns an unsatisfiable result, since all
signatures have been explored, the enumeration ends and the
user is informed that there are no more scenarios of size 1.
Then, should the user wishes to explore scenarios of size 2,
Reach would initiate a new enumeration. This enumeration
would be reasoning over the 12 primary variables generated
by KodKod’s translation. Reach would start by appending the
following clauses, {1} and {2}, which would ensure that atoms
LO and L1 are in the set List (e.g. Figure 2 (h)).

IV. IMPLEMENTATION

This section outlines important implementation details of
Reach, which is an extension to the Analyzer v.5.0.1 [1].

A. Updating Alloy’s Workflow

Reach augments the enumeration workflow in the Analyzer
in two main ways. First, Reach modifies the KodKod trans-
lation and enumeration strategy, as outlined in Section III.
The bulk of implementing Reach involves updating the main
command execution driver in Alloy to propagate the size under
consideration and the order of signatures (SimpleReporter),
the translation between Alloy and KodKod to continue to
propagate the order of signatures and restrict the size of
the KodKod translation (TranslateAlloyToKodKod), and
the KodKod class that is responsible for incrementally in-
voking the SAT solver to both gather the relevant primary
variables and to enforce Algorithm 1 when searching for the
next scenario (Solutionlterator). By default, Reach will
explore signatures in the order they are declared in the model,
as developers tend to write the higher-level signatures first
then components (i.e. creating List before Node). However,
Reach’s backend algorithm can accommodate any order over
the signatures. To support this, when the user executes a
command, a pop-up menu, shown in Figure 3 (a), gives the
user the option to provide their own ordering.

Second, Reach supports multiple simultaneous enumer-
ations, which can be thought of as enumerating multiple

commands. Previously, the Analyzer only allowed users to
enumerate the last solved command. Reach removes the
enumerator’s singleton pattern, in order to allow there to be
more than one active enumeration at a time and updates the vi-
sualization interface (VizGUI) to accept an enumerator object
rather than use a global enumerator object. Then, to enable
users to view multiple enumerations, Reach also updates the
Analyzer’s log panel to display information per size, as shown
in Figure 3 (b). Each “Instance found” link opens its own visu-
alization interface that can be simultaneously enumerated, As a
result, Reach also improves the functionality of the original
Analyzer, which has an “execute all commands” functionality.
However, despite the name of the action, the base Analyzer
only allows the user to enumeration that last solved command.
Our support for multiple simultaneous enumerations enables
the user to be able to enumerate any of the solved commands.

B. Supporting Alloy’s Diverse Signature Grammar

Alloy allows for signatures to be abstract, extensions of
other signatures and to have their own multiplicity con-
straints. Unfortunately, some of these constructs do not result
in primary variables, which impacts our CNF encoding. In
particular, if a signature has a singleton multiplicity constraint
(“one”), no primary variables are generated for this signature,
as there is nothing for the SAT solver to solve about which
atoms should populate the signature’s set. Unfortunately, this
behavior results in scenarios found for a scope that may defy
the user’s intention. To illustrate, if you have a signature with a
singleton constraint in your model and you execute a command
with a scope of 0, the Analyzer will still find scenarios even
though the signature with the singleton constraint will have a
size of 1. To resolve this, Reach desugars the singleton
multiplicity keyword into a fact in the model, which then
triggers the generation of primary variables. As a result, Reach
discovers the previously mentioned scenarios as scenarios of
size of 1 rather than scenarios of size 0, which we believe
better matches the user’s expectation.

Additionally, for an abstract signature, any of the following
may be true: (1) it has primary variables, (2) the primary
variables are held by just the extension signatures, or (3) there
may be no primary variables at all. The first case occurs
when there are no extension signatures, in which case Reach
follows its normal encoding. In the second case, unfortunately,
an abstract signature can be extended by more than one
signature. Accordingly, all atoms of any signature that extends



the abstract signature count towards the size of the abstract
signature, which does not work with Reach’s streamlined CNF
encoding because we have to account for all the different com-
binations of atoms from all extension signatures. Therefore,
Reach instead handles this situation at the Alloy level. When
enumerating scenarios that are of the target size for an abstract
signature, Reach appends a fact that asserts that the size of the
abstract signature matches the target size. In the last case, this
behavior occurs when an abstract signature is only extended
by signatures which use the singleton multiplicity constraints.
This latter case gets handled by the desugarring we do for the
singleton multiplicity constraint.

V. EVALUATION

We evaluate Reach over a benchmark of Alloy models
collected from recent advancements made to Alloy [15], [25].
We address the following research questions:

-« RQ1: Is Reach’s encoding efficient compared to using
existing Alloy grammar?

- RQ2: What is the overhead of signature-focused enumer-
ation by size?

- RQ3: How effective is Reach at improving the auto-
mated analysis for iterative deepening?

To evaluate Reach, we compare four strategies: (1) the
Analyzer, (2) two baseline implementations and (3) Reach.
To collect performance results, we automatically enumerate all
solutions and add in a monitor to collect performance metrics,
we use the default signature ordering, and we use the published
scope. All experiments are performed on Linux Ubuntu 20.04
LTS with 1.8GHz Intel i7 CPU and 16 GB RAM.

We use a broad set of 12 models, including models of
data structures (arr, btree, dll, sll), models of class diagrams
(cd), models of puzzles (nqueens), and real world models that
were generated automatically from software artifacts (CD2A1,
CD2A2, diffl, diff2) and of surgical robots (frank, tombot).
Table | gives an overview of the size of each model. #Sig
is the number of signatures. As further context, columns
#Abs, #Ext and #One show the number of signatures which
are abstract, extensions of another signature, and/or use the
singleton multiplicity constraint, respectively. Lastly, column
#Rel shows the number of relations across all signatures.

A. Baseline Technique

Our two baseline techniques use Alloy’s first order logic
and existing scope grammar to enforce size and the semi-
sorted ordering. First, BaseE uses the sequence of commands
pattern outlined in Section 1I-B, which makes use of the
“exactly” keyword from Alloy’s scope grammar. We view
this as the current native support within the Analyzer to
enumerate scenarios of a specific size because of a signature.
To illustrate, below is the sequence of commands for BaseE
for our singly-linked list model:

run {Acyclic} for 2 but exactly 2 List
run {Acyclic and #List < 2} for 2 but exactly 2 Node

Unfortunately, when exploring our real world models, we

discovered two shortcomings of the “exactly” keyword when

TABLE |
SIZE OF EVALUATION MODELS.

Model #Sig  #Abs #Ext #One  #Rel
arr 2 0 0 1 2
btree 2 0 0 1 4
cd 2 0 1 1 1
CD2A1 16 4 12 8 1
CD2A2 10 4 6 2 1
diff1 17 4 13 8 1
diff2 17 4 13 8 1
dll 2 0 0 1 4
frank 52 17 35 28 16
nqueens 1 0 0 0 2
sl 2 0 0 0 2
tombot 52 17 35 28 16

applied to abstract signatures. First, if every extension signa-
ture is declared using the singleton multiplicity constraint, the
“exactly” keyword will fail to detect the true size of the
abstract signature set and will incorrectly produce scenarios
that are too large. Consider the following:

abstract sig A {}

one sig B,C extends A {}

run {} for 1 but exactly 1 A

This run command should be unsatisfiable because signature
A must have a size of two; however, the Analyzer will
unfortunately find solutions for this command. Second, the
“exactly” keyword applied to abstract signatures breaks
Alloy’s existing symmetry breaking optimizations. Therefore,
BaseE will find substantially more scenarios that contain
redundant structures. To illustrate the magnitude of this prob-
lem, for the CD2A1 model and a size of 6, BaseE will
produce 56,244 scenarios instead of just 268 scenarios. The
loss of symmetry breaking also impacts the overall runtime, as
exponentially more scenarios means an exponential increase
in search times. BaseE took 26.2 minutes to find scenarios
compared to Reach’s 5 seconds. All of the real world models
in our experiments make heavy use of abstract signatures. As
a result, BaseE did not feel like a proper baseline that really
reflected how to enumerate by size within Alloy’s existing
infrastructure. Therefore, to still have a valid comparison,
we developed a second baseline, BaseC, that uses the set
cardinality operator. To illustrate, below is the sequence of
commands for BaseC for our singly-linked list model:

run {Acyclic and #List = 2 } for 2

run {Acyclic and #List < 2 and #Node = 2 } for 2

B. RQl: CNF Encoding Efficiency

Table Il shows Reach’s and the baselines’ performances
broken down by each size within scope. Column Model
reflects the model under evaluation, column Sz is the size and
column #Scr is the number of scenarios. For each technique,
we display 4 pieces of performance information. To show the
size of the problem, columns #PV and #Cls show the number of
primary variables and the number of clauses. To show the
overhead, columns Tavg and Tiot show the average time to
discover a scenario and the total time to find all scenariosin
milliseconds. There are two summary sections (R-BaseE and
R-BaseC) that compare Reach to BaseC and Reach to



TABLE Il
COMPARISON OF Reach AND THE BASELINE BROKEN DOWN BY EACH SIZE IN SCOPE. ALL TIMES ARE IN MILLISECONDS.

Model Scp #scr Reach BaseC R-BaseC BaseE R-BaseE

#PV #Cls Tave Ttot #PV #Cls Tavg Ttot Diffr Diffc #PV #Cls Tave Ttot Diffr  Diffc

arr 1 255 33 664 6 1599 33 664 6 1524 75 0 32 664 5 1266 333 0

arr 2 1389 50 932 5 7058 50 938 6 8633 -1575 -6 48 786 4 5524 1534 146

arr 3 2127 67 1213 4 9004 67 1233 5 10298 -1294 -20 64 992 5 10373 -1369 221

btree 1 17 20 124 7 121 20 123 1 15 106 1 19 123 9 145 -24 1

btree 2 240 44 1605 5 1089 44 1612 3 826 263 7/ 42 1455 8 1910 -821 150

btree 3 560 72 3321 4 2251 72 3342 3 1945 306 -21 69 2942 5 2785 -534 379

cd 1 1 1 1 7 7 1 1 1 1 6 0 1 1 1 1 6 0

cd 2 1 5 37 7 7 5 39 1 1 6 -2 3 23 1 1 6 14

cd 8 2 11 227 6 12 11 239 2 3 9 -12 8 185 11 22 -10 42

cd 4 5 19 541 5 25 19 536 3 15 10 5 15 433 13 66 -41 108

cd 5 14 29 1506 4 61 29 1510 4 56 5 -4 24 1360 15 208 -147 146

cd 6 51 41 2514 5 267 41 2511 6 323 -56 3 35 2298 16 797 -530 216

cd 7 190 55 3755 5 1010 55 3859 7 1398 -388 -104 48 3573 10 1955 -945 182

dll 1 17 20 1053 4 71 20 1053 2 31 40 0 19 1053 13 225 -154 0

dll 2 120 44 2603 4 455 44 2611 8 1002 -547 -8 42 2475 9 1075 -620 128

dll 3 560 72 4533 5 2769 72 4555 5 2908 -139 -22 69 4265 7 3797 -1028 268

nqueens 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

nqueens 1 1 33 1097 23 23 33 1097 6 6 17 0 32 1037 53 53 -30 60

nqueens 4 2 132 8036 95 190 132 8036 37 74 116 0 128 7627 74 147 43 409

nqueens 5 10 165 11362 52 517 165 11362 44 435 82 0 160 10707 71 707 -190 655

sll 0 il 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

sll 1 6 4 14 3 17 4 15 1 8 9 -1 3 9 8 45 -28 5

sll 2 38 12 156 2 78 12 174 8 291 -213 -18 10 134 7 259 -181 22

sll 3 299 24 482 2 607 24 527 2 654 -47 -45 21 446 4 1280 -673 36

CD2A1 5 180 350 12443 23 4093 350 12443 33 5921 -1828 0

CD2A1 6 268 480 18016 20 5318 480 17644 33 8915 -3597 372

CD2A1 7 568 630 24357 23 12866 630 23893 30 17255 -4389 464

CD2A1 8 1171 800 32084 29 33834 800 31543 37 43024 -9190 541

CD2A1 9 2433 990 40798 41 100781 990 40109 54 131019 || -30238 689

CD2A1 10 5038 || 1200 50254 57 285074 1200 49422 69 348739 || -63665 832

CD2A2 2 27 36 769 4 96 36 767 20 533 -437 2

CD2A2 3 21 72 2032 16 343 72 1941 28 590 -247 91

CD2A2 4 177 120 3819 5 918 120 3667 12 2078 -1160 152

CD2A2 5 99 180 6047 9 918 180 5782 14 1391 -473 265

CD2A2 6 607 252 8993 9 5300 252 8627 11 6690 -1390 366

CD2A2 7 285 336 12405 12 3511 336 11938 21 6012 -2501 467

CD2A2 8 1538 432 16218 13 20066 432 15684 14 21289 -1223 534

CD2A2 9 646 540 20559 19 12458 540 19872 19 12320 138 687

CD2A2 10 3255 660 25376 19 62257 660 24546 18 57065 5192 830

diffl 5 150 355 15823 17 2480 355 15824 41 6216 -3736 -1

diffl 6 235 486 22769 21 4897 486 22302 34 8077 -3180 467

diff2 5 24 355 15801 40 967 355 15802 100 2393 -1426 -1

diff2 6 46 486 22731 33 1508 486 22264 76 3484 -1976 467

frank 4 1200 134 2316 5 5804 134 2286 9 10573 -4769 30

frank 5 2000 172 3630 5 10654 172 3446 6 12560 -1906 184

tombot 4 3000 134 2318 4 11668 134 2288 6 17377 -5709 30

tombot 5 2760 172 3630 4 12401 172 3446 5 12800 -399 184

BaseE. In the summary, column Diffr displays the difference
in runtime and column Diffc displays the difference in num-
ber of clauses. The differences are calculated by subtracting
Reach’s value from the baseline value. Instances when Reach
performs better are displayed in green. If enumerating a size
resulted in no scenarios, then that size is not included.

In terms of the size of the satisfiability problem, Reach
and the baseline generate similar problems that are minimally
different. Reach and BaseC produce the same number of
primary variables, which is expected, but BaseE generates
less primary variables than both. In particular, similar to the
backend encoding of the singleton multiplicity constraint, the
encoding for exactly removes all primary variables related to
the associated signature, which reduces the number of primary

variables equal to the size being explored. Reach generates an
almost equivalent number of clauses as BaseC, with Reach on
average producing 0.98x the number of clauses as BaseC. In
contrast, Reach often generates more clauses than the BaseE;
however, the difference is overall is still minor, with Reach
producing 1.14x more clauses than BaseE.

In terms of runtime performance, if a user is enumerating
scenarios one by one, all of the average times to find a scenario
(Tavg) are nominal, and an end user would not experience
any difference. From a total runtime perspective, BaseE and
Reach’s performance are nearly identical, with both tools
finishing within 1.5 seconds of each other for every execution.
Of these, Reach finishes faster for 17 of the 24 executions and
is on average 1.22x faster. Reach and BaseC also have very



TABLE Il

COMPARISON OF PERFORMANCE ACROSS THE ENTIRE SCOPE. ALL TIMES ARE IN MS.

Model Scp #scr Alloy Base-E Base-C Reach Summary
#Pvar  #Cls  Tavg Ttot Tavg Ttot Tavg Ttot Tavg Ttot R-A R-BE R-BC BE-A BC-A
arr 3 3771 67 1210 4 18529 5 17163 5 20455 5 17661 -868 498 -2794  -1366 1926
btree 3 817 72 3318 4 4042 6 4840 3 2786 4 3461 -581  -1379 675 798 -1256
cd 7 264 55 3749 6 1834 12 3050 7 1797 5 1389 -445  -1661 -408 1216 -37
dll 3 697 72 4530 4 3083 7 5097 6 3941 5 3295 212 -1802 -646 2014 858
nqueens 5 14 165 11357 113 1595 65 907 37 515 52 730 -865 -177 215 -688 -1080
sll 3 344 24 485 1 581 5 1584 3 953 2 702 121 -882 -251 1003 372
CD2A1 10 9658 1200 48988 70 678509 57 554873 46 441966 || -236543 -112907 -123636
CD2A2 10 6655 660 23889 26 176923 19 129257 16 105867 -71056 -23390 -47666
diffl 6 385 486 22097 21 8178 37 14293 19 7377 -801 -6916 6115
diff2 6 70 486 22059 33 2357 84 5877 35 2475 118 -3402 3520
frank 5 3200 163 3191 4 14802 7 23133 5 16458 1656 -6675 8331
tombot 5 5760 163 3191 5 28809 5 30177 4 24069 -4740 -6108 1368

similar performance across the smaller benchmark models. For
22 of the these 24 executions, the two techniques finish within
half a second of each other. For arr, Reach sees the fastest
time speedups, but the difference is only 1.2 to 1.5 seconds.
Likewise, BaseC sees the largest magnitude speed up of 8x
for btree size 1 and 7 x for cd size 1, but the time difference is
only 106 milliseconds and 6 milliseconds respectively. We do
start of see a notable performance difference between Reach
and BaseC when comparing real world models, in which the
two techniques only finish within a second of each other 5
times. Across the 23 real world model executions, Reach
finishes faster 21 times and is 0.68x faster than BaseC on
average. For CD2A1 Reach provides a notable improvement,
finishing over a minute faster for the largest size, 10.

Given the overall improvements in runtime performance,
especially for the real world models, we recommend the use of
Reach. We also believe that the backend encodings for Alloy
keywords that assert the exact size of a signature, such as one or
exactly, can be improved by using our CNF encoding. The
current encoding is less efficient and also does not fully
support all of Alloy’s robust grammar, as seen with combining
exactly with abstract signatures. Moreover, we believe that
the preservation of primary variables is helpful (1) to prevent
issues, such as the issues outlined for the singleton multiplicity
constraint in Section |V, that is a result of loosing this
information and (2) to better integrate with applications, such
as Hawkeye [23], that utilize primary variables.

C. RQ2: Overhead of Enumerating by Size

Enumerating by size is a tradeoff. We create additional
criteria that must be satisfied by any scenario enumerated;
however, we gain an expected order to the enumeration. To
see the impact of this tradeoff, Table 11l shows a comparison
between the default Analyzer, the baseline techniques and
Reach from the perspective of enumerating all scenarios up to
and including the scope. Column Model is the model under
evaluation. Column Scp is the size and column #Scr is the
number of scenarios enumerated at that size. The next four
columns relate to the Analyzer. Columns #PV and #Cls show

the number of primary variables and the number of clauses.
Columns Tavg and Tiot show the average time to discover a
scenario and the total time to find all scenarios, respectively.
For the baseline and Reach, we present summary information.
The column Tayg is the average time to discover a scenario
across all sizes and column Tiot reflects the total runtime
summed across all sizes. All times are in milliseconds. The last
5 columns show the difference in total runtime for different
combinations — “R” represents Reach, “A” represents the
default Alloy Analyzer, “BE” represents BaseE, and “BC”
represents BaseC. The difference are always the left hand side
subtracted from the right hand side of the column name.

The total number of scenarios is constant across all three
techniques, which is expected, as the information is related to
enumerating all scenarios up to the upper bound. Across all
techniques, the average time to discover a scenario is nominal
if an end user is enumerating scenarios one at a time and
inspecting them. However, the difference in average discovery
times add up across the span of all scenarios. To illustrate,
the most noticeable difference in performance appears for
model CD2A1 in which Reach reduces the average time to
discover a scenario by 9 milliseconds compared to BaseC and
24 milliseconds compared to the Analyzer. When enumerating
all solutions, this has a ripple effect leading to the Reach
finishing 1.8 minutes faster than BaseC and 3.9 minutes faster
than the Analyzer. All told, on average, when enumerating all
scenarios, Reach finishes 0.87x faster than the Analyzer,
0.68x faster than BaseE and 0.83x BaseC. Therefore, we do
not suffer any negative performance overhead using Reach.

In contrast, the two baseline techniques often take longer
than the Analyzer, with BaseE finishing on average 1.5x
slower and BaseC finishing on average 1.2x slower. As a
result, with the baseline techniques, there is some overhead to
enumerate by size. This overhead is not too significant and for
CD2A1 and CD2A2, BaseC achieves a speed up over Alloy
of about 2 minutes and 48 seconds, respectively. In addition,
while using the set cardinality operator is discouraged due to
poor runtime performance, BaseE was slower than BaseC for
5 of the 6 models, implying that the discouraged practice is



TABLE IV
ITERATIVE DEEPENING RESULTS FOR THE ANALYZER AND Reach. ALL TIMES ARE IN MS.

Model Scp Reach Alloy Summary

#PV #Cls Scr Ttot #PV #Cls Scr Ttot 15t 10% 25% 50% 100% Diffr Diffs
arr 4 84 1519 1206 7810 84 1473 4977 28314 | 3772 3892 4073 4375 4977 -20504 -3771
btree 4 104 5562 7280 38735 104 5516 8097 48858 818 1546 2638 4458 8097 -10123 -817
cd 8 71 5612 846 5431 71 5453 1110 9841 265 349 476 688 1110 -4410 -264
dll 4 104 6877 1820 9967 104 6831 2517 20475 698 880 1153 1608 2517 -10508 -697
nqueens 6 198 15099 4 770 198 15088 18 2572 15 15 16 17 18 -1802 -14
sll 4 40 1069 3081 7107 40 981 3425 12694 1 362 971 1885 3425 -5587 -344
CD2A1 11 || 1430 60244 10010 719812 1430 58798 19668 1755121 103 2460 5715 11088 19668 -1035309  -9658
CD2A2 11 792 30767 1265 42644 792 29069 7920 227959 31 1966 3978 7288 7920 -185315  -6655
diffl 7 637 30551 559 16111 637 29732 944 23303 24 136 329 571 944 -7192 -385
diff2 7 637 30493 10 697 637 29674 80 3641 8 19 30 55 80 -2944 -70
frank 6 214 4945 2560 14174 196 4234 5760 39462 | 3201 3457 3841 4481 5760 -25288  -3200
tombot 6 214 4945 3200 20200 196 4234 8960 55663 | 5761 6081 6561 7361 8960 -35463  -5760

more efficient than the native support within the Analyzer.
Based on these results, when considering applications of
scenario finding that require an end user to enumerate all
scenarios, such a test generation [5], [14], [27] or design vali-
dation [13], [17], we recommend Reach over other strategies.

D. RQ3: Iterative Deepening Application

Within Alloy, it is standard practice to start with a small
scope, and then to increase the scope and re-run the Analyzer to
build confidence in the model. A study of how user interact with
the Analyzer reveals that iterative deepening executions
account for 17.6% of Alloy executions [12]. Therefore, one
of the main uses we envision of Reach is to support iterative
deepening. To illustrate, consider when a scope is increased
from s to s+ 1. The Analyzer will generate all the scenarios
related to size 0, 1, 2, ..., s, s+ 1. Unfortunately, all of
these scenarios will be intermixed together. However, only the
scenarios of size s+ 1 are actually new for the user. Notably,
Reach already largely supports this activity, as we have a
distinct enumeration per size. For example, users can re-run a
command with scope s+ 1 and only enumerate the scenarios of
size s+ 1. To get a sense of how beneficial Reach can be,
we compare the performance of the Analyzer’s default
enumeration to using Reach to just enumerate scenarios for
sizes s+ 1 for our evaluation models.

Table IV captures this comparison. Column Model is the
model under evaluation and column Scp is the scope. The
next 8 columns display performance information for each tech-
nique. Column #PV show the number of primary variables,
column #Cls shows the number of clauses, column #Scr is
the number of scenarios and column Tiot show the total time to
find all scenarios. All times are in milliseconds. The next 5
columns highlight the distribution of size s+1 scenarios in Al-
loy’s enumeration. Column 1st shows how many scenarios to
explore before encountering the first scenario of size s+1, and
columns 10%, 25%, 50%, 100% show how many scenarios
are explored before discovering the corresponding percentage
of scenarios of size s + 1. The last two columns provide a
summary of the difference: column Diffy is Reach’s runtime
subtracted from the default Alloy execution and column Diffs

is the number of scenarios found by Reach subtracted from
the number the default Alloy execution finds.

The Analyzer takes on average 2.82x longer to run and
discovers on average 3.04x more scenarios than Reach. This
difference is expected as Alloy’s scope is an upper bound. The
Analyzer does create slightly smaller satisfiability problem
using the same number of primary variables but less clauses.
This does not lead to a better overall runtime due to the
difference in perspectives on scope. However, the real benefit
of Reach for iterative deepening is the ability to directly
explore scenarios of the new size only. As shown in Column
1st, for only one model (sll) the user would encounter a new
scenario as the first enumerated scenarios. Often, the user ends
up needing to explore over a hundred scenarios before first
encountering a scenario of the new size. Across our benchmark
models, we found that a user needs to explore on average
29.52% of the total scenarios before encountering a scenario
of size s+ 1. To give a perspective on the distribution of s+ 1
scenarios, the user needs to enumerate on average 38.41% of
the total scenarios to encounter 10% of the scenarios of size
s+1, 50.99% to encounter 25% of the scenarios of size s+1,
71.32% to encounter 50% of the scenarios of size s+ 1 and
all 100% to encounter all the scenarios of size s + 1.

Given how common iterative deepening is, we believe that
Reach can greatly improve this process for the user. In
particular, the user is able to more directly explore the new
size, which our results highlight is scattered throughout the
distribution of the default Analyzer’s enumeration.

VI. RELATED WORK

Scenario Enumeration for Alloy. Our technique is closely
related to techniques which looks to enhance the Analyzer’s
scenario enumeration process. One traditional approach is to
reduce the number of scenarios through symmetry break-
ing, where constraints are added to the formula to remove
isomorphic solutions [22], [10]. Beyond symmetry breaking,
several past projects improve scenario enumeration by try-
ing to narrow what scenarios are generated using a specific
criteria, e.g., abstract functions [24], minimality [16], field



exhaustiveness [18], and coverage [25], [19]. All of these
techniques reduce the number of scenarios by applying some
criteria across the entire enumeration. However, the order
of scenarios generated is still dictated by the SAT solver’s
order of discovery. Another approach to enhancing scenario
enumeration is to focus on the order in which scenarios are
presented. Hawkeye is a tool which allows for users to give
on-the-fly guidance to specify how the next scenario should
differ with respect to the current scenario [23]. Our approach
can work in tandem with all of these enumeration strategies.

Scenario Enumeration at Large. Beyond Alloy, researchers
have focused on improving scenario enumeration strategies,
.e.g. dedicated search [3], mixing of generators and solvers
[11], solver-aided languages [20], and sampling [6]. We be-
lieve that the Analyzer generates could be refined by some of
these approaches, and further combined with Reach.
Researchers have also developed verification efforts which
utilize scenario enumerating toolsets, e.g. automated test input
generation [14], and model counting for reliability analysis [8].
In future work, we plan to explore how Reach’s enumeration
strategy can benefit the broader adoption of these efforts by
allowing the user to discover scenarios of specific sizes for
testing. In particular, TestEra and Korat, which already utilizes
elements of Alloy [14], [5].

Incremental Analysis for Alloy. Our exploration of Reach
in an iterative deepening setting targets improving the per-
formance of the Analyzer in an incremental analysis setting.
There are three main bodies of work related to incremental
Alloy analysis. First, Titanium uses all the scenarios of the pre-
vious model version to calculate tighter bounds for relational
variables for the next iteration [2]. Second, iAlloy uses static
analysis to determine which commands to avoid re-executing
and determine which scenarios to reuse [28]. Third, Platinum
slices Alloy models at a boolean level using the CNF formula
and reuses scenarios if a redundant CNF slice is detected [30].
Since our technique is built into the CNF encoding used to
execute commands, we believe Reach can be integrated with
these techniques to help improve their incremental analysis
related to scope-level changes.

VIlI. CONCLUSION AND FUTURE WORK

This paper introduces Reach, a novel framework for enu-
merating Alloy scenarios by size. Reach strengthens Alloy’s
default enumeration by preserving all the scenarios, while
at the same time creating an expected order. To achieve
this, Reach utilizes a CNF encoding that prioritizes the
size of specific signatures and uses this encoding to stage
generation by size. Our experimental results highlight that
our modified CNF encoding does not create any overhead
and, even addresses the limitations of using Alloy’s grammar
to achieve the same effect. Furthermore, we highlight how
Reach’s functionality can be applied to efficiently provide an
iterative deepening execution environment.As future work, we
plan to address refining scenarios by size for Alloy 6, which
introduces temporal logic to Alloy and enables mutable
signatures, which means that the size of signatures can change

across different states in the same scenario. We plan to explore
how to modify our CNF encoding to enumerate by size in the
presence of mutable signatures as well as how to account for
the new types of enumeration in Alloy 6.
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