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• Headspace-GC-MS quantification of 
abiotic weathered tire cryogrinds and 
TRWP. 

• Analysis revealed a 0.15–2.1 wt% TRWP 
content in Kansas and Ohio samples. 

• Environmental impact assessment of 
additive leachates. 

• Total environmental availability of 1.7 
× 10−3 TMQ and 0.11benzothiazole.  
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A B S T R A C T   

Tire and road wear particles (TRWP) are becoming an important research question with potential risks on 
ecological system. A comprehensive understanding of their detection and quantification in soils are challenged 
by the inherent technological inconsistencies, lack of well-set standardized methods, and generalized protocols. 
Reference tire cryogrinds were subjected to abiotic weathering. Next, the total environmental availability from 
parent elastomers and the release of additives from tire tread compounds were evaluated using mass concen
tration factors obtained from abiotic weathered tire cryogrinds. Headspace Gas chromatography-mass spec
troscopy (HS-GC-MS) was employed as a nontargeted, suspect screening analysis technique to identify the tire 
related intermediates. Benzothiazole, 1,2-dihydro-2,2,4-trimethylquinoline (TMQ), aniline, phenol and benzoic 
acid were detected as tire tetrahydrofuran leachates. Total environmental availability of TMQ and benzothiazole 
were in the range of 1.7 × 10−3 and 0.11, respectively. Benzene and benzoic acid derivatives were identified as 
marker compounds for environmental samples. A TRWP content evaluation was made possible by quantifying 
marker concentrations and reference tire cryogrind formulation. TRWP content in the size range of 1–5 mm was 
between 800 and 1300 μg/g and 1200–3100 μg/g TRWP in Ohio and Kansas soil. For TRWP less than 1 mm, 
0.15–2.1 wt% content was observed in Kansas and Ohio samples and were seemingly dependent on the locations 
and the traffic. This simple, widely applicable quantification method for TRWP analysis provides a database of 
tire degradation and TRWP intermediates. The TRWP content research is critical for further TRWP research 
development in terrestrial environment.  
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1. Introduction 

Tire and road wear particles (TRWP) arise from the tire wear fusing 
with the mineral encrustations of the road payments and are usually 
deposited in the soil beside the roadways (Jekel, 2019; Kreider et al., 
2010). A recent study estimated that global tire debris (TRWP and larger 
tread pieces) was 0.2–5.5 kg/person (Baensch-Baltruschat et al., 2020). 
With this level, it is not surprising that TRWP are considered environ
mentally available and significant aqueous and atmospheric contami
nants (Klöckner et al., 2020; Kreider et al., 2020; Panko et al., 2013b; 
Unice et al., 2013, 2019). For example (Maceira et al., 2018), detected 
0.003% benzothiazole derivatives in atmospheric samples that can 
negatively affect the liver and kidneys and cause respiratory irritation. 
Further, TRWP was reported to constitute 1% of the particulate matter in 
the urban air (Avagyan et al., 2014; Panko et al., 2013a). Studies have 
detected TRWP in estuary and water bodies and cause toxicological 
problems on aquatic life (Marwood et al., 2011; Panko et al., 2013b). 
However, a recent model indicated that 50% of TWRP would be retained 
in the road side soils (Campanale et al., 2022). TRWP research on 
terrestrial soil systems has been scarce but has recently emerged as a key 
area (Dierkes et al., 2019; Huang et al., 2020; Hurley et al., 2018; 
Klöckner et al., 2021a; Piehl et al., 2018; Rogge et al., 2012; Unice et al., 
2019). TRWP has been detected as a parent compound, as trans
formation products or as leachates of tire constituents of TRWP in soils 
(Marwood et al., 2011; Unice et al., 2015). Thus, there is a need to 
quantify TRWP present in the environment to understand its adverse 
effects. 

Tire tread contains elastomers like natural rubber (NR) and styrene- 
butadiene-rubber (SBR) as the major component in combination with 
additives to act as curing accelerator, anti-oxidants, fillers, etc. (Rauert 
et al., 2021). Pyrolysis-based analytical techniques are commonly used 
for the quantification of TRWP in soil systems (Goβmann et al., 2021; 
Haydary et al., 2012; ISO/TS 21396, 2017; Nuelle et al., 2014) in 
addition to LC-MS (Klöckner et al., 2021a; Salas et al., 2016; Unice et al., 
2015) and thermal extraction desorption gas chromatography (Klöckner 
et al., 2020). .Using such techniques, TRWP concentrations ranging from 
800 to 4500 μg/g sediment dry weight to 10,000 μg TRWP/g sediment 
dry weight have been reported (Marwood et al., 2011; Panko et al., 
2013a; Unice et al., 2013). Non-targeted GC-MS testing has also been 
reported for TRWP analysis (Järlskog et al., 2021; Thomas and 
Irvin-barnwell, n.d.). Pyrolysis-GC-MS uses very small amount of sample 
and is challenging due to heterogeneous mature of road dust and soil 
samples. TRWP quantification markers reported include: benzothiazole 
(Asheim et al., 2019; Avagyan et al., 2013; Gągol et al., 2015; Pan et al., 
2012; Seiwert et al., 2020; Wagner et al., 2018), 
para-phenylenediamines (Klöckner et al., 2021a, 2021b; Unice et al., 
2015), diphenylguanidine (Challis et al., 2021; Johannessen et al., 2021; 
Unice et al., 2015) oleamides (Chae et al., 2021), and hexamethox
ymethylmelamine (Johannessen et al., 2021). In the present work, the 
main objective was the TRWP analysis and quantification using 
non-pyrolysis method. Here, quantification was carried out by a less 
expensive, easily accessible, GC-MS multi-faceted approach. 

2. Methods and materials 

The details of the reference tire cryogrind, TRWP and the corre
sponding identification and quantification data sources analysis of the 
tire related intermediates and leachates are outlined in Supplemental 
Text S1. The extraction efficiency of THF for tire based additives was 
verified by several researchers (Ao et al., 2021; Avagyan et al., 2013; 
Dierkes et al., 2019). 

3. Results and discussion 

3.1. Qualitative HS-GC-MS results of TRWP analysis of weathered tire 
cryogrinds and roadside soil samples 

Abiotic weathered reference tire cryogrinds exhibited several THF 
leachates. The most vulnerable cryogrinds were the PC-Si and T-NR. 
Table 1 shows the shortlisted THF leachates identified after abiotic 
weathering, using qualitative HS-GC-MS tests (See Supporting infor
mation S.2 for GC-MS spectra). For an exhaustive list of other impurities 
and compounds detected by the approach, please refer to the recently 
published research from Thomas et al. (2022a, 2022b). 

2,2,4 trimethyl-1-2-dihydroquinoline (TMQ) and benzothiazole 
were the key intermediates observed after abiotic weathering. Benzo
thiazole was previously reported as the thermal transformation product 
of the benzothiazole sulfenamide (BTS) used as curing accelerator in the 
tire formation (Unice et al., 2015). 2,2,4 trimethyl-1-2-dihydroquinoline 
(TMQ), used as an anti-oxidant in the tire formulation, was detected as a 
THF leachate from the tire cryogrind. Wet-Dry and UV-weathering tests 
did not yield any pertinent THF leachates which could be used for 
quantification purposes. The exception was aniline which has been re
ported as diphenyl guanidine (DPG) thermal transformation product. 
Instead, transformation products including several aldehydes, ketones, 
and carboxylic acids (butanoic acid, propanoic acid etc.) were detected 
(data not shown). The low molecular weight compounds were attributed 
to the photo-oxidation of elastomers (Thomas et al., 2022a). 

To access the combined effects of F-T, W-D and UV, cryogrinds were 
subjected to the abiotic tests sequentially. Intermediates detected in 
such combined weathering samples included phenol, benzene, and 
benzoic acid derivatives. It is important to note that water leaching tests 
(water sample post the UV + F-T + W-D tests) did not yield any in
termediates. Presence of TRWP intermediates based on benzothiazole, 
benzoic acid, benzene derivatives via HS-GC-MS confirmed TRWP ex
istence, as observed in the Kansas and Ohio soil samples (Table 1). These 
qualitative HS-GC-MS test results provided impetus to select appropriate 
marker compounds for the following quantification stage. Further, it 
also helped to analyze the results based on most aggressive tests (freeze- 
thaw) and most vulnerable cryogrinds (PC–Si and T-NR). The rationale 
behind choosing, benzoic acid, benzene derivatives as a representative 
of benzothiazole was due to the fact that the benzothiazole was detected 
in the samples when using conventional injection port GC-MS with an 

Table 1 
THF leachates identified in the GC-MS after Abiotic weathering tests and in soil 
samples.  

Possible 
Transformation 
product/Leachate 
and Retention times 

Degradation 
Mechanism 

Samples/ 
Experiment 

Components and 
Possible source 

2,2,4 trimethyl-1-2- 
dihydroquinoline 
(13.360) 

Leachate Cured sheet (T- 
NR, T-SBR, PC- 
Si); Baseline 
cryogrind (T- 
SBR, PC-Si); F-T 
(PC–Si) 

2,2,4 trimethyl-1-2- 
dihydroquinoline 
(TMQ) 

Benzothiazole 
(10.870) 

Thermal T-NR: F-T, W-D 
and UV- 1.5 Year 

Benzothiazole 
Sulfenamide (BTS) 
(VANAX NS) 

Phenol Thermal T-SBR: F-T + W- 
D + UV 5 Year 

Possible source: tire 
additives (BTS, 
TMQ) 

Benzoic acid Thermal T-SBR: F-T + W- 
D + UV 5 Year 
and Ohio soil 
samples 

Possible source: tire 
additives (BTS, 
TMQ) 

Benzene Thermal Kansas soil 
samples 

Possible source: tire 
additives (BTS, 
TMQ)  
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attainable GC oven temperature of 300 ◦C. However, only benzene and 
benzoic acid derivatives were detected in the very same sample when 
using HC-GC-MS with headspace temperature of 150 ◦C and an attain
able GC oven temperature of 200 ◦C. Temperature capabilities of GC-MS 
system thus played a critical role in the analysis of TRWP with HC-GC- 
MS being the convenient method for quantification, whereas conven
tional GC-MS more suitable for detailed analysis of qualitative report on 
TRWP intermediates. 

3.2. Quantification of tire reacted intermediates using HS-GC-MS and 
internal standards 

Although tire intermediates like isoprene, styrene, vinyl cyclohexene 
have been reported (Chae et al., 2021; Unice et al., 2012), they were not 
selected as pyrolysis-GC would not be used. Based on the results of the 
qualitative HS-GC-MS tests on weathered cryogrinds, aniline, TMQ, and 
benzothiazole were selected as marker compound for cryogrind samples. 
Benzoic acid, benzene, and phenol were selected as marker compounds 
for the quantification of the TRWP intermediates in soil samples. Each 
sample was analyzed in duplicate to reduce sampling errors from 
heterogenous samples. Peak/signals of the internal standards of known 
concentration were first compared relative to the respective marker 
compound signals (marker: standard signal ratio). Next, the mass of the 
marker compounds was calculated and reported in duplicates (Sup
porting information S.3). 

3.3. Assessment of environmental fate of tire tread leachates 

Quantification was co-related into mass concentration factors, life 
cycle, and cumulative factors and a modified methodology was adopted 
from Unice et al. (2015) to access the environmental availability of tire 
leaches. However, UV weathering conditions using UV-B light and 
weathering tests like freeze thaw and wet-dry of tire cryogrinds are not 
reported elsewhere and augments our recently reported work (Thomas 
et al., 2022b). The mass concentrations were represented as the μg of 
chemical per g of cryogrind dry weight. The factors were calculated as 
per the quantification results and raw instrument data and are shown in 
the supporting information S.3. The total fraction available (FT) was the 
cumulative leachate ability from water, freeze-thaw, wet-dry and 
UV-exposure. Standard deviations of the sample series conducted in 
duplicates is provided in the Supporting information S.4. Accelerated 
UV-weathering tests relative to terrestrial aging could not be incorpo
rated in the factor calculation of additive leachates due to non-detection 
of THF leachates post UV exposure. The FT of TMQ for PC-Si, T-SBR and 
T-NR were 1.43 × 10−4, 1.71 × 10−3, and 1.50 × 10−3, respectively. 
Similarly, the FT for benzothiazole sulfenamide for T-SBR and T-NR were 
0.08 and 0.142, respectively. 

3.4. Quantification of TRWP in the roadside soil samples 

In general, benzene, benzoic acid, and phenol were found in the 
roadside soil samples using the HS-GC-MS qualitative testing and were 
selected as the marker compounds. The precursor for these markers can 
be the elastomer (SBR) in the tire formulation. However, it is more 
probable they were released from the additives with a benzene ring in 
their chemical structure which includes BTS, DPG, TMQ and PPD. This 
hypothesis is backed by the high leaching tendency of the additives 
observed by Thomas et al. (2022a). The reference tire cryogrind 
formulation (Vanderbilt, 2010) has the additives present in 0.6 phr 
(BTS) to 1.2 phr (TMQ, PPD) calculated by averaging on a total of 100 
phr. Thus RA for the additives were averaged to be 0.9/100. TRWP 
contents obtained in the roadside soil samples in Ohio and Kansas were 
2.1% and 0.15%, respectively. TRWP contents observed in the roadside 
soil samples were much greater for Ohio roadside soil than in Kansas due 
to the increased Annual Average Daily Traffic (AADT) in the Ohio lo
cations (see supporting information S.5). Thus, heavy traffic reported 

can be a major reason for higher TRWP observed in the Ohio soil 
samples. 

Chae et al. (2021) reported a TRWP content of 1–5 wt% in the road 
dust whereas Youn et al. (2021) reported 0.9–2.3 wt% TRWP from in
dustrial and residential areas. The results vary due to the difference in 
sampling locations and separation protocols. For the larger TRWP sizes 
(1–5 mm), the mass concentrations were represented as the μg of TRWP 
per g of roadside soil sample dry weight and yielded 800–1300 μg/g and 
1200–3100 μg/g TRWP in Ohio and Kansas soil respectively. The soil 
based TRWP concentrations were lower than the 4500–9100 μg/g in 
sediments (Panko et al., 2012; Unice et al., 2013). 

The dihydroquinoline derivative TMQ could also be another persis
tent leachate. However, since the leaching was carried out in the pres
ence of THF solvent, it does not correlate to true environmental 
conditions. HS-GC-MS confirmed the TRWP presence in the samples 
prior to selecting markers and standards for GC-MS quantification. The 
main challenge that existed was the possibility of other sources for these 
markers, such as bitumen of asphalt road payment wear particles or any 
other runner components. There are no cost-effective ways to critically 
distinguish between the origins of TRWP in the soil samples (TRWP, 
bitumen and other substances) and list out the exact source for com
pounds like benzene, benzoic acid, and phenol. Even though recent 
publications by Kovochich et al. (2021) and Thomas et al. (2022a, 
2022b) show the method of single particle analysis via SEM-EDX to 
confirm the presence of TRWP and bitumen combination, a 100% 
effecting mutually exclusive distinguishing criteria has not been pro
posed yet. However, the tire particles still remains the most prominent 
source for the TMQ and BTS intermediates used in for quantification 
stage (Asheim et al., 2019; Challis et al., 2021; Johannessen et al., 2021; 
McIntyre et al., 2021; Salas et al., 2016). Further, it was observed that 
even though HS-GC-MS is an effective and convenient method for TRWP 
quantification, attaining high headspace and oven temperature 
(≥300 ◦C) becomes a critical criterion when the end goal is to qualita
tively identify the TRWP based degradation intermediates like in the 
conventional GC-MS and PY-GC-MS. Please refer to the recent publica
tions Thomas et al. (2022a, 2022b) if readers are interested to know 
more about the foundational work on abiotic degradation of tire and 
method development of TRWP analysis from soil that resulted in this 
short communication on its quantification. 

4. Conclusion 

A simple and effective analytical method was developed utilizing 
BTS and TMQ based benzene and benzoic derivative markers, for the 
quantification of TRWP in the roadside soil samples. All the markers 
were initially identified and later quantified by internal standard 
method using HS-GC-MS. Environment release factors (FT) of tire cryo
grind leachates showed higher availability for BTS as compared to TMQ, 
with FT of 0.11 and 1.7 × 10−3, respectively. TRWP content in the size 
range of 1–5 mm was between 800 and 1300 μg/g and 1200–3100 μg/g 
TRWP in Ohio and Kansas soil. For TRWP content lesser than 1 mm, 
0.15–2.1 wt% was observed in Kansas and Ohio samples and were 
seemingly dependent on the locations and the traffic. Correlating 
experimental aging on reference tire cryogrinds and the roadside soil 
sample TRWP is of great importance to the ongoing and future TRWP 
and general traditional microplastics research. 
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