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ABSTRACT: Extreme ultraviolet (EUV) lithography currently dominates the frontier of semiconductor fabrication. Photoresists
must satisfy increasingly strict pattern fidelity requirements to realize the significant enhancements in resolution offered by EUV
technology. Traditional chemically amplified resists (CARs) have hit a barrier in the form of the resolution, line edge roughness, and
sensitivity trade-off. This has been compounded by a lack of understanding of the chemical mechanism associated with the EUV
process. Here, we synthesize a series of novel EUV photoresists based on a self-immolative, acid-labile poly(acetal) system. These
systems are shown to be commercially viable under current EUV requirements. Careful study of the resists’ degradation pathways
has enabled the identification of a remarkable photoacid generator (PAG) that functions as both an acid generator and base
quencher, enabling further improvements over previous resists. density functional theory calculations reveal, for the first time, the
connection between the PAG activation barrier and resist sensitivity and suggests why attempts to use electron-beam lithography to

predict EUV performance have failed.

B INTRODUCTION

To meet future miniaturization requirements of the semi-
conductor industry, the development of photoresists that
achieve the goals of the International Roadmap for Devices
and Systems (IRDS) targets of sub-10 nm resolution,
sensitivity below 20 mJ/cm? and line edge roughness (LER)
less than 20% will be critical."> Achieving these goals is
dependent upon the increased understanding of chemical
mechanisms associated with exposure to extreme ultraviolet
(EUV) radiation, the industry’s next-generation 13.5 nm
patterning wavelength. Almost all commercially relevant EUV
photoresists are positive or negative tone chemically amplified
resists (CARs).””” CARs were first invented by IBM in the
1980s® and incorporate polymers containing acid-sensitive
protecting groups, photoacid generators (PAGs), and base
quenchers. Upon exposure to 13.5 nm light, the PAGs
dissociate into strong acids that can deprotect the polymer
and alter its solubility such that the exposed region can be
removed in a basic developer, which is commonly an aqueous
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solution of tetramethylammonium hydroxide. As this process is
catalytic, each photogenerated acid is capable of deprotecting
multiple groups on the polymer. The function of the base
quencher is to limit the diffusion of the acids into unwanted
regions and to improve LER.

Unfortunately, CARs relying on deprotection to generate a
solubility difference have been found to be limited by the need
for acid diffusion to induce deprotection, resulting in a trade-
off between resolution, LER, and sensitivity (RLS).”'® The
RLS trade-off is fundamentally linked to the sharpness of the
solubility gradient in the exposed region of the resist.'"'> As an
enhancement of the gradient is hampered by the stochastics of
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Scheme 1. Scheme Showing Chemical Structures of PPA Derivatives
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the deprotection process, CARs have struggled to overcome
this barrier. Many novel resist architectures'*~'> and photo-
lithographic techniques'®™'® have emerged because of this
issue, and two established methods of overcoming the RLS
trade-off were developed. The first method increases the
effective reaction radius for the deprotection process while
simultaneously increasing the diffusional barrier of the acid."
While this strategy is difficult to implement when deprotection
is used as the solubility switch, a different class of photoresists,
namely chain-scissionable polymers®*~** that depolymerize
upon removal of their end-cap or cleavage of their backbone
linkages, is capable of realizing the full potential of this method.
This prospect results from the low activation energy required
for the removal of many monomeric units relative to a
deprotection-based system. Additionally, the anisotropic
diffusion of PAGs in the exposed area of chain-scissionable
resists is further expected to improve the solubility gradient.”

One of the most well-known depolymerizable photoresists is
poly(phthalaldehyde) (PPA).>> Recently, there have been
several attempts to utilize PPA as an EUV resist,”**” but none
have been successful. This result is due to the instability of
PPA contributing to dark loss*® and contamination of the EUV
optics due to the outgassing of the highly volatile monomers of
PPA. As few other chain-scissionable polymers exist that
display similarly high rates of depolymerization in the solid
state,”” it is not surprising that the number of EUV resists
based on depolymerization has been few, with many promising
candidates having issues such as optics contamination, as in the
case of poly(sulfones),” or low sensitivity, as in the case of
poly(carbonates).””*!

The second established method of overcoming the RLS
trade-off is to increase the PAG concentration, thereby
increasing the efficiency of the exposure process and reducing
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shot noise effects.”'”*"** However, this approach is restricted
as EUV resists almost exclusively implement ionic PAGs that
may segregate from the polymer, especially at concentrations
above 20 wt %.”” While nonionic PAGs have been thoroughly
investigated®*™® and shown to outperform ionic PAGs in
several areas includin7g dark loss,*>*” acid generation under e-
beam conditions,”*” outgassing,’® and PAG phase separa-
tion,” a few nonionic PAG are capable of achieving sub-20
mJ/cm?® sensitivity under EUV exposure. This sensitivity
challenge has been exacerbated by the limited mechanistic
knowledge of the EUV process, especially with respect to the
behavior of nonionic PAGs. While the acid generation
efficiency of nonionic PAGs has been demonstrated to strongly
correlate with the PAGs’ electron affinity under e-beam
conditions,”™**™** such a trend has been consistently
violated*”** when the exposure source has been changed to
EUV. Many authors have recently speculated on the potential
origin of this anomalous behavior,"**® but no substantial
evidence has been provided. Because the initial step in the
decomposition of nonionic PAGs is the formation of a radical
anion,'” it has been exceptionally difficult to explore these
multiconfigurational systems using traditional density func-
tional theory (DFT).

Herein, we describe the design and synthesis of eleven
photoresists consisting of a PPA derivative and a nonionic
PAG. Several of these display high stability, low outgassing,
and unprecedented sensitivity under EUV exposure. These
resist systems will enable us to take advantage of both methods
of bypassing the RLS trade-off. The unusual contrast curve
behavior of two PAGs motivated us to elucidate their EUV
decomposition products, and in the process, we discovered
that the PAGs could simultaneously generate both acid and
base, demonstrating a novel mechanism that will improve the
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Scheme 2. Scheme Showing Chemical Structures of PAG 1 to 9
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Scheme 3. Scheme Showing Synthetic Pathways for the Brominated oPA Monomer and Photoacid Generators (PAGs)
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Scheme 4. Scheme Showing Anionic Polymerization of Brominated oPA to Form P1
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LER of future photoresists by eliminating the stochastics of
quencher distribution. Lastly, we illuminate the EUV
mechanism of the nonionic PAGs using Fermi-Smearing
techniques (FT-DFT) to deal with the multiconfigurational
system and explain the sensitivity trend.

B RESULTS AND DISCUSSION

Synthesis of Monomers, Polymers, and PAGs. Both
the synthesis and application of the original ortho-phthalde-
hyde (oPA) polymer have been extensively studied as it is
commercially available from major chemical suppliers.”>*”** In
contrast, oPA derivatives have rarely been explored due to
synthetic challenges (Scheme 1).*” Commercially acceptable
photoresists have high purity requirements, which motivated
us to explore simple, high-yielding reactions and thorough
methods of purification. We chose to prepare a brominated
derivative from the corresponding diol via Swern oxidation as
all other means of oxidation failed to generate the desired
product in acceptable yield due to the formation of lactone
side products. After reaction condition optimization, the
overall yield was improved to 72%, which was acceptable for
large-scale synthesis. Additionally, we discovered that repeated
sublimation under vacuum at 120 °C (as opposed to oPA,
which is highly volatile and can be sublimed at 40 °C under
vacuum) offered superior purity to column chromatography
and enabled scaling up to SO g (Scheme 3).
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We designed the PAGs based first on known deep ultraviolet
(DUV) active moieties including aryl, naphthalimide, and
iminosulfonates®® with the hope that some would show activity
under EUV and could be subsequently optimized via rational
structural variations. The PAGs were synthesized through a
simple condensation reaction in quantitative yields (Scheme
3). To ensure maximum purity and ease of scale-up,
recrystallizing solvent systems were established for all PAGs.
The brominated oPA could be polymerized through both
anionic and cationic initiation to afford linear and cyclic
polymers, respectively. Cyclic brominated PPA (Br-cPPA) was
synthesized using BF;-EtO, as previously reported for the
synthesis of cyclic PPAs.”® However, the reaction could only
generate the cyclic polymer in 25—30% yield. This yield was
unacceptable for large-scale synthesis and likely due to the
electron-withdrawing nature of the bromine atom. In sharp
contrast, linear brominated PPA (Br-IPPA) could be obtained
using an alcoholic initiator combined with a DBU base in 70—
80% yield (Scheme 4). We found no significant difference in
lithographic performance using either the cyclic or linear
polymer (Supporting Information). The advantage of the
linear polymer is that its reactivity could be finely tuned by
changing the end-cap of the polymer.”® In this work, we chose
to end-cap the linear brominated PPA wusing phenyl
chloroformate as opposed to the popular acetyl anhydride to
create a carbonate bond linkage rather than an ester bond
linkage at the end of the polymer, as EUV radiation is known
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Figure 2. EUV contrast curves for PAG 3—9.

to cleave carbonate linkages. In the most ideal case, the phenyl
chloroformate end-capped Br-IPPA could function as a single
component photoresist that would not require the use of PAGs
as the depolymerization process is a thermodynamic sink after
end-cap removal. Unfortunately, we observed minimal film
thickness decline in its EUV contrast curve up to 30 mJ/cm?,
indicating that the carbonate linkage at the end of the polymer
could not be cleaved under commercially relevant dosages,
possibly due to the weak sensitivity of the carbonate bond or
the scarce number of EUV photons to precisely reach the end
of the polymer.

Significantly improved thermostability was observed on Br-
IPPA in comparison to cPPA. From thermogravimetric analysis
(TGA, Supporting Information), cPPA showed 5% weight loss
at 128 °C, whereas Br-IPPA showed 5% weight loss at 178 °C.
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The superior thermostability of Br-IPPA indicated that higher
postexposure bake temperatures could be applied and that
outgassing would no longer be a significant issue. This was
confirmed under EUV exposure with in situ MS (Supporting
Information) and demonstrated that the only detectable
outgassing product was CO,, which does not significantly
contribute to contamination of exposure optics.51

DUV Exposure. Although photoresists exposed to DUV
light at 248 nm show completely different behavior when
exposed to EUV light due to the difference in acid generation
mechanism,”> we used DUV exposure as a method of
screening resist systems for pattern generation and processing
condition optimization. PAGs 1—4 (Scheme 2) were
combined with Br-IPPA in a 20 wt % ratio (mol % conversions
are listed in the Supporting Information, Table S1) and
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Figure 3. GPC chromatogram of the polymer resist (blue plot), EUV sample (red plot), and Br-oPA monomer (black plot).

evaluated under DUV exposures using an ASML DUV stepper.
The contrast curves are shown in Figure 1. These newly
synthesized photoresist systems were evaluated for ideal soft
and postexposure bake conditions as well as development
solvent. Optimal soft and postexposure bake temperatures and
times were found to be 90 °C for 1 min and 110 °C for 1 min,
respectively. Of the development solvents evaluated, it was
found that toluene, methanol, and isopropanol could
preferentially dissolve the monomers, with isopropanol
displaying the highest selectivity. It is important to note that
all PAGs were soluble in isopropanol in the range of 52—86
mg/mL. Considering 250 mL was used for development, this
allowed us to disregard the possibility of dissolution inhibition
effects by the PAGs on the sensitivity of each resist system. To
ensure that pattern formation occurred successfully, a line
space pattern from PAG 3 was characterized by SEM and is
shown in Figure S3. It is notable that the DUV sensitivity of
the PAG 4 system was comparable to the original PPA*
(which utilized ionic PAGs) despite the significant increase in
the stability of the polymer and the use of a nonionic PAG.
EUV Exposure. With the optimal processing conditions
from the DUV experiments in hand, PAGs 3—9 were evaluated
under EUV exposure. The EUV contrast curves are shown in
Figure 2 with a log-scale version given in the Supporting
Information (Figure S9). As noted previously, Br-[PPA did not
show any significant activity by itself. This was unexpected as
brominated, aromatic polymers have been shown to generate
HBr (pK, —9.0) under e-beam conditions.””> We suspected that
the assumption that radical anion formation in both e-beam
and EUV involves only thermalized electrons was not correct,
and the absence of Br~ was indicative of the lower average
energy of secondary electrons in EUV. The acid generated by
PAGs 3—8 was retained as 4-bromobenzenesulfonic acid (pK,
—3.1) because it had been sufficient to depolymerize Br-IPPA
under DUV exposure based on the results of PAG 4. It was
also appealing as very few EUV resists have been able to avoid
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using fluorinated acids, which are of significant environmental
concern.”*"*° We systematically designed PAGs 3-8 to
possess a wide range of electron affinities and bond strengths
to evaluate the relationship between chemical structure and
EUV sensitivity. As we sought to elucidate the sensitivity trend
of PAGs 3-8, the dependence of Br-IPPA’s dose-to-clear on
the concentration of PAGs generating 4-bromobenzenesulfonic
acid was evaluated. The results are shown in Figure SI0.
Considering the spread in sensitivity of Br-IPPA was only 2
mJ/cm? across a PAG concentration range of 10 wt % (97 mol
%), and the average difference in concentration of PAGs 3—8
in the resist systems was 21 mol % with a maximum difference
of 72 mol %, the variations in PAG concentration could be
safely discounted when exploring the origin of sensitivity
differences between PAGs 3—8. PAG $ merits special attention
as it was recently shown to function as an initiator for
photopolymerization of epoxides at the EUV wavelength®” and
has been highlighted by others’*® as a promising candidate
for EUV lithography. As the generated photoacid of PAG 5 is
approximately 10” times stronger than the acid (p-toluene-
sulfonic acid, pK, —1.3) generated by the referenced PAG,””
we expected PAG § to display even better performance under
EUV exposure. From the contrast curve, all PAGs except for
the aryl sulfonates, PAG 3 and S, achieved dose-to-clear
exposures below 25 mJ/cm® PAG 5 did not possess sufficient
sensitivity to merit its use in EUV photoresists. It is also
noteworthy that the DUV active PAG 3 displays no similar
activity under EUV. Both naphthalimide sulfonate PAGs, PAG
4 and 9, displayed highly unusual behavior in which a plateau
was observed in their contrast curves, prompting the further
mechanistic investigation.

The pK, of the acid generated by PAG 9 was dramatically
lowered relative to PAGs 3—8 by nearly twelve units to assess
if the resists still maintained a strong dependency on acid
strength. While the increased EUV sensitivity of PAG 9
demonstrated this dependence was still present, it was
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Scheme 5. PAG Degradation Mechanism Induced by EUV Photons
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significantly diminished compared to most deprotection-based
CAR resists™ as the sensitivity only doubled compared to that
of PAG 4 despite the 10"’ increase in acid strength.
Additionally, the higher diffusion constant of triflic acid (pK,
—14.9) may have contributed to the increased sensitivity
relative to the bulkier 4-bromobenzenesulfonic acid. Lastly,
simple bromination of the imino phenyl ring on PAG 8
resulted in it nearly doubling its sensitivity compared to PAG
7. The results indicated that small structural changes could
drastically alter EUV performance.

Mechanistic Study. To gain insight into the plateau
observed in the contrast curve for PAG 4 and 9, the
degradation pathway of the naphthalimide PAG was studied.
A wafer coated with Br-IPPA resist and PAG 9 was exposed to
EUV radiation at the dosage of 3 mJ/cm” and postbaked at
110 °C for 1 min. The wafer was then developed in
isopropanol for 1 min. The development solution was
concentrated in vacuo and used for gel permeation
chromatography (GPC) and mass spectrometry (MS) analysis.
The GPC chromatogram is shown in Figure 3. The GPC
chromatograms of the brominated oPA monomer and the
polymer resist are also shown for comparison. In Figure 3, two
peaks were detected for the sample exposed under EUV
(shown in the red curve). The first and second peaks had
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relative molecular weights of 387 and 252 amu, respectively.
The same sample was analyzed by mass spectrometry
(Supporting Information, Figures S4—S6).

From the mass spectrum (Supporting Information, Figures
S4—S6), three compounds were observed. The first peak
appeared at m/z = 170.05996, which corresponded to the
compound benzo[cd]indol-2(1H)-one. The second peak was
at m/z = 212.95367, and the isotopomer pattern indicated the
presence of a Br atom in the molecule, corresponding to the
monomer Br-oPA. The third peak emerged at m/z
345.99878, which corresponded to PAG 9. PAGs are known
to decompose under EUV exposure by absorbing lower energy
secondary electrons as shown in Scheme 5."°

The resist matrix plays the role of electron donor by
absorbing EUV photons and ejecting a photoelectron. These
primary photoelectrons possess enough energy to eject
additional secondary electrons from the resist that diffuse
away from the initial excitation point until they reach
thermalization. The PAG accepts ejected electrons from the
resist matrix, resulting in the formation of a radical anion. The
radical anion decomposes to form radical A and anionic species
B, which deprotonates the resist matrix to release the
corresponding photoacid. The generated photoacid will in
turn cause the resist matrix to depolymerize.
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Figure 4. FOD plots at ¢ = 0.005 e Bohr™® (FT-B97M-V/def2-TZVPP (T, = 5000 K) level) for neutral and radical anions of PAG 3 to 8 (FOD in

yellow).

Table 1. Table Summarizing Results of EA, Photospeed, Bond Dissociation Energy, and AG* for PAG 3 to 8.

PAG vertical electron affinity (kcal/mol) photospeed (m]J/cm?)
PAG 3 39.8 N/A
PAG 4 49.9 15
PAG S 37.5 N/A
PAG 6 32.7 14
PAG 7 38.6 23
PAG 8 43.1 12

“For PAG 3 and §, it is the C—O BDE.

N—O BDE“ (kcal/mol) S—O BDE (kcal/mol) AG¥ (kcal/mol)

64.5 29.7 N/A
14.1 29.4 9.15
58.5 26.5 N/A
17.8 26.6 16.6
14.9 22.3 43.0
144 21.6 25.2

Based on the compounds detected in the EUV exposed
resist film and prior information on the EUV process, a rational
decomposition mechanism was proposed for PAG 9 in Scheme
6. Remarkably, the PAG simultaneously generates both an acid
and a lactam that acts as a quencher.”” This is significant as
quencher distribution has been shown to be the most
detrimental stochastic aspect of photoresist systems and
could be avoided by having the same component generate
both acid and base.’” The EUV mechanism also contrasts with
its accepted mechanism under DUV irradiation®” in which
homolytic bond cleavage occurs.

DFT Calculations. To understand the observed sensitivity
trend under EUV exposure and shed light on the design of
high sensitivity PAGs for EUV lithography, DFT calculations
were conducted. According to the proposed reaction
mechanism shown in Scheme 6, the acid generation efficiency
is related to the reducibility of the PAGs. This trend has been
verified experimentally’**>*' and computationally*’ in e-beam
lithography. Additionally, PAG reduction potentials have been
shown to correlate linearly with their vertical electron affinities
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(VEAs).*® Therefore, DFT calculations were first conducted to
evaluate the VEAs of PAGs 3—8.

The calculation of the VEAs involves radical anion species,
which is challenging as they show strong multireference
character (alternatively termed strong static electron correla-
tion (SEC)), which cannot be adequately described by
standard single-reference DFT as SEC brings capricious effects
into electronic wave functions and derived properties. First, to
gauge the strongly correlated and chemically active electrons in
the radical anions of the PAGs, fractional occupation number
weighted density (FOD) analysis was performed.®® The results
are shown in Figure 4.

The single size-extensive number, Ngop, is the integration of
the FOD over all space, which was established by Grimme et
al. to globally quantify SEC. Nggp for all radical anions is far
above the threshold value (0.2) between a single and
multireference system indicating the strong multireference
nature of these species. From the FOD plots, significant and
delocalized FODs were seen in all radical anions, demonstrat-
ing that these species represent true multiconfigurational
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Figure S. Potential energy surfaces along the N—O bond calculated at FT-TPSS-D4/def2-SVP (T, = 5000 K) level for PAG 4, 6, 7, and 8.

systems. It is noteworthy that in radical anions of PAGs 6, 7,
and 8, a pronounced FOD was observed on the N—O bond,
whereas for radical anions of PAG 3 and §, the pronounced
FOD was observed on the S—O bond. This could indicate that
the most favorable bond cleavage site on PAGs 3 and § does
not result in the production of a strong acid, which is
supported by our contrast curve data. To obtain reliable
molecular energies and structures for these multiconfigura-
tional systems, Fermi-Smearing DFT (FT-DFT) with the meta
GGA functional TPSS (T, = 5000 K),** combined with D4
dispersion correction,”” the def2-SVP basis set and the gCP
empirical counterpoise correction were utilized for geometry
optimizations and thermal corrections. The final energies were
calculated at the FT-B97M-V/def2-TZVPP (T, = 5000 K)
level.® The calculated VEAs are summarized in Table 1.

As PAG 3 and PAG § were not active under the range of the
applied doses, comparing their VEAs has no meaning. In order
to compare the relative photospeeds of PAGs 4, 6, 7, and 8, the
production of the internal base quencher in PAG 4 must be
taken into account. We estimate the photospeed of PAG 4
based on its initial slope prior to the effect of quencher
formation. PAGs 4 and 8 were found to possess the highest
and second-highest VEAs, respectively, matching their photo-
speeds. The VEA relationship to photospeed appears to
collapse when PAGs 6 and 7 are compared. While PAG 7 has
the third-highest VEA among PAGs 4, 6, 7, and 8, its
photospeed is significantly slower than all others. Although
photospeed is highly correlated to VEA under e-beam,*~*
such a relationship has not been as consistent under EUV.

To determine if other parameters correlated with the
photospeed of the PAGs, we calculated the N—O bond
dissociation energy (BDE), S—O BDE, and kinetic energy

44,45
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barrier of the N—O bond dissociation of the radical anion for
each PAG (Table 1). The BDE has previously been used to
rationalize the favorability of dissociative electron transfer
processes’’ as the kinetic barrier of such reactions is
quadratically related to BDE via the well-known Marcus
relationship.68 Based on the N—O BDE, a favorable trend with
photospeed was found for PAGs 4 and 8. However, the
calculated N—O BDE still could not explain the trend for PAG
6 and 7. Despite this failure, it is clear that the N—O cleavage
pathway is more favorable than the S—O cleavage for PAGs 4,
6, 7, and 8 and significantly more unfavorable (C—O cleavage)
for PAGs 3 and $. This agrees with the experimental data that
shows that PAG 3 and $ are not EUV active as S—O cleavage
does not lead to the formation of a strong acid. The potential
energy surfaces (PESs) along the N—O bond are shown in
Figure 5 and demonstrate significant differences in the
activation energy of the radical anion of the PAG dissociation
process. While the VEAs of all PAGs suggest that near 0 eV,
electrons readily attach®~"" to the PAGs, the PESs reveal that
such electrons would be insufficient to cause some of the PAGs
to dissociate. For instance, while it is feasible that a thermalized
electron could cause PAG 4 to undergo dissociation, this is not
possible with PAG 7, which would require a secondary
electron possessing ~1.86 eV to dissociate. In spite of this high
barrier, PAG 7 is still very active under EUV exposure. This
clashes with the widespread perception that PAGs react almost
exclusively with thermalized electrons to dissociate, and that
higher energy processes can be safely discounted.'®**”*
Clearly, this assumption fails here. To obtain a single
parameter that estimates the overall rate of the dissociative
electron transfer process (Scheme 7), we combine the VEA
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and kinetic barrier of the N—O bond cleavage to create an
empirical relationship with photospeed shown in Figure 6.

Scheme 7. Scheme Showing the Dissociative Electron
Transfer Process

A—g]

A+ B

A—B + e~

As can be seen, the correlation between this estimation of
total activation energy and photospeed is excellent.

B CONCLUSIONS

A series of photoresists based on acid—labile poly(acetal)
polymers have been synthesized through anionic polymer-
izations of brominated oPA monomers. These Br-IPPA
polymers were found to possess significantly improved
thermostability in comparison to the original cPPA. The
superior thermostability of Br-[IPPA enabled higher post-
exposure bake temperatures to be applied and prevented
previously catastrophic outgassing issues. As an initial starting
point, the accompanying PAGs for each resist were designed
based on functional groups that displayed high activity under
DUV. Each PAG was synthesized using simple condensation
reactions giving quantitative yields. DUV exposures were used
to optimize processing conditions for the photoresist
formulations. While both aryl and imino/imido sulfonate
PAGs were found to be DUV active, only imino/imido
sulfonate PAGs possessed high EUV sensitivity. Five
derivatives displayed sensitivities well within commercial
processing requirements. Two of the imidosulfonate PAGs
displayed an unusual plateau region in their contrast curves
that was further investigated through mechanistic studies
employing GPC and MS analysis. Significantly, it was found
that the naphthalimide sulfonate moiety could simultaneously

produce acid and base quencher under EUV exposure, a
consequential discovery for the future development of
photoresists. In DFT calculations, the focus was given to the
most promising PAGs 4, 6, 7, and 8. VEA, BDE, and AG*
were calculated. By combining the VEA and AG¥, we obtained
a single parameter that correctly predicts the overall rate of the
dissociative electron transfer process and, by extension, the
sensitivity of the resist. This parameter is currently being
utilized in our research group in the development of single-
component resists based on poly(acetal) polymers and the
results will be reported in due course.

B EXPERIMENTAL SECTION

Synthesis of Linear Brominated Polyphthalaldehyde (Br-
IPPA). Linear brominated polyphthalaldehyde (Br-IPPA) was
synthesized through anionic polymerization reactions. To a Schlenk
flask charged with a magnetic stir bar evacuated and back-filled with
N, three times was added the brominated phthalaldehyde monomer
(10 mmol) and 4-biphenylmethanol (0.2 mmol) in the degassed
anhydrous THF (20 mL) and cooled to —78 °C. 1,8-
Diazabicyclo[5.4.0]Jundec-7-ene (DBU) (0.3 mmol) was added, and
the reaction was left stirring at —78 °C for 4 h, then pyridine (3
mmol) and phenyl chloroformate (1.5 mmol) was added. The
mixture was left stirring for 3 h at =78 °C, then warmed to room
temperature, and the polymer was precipitated by adding the mixture
slowly into methanol (100 mL). The white powders were collected by
filtration, then further purified by dissolving in dichloromethane, re-
precipitating from methanol, and washing in diethyl ether. The
analytically pure product was obtained with 78% yield. '"H NMR (500
MHz, DMSO): § 8.15—7.05 (br, 3H, aromatic), 7.02—6.30 (br, 2H,
acetal).

Synthesis of Aryl Sulfonate PAGs. To a round bottom flask
charged with a magnetic stir bar and an addition funnel evacuated and
back-filled with N, three times was added the chosen phenol (20
mmol) in degassed anhydrous dichloromethane (80 mL) and
triethylamine (15 mL) at room temperature. The chosen sulfonyl

10+
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& .
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Figure 6. Empirical relationship between VEA corrected activation energy and photospeed.
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chloride (24 mmol) was added dropwise via the addition funnel. The
reaction was stirred at room temperature overnight. The reaction
mixture was quenched by the addition of DI water (30 mL). The
aqueous layer was separated and extracted with ethyl acetate (2 X S0
mL). The organic layers were combined, washed with brine (100
mL), dried over MgSO,, and filtered and concentrated in vacuo. The
crude product was purified by flash column chromatography rapidly
to afford the corresponding aryl sulfonate.

Synthesis of Oxime/Naphthalimide Sulfonate PAGs. To a
round bottom flask charged with a magnetic stir bar and an addition
funnel evacuated and back-filled with N, three times was added the
chosen oxime/N-hydroxy-1,8-naphthalimide (20 mmol) in degassed
anhydrous dichloromethane (80 mL) and triethylamine (15 mL) at
room temperature. The flask was then cooled to 0 °C via a water/ice
bath. The chosen sulfonyl chloride (24 mmol) was added dropwise
via the addition funnel. The reaction was stirred at room temperature
overnight. The reaction mixture was quenched by the addition of DI
water (40 mL). The aqueous layer was separated and extracted with
ethyl acetate (2 X 50 mL). The organic layers were combined, washed
with brine (100 mL), dried over MgSO,, and filtered and
concentrated in vacuo. The crude product was purified by flash
column chromatography rapidly to afford the corresponding imino/
imido sulfonate.

Photoresist Coating Conditions. Photoresist polymers (35 mg)
and PAGs (7 mg) were dissolved in 1 mL cyclohexanone. The resist
was spin-coated onto a silicon wafer at 2500 rpm for 1 min resulting
in film thickness of 50 nm and then soft baked on a hot plate at 90 °C
for 1 min to remove residual casting solvent from the film.

Deep-UV Exposure. Deep-UV (DUV) exposures were conducted
using ASML 300C DUV Wafer Stepper at the wavelength of 248 nm.

Extreme-UV Exposure. Extreme-UV (EUV) exposures at the
wavelength of 13.5 nm were conducted using EUV tools at Intel
Corporation.

B ASSOCIATED CONTENT
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