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ABSTRACT: A parallel fluorescent screening method was used to
evaluate active catalysts for the alkaline hydrogen oxidation reaction
(HOR). A library of 1584 catalyst samples containing single
element, binary, and ternary combinations was prepared in high-
throughput fashion from 12 elements (Pt, Ag, Au, Co, Cu, Fe, Hg,
Ni, Pb, Pd, Rh, and Sn) and was screened for their HOR onset
potentials in an alkaline electrolyte. One of the most active alloys,
Pt6Sn4, was tested in an alkaline polymer membrane fuel cell and
produced a power density of 132 mW/(cm2·mg of Pt) compared
with 103 mW/(cm2·mg of Pt) for a Pt/C reference catalyst. The
compositions, morphologies, surface chemistries, and atomic
structures of the catalysts were characterized to better understand
the trends in their properties. The HOR onset potentials measured
in the screening experiments were then used to create a database that was combined with elemental descriptors to train several
machine learning models. The most accurate models were used to predict new alloy catalysts and rank the importance of each
feature in the data set.
KEYWORDS: Alloy electrocatalyst, Hydrogen oxidation, Alkaline fuel cell, High-throughput screening, Machine learning,
Activity descriptor

■ INTRODUCTION
The successful transition of the world’s energy economy from
fossil fuels to renewable resources will depend on the
development of cost-effective technologies for energy storage.
While the cost per watt-hour of building and operating solar
and wind capacity has dropped below the cost of new fossil
fuel and nuclear power plants for electricity generation,1 wind
and solar are intermittent power sources. A reliable electrical
grid based primarily on renewables will thus require
inexpensive energy storage to be available at a very large
scale.2 Electrochemical technologies including Li ion batteries,
metal−air batteries, and redox-flow batteries are promising for
short-term energy storage, but they become cost-prohibitive
for seasonal storage. For this reason, there is much current
interest in developing hydrogen as an energy carrier and an
energy storage vehicle, since it can be generated by electrolysis
of water, used as a feedstock to synthesize liquid fuels, or
converted back to electrical power by combustion or oxidation
in fuel cells. Hydrogen-powered fuel cells also potentially
provide an alternative to battery technology for transportation
sectors that are difficult to electrify, such as long-haul
trucking.3

Anion exchange membrane fuel cells (AEMFCs) and
electrolyzers have the potential to displace acidic polymer

electrolyte membrane (PEM) fuel cells and electrolyzers
because, in principle, they enable the replacement of expensive
and rare platinum group metal (PGM) electrocatalysts by
earth-abundant catalysts.4 Some promising recent discoveries
of PGM-free catalysts for AEMFCs are the MnCoOx spinel
cathode catalysts studied by Yang et al.,5 which achieved power
densities of over 1 W/cm2, and the atomically dispersed
cathode catalysts studied by Zelenay et al.,6−8 which gave
power densities up to 600 mW/cm2. The latter used Fe−N−C
or Co−N−C groups embedded in graphitic carbon to catalyze
the oxygen reduction reaction. However, a persistent challenge
in the development of efficient AEMFCs is the sluggish
reaction kinetics of the alkaline hydrogen oxidation reaction
(HOR). Studies of the HOR reaction at different pH values
have shown that the exchange current density is approximately
2 orders of magnitude lower in base than in acid at Pt
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electrodes.9−11 In acidic electrolytes, the relationship between
the adsorption energy of H atoms and catalytic activity follows
a volcano plot as expected from the Sabatier principle.12 Under
basic conditions, the situation is more complex. While all
proposed microkinetic models for the alkaline HOR on Pt
involve the same intermediate, namely adsorbed H atoms
(Hads), there are competing explanations for the slow kinetics.
Modifications to Pt and to other single element catalysts have
been shown to increase the HOR activity. For example,
Markovic and co-workers studied the activities of Pt−Ru alloys
and Ni(OH)2-modified Pt for the alkaline HOR and found
that they were considerably more active than pure Pt. The
enhancement in the HOR kinetics was attributed to the
oxophilicity of Ru and Ni, which were thought to assist in the
adsorption of reactive OH− ions.13 In contrast, Zhuang et al.
have ascribed the catalytic enhancement to a change in
electronic structure and in the H adsorption energy, supported

by a shift in the voltammetric peaks.14 Koper et al. studied the
alkaline HOR at Pt with metal atoms adsorbed onto the
surface and found that the HOR activation energy correlated
with OH adsorption strength.15 While this is consistent with
the bifunctional catalysis model proposed by Markovic et al.,
both computational and experimental studies suggest an
alternative picture in which oxophilic adatoms alter the
orientation and hydrogen bonding of water molecules at the
catalytic interface.16−20

Recently, the search for improved alloy HOR catalysts has
been extended to Pt alloy compositions that contain a broad
range of transition elements (including Fe,21,22 Co,21,22 Ru,21,22

Pd,21,23,24 Rh,21,25 Cu,21,22 Ni,21 Ir,23−25 and Au22), as well as
metal oxide supported alloys.26,27 Given the very large number
of possible combinations of these components and the still-
evolving science of the alkaline HOR, there is an opportunity
to use high-throughput methods28−35 to evaluate alloy

Figure 1. (A) Electrochemical cell used for high-throughput screening. From bottom to top: gas chamber, silicone gasket, porous mechanical
support, copper electrical contact, Toray carbon paper with alloy catalysts, silicone gasket, PTFE cell walls, platinum counter electrode, AgCl
pseudoreference electrode. (B) Grayscale image of an alloy catalyst array under anodic potential in a hydrogen saturated electrolyte. The diagram at
the top shows the pH photoswitching fluorescence of rhodamine B. (C) Example of a ternary heat map of the onset potential constructed from the
digital images. The potential is reported with respect to the AgCl pseudoreference electrode. (D) Spring graph network created from all the samples
in the data set. Each connection signifies that the two elements are present in an array, and the size and color of each node represent how many
connections it has. The distance of each node from the center of the network represents the strength of its overall connectivity.
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electrocatalysts systematically and learn from possible trends in
activity. High-throughput computational screening of electro-
catalysts has been increasingly enabled by advances in
computational modeling of electrochemical interfaces, but
the results from that approach are often very different from
those found in experimental systems. In contrast, high-
throughput experimentation coupled with computation
enables researchers to create large libraries of electrochemical
data that can be used to train and test active machine learning
models.36−38 These models are useful not only for predicting
new catalyst compositions but also for discovering patterns in
the data that describe the kinetic processes and thus lead to a
deeper understanding.39,40 Here, we evaluate this approach
with a relatively small library of 1584 alloy catalysts to sample a
large composition space for alkaline HOR catalysis. We used a
previously described parallel screening method28,29,33 to
measure the onset potential of hydrogen oxidation in ternary

arrays that each consisted of 66 discrete compositions. Out of
the possible ternary compositions of 12 elements (220 ternary
arrays), we chose 24, i.e., 11% of the total composition space.
The resulting data were used to train three different machine
learning algorithms and predict new alloys that are active for
the alkaline HOR. In addition to finding highly active catalysts,
we also tested different methods for extracting the feature
importance in the models to discover which attributes are the
most relevant descriptors of electrocatalyst activity.

■ EXPERIMENTAL SECTION
High-Throughput Screening. Each array of carbon-supported

HOR catalysts was made by coreducing metal salts in appropriate
proportions to make a triangular plot of 66 unique compositions as
previously described.28,33 Metal precursor solutions were made by
dissolving 0.025 mmol of the appropriate metal nitrate or chloride in
3 mL of Nanopure water and 2 mL of acetonitrile. A 7 mg amount of
Vulcan XC-72 carbon was added to each solution followed by 25 μL

Figure 2. (A) Fuel cell polarization curves and power curves with different Pt containing anode catalysts. Each MEA contains 0.5 mg of Pt/cm2 on
the cathode and 2.58 mmol of PGM/cm2 on the anode. This anode mass loading for the pure Pt/C anode is equivalent to 0.5 mg of Pt/cm2. (B)
Predicted onset potential from the neural network of alkaline HOR for a SnPtRh array. (C) Experimental onset potential of SnPtRh array recorded
from the screening experiment. A small difference is present, mostly on the Pt−Rh binary line. The parity plot for this prediction is shown in Figure
S11.
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of 5 wt % Nafion in alcohol/water (Sigma-Aldrich Nafion 117
solution). The solutions were sonicated in a water bath for 10 min
with occasional stirring. The solutions were pipetted onto Toray

carbon paper 090, 5% PTFE treated (Fuel Cell Store) using a Gilson
PipetMax 268 in the ratios required to produce the composition map
illustrated in Figure 1. After dispensing of all the metal precursors and

Figure 3. STEM images of (A) Pt6Sn4/C, (B) Pt2Rh8/C and (C) PtRu/C with insets showing the particles used for structural analysis. Each image
was acquired at 300 kV. EDS maps of (D) Pt6Sn4/C, (E) Pt2Rh8/C, and (F) PtRu/C acquired at 60 kV. Maps show that Rh and Ru are
homogeneously mixed with Pt, but Sn appears to be more concentrated around the outside of the particle.
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generation of the target compositions, each sample location had a
combined loading of 1 × 10−4 mmol of metal ions. Next, a drop of
excess, aqueous sodium borohydride (2.6 × 10−3 mmol/drop) was
added at each location to reduce the salts to their metallic forms. The
array was dried at 70 °C in air for several hours and then gently
submerged in a beaker of Nanopure water to rinse away the remaining
reactants and ionic products. An electrolyte was prepared by using
150 mL of acetonitrile, 3 mg of rhodamine B (Sigma-Aldrich), 5 g of
tetrabutylammonium perchlorate (Sigma-Aldrich), and 1 mL of
Nanopure water. The solution was stirred until everything was
dissolved and well-mixed. Then 33 μL of 20 wt % tetraethylammo-
nium hydroxide was added and the solution was stirred again. The
array was placed in the home-built screening cell illustrated in Figure
1A, and the electrolyte was added on top. Hydrogen gas was purged
through the cell electrolyte for 5 min and then stopped. Immediately
thereafter, a potential step scan was applied to the cell from −0.4 to
0.5 V versus a Ag/AgCl pseudoreference electrode. Each step had a
size of 50 mV, and the potential was held for 2 s before advancing to
the next step. For arrays that did not contain any Pt, Pd, or Rh, the
potential was scanned from −0.1 to 0.8 V versus a Ag/AgCl
pseudoreference electrode. The pseudoreference electrode was made
by anodizing Ag wire in 1 M KCl at ∼1 mA/cm2 until a dark gray film
appeared on the wire. The electrode was calibrated by ensuring that
the potential difference between the pseudoreference and a standard
Ag/AgCl reference was less than 0.008 V. The pseudoreference
electrode was stored in a saturated KCl solution between experiments.
The screening experiments were done in a darkened fume hood where
a digital camera (Canon EOS 77D) was positioned above the cell and
programmed to take a photograph every 2 s, synchronized with the
potential steps. To determine the onset potential of each catalyst spot,
all images were analyzed using a Python program described in more
detail in the Supporting Information. A sample of the images after
processing is shown in Figure 1B along with a schematic drawing of
the pH dependent fluorescence mechanism of rhodamine B.
Fuel Cell Testing and Material Characterization. To test the

validity of the high-throughput-screening results, we chose two
compositions that had low HOR onset overpotentials (Pt2Rh8,
Pt6Sn4) in the screening experiments and used them to fabricate
membrane−electrode assemblies (MEAs) that were then tested in an
AEMFC, as shown in Figure 2. To synthesize the reference Pt/C
catalyst, 53.99 mg of potassium hexachloroplatinate (Alfa Aesar) was
added to 3 mL of Nanopure water and 2 mL of acetonitrile. The alloy
catalysts were made by adjusting the starting salt compositions
accordingly. The Pt2Rh8 catalyst was prepared by combining 23.16 mg
of rhodium chloride trihydrate (Alfa Aesar) and 10.68 mg of
potassium hexachloroplatinate. For Pt6Sn4, 53.99 mg of potassium
hexachloroplatinate was used along with 13.88 mg of anhydrous
tin(II) chloride (Alfa Aesar). After the salts were dissolved, 14.3 mg of
Vulcan XC-72 carbon powder was added to the solution. The solution
was sonicated for 10 min with intermittent stirring, followed by the
immediate addition of 2 mL of freshly prepared 0.15 M sodium
borohydride solution under rapid stirring. After 10 min, the solid
carbon-supported catalysts were isolated by vacuum filtration with a
poly(ether sulfone) (PES) membrane (Millipore Express PLUS
Membrane Filter, 0.22 μm pore size, hydrophilic poly(ether sulfone))
and rinsed with ∼20 mL of DI water to remove excess borohydride
and chloride salts. The membrane was removed from the filter and
dried in air overnight until no moisture was visible on the membrane.
The catalyst was gently scraped from the membrane and weighed.
Depending on the final yield, the synthesis was repeated or scaled up
to obtain enough product for testing in the fuel cell. PtRu/C, in 30
and 60 wt %, was purchased from the Fuel Cell Store and mixed in the
appropriate ratio to yield an average loading of 53.3 wt % (8.5 mol %)
to match the mole percent loading of the other catalysts (1.14 mg of
30 wt % + 3.99 mg of 60 wt %). For the Pt/C anode, 6 mg of catalyst
powder was added to a vial with 1.5 mL of 1-propanol and 75 μL of
quaternary ammonium poly(N-methylpiperidine-co-p-terphenyl)
(QAPPT) ionomer (2 wt % in DMSO) and sonicated for 10 min
with intermittent stirring. The entire ink was then sprayed onto a
QAPPT anion exchange membrane (AEM) using an airbrush

attached to a 3D printer (see the Supporting Information for details).
The device was programmed to deposit the ink in a square shape with
an edge length of 1.25 cm. This face of the membrane was used as the
anode, while the reverse face was used as the cathode. The cathode
was always deposited in the same manner with an ink that consisted of
6 mg of 60 wt % Pt/Ketjen black EC-300J (Fuel Cell Store) and 75
μL of QAPPT ionomer in 1.5 mL of 1-propanol. After the anode and
cathode were sprayed, the MEA was soaked in 0.1 M KOH for at 70
°C for 16 h. The MEA was then removed and soaked in Nanopure
water for 5 min before being placed in the fuel cell (Scribner 850 fuel
cell test station and back pressure regulator). The cell fixture had a 5
cm2, serpentine flow field on the anode and cathode sides and used
Sigracet 28 BC gas diffusion electrodes (GDLs) on each side. The gas
diffusion electrodes were cut into 1 × 1 cm squares and Teflon
gaskets (McMaster-Carr, 0.005 in. thick) were cut to have a 1 × 1 cm
square hole that created a tight fit around the GDLs. Pure hydrogen
and oxygen were passed through humidifier tanks at 80 °C at a flow
rate of 0.25 L/min before entering the fuel cell chambers, which were
also held at 80 °C. The back pressure in the cell was held at 172 kPa
gauge pressure (25 psi). The polarization curves were measured by
increasing the current in steps of ∼8% of the total current until the
maximum step size of 30 mA was reached. Then a step size of 30 mA
was used until the cell voltage dropped to 0.3 V, which was followed
by a faster return scan back to zero current (open circuit voltage) with
a step size of 50 mA. The catalyst loading on the membrane was
calculated by using a standardized procedure to account for the loss of
material during the spraying process. The process was calibrated by
spraying the catalyst ink several times onto aluminum foil and
weighing on a microbalance after each deposition to calculate the
percentage of the starting material that was deposited onto the
substrate each time.

Scanning transmission electron microscopy (STEM) was used to
image each catalyst and measure the particle sizes and d-spacings
between crystal planes, as shown in Figure 3. Energy dispersive X-ray
spectroscopy (EDS) was also used to spatially visualize the metallic
elements in each catalyst at the subnanometer length scale. The
samples were prepared for imaging by first dispersing them in ethanol
by sonication and then placing a drop of the suspension onto a lacy
carbon grid. The grid was dried in air at room temperature and then
cleaned with an oxygen−argon plasma for 30 s before being placed in
the microscope. STEM images were taken on an aberration-corrected
ThermoFisher Scientific Spectra 300 X-CFEG electron microscope at
300 kV and 60 kV with a probe convergence semiangle of 30 mrad
and a beam current of 56 pA. The EDS elemental maps were
extracted after principal component analysis (PCA) denoising and
background subtraction.

Powder X-ray diffraction patterns were obtained using a Rigaku
SmartLab SE fitted with a copper X-ray anode and Cu Kβ filter.
Samples were mounted using a single crystal silicon plate to minimize
any background diffraction. X-ray photoelectron spectroscopy (XPS)
data were obtained using a Physical Electronics VersaProbe III
equipped with a monochromatic Al Kα X-ray source (hν = 1486.6
eV), and the data were processed using CasaXPS. Charge
neutralization was performed using both low energy electrons (<5
eV) and argon ions. The analysis spot size was ∼200 μm in diameter.
Scanning electron microscopy was perfromed using a Zeiss Supra
50VP with an in-lens detector. Corresponding EDS maps and spectra
were measured with an Oxford Ultim Max EDS detector at 30 kV
accelerating voltage. Samples for SEM and XPS were prepared using
carbon tape to mount the dry catalysts to an aluminum stub.

Data Preparation and Machine Learning. A data set was
compiled by combining the experimental screening data with
descriptors for each element that were derived from various literature
sources, as shown in Table S1. Several steps were taken to prepare the
descriptors for machine learning as described in detail in the
Supporting Information. Most notably, the features were linearly
scaled to range from 0 to 1 using the equation shown in Figure S1. A
polynomial feature space of degree 2 was generated from all the
columns in the space excluding self-interaction terms (Figure S2).
Three regression models were used to analyze the training set data: a
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neural network (NN), a gradient boosted decision tree (GBDT),41

and a Bayesian ridge model with automatic relevance determination
(BRARD).42 The results for each model are shown in Figures 4 and 5.
The machine learning Python packages scikit-learn43 and PyTorch44

were used for data preprocessing, fitting, and evaluation. For the
BRARD model, the optimization algorithm determines values of the
weights, which can be used to determine which features are most
significant for predicting the outcome. Similarly, for the GBDT
model, we can calculate the significance of the features by using the
Gini importance (normalized, mean decrease in accuracy).45 Plots of
the feature weights and their importance are shown in Figure 5B,E.
Each model was also used to predict the onset voltage of the HOR for
the test data, and the neural network was tested on a new array of
alloys that was not in the training data. The accuracy of the training
data and that of the test data for each model are summarized in parity
plots in Figures 4A and 5A,D.

■ RESULTS AND DISCUSSION
High-throughput screening of alloy electrocatalysts was carried
out with the use of a robotic liquid handler to prepare arrays

and an optical screening method to measure the onset of
electrocatalytic activity. Each array of 66 catalyst spots was
fabricated on a common carbon working electrode by
depositing precursor salts, and a chemical reductant was to
create a ternary map of alloy compositions as shown in Figure
1C. The arrays were assembled into a custom screening cell
shown in Figure 1A with a liquid electrolyte added to the top
layer. The screening electrolyte contained a fluorescent, pH-
sensitive probe molecule that images the generation of acid at
the surface of active catalysts in the anodic HOR. As the
potential on the array is stepped to progressively more anodic
potentials, the most active spots in the array begin to fluoresce
under UV flood illumination, and the fluorescence pattern is
imaged by a digital camera. Each catalyst spot was separated by
∼0.5 cm on the electrode, which is much greater than the
diffusion length of ions during the 36 s potential step
sequence; therefore, the pH gradient and resulting fluorescence
gradient were well-resolved above the discrete catalyst spots as
can be seen in Figure 1B. Twenty-four different arrays were

Figure 4. (A) Parity plot showing the accuracy of the neural network’s predictions on the training data and test data after 1000 epochs. Histograms
on each axis show the distribution of each axis data for qualitative comparison. (B) Plot of the average loss as a function of number of epochs
during the training process. Four-fold cross-validation training showing model (C) accuracy and (D) mean absolute error after 400 epochs for each
fold.
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Figure 5. Parity plots showing the accuracy of the (A) GBDT and (D) BRARD linear regressor predictions for the training data and test data.
Visualization of the feature importance of the top features from the (B) GBDT and (E) BRARD models. For the GBDT, feature importance is
calculated using the normalized, total reduction of the mean squared error associated with each feature. For the BRARD model, the coefficients are
the fitted regression coefficients. Plots to visualize the most significant features from each model versus the onset potential are shown for the (C)
GBDT and (F) BRARD models. For the GBDT model, the features were Ave work function*Ave M−O bond enthalpy. For the BRARD model,
the features were −(pct Rh*Ave OH adsorption) − (pct Ni*Ave ionization energy) − (pct 10*Ave M−O bond) + (pct Ni*pctd8s2). A clear
separation can be seen between the alloys that are active and those that are not. A histogram projection and threshold line are plotted as a visual aid.
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tested, each containing a combination of three elements
chosen from a total group of 12 elements. These 12 elements
were selected based on the solubility and stability of the
precursor salts and the reducibility of the metal cation by
sodium borohydride. The total number of ternary arrays that
could be made from 12 elements was 12!/(9!3!) = 220, and
the subset of these tested represents 11% of the total
composition space. When selecting elements for the 12 arrays,
we sought to create a uniform representation of the elements
and binary combinations throughout the entire data set to
minimize bias in the machine learning models. However, Ag
was only combined with precursors that were available as
nitrate salts to prevent precipitation of silver halides, and Hg
was used in only one array because it did not adhere well to the
carbon electrode. Only metallic compositions made by
borohydride reduction were used in this study, but there is
clearly potential for deliberately introducing main group
elements such as nitrogen, boron, carbon, phosphorus, and
sulfur in future experiments. The compositions of all the arrays
that were screened can be seen in Figure S3.
On the basis of the screening results, two alloy compositions

were chosen for more detailed investigation. We chose Pt2Rh8
because it had one of lowest anodic onset potentials of all the
compositions tested, and we chose Pt6Sn4 because it also had a
less anodic onset than Pt but contained significantly less
precious metal. Rh/C catalysts have previously been reported
to have similar activities for alkaline HOR to PtRu/C in
rotating disk experiments, although the kinetics of both
catalysts were too fast to differentiate the two.46 PtSn/C
alloys have previously been shown to be more active than Pt
for methanol oxidation, but these catalysts have primarily been
studied in acidic PEM fuel cells and the enhancement is
generally attributed to weakening the CO* binding to Pt or to
providing sites to adsorbed water.47 In the case of the alkaline
HOR, alloying with Sn may weaken the OH* adsorption
energy at Pt or the presence of Sn4+ at the surface may modify
the structure of adsorbed water. The two alloys were
resynthesized to test their activities in an alkaline polymer
fuel cell and to characterize their structures. The polarization
curves in Figure 2 show that more power is produced by the
Pt6Sn4 (132 mW/cm2) and Pt2Rh8 (155 mW/cm2) alloy
anodes than pure Pt/C (103 mW/cm2) but less power than
commercial PtRu/C (202 mW/cm2). The peak power and
current observed in our tests also match closely with the
average AEMFC metrics reported in the literature.48 To
quantify the role of surface area in the performances of these
catalysts, the electrochemically active surface areas (ECSAs)
were measured for each sample using the peak area from
hydrogen underpotential deposition (HUPD), and the values are
reported in Table 1. The ECSA values measured fall into the
expected range for Pt nanoparticles of this size,49 although it

has been shown that changes to the H* adsorption energy can
affect the peak area of HUPD.

50 We find that the ECSA does
correlate with the peak power density for Pt/C, Pt6Sn4/C, and
Pt2Rh8/C, but PtRu/C deviates strongly from this trend, which
suggests that the superior performance of PtRu/C is not a
result of higher ECSA. It has been shown previously that
PtRu/C produces about twice as much power as Pt/C at the
anode,14 but the reason for improvement is still debated.4

Scanning transmission electron microscopy (STEM) was
used to image the carbon-supported catalyst particles and to
map the distribution of elements on the nanoscale. Figure 3
shows the electron micrographs with annotations for the
crystal plane spacing as well as the elemental maps from EDS.
The images show that the particle sizes for all the samples are
similar to an average diameter of about 3 nm and a few
polycrystalline particles that can be up to 7 nm in diameter. X-
ray powder diffraction data (see below) indicated that
nanoparticles of Pt/C, Pt6Sn4/C, and Pt2Rh8/C were face-
centered cubic (fcc). Interplanar distances obtained from
lattice fringes in the STEM images corresponded to the fcc
(111) planes, and the calculated lattice constants are given in
Table 1. The lattice constant for Pt is close to the value
reported in the literature,51 although the standard deviation for
all the samples is high due to scan stability and nonuniform
lattice strain. The STEM-derived lattice constants for Pt6Sn4,
Pt2Rh8, and PtRu have large deviations from those previously
reported in the literature,51−53 but the lattice constants derived
from the XRD patterns showed very close correspondence with
the literature values and much smaller standard deviations.
Energy dispersive X-ray spectroscopy (EDS) maps in Figure 3
show that the Pt2Rh8 and PtRu alloys have a homogeneous
distribution of the elements throughout the particles, but
Pt6Sn4 has a higher concentration of Sn in the 0.5 nm thick,
outer shell of the particle (Figure 3D). A core−shell structure
for PtSn alloys has been observed for similar samples and has
also shown enhanced electrooxidation activity for ethanol,
which the authors attributed to the favorable adsorption of
OH* onto the SnO2 surface.

54 It is unlikely that a pure SnO2
surface would be very active for the HOR, suggesting that
either there is some Pt/Sn alloying at the particle surface or the
shell does not completely cover the Pt atoms at the surface.
Surface characterization of the alloys was done using X-ray

photoelectron spectroscopy (XPS), and the measured spectra
were fitted for surface quantification. The results are shown in
Figures S4−S6 and summarized in Table 2. For the Pt2Rh8 and
PtRu samples, the surface compositions are quite close to the
target stoichiometries, and they are also close to the bulk
compositions as measured by EDS. In contrast, XPS shows
surface enrichment of Sn in the Pt6Sn4 sample, which is
consistent with the STEM imaging results. On the basis of this
information and the EDS maps, we believe that, in the PtRu

Table 1. Lattice Constants Measured from Lattice Fringes in STEM images and d-Spacings in XRD Patternsa

lattice constant (Å)

sample from STEM from XRD and std dev from literature crystallite size from XRD (nm) electrochem surf.area (m2/mol)

Pt/C 3.923 ± 0.112 3.918 ± 0.023 3.91651 5.66 ± 1.25 104.1
Pt6Sn4/C 3.862 ± 0.092 3.959 ± 0.016 3.95951 2.73 ± 0.41 121.7
Pt2Rh8/C 3.893 ± 0.095 3.881b 3.8552,c 1.76b 152.7
PtRu/C 3.907 ± 0.072 3.879 ± 0.020 3.87553 2.76 ± 0.23 103.3

aValues obtained from the STEM images have a low precision, which is likely caused by sample drift and nonuniform particle strain. bThere is no
standard deviation for this value because only one peak was observed by XRD. cThis value was interpolated from literature data by using Vegard’s
law.
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and Pt2Rh8 samples, Pt, Ru, and Rh are all exposed at the
surface of the particles and thus can be catalytically active sites.
The amount of Pt on the surface of the Pt6Sn4 sample is
difficult to quantify because we know from EDS that only the
top 0.5 nm is enriched in Sn. However, we measure a 56:44
Pt:Sn ratio by XPS. This suggests there is considerable
platinum within 1−2 nm of the surface that could interact
directly with H atoms. The EDS map in Figure 3D also shows
brownish/orange-colored pixels on the surface of the Pt6Sn4
particle, which indicates that both Pt and Sn was detected at
those locations on the surface. We observed by XPS that the Pt
4f7/2 peak was shifted by +0.5 eV in the more active alloys with
Ru and Rh but not in the Sn alloy. This shift could be caused
by three effects, i.e., the presence of PtO in the PtRu and
Pt2Rh8 samples, a partial transfer of charge from the Pt atoms
to the Ru or Rh atoms, or a particle size effect previously
reported by Roth et al.55 In addition, peak shifts have also been
attributed to rehybridization of valence orbitals, volume
renormalization, or changes to charge screening of core
holes.56 Several other studies of alloys have observed this
shift in binding energy after taking careful steps to prevent or
remove surface oxidation, supporting the idea that the peak
shifts are caused by transfer of charge between the atoms or a
particle size effect rather than by surface oxidation.
Unfortunately, conflicting results are reported in the literature
for the direction of the peak shifts in PtRu alloys which may be
dependent on the sample preparation method or the other
factors mentioned above. Most observations report a positive
shift of +0.5 eV.57,58 PtSn alloys typically exhibit a negative
shift (−0.7 eV) of the Pt 4f peaks,58,59 whereas PtRh alloys60

were previously reported to have no shift of the Pt 4f peaks,
both of which are contrary to our observations. All the atoms
in the alloys have unfilled valence shells that could donate or
accept electrons from neighboring atoms. Pt, Ru, and Rh have
similar electronegativities and based on that consideration
alone would not be expected to transfer charge locally between
atoms, whereas Sn has a much lower electronegativity and
would be expected to donate charge to Pt in an alloy. This
expectation is however the exact opposite of our observation,
as well as of most other observations of PtRu and PtSn alloys,
and is an ongoing debate within the community.61 Rodriguez
et al. reported a significant correlation between the shift in core
level electrons measured by XPS and the adsorption energy of
carbon monoxide on the surface, which was attributed to a
change in the valence d-band due to rehybridization, but it
should be noted that other factors can affect the energy of core
electrons.56 Hammer and Nørskov62,63 created the d-band
model for heterogeneous catalysis, which has shown a strong
correlation between catalytic activity and adsorbate stability.64

A shift in the d-band could thus be correlated with activity
depending on the direction and magnitude of the shift.15 The
ideal catalyst was predicted to have slightly weaker H*

adsorption (+0.3 ΔeV) than Pt(111) and stronger OH*
adsorption (−1.0 ΔeV) than Pt(111).15 Since Pt6Sn4 did not
have a noticeable shift in the Pt 4f peak, we hypothesize there
may not be a shift in the d-band or adsorption energies and
that a bifunctional mechanism could be the cause of increased
HOR activity. Sn has one of the strongest OH* adsorption
energies of the metals tested, and Koper et al. have previously
used DFT calculations to show that stronger OH* adsorption
would be beneficial for catalysis of the alkaline hydrogen
evolution reaction (HER) and likely also for the HOR.15 Since
PtRu and Pt2Rh8 both showed a binding energy shift in the Pt
core electrons, it is possible that a shift in the d-band
contributed to improved activity. However, we cannot rule out
the other factors noted above that affect this measurement.
Peak fitting of the XPS data suggests that all the alloying

metals, Rh, Ru and Sn, on the surface of the catalyst particles
are predominantly oxidized. Previous studies of PtRu/C also
found that the surface Ru atoms were mostly oxidized to
Ru(IV) and Ru(V), especially when the water content was
high in the synthesis.65,66 Likewise, PtSn and PtRh alloys have
been shown to have oxidized surfaces via XPS, although this
this may depend on the conditions of the synthesis and
exposure to air in preparation for ex situ measurements.67−69

Powder X-ray diffraction (XRD) patterns in Figures S7−S10
of the catalysts tested confirmed that only one crystalline fcc
phase was detected in each sample. Interestingly, the Pt2Rh8
alloy showed only a single, broad peak centered near the
expected 2θ value of the (111) peak of Pt and Rh, which has
previously been seen for alloys with high Rh content,52,70 and
this suggests that the sample contains particles with a broad
ensemble of lattice constants. There is obvious peak shifting
for Pt6Sn4 and PtRu compared to pure Pt. The Pt6Sn4 peaks
are shifted to lower 2θ angles by ∼0.25°, whereas the PtRu
peaks are shifted to higher angles by ∼1°. Lattice constants
calculated from the d-spacings of the (111) peaks and are
compared in Table 1 to those derived from STEM images and
earlier literature reports. The shift of the diffraction peaks
suggests that alloying may contribute to lattice strain. Previous
studies by Du et al. have shown that mechanically induced
compressive strain in a pure Pt film increases its activity for
oxygen reduction whereas tensile strain lowers its activity.50 It
has been shown that the increase in the oxygen reduction
reaction (ORR) activity on Pt is due to weakening of O*
adsorption which moves it toward the optimal adsorption
strength.71 This may not be the case for OH* or H*, and alloy
surfaces complicate the understanding of strain effects because
it is not clear what the active sites are. From our knowledge of
the activity of the pure elements, we hypothesize that Rh and
Pt are likely both active sites for binding the intermediates
because of their high activities for alkaline HOR. Ru also has
moderate activity for alkaline HOR, but it is not possible to
determine which element in the alloys the intermediates are
adsorbed to or how strongly without more experimental or
computational data. We note that studies have shown evidence
that OH* adsorbs to Ru sites and H* adsorbs to Pt sites in a
Pt3Ru alloy.14 From the XRD data, we observed that Pt2Rh8
and PtRu had lattice compressions of 2.1 and 1.0% relative to
pure Pt, whereas Pt6Sn4 had a lattice expansion of 1.0%. This
indicates that the higher HOR activity of Pt6Sn4 does not
correlate with lattice strain, and thus a bifunctional mechanism
may be operative as suggested by the lack of an XPS peak shift.
It is not clear if the higher activities of PtRu and Pt2Rh8 are due
to compressive strain or electronic effects since the degree of

Table 2. Comparison of Target Stoichiometry, Bulk
Composition as Measured by EDS, and Surface
Composition as Measured by XPS

Pt:Me atomic ratio (Me = Sn, Rh, Ru)

sample
target

stoichiometry
bulk composition

(EDS)
surface composition

(XPS)

Pt2Rh8 0.25 0.26 0.23
Pt6Sn4 1.50 1.38 1.26
PtRu 1.00 1.12 1.01
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strain is lower in the more active PtRu catalyst. Pt6Sn4 and
PtRu appear to have some preferred orientation as evidenced
by the low intensity of the (200) peak, which is often seen in
Pt alloys with these elements.52,53,72 We also calculated the
average crystallite size of the particles by using the Scherrer
equation. This indicated that the average Pt crystalline domain
size was about 5.7 nm, and that PtRu and Pt6Sn4 had average
sizes of 2.7 nm, which agrees well with the observations from
STEM images and ECSA measurements. The (111) peak for
Pt2Rh8 gave an average crystallite size of 1.8 nm, but it is not
clear if the increased peak width was primarily a consequence
of particle size or the presence of overlapping reflections from
grains with different d-spacings.
The catalyst screening data were prepared for machine

learning as described in the Supporting Information. The
sample set used for training and testing is represented as a
graph network in Figure 1D to visualize how homogeneously
the elements are represented in the data set. Mercury was used
in only one array due to its lack of activity for HOR and poor
adhesion to the electrode. Silver was used only with metals that
were available as nitrate salts in order to avoid the formation of
insoluble silver chloride. The data set was designed to include
as many unique binary combinations as possible while
following those two constraints.
The experimental screening data were used to train three

different regression models: a neural network (NN), a gradient
boosted decision tree (GBDT),41 and a Bayesian ridge model
with automatic relevance determination (BRARD).42 Today, it
is common for machine learning models to be trained on
several hundred thousand data points, which can be an
impractically large number for analyses based on experimental
data. Thus, a key goal of the current study was to determine
whether more sparse data sets could enable accurate
predictions of electrocatalytic activity. The accuracy of all
three models is high when interpolating the onset potential of
catalysts, considering the small size of the training data set.
The NN model was chosen for study in more detail because

it exhibited both the highest test accuracy and minimal
overfitting. The accuracy of the NN can be summarized by
examining the parity plot in Figure 4A. The coefficient of
determination (R2) has values of 0.95 and 0.94 for the training
and test sets, respectively, while the mean absolute errors
(MAEs) for HOR onset potentials are 0.054 and 0.063 V. A
perfect model would have all data points fall directly on the
parity line and have an R2 of 1 and MAE of 0. Figure 4B shows
that the NN’s loss during each training loop (described as an
epoch) decreases rapidly and converges very quickly. Four-fold
cross validation was performed during training of the NN to
calculate a less biased score and check for overfitting. We also
experimented with using different training sizes to visualize
how adding more data points could affect the test accuracy.
From Figure 4C,D, we see that test accuracy and mean error
improve rapidly with the training sample size up to ∼350
samples, after which they change more slowly. Thus, while the
model could likely be improved with more data, the test
accuracy is improving slowly, and the training accuracy has
already reached a plateau with the current data set. We also
note that the large difference in training accuracy and test
accuracy seen for the smallest training size in Figure 4C,D is a
result of the network being too large for the small data set and
overfitting, although this difference diminishes as the training
data size grows to fit the network size.

The parity plots and test metrics for the GBDT and BRARD
models are shown in Figure 5A,D. Using these metrics, we can
see that the NN and GBDT perform very similarly on the
training and testing data while the BRARD model performs
more poorly in both cases. To predict the onset potential of an
entirely new array that is not included in the training data, we
retrained the NN without the data of the SnPtRh array and
used it to predict the onset potentials of the SnPtRh array. The
predicted and experimental onset potentials for alkaline HOR
are shown in Figure 2B,C. R2 decreased dramatically to 0.034
but the MAE only increased to 0.12 (Figure S11). which is
similar to the value obtained from the ridge regression model
(0.1 V) and only 2 times the best values obtained from the
other models. This shows that the predictions for SnPtRh are
actually not so far off from the true values. The reason why the
R2 value is so low for this data set is because 89% of the data
from just this one array (SnPtRh) falls within the range of the
mean error. The average onset potential is around 0.05 V but
the average error is ±0.12 V, and 89% of the data falls within
this range of the mean. In other words, experimental error,
random error, and other sources of error can cause a deviation
up to 0.12 V but 89% of the data falls within this small window
of fluctuations. Therefore, the reason the R2 value is so low is
not because the model is not accurate, but rather because this
data set has such a narrow range of onset potentials compared
to the magnitude of the error. However, we want to emphasize
that having a narrow range of onset potentials for this data
does not make the predictions useless as we can see the
average error is only 0.12 V, and it is obvious that the few data
points that are far from the mean do seem to follow the
diagonal line though there are so few that it cannot affect the
statistical significance of the R2 value. With a comparison of the
onset potentials of binary compositions that are repeated
across different arrays, a deviation in onset potentials as large
as 0.1 V can be found in a few instances, which is likely due to
deviations in the robotic synthesis and/or drift of the Ag/AgCl
reference electrode. Another major source of error comes from
estimating the intrinsic material properties of the alloys by
taking a simple weighted average of the properties of the
individual component elements. This is clearly inaccurate in
many cases and could be improved by incorporating
descriptors for alloy phase behavior, by high-throughput
characterization experiments of the alloys, or by applying
advanced computational chemistry/physics models to calculate
the alloy properties. This model could be used to predict the
HOR activity of any binary or ternary alloy containing the 12
elements used in the screening and could also be adapted to
include any element by adding the relevant physical properties
of each element into the model database.
To better understand the factors that determine the activity

of the catalysts, we plot the normalized, mean decrease in the
mean squared error for the top 22 features after training the
GBDT model in Figure 5B. Since these decision trees use
inequalities for the splitting criteria, we would expect good
predictor features to be separated by some threshold value as
shown in Figure 5C. By far the most significant feature is the
product of the average work function and the average metal
oxide bond enthalpy. The M−O bond enthalpy is highest for
Sn, Rh, Pt, Co, and Fe while Pt, Pd, Au, and Ni have the
highest work functions. The product of these two properties
would therefore enhance the contribution of Pt relative to
those of Co, Fe, and Au. Next, we see two more features, which
contain products of the reduction potential with metal oxide
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bond enthalpy and ionization energy. We see that features
related to the amounts of Pt (pct Pt, pctd9s1) and Ni (pct Ni,
pctd8s2) play a small role in determining the prediction for the
GBDT model as well as the adsorption energies of H* and
OH*, though they are much less significant to the model than
the main features mentioned earlier. It should also be noted
that pct Pt and pct Ni are both perfectly correlated to pctd9s1
and pctd8s2, so the total contribution of these features should
be considered together. The low ranking for H* and OH*
adsorption energies from this model does not mean that these
features are not important for the activity, but rather that they
are not the best descriptors when considering the entire range
of metals tested. Adsorption energy would likely be more
significant if we were only considering the most catalytically
active metals in this study. Also, particle size clearly plays an
important role in the ranking of catalytic activity, as shown by
the ECSA measurements. Thus, the relative rates of nano-
particle nucleation and growth are expected to be important
and may correlate with some of the elemental features
identified by the NN and GBDT models.
Plots of the most significant coefficients from the BRARD

model are shown in Figure 5E, and we would expect to see a
strong correlation between these features and the onset
potential shown in Figure 5F. The use of a polynomial feature
space is quite useful here because it enables the model to
accurately fit a combination of parabolic relationships that may
exist between a positively correlated feature and a negatively
correlated feature (Figure S2). We can see large a positive
coefficient associated with Ni content (pct Ni*pctd8s2), which
pushes the onset potential higher as the value increases. We
also see that products of elemental content (pct Cu times pct
Rh, pct Au, and pct Pd) have large, positive coefficients which
again push the onset potential higher when there is high Cu
content in the sample with Rh, Au, or Pd. These features
suggest that Cu may have a detrimental effect on the activity of
active metals, Pd and Rh, which supports our observations
from the arrays containing Cu and Pd or Rh in Figure S12.
Notably, we do not see combinations of Pt and Cu in this list
of bad features, which again supports the observation in Figure
S12. Next, we observe high, negative coefficients associated
with Rh content (pct Rh and pctd8s1) times the average OH*
adsorption energy as well as the ionization energy times Ni
content (pctd8s2 and pct Ni). This suggests that Rh should be
more active when alloyed with metals that have a lower OH*
adsorption energy, such as Fe, Co, or Sn, which is supported
by our observations in Figure S12. Seeing the presence of pct
Ni and pctd8s2 show up in both the positive and negative
weights is a consequence of a model that uses a sum of the
features to balance the complex relationship between the
alloy’s activity and composition. In Figure 5C,F we show
scatter plots between the onset potential and the top features
as well as the projections onto each axis. By looking at the
projection onto the x-axis and separating the data into two
classes, active and inactive, we can visually identify where the
optimal value lies for a catalyst without having to use the
machine learning model to predict the onset potential and with
only needing to know a few attributes of the sample. This can
be used as a simple classifier to predict if an alloy will fall into
the class of active or inactive. Using this method of
classification with the top feature from the GBDT shown in
Figure 5C, we observe a correct prediction for 89% of the data
while the classification with four selected features from the
BRARD model shown in Figure 5E is correct 92% of the time.

It is not surprising that the classification that used the features
from the BRARD model performed better than the
classification from the GBDT model because BRARD is
optimized to fit a linear combination of features and this
classification method uses a linear combination of the top
features. This shortcut would only be accurate for catalysts that
are similar to those that were used in this study, mainly late
row transition metal and p-block metal alloys.

■ CONCLUSIONS
A goal of this study was to understand the predictive power of
machine learning tools with a limited experimental data set of
electrocatalyst onset potentials. In this context, the high
accuracies of interpolation by the NN and GBDT models are
encouraging and suggest that they could be useful for
predicting new, active catalysts if the quality of training data
can be improved and extended. The accuracy of interpolation
suggests that meaningful predictions about catalysis can be
made with only a few thousand data points if enough
information can be incorporated into the model, in contrast
to other studies that have used up to 2 orders of magnitude
more data points.30 It is well-known that machine learning
models perform worse at extrapolating beyond the boundaries
of the training data, and this may be improved by expanding
the elemental boundaries or by using physics-informed or
expert-in-the-loop models.73 The incorporation of metals such
as Ru and Ir would likely lead to more active catalysts,13 and
metals such as Mo and Mn may also show interesting activity if
they can be stabilized in nanoparticle alloys. It is likely that the
accuracy of the models used for extrapolation could be
improved significantly by gathering more accurate data from
the alloys or by improving the precision of the screening
method. Regardless, these experiments have shown that we can
give a reasonably accurate estimate of an alloy catalyst’s HOR
activity just by looking at the average metal−oxygen bond
enthalpy times the average work function of the individual
elements, and using the trained NN, one can quickly and
accurately estimate the onset potential of an alloy HOR
catalyst.
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